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ABSTRACT

Large language models (LLMs) have revolutionized machine learning due to their ability to
capture complex interactions between input features. Popular post-hoc explanation methods
like SHAP provide marginal feature attributions, while their extensions to interaction impor-
tances only scale to small input lengths (≈ 20). We propose Spectral Explainer (SPEX), a
model-agnostic interaction attribution algorithm that efficiently scales to large input lengths
(≈ 1000). SPEX exploits underlying natural sparsity among interactions—common in real-
world data—and applies a sparse Fourier transform using a channel decoding algorithm to
efficiently identify important interactions. We perform experiments across three difficult
long-context datasets that require LLMs to utilize interactions between inputs to complete
the task. For large inputs, SPEX outperforms marginal attribution methods by up to 20%
in terms of faithfully reconstructing LLM outputs. Further, SPEX successfully identifies
key features and interactions that strongly influence model output. For one of our datasets,
HotpotQA, SPEX provides interactions that align with human annotations. Finally, we use
our model-agnostic approach to generate explanations to demonstrate abstract reasoning in
closed-source LLMs (GPT-4o mini) and compositional reasoning in vision-language models.

1 INTRODUCTION

Large language models (LLMs) perform remarkably well across many domains by modeling complex
interactions among features1. Interactions are critical for complex tasks like protein design, drug
discovery or medical diagnosis, which might require examining combinations of hundreds of features.
As LLMs are increasingly used in high-stakes applications, they require trustworthy explanations to
aid in responsible decision-making. Moreover, LLM explanations enable debugging and can drive
development through improved understanding Zhang et al. (2023a).

Current post-hoc explainability approaches for LLMs fall into two categories: (i) methods like
Shapley values Lundberg & Lee (2017) and LIME Ribeiro et al. (2016) compute marginal feature
attribution but do not consider interactions. As a running example, consider a sentiment analysis task
(see Fig. 1(a)) where the LLM classifies a review containing the sentence “Her acting never fails to
impress”. Marginal attribution methods miss this interaction, and instead attribute positive sentiment
to “never” and “fails” (see Fig. 1(a)). (ii) Interaction indices such as Faith-Shap Tsai et al. (2023)
attribute interactions up to a given order d. That is, for n input features, they compute attributions by
considering all O(nd) interactions. This becomes infeasible for small n and d. This motivates the
central question of this paper:

Can we perform interaction attribution at scale for a large input space n with reasonable
computational complexity?

We answer this question affirmatively with Spectral Explainer (SPEX) by leveraging information-
theoretic tools to efficiently identify important interactions at LLM scale. The scale of SPEX is

∗Equal contibution 1Department of Electrical Engineering and Computer Science, UC Berkeley
2Department of Statistics, UC Berkeley 3Department of Electrical and Computer Engineering, UC Santa
Barbara. Correspondence to: Justin Singh Kang <justin kang@berkeley.edu>.

1LLM features refer to inputs at any granularity, e.g, tokens, sentences in a prompt or image patches in
vision-language models.
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(a) SENTIMENT ANALYSIS

CONTEXT

... Her acting never fails to impress. She

brings depth and authenticity to every role.

Her performances consistently draw the ...

PROMPT

Is this a positive or negative review?

GENERATED RESPONSE

Positive.

Interaction:

never fails

never fails

never failsMarginal attributions:

(b) RETRIEVAL AUGMENTED GENERATION

CONTEXT

...
Weather
in Tokyo

Brazilian
Music

Rio
Carnival

Summer
in Brazil

Winter
in Brazil

History
of Brazil

Sport
in Rio

...

PROMPT

What is the weather like during Rio Carnival?

GENERATED RESPONSE

Rio Carnival generally takes place during the summer season in
Brazil. The weather at this time is typically hot and humid.

Interactions:

Summer
in Brazil

Rio
Carnival

Winter
in Brazil

Rio Carnival &
Summer in Brazil

Rio Carnival &
Winter in Brazil

(c) VISUAL QUESTION ANSWERING

CONTEXT

PROMPT

What is shown in this image?

GENERATED RESPONSE

A dog playing with a basketball.

Interaction:

Figure 1: (a) Sentiment analysis: SPEX identifies the double negative “never fails”. Marginal
approaches assign positive attributions to “never” and “fails”. (b) Retrieval augmented generation:
SPEX explains the output of a RAG pipeline, finding a combination of documents the LLM used to
answer the question and ignoring unimportant information. (c) Visual question answering: SPEX
identifies interaction between image patches required to correctly summarize the image.

enabled by the observation that LLM outputs are often driven by a small number of sparse interactions
between inputs Tsui & Aghazadeh (2024); Ren et al. (2024a). See Fig. 1 for examples of sparsity in
various tasks. SPEX discovers important interactions by using a sparse Fourier transform to construct
a surrogate explanation function. This sparse Fourier transform searches for interactions via a channel
decoding algorithm, thereby avoiding the exhaustive search used in existing approaches.

Our experiments show we can identify a small set of interactions that effectively and concisely
reconstruct LLM outputs with n ≈ 1000. This scale is far beyond what current interaction attribution
benchmarks consider, e.g., SHAP-IQ Muschalik et al. (2024), which considers datasets with no
more than 20 features. This is summarized in Fig 2; marginal attribution methods scale to large n
but ignore crucial interactions. On the other hand, existing interaction indices do not scale with n.
SPEX both captures interactions and scales to large n. For an s sparse Fourier transform containing
interactions of at most degree d, SPEX has computational complexity at most Õ(sdn). In contrast,
popular interaction attribution approaches scale as Ω(nd).

Evaluation Overview. We compare SPEX to pop-
ular feature and interaction indices across three
standard datasets.

• Faithfulness. SPEX more faithfully reconstructs
(≈ 20% improvement) outputs of LLMs as com-
pared to other methods across datasets. Moreover,
it learns more faithful reconstructions with fewer
model inferences.

• Identifying Interactions. SPEX identifies a
small number of influential interactions that sig-
nificantly change model output. For one of our
datasets, HotpotQA, SPEX provides interactions
that align with human annotations.

• Case Studies. We demonstrate how one might
use SPEX to identify and debug reasoning er-
rors made by closed-source LLMs (GPT-4o mini)
and for compositional reasoning in a large multi-
modal model.
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Figure 2: Marginal attribution approaches
scale to large n, but do not capture interac-
tions. Interaction indices only work for small
n. SPEX computes interactions and scales.
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Input Masking
Design

LLM

Model
Outputs

Decoding

Fourier
Surrogate Function

−0.45(never)−0.61(fails)

−0.01(to) +0.37(impress)

+0.70(never, fails)

−0.53(never, impress)

+0.97(never, fails, impress)

=

Explanation

SPEX

Figure 3: SPEX utilizes channel codes to determine masking patterns. We observe the changes in
model output depending on the used mask. SPEX uses message passing to learn a surrogate function
to generate interaction-based explanations.

2 RELATED WORK

Model-Agnostic Feature Attributions LIME Ribeiro et al. (2016), SHAP Lundberg & Lee (2017),
and Banzhaf values Wang & Jia (2023) are popular model-agnostic feature attribution approaches.
SHAP and Banzhaf use game-theoretic tools for feature attribution, while LIME fits a sparse linear
model. Chen et al. (2018) utilize tools from information theory for feature attributions. Other methods
Sundararajan et al. (2017); Binder et al. (2016) instead utilize internal model structure to derive
feature attributions.
Interaction Indices Tsai et al. (2023) and Sundararajan et al. (2020) extend Shapley values to
consider interactions. Fumagalli et al. (2023) provide a general framework towards interaction
attribution but can only scale to at most n ≈ 20 input features. Ren et al. (2023; 2024b) theoretically
study sparse interactions, a widely observed phenomenon in practice. Kang et al. (2024) show that
sparsity under the Möbius transform Harsanyi (1958) can be theoretically exploited for efficient
interaction attribution. In practice, the proposed algorithm fails due to noise being amplified by
the non-orthogonality of the Möbius basis. Our work utilizes the orthonormal Fourier transform,
which improves robustness by preventing noise amplification. Hsu et al. (2024) apply tools from
mechanistic interpretability such as circuit discovery for interaction attribution.

Feature Attribution in LLMs Enouen et al. (2023); Paes et al. (2024) propose hierarchical feature
attribution for language models that first groups features (e.g. paragraphs) and then increase the feature
space via a more fine-grained analysis (e.g. words). Cohen-Wang et al. (2024) provide marginal
feature importances via LASSO. These works do not explicitly compute interaction attributions.

3 OVERVIEW: FOURIER TRANSFORM FORMULATION

Model Input Let x be the input to the LLM where x consists of n input features, e.g., words.
For x = “Her acting never fails to impress”, n = 6. In Fig. 1(b) and (c), n refers to the number of
documents or image patches. For S ⊆ [n], we define xS as a masked input where S denotes the
coordinates in x we replace with the [MASK] token. For example, if S = {3}, then the masked input
xS is “Her acting [MASK] fails to impress”. Masks can be more generally applied to any input. In
Fig. 1(b) and (c), masks are applied over documents and image patches respectively.

Value Function For input x, let f(xS) ∈ R be the output of the LLM under masking pattern S.
In sentiment analysis, (see Fig. 1(a)) f(xS) is the logit of the positive class. If xS is “Her acting
[MASK] fails to impress”, this masking pattern changes the score from positive to negative. For
text generation tasks, we use the well-established practice of scalarizing generated text using the
negative log-perplexity2 of generating the original output for the unmasked input x Paes et al. (2024);
Cohen-Wang et al. (2024). Since we only consider sample-specific explanations for a given x, we
suppress dependence on x and write f(xS) as f(S).

Fourier Transform of Value Function Let Fn
2 = {0, 1}n, and addition between two elements

in F2 as XOR. Since there are 2n possible masks S, we equivalently write f : Fn
2 → R, where

f(S) = f(m) with S = {i : mi = 1}. That is, m ∈ Fn
2 is a binary vector representing a masking

2Other approaches to scalarization exist Paes et al. (2024): text embedding similarity, BERT score, etc.

3



Published at Building Trust Workshop at ICLR 2025

pattern. If mi = 0 we evaluate the model after masking the ith input. The Fourier transform
F : Fn

2 → R of f is an orthonormal transform onto a parity (XOR) function basis:

f(m) =
∑
k∈Fn

2

(−1)⟨m,k⟩F (k). (1)

Sparsity f is sparse if F (k) ≈ 0 for most of the k ∈ Fn
2 . Moreover, we call f low degree, if large

F (k) have small |k|. Ren et al. (2024b); Kang et al. (2024) and experiments in Appendix B establish
that deep-learning based value functions f are sparse and low degree. See Fig. 1 for examples.

4 PROBLEM STATEMENT

Our goal is to compute an approximate surrogate f̂ . SPEX finds a small set of k with |k| ≪ n

denoted K, and F̂ (k) for each k ∈ K such that

f̂(m) =
∑
k∈K

(−1)⟨m,k⟩F̂ (k). (2)

As mentioned, this goal is motivated by the Fourier sparsity that commonly occurs in real-world data
and models. Some current interaction indices Tsai et al. (2023) determine K by formulating it as a
LASSO problem, and solving it via ℓ1-penalized regression Tibshirani (1996),

F̂ = argmin
F̂

∑
m

∣∣∣f(m)− f̂(m)
∣∣∣2 + λ

∥∥∥F̂∥∥∥
1
. (3)

For given order d, this approach requires enumeration of all O(nd) interactions. This leads to an
explosion in computational complexity as n grows, as confirmed by our experiments (see Fig 5(a)).
To resolve this problem, we need to find an efficient way to search the space of interactions.

Ideas behind SPEX The key to efficient search is realizing that we are not solving an arbitrary
regression problem: (i) The Fourier transform equation 1 imparts algebraic structure and (ii) we
can design the masking patterns m with sparsity and that structure in mind. SPEX exploits this
by embedding a BCH Code Lin & Costello (1999), a widely used algebraic channel code, into the
masking patterns. In doing so, we map the problem of searching the space of interactions onto
the problem of decoding a message (the important k) from a noisy channel. We decode via the
Berlekamp-Massey algorithm Massey (1969), a well-established algebraic algorithm for decoding
BCH codes.

5 SPEX: ALGORITHM OVERVIEW

We now provide a brief overview of SPEX (see Fig. 3). A complete overview is provided in
Appendix A. The high-level description consists of three parts:

Step 1: Determine a minimal set of masking patterns m to use for model inference, and query f(m)
for each m.
Step 2: Efficiently learn the surrogate function f̂ from the set of collected samples f(m).
Step 3: Use f̂ and its transform F̂ to identify important interactions for attribution.

5.1 MASKING PATTERN DESIGN: EXPLOITING STRUCTURE

We first highlight two important properties of Fourier transform related to masking design structure.

Aliasing (Coefficient Collapse) Property: For b ≤ n and M ∈ Fb×n
2 , let u : Fb

2 → R denote a
subsampled version of f . Then u has Fourier transform U :

u(ℓ) = f(M⊤ℓ) ⇐⇒ U(j) =
∑

Mk=j

F (k). (4)

Shift Property: For any function f : Fn
2 → R, if we shift the input by some vector p ∈ Fn

2 , the
Fourier transform changes as follows:

fp(m) = f(m+ p) ⇐⇒ Fp(k) = (−1)⟨p,k⟩F (k). (5)
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Designing Aliasing The aliasing property equation 4 dictates that when sampling according to
M ∈ Fb×n

2 , all F (k) with image j = Mk are added together. If only one dominant F (k) satisfies
Mk = j, which can happen due to sparsity, we call it a singleton. We want M to maximize
the number of singletons, since we ultimately use singletons to recover the dominant coefficients
and estimate F̂ . SPEX uses M with elements chosen uniformly from F2. Such M has favorable
properties regarding generating singletons.

Designing Shifts Once we create singletons, we need to identify them, extract the dominant index
k, and estimate F̂ (k). The shift property equation 5 is critical for this task since the sign of the
dominant F (k) changes depending on ⟨p,k⟩. Thus, each time we apply a shift vector, we gather
(potentially noisy) information about the dominant k. Finding k and estimating F̂ (k) can be modeled
as communicating information over a noisy channel Shannon (1948), where the communication
protocol is controlled by the shift vectors. We use the aforementioned BCH channel code, which
requires only ≈ t log(n) shifts to recover k. The parameter t controls the robustness of the decoding
procedure. Generally if the maximum degree is |k| = d, we choose t ≥ d. If t − |k| > 0 we use
the additional shifts to improve estimation of F̂ (k). Since most of the time |k| is less than 5, we fix
t = 5 for experiments in this paper.

Combined Masking Combining ideas from above, we construct C = 3 independently sampled Mc

and p shifting vectors pi, which come from rows of a BCH parity matrix. Then, for c ∈ [C] and
i ∈ [p], we entirely sample the function uc,i(ℓ) = f(M⊤

c ℓ + pi). The total number of samples is
≈ C2bt log(n). We note that all model inference informed by our masking pattern can be conducted
in parallel. The Fourier transform of each uc,i, denoted Uc,i, is connected to the transform of the
original function via

Uc,i(j) =
∑

k : Mck=j

(−1)⟨pi,k⟩F (k). (6)

5.2 COMPUTING THE SURROGATE FUNCTION

Once we have the samples, we use an iterative message passing algorithm to estimate F̂ (k) for a
small (a-priori unknown) set of k ∈ K.

Bipartite Graph We construct a bipartite graph depicted in Fig. 4. The observations Uc(j) =

(Uc,0(j), . . . , Uc,p(j)) are factor nodes, while the values F̂ (k) correspond to variable nodes. F̂ (k) is
connected to Uc(j) if Mck = j.

Message Passing The messages from factor to
variable are computed by attempting to decode a
singleton via the Berlekamp-Massey algorithm. If
a k is successfully decoded, k is added to K and
F (k) is estimated and sent to factor node F̂ (k).
The variable nodes send back the average of their
received messages to all connected factor nodes.
The factor nodes then update their estimates of F̂ ,
and attempt decoding again. The process repeats
until convergence. Once complete the surrogate
function is constructed from K and F̂ (k) accord-
ing to equation 2. Complete step-by-step details
are in Appendix A, Algorithm 4.

c = 1 c = 2

Figure 4: Depiction of the message passing
algorithm for computing the surrogate function
in SPEX.

6 EXPERIMENTS

Datasets We use three popular datasets that require the LLM to understand interactions between
features.

1. Sentiment is primarily composed of the Large Movie Review Dataset Maas et al. (2011), which
contains both positive and negative IMDb movie reviews. The dataset is augmented with examples
from the SST dataset Socher et al. (2013) to ensure coverage for small n. We treat the words of
the reviews as the input features.
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Figure 5: (a) SPEX uniformly outperforms all baselines in terms of faithfulness. High order Faith-
Banzhaf indices have competitive faithfulness, but rapidly increase in computational cost. (b) The
DROP dataset contains only larger examples, so we primarily compare against first order methods.
(c) Our approach remains competitive in this task, and outperforms marginal approaches for large n.

2. HotpotQA Yang et al. (2018) is a question-answering dataset requiring multi-hop reasoning over
multiple Wikipedia articles to answer complex questions. We use the sentences of the articles as
the input features.

3. Discrete Reasoning Over Paragraphs (DROP) Dua et al. (2019) is a comprehension benchmark
requiring discrete reasoning operations like addition, counting, and sorting over paragraph-level
content to answer questions. We use the words of the paragraphs as the input features.

Models For DROP and HotpotQA, (generative question-answering tasks) we use
Llama-3.2-3B-Instruct Grattafiori et al. (2024) with 8-bit quantization. For Senti-
ment (classification), we use the encoder-only fine-tuned DistilBERT model Odabasi (2025).

Baselines We compare against marginal metrics LIME, SHAP, and the Banzhaf value. For interac-
tion indices, we consider Faith-Shapley, Faith-Banzhaf, and the Shapley-Taylor Index. We compute
all benchmarks where computationally feasible, which means we always compute marginal attribu-
tions and interaction indices when n is sufficiently small. In figures, we show only the best performing
baselines. Results and implementation details for all baselines are provided in Appendix B.

Hyperparameters SPEX has several parameters to determine the number of model inferences
(masks). We choose C = 3, informed by Li et al. (2014) under a simplified sparse Fourier setting.
We fix t = 5, which is the error correction capability of SPEX and serves as an approximate bound
on the maximum degree. We also set b = 8; the total collected samples are ≈ C2bt log(n). For ℓ1
regression-based interaction indices, we choose the regularization parameter via cross-validation.

6.1 METRICS

We compare SPEX to baselines across a variety of well-established metrics to assess performance.

Faithfulness: To characterize how well the surrogate function f̂ approximates the true function,
we define faithfulness Zhang et al. (2023b): R2 = 1 −

(
∥f̂ − f∥2/

∥∥f − f̄
∥∥2) , where ∥f∥2 =∑

m∈Fn
2
f(m)2 and f̄ = 1

2n

∑
m∈Fn

2
f(m).

Faithfulness measures the ability of different explanation methods to predict model output when
masking random inputs. We measure faithfulness over 10,000 random test masks per-sample, and
report average R2 across samples.
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Figure 6: On the removal task, SPEX performs competitively with 2nd order methods on the Sentiment
dataset, and out-performs all approaches on DROP and HotpotQA dataset for n ∈ [32, 63]. When n
is too large to compute other interaction indices, we outperform marginal methods.

Top-r Removal: We measure the ability of methods to identify the top r influential features to model
output: Rem(r) = |f(1)−f(m∗)|

|f(1)| where m∗ = argmax
|m|=n−r

|f̂(1)− f̂(m)|.

Recovery Rate@r: Each question in HotpotQA contains human-labeled annotations for the sentences
required to correctly answer the question. We measure the ability of interaction indices to recover
these human-labeled annotations. Let Sr∗ ⊆ [n] denote human-annotated sentence indices. Let Si

denote feature indices of the ith most important interaction for a given interaction index. Define
the recovery ability at r for each method as follows: Recovery@r = 1

r

∑r
i=1 (|S∗

r ∩ Si| /|Si|) .
Intuitively, Recovery@r measures how well interaction indices capture features that align with
human-labels.

6.2 FAITHFULNESS AND RUNTIME

Fig. 5 shows the faithfulness of SPEX compared to other methods. We also plot the runtime of all
approaches for the Sentiment dataset for different values of n. All attribution methods are learned
over a fixed number of training masks.

Comparison to Interaction Indices SPEX maintains competitive performance with the best-
performing interaction indices across datasets. Recall these indices enumerate all possible interac-
tions, whereas SPEX does not. This difference is reflected in the runtimes of Fig. 5(a). The runtime
of other interaction indices explodes as n increases while SPEX does not suffer any increase in
runtime.
Comparison to Marginal Attributions For input lengths n too large to run interaction indices,
SPEX is significantly more faithful than marginal attribution approaches across all three datasets.
Varying the Number of Training Masks Results in Appendix B show that SPEX continues to
out-perform other approaches as we vary the number of training masks.
Sparsity of the SPEX Surrogate Function Results in Appendix B, Table 3 show surrogate functions
learned by SPEX have Fourier representations where only ∼ 10−100 percent of coefficients are
non-zero.
6.3 REMOVAL

Fig. 6 plots the change in model output as we mask the top r features for different regimes of n.
Small n SPEX is competitive with other interaction indices for Sentiment, and out-performs them for
HotpotQA and DROP. Performance of SPEX in this task is particularly notable since Shapley-based
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(a) Recovery rate@10 for HotpotQA

Question:
The magazine that nominated George Rainsford for their Best Ac-
tor award in 2017 comes out every week on what day of the week?

Title: George Rainsford (actor)
George Rainsford is an English actor and has been nominated
for a Best Actor award in the 2017 TV Choice Awards.

Title: NFL regular season
The National Football League (NFL) regular season begins the...

.
.
.

Title: TV Choice
TV Choice is a British weekly TV listings magazine published by

H. Bauer Publishing. It features weekly TV broadcast
programming listings and goes on sale every Tuesday.

(b) Human-labeled interaction identified by SPEX.

Figure 7: (a) SPEX recovers more human-labeled features with significantly fewer training masks as
compared to other methods. (b) For a long-context example (n = 128 sentences), SPEX identifies
the three human-labeled sentences as the most important third order interaction while ignoring
unimportant contextual information.

methods are designed to identify a small set of influential features. On the other hand, SPEX does
not optimize for this metric, but instead learns the function f(·) over all possible 2n masks.

Large n SPEX outperforms all marginal approaches, highlighting the benefit of interactions.
6.4 RECOVERY RATE OF HUMAN-LABELED INTERACTIONS

We compare the recovery rate for r = 10 of SPEX against third order Faith-Banzhaf and Faith-Shap
interaction indices. We choose third order interaction indices because all examples are answerable
with information from at most three sentences, i.e., maximum degree d = 3. Recovery rate is
measured as we vary the number of training masks.

Results are shown in Fig. 7a, where SPEX has the highest recovery rate of all interaction indices
across all sample sizes. Further, SPEX achieves close to its maximum performance with few samples,
other approaches require many more samples to approach the recovery rate of SPEX.

Example of Learned Interaction by SPEX Fig. 7b displays a long-context example (128 sentences)
from HotpotQA whose answer is contained in the three highlighted sentences. SPEX identifies
the three human-labeled sentences as the most important third order interaction while ignoring
unimportant contextual information. Other third order methods are not computable at this length.

7 CASE STUDIES

In this section, we apply SPEX to two case studies: debugging incorrect responses and visual
question answering. Refer to Appendix B for further details on implementation.

7.1 DEBUGGING INCORRECT LLM RESPONSES

LLMs often struggle to correctly answer modified versions of popular puzzle questions, even when
these alterations trivialize the problem Williams & Huckle (2024). In this spirit, we consider a variant
of the classic trolley problem:

A runaway trolley is heading away from five people who are tied to the track and cannot move.
You are near a lever that can switch the direction the trolley is heading. Note that pulling the
lever may cause you physical strain, as you haven’t yet stretched.
True or False: You should not pull the lever.

GPT-4o mini OpenAI (2024) incorrectly selects the answer false 92.1% of the time. To understand
the response, we run SHAP and SPEX over a value function that measures the logit associated to the
output true.

Fig. 8 presents the results of these methods: words and interactions highlighted in green contribute
positively to producing the correct output, while those in red lead the model toward an incorrect
response. SHAP indicates that both instances of the word trolley have the most significant negative
impact, while the last sentence appears to aid the model in answering correctly. A more comprehensive
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A runaway trolley is heading away from

five people who are tied to the track and

cannot move. You are near a lever that can

switch the direction the trolley is heading.

Note that pulling the lever may cause you

physical strain, as you haven’t yet stretched.

A runaway trolley is heading away from

five people who are tied to the track and

cannot move. You are near a lever that can

switch the direction the trolley is heading.

Note that pulling the lever may cause you

physical strain, as you haven’t yet stretched.

True or False: You should not pull the lever.

SHAP Interactions via SPEX

Query: What is shown in this image? Response: A dog playing with a basketball.

SHAP Positive Interactions via SPEX Negative Interactions via SPEX

Figure 8: SHAP provides marginal feature attributions. Feature interaction attributions computed by
SPEX provide a comprehensive understanding of (above) words interactions that cause the model to
answer incorrectly and (below) interactions between image patches that informed the model’s output.

understanding is provided by the top interactions learned via SPEX. These interactions indicate a
negative fourth order interaction involving the two instances of trolley, as well as the words pulling
and lever. This negative interaction is emblematic of the original problem’s formulation, indicating
that the model may be over-fit.

7.2 VISUAL QUESTION ANSWERING

VQA involves answering questions based on an image. Petsiuk et al. (2018); Frank et al. (2021);
Parcalabescu & Frank (2023) consider model-agnostic methods for attributing the marginal contribu-
tions of image regions to the generated response. In many compositional reasoning tasks, interactions
are key and marginal attributions are insufficient. We illustrate this using an image of a dog playing
with a basketball and prompting the LLaVA-NeXT-Mistral-7B model (Liu et al., 2023) with

“What is shown in this image?”. This yields the response “A dog playing with a basketball.”.

In Fig. 8, SHAP indicates that image patches containing the ball and the dog are important, but does
not capture their interactions. Positive interactions obtained via SPEX reveal that the presence of
both the dog and the basketball together contributes significantly more to the response than the sum
of their individual contributions. This suggests that the model not only recognizes the dog and the
basketball as separate objects but also understands their interaction as crucial for forming the correct
response. Negative interactions between different parts of the dog indicate redundancy, implying that
the total effect of these regions is less than the sum of their marginal contributions.

8 CONCLUSION

Identifying feature interactions is a critical problem in machine learning. We have proposed SPEX,
the first interaction based model-agnostic post-hoc explanation algorithm that is able to scale to over
1000 features. SPEX achieves this by making a powerful connection to the field of channel coding,
avoiding the O(nd) complexity that existing feature interaction attribution algorithms suffer from.
Our experiments show SPEX is able to significantly outperform other methods across the Sentiment,
Drop and HotpotQA datasets in terms of faithfulness, feature removal, and interaction recovery rate.

Limitations Sparsity is central to our algorithm, and without an underlying sparse structure, SPEX
can fail. Furthermore, even though we make strides in terms of sample efficiency, the number of
samples still might remain too high for many applications, particularly when inference cost or time is
high. Another consideration is the degree of human understanding we can extract from computed
interactions. Manually parsing interactions can be slow, and useful visualizations of interactions vary
by modality. Further improvements in visualization and post-processing of interactions are needed.
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Future Work SPEX works in a non-adaptive fashion, pre-determining the masking patterns m. For
greater sample efficiency, adaptive algorithms might be considered, where initial model inferences
help determine future masking patterns. In addition, we have focused on model-agnostic explanations,
but future work could consider combining this with internal model structure. Finally, interactions are
a central aspect of the attention structures in transformers. Studying the connection between SPEX
and sparse attention Chen et al. (2021) is another direction for future research.
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A ALGORITHM DETAILS

A.1 INTRODUCTION

This section provides the algorithmic details behind SPEX. The algorithm is derived from the sparse
Fourier (Hadamard) transformation described in Li et al. (2014). Many modifications have been
made to improve the algorithm and make it suitable for use in this application, to the point where the
original algorithm of Li et al. (2014) completely fails for all problems we consider in this paper. In
this work we focus on applications and defer theoretical analysis to future work.

Relevant Literature on Sparse Transforms This work develops the literature on sparse Fourier
transforms. The first of such works are Hassanieh et al. (2012); Stobbe & Krause (2012); Pawar &
Ramchandran (2013). The most relevant literature is that of the sparse Boolean Fourier (Hadamard)
transform Li et al. (2014); Amrollahi et al. (2019). Despite the promise of many of these algorithms,
their application has remained relatively limited, being used in only a handful of prior applications.
Our code base is forked from that of Erginbas et al. (2023). In this work we introduce a series of
major optimizations which specifically target properties of explanation functions. By doing so, our
algorithm is made significantly more practical and robust than any prior work.
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Importance of the Fourier Transform The Fourier transform does more than just impart critical
algebraic structure. The orthonormality of the Fourier transform means that small noisy variations
in f remain small in the Fourier domain. In contrast, AND interactions, which operate under the
non-orthogonal Möbius transform Kang et al. (2024), can amplify small noisy variations, which limits
practicality. Fortunately, this is not problematic, as it is straightforward to generate AND interactions
from the surrogate function f̂ . Many popular interaction indices have simple definitions in terms of
F . Table 1 highlights some key relationships, and Appendix C provides a comprehensive list.

Shapley Value Banzhaf Interaction Index Möbius Coefficient

SV(i) =
∑

S∋i, |S| odd
F (S)/ |S| IBII(S) = (−2)|S|F (S) IM (S) = (−2)|S| ∑

T⊇S

F (T )

Table 1: Popular attribution scores in terms of Fourier coefficients

A.2 DIRECTLY SOLVING THE LASSO

Before we proceed, we remark that in cases where n is not too large, and we expect the degree of
nonzero |k| ≤ d to be reasonably small, enumeration is actually not infeasible. In such cases, we can
set up the LASSO problem directly:

F̂ = argmin
F̃

∑
m

∣∣∣∣∣∣f(m)−
∑
|k|≤d

F̃ (k)

∣∣∣∣∣∣
2

+ λ
∥∥∥F̃∥∥∥

1
. (7)

Note that this is distinct from the Faith-Banzhaf and Faith-Shapley solution methods because those
perform regression over the AND, Möbius basis. We observe that the formulation above typically
outperforms these other approaches in terms of faithfulness, likely due to the properties of the Fourier
transform.

Most popular solvers use coordinate descent to solve equation 7, but there is a long line of research
towards efficiently solving this problem. In our code, we also include an implementation of Approxi-
mate Message Passing (AMP) Maleki (2010), which can be much faster in many cases. Much like
the final phase of SPEX, AMP is a low complexity message passing algorithm where messages are
iteratively passed between factor nodes (observations) and variable nodes.

A more refined version of SPEX, would likely examine the parameters n and the maximum degree d
and determine whether or not to directly solve the LASSO, or to apply the full SPEX, as we describe
in the following sections.

A.3 MASKING PATTERN DESIGN AND MODEL INFERENCE

The first part of the algorithm is to determine which samples we collect. All steps of this part of the
algorithm are outlined in Algorithm 1. This is governed by two structures: the random linear codes
Mc and the BCH parity matrix P. Random linear codes have been well studied as central objects in
error correction and cryptography. They have previously been considered for sparse transforms in
Amrollahi et al. (2019). They are suitable for this application because they roughly uniformly hash k
with low hamming weight.

The use of the P ∈ Fp×n
2 , the parity matrix of a binary BCH code is novel. These codes are

well studied for the applications in error correction Lin & Costello (1999), and they were once the
preeminent form of error correction in digital communications. A primitive, narrow-sense BCH code
is characterized by its length, denoted nc, dimension, denoted kc (which we want to be equal to our
input dimension n) and its error correcting capability tc = 2d+ 1, where d is the minimum distance
of the code. For some integer m > 3 and tc < 2m−1, the parameters satisfy the following equations:

nc = 2m − 1 (8)
p = nc − kc ≤ mt. (9)

Note that the above says we can bounds p ≤ t ⌈log2(nc)⌉, and it is easy to solve for p given n = kc
and t, however, explicitly bounding p in terms of n and t is difficult, so for the purpose of discussion,
we simply write p ≈ t log(n), since nc = p+ n, and we expect n≫ p in nearly all cases of interest.
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We use the software package galois Hostetter (2020) to construct a generator matrix, G ∈ Fnc×kc
2

in systematic form:

G =

[
Ikc×kc

P

]
(10)

Note that according to equation 10 P ∈ Fp×kc

2 . In cases where kc > n, we consider only the

Algorithm 1 Collect Samples

1: Input: Parameters (n, t, b, C = 3, γ = 0.9), Query function f(·)
2: for j = 1 to n, i = 1 to b, c = 1 to C do ▷ Generate random linear code
3: Xij ∼ Bern(0.5)
4: [Mc]i,j ← Xi,j

5: end for
6: Code← BCH(nc = nc, kc ≥ n, tc = t) ▷ Systematic BCH code with dimension n and

correcting capacity t
7: p← nc − n
8: P← Code.P
9: P ← rows(P) = [0,p1, . . . ,pp]

10: for all ℓ ∈ Fb
2, i ∈ {0, . . . , p}, c ∈ {1, . . . , C} do

11: uc,i(ℓ)← f
(
M⊤

c ℓ+ P[i]
)

▷ Query the model at masking patterns
12: end for
13: for all i ∈ {0, . . . , p}, c ∈ {1, . . . , C} do
14: Uc,i ← FFT(uc,i) ▷ Compute the Boolean Fourier transform of the collected samples
15: end for
16: Uc ← [Uc,1, . . . , Uc,p]
17: Output: Processed Samples Uc, Uc,0 c = 1, . . . , C

first n rows of P. This is a process known as shortening. Our application of this BCH code in our
application is rather unique. Instead of the typical use of a BCH code as channel correction code, we
use it as a joint source channel code.

Let p0 = 0, and let pi, i = 1, . . . , p correspond to the rows of P. We collect samples written as:

uc,i(ℓ)← f
(
M⊤

c ℓ+ pi

)
∀ℓ ∈ Fb

2, c = 1, . . . , C, i = 0, . . . , p. (11)

Note that the total number of unique samples can be upper bounded by C(p + 1)2b. For large
n this upper bound is nearly always very close to the true number of unique samples collected.
After collecting each sample, we compute the boolean Fourier transform. The forward and inverse
transforms as we consider in this work are defined below.

Forward: F (k) =
1

2n

∑
m∈Fn

2

(−1)⟨k,m⟩f(m) Inverse: f(m) =
∑
k∈Fn

2

(−1)⟨m,k⟩F (k), (12)

When samples are collected according to equation 11, after applying the transform in equation 12,
the transform of uc,i can be written as:

Uc,i(j) =
∑

k : Mck=j

(−1)⟨pi,k⟩F (k). (13)

To ease notation, we write Uc = [Uc,1, . . . , Uc,p]
T . Then we can write

Uc(j) =
∑

k : Mck=j

(−1)PkF (k), (14)

where we have used the notation (−1)Pk = [(−1)⟨p0,k⟩, . . . , (−1)⟨pp,k⟩]T . We call the (−1)Pk

the signature of k. This signature helps to identify the index of the largest interactions k, and is
central to the next part of the algorithm. Note that we also keep track of Uc,0(j), which is equal to the
unmodulated sum Uc,0(j) =

∑
k : Mck=j F (k).
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A.4 MESSAGE PASSING FOR FOURIER TRANSFORM RECOVERY

Using the samples equation 14, we aim to recover the largest Fourier coefficients F (k). To recover
these samples we apply a message passing algorithm, described in detail in Algorithm 4. The factor
nodes are comprised of the C2b vectors Uc(j) ∀j ∈ Fb

2. Each of these factor nodes are connected to
all values k that are comprise their sum, i.e., {k |Mck = j}. Since the number of variable nodes is
too great, we initialize the value of each variable node, which we call F̂ (k) to zero implicitly. The
values F̂ (k) for each variable node indexed by k represent our estimate of the Fourier coefficients.

A.4.1 THE MESSAGE FROM FACTOR TO VARIABLE

Consider an arbitrary factor node Uc(j) initialized according to equation 14. We want to understand
if there are any large terms F (k) involved in the sum in equation 14. To do this, we can utilize the
signature sequences (−1)Pk. If Uc(j) is strongly correlated with the signature sequence of a given
k, i.e., if

∣∣⟨(−1)Pk,Uc(j)⟩
∣∣ is large, and Mck = j, from the perspective of Uc(j), it is likely that

F (k) is large. Searching through all Mck = j, which, for a full rank Mc contains 2n−b different k
is intractable, and likely to identify many spurious correlations. Instead, we rely on the structure of
the BCH code from which P is derived to solve this problem.

BCH Hard Decoding The BCH decoding procedure is based on an idea known generally in signal
processing as “treating interference as noise”. For the purpose of explanation, assume that there is
some k∗ with large F (k∗), and all other k such that Mck = j correspond to small F (k). For brevity
let Ac(j) = {k |Mck = j}. We can write:

Uc(j) = F (k∗)(−1)Pk∗
+

∑
Ac(j)\k∗

(−1)PkF (k) (15)

After we normalize with respect to Uc,0(j) this yields:

Uc(j)

Uc,0(j)
=

(
1

1 +
∑

Ac(j)\k∗ F (k)/F (k∗)

)
(−1)Pk∗

+

( ∑
Ac(j)\k∗(−1)PkF (k)

F (k∗) +
∑

Ac(j)\k∗ F (k)

)
(16)

= A(j)(−1)Pk∗
+w(j). (17)

As we can see, the ratio equation 17 is a noise-corrupted version of the signature sequence of k∗. To
estimate Pk we apply a nearest-neighbor estimation rule outlined in Algorithm 2. In words, if the ith
coordinate of the vector equation 17 is closer to −1 we estimate that the corresponding element of
Pk to be 1, conversely, if the ith coordinate is closer to 1 we estimate the corresponding entry to be
0. This process effectively converts the multiplicative noise A and additive noise w to a noise vector
in F2. We can write this as Pk∗ + n. According to the Lemma A.1 if the hamming weight n is not
too large, we can recover k∗.
Lemma A.1. If |n|+ |k∗| ≤ t, where n is the additive noise in F2 induced by the noisy process in
equation 17 and the estimation procedure in Algorithm 2, then we can recover k∗.

Proof. Observe that the generator matrix of the BCH code is given by equation 10. Thus, there exists
a codeword of the form

c = Gk∗ =

[
k∗

Pk∗

]
(18)

Now construct the “received codeword” as in Algorithm 2:

r =

[
0

Pk∗ + n

]
(19)

Thus |c− r| = |n|+ |k∗|. Since the BCH code was designed to be t error correcting, Decoding the
code will recover c, which contains k∗.

For decoding we use the implementation in the python package galois Hostetter (2020). It
implements the standard procedure of the Berlekamp-Massey Algorithm followed by the Chien
Search algorithm for BCH decoding.
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Algorithm 2 BCH Hard Decode

1: Input: Observation Uc(j), Decoding function Dec(·)
2: ri ← 0 i = 1 . . . , n
3: for all i ∈ n+ 1, . . . , n+ p do
4: ri ← 1

{
Uc,i(j)
Uc,0(j)

< 0
}

5: end for
6: dec, k̂← Dec(r)

7: Output: dec, k̂

BCH Soft Decoding In practice the conversion of the real-valued noisy observations equation 17 to
noisy elements in F2 is a process that destroys valuable information. In coding theory, this is known
as hard input decoding, which is typically suboptimal. For example, certain coordinates will have
values Uc,i(j)

Uc,0(j)
≈ 0. For such coordinates, we have low confidence about the corresponding value of

(−1)⟨pi,k
∗⟩, since it is equally close to +1 and −1. This uncertainty information is lost in the process

of producing a hard input. With this so-called soft information it is possible to recover k∗ even in
cases where there are more than t errors in the hard decoding case. We use a simple soft decoding
algorithm for BCH decoding known as a chase decoder. The main idea behind a chase decoder is
to perform hard decoding on the dchase most likely hard inputs, and return the decoder output of
the most likely hard input that successfully decoded. In practical setting like the ones we consider
in this work, we don’t have an understanding of the noise in equation 17. A practical heuristic is
to simply look at the margin of estimation. In other words, if

∣∣∣Uc,i(j)
Uc,0(j)

∣∣∣ is large, we assume it has
high confidence, while if it is small, we assume the confidence is low. Interestingly, if we assume
A(j) = 1 and w(j) ∼ N (0, σ2) in equation 17, then the ratio corresponds exactly to the logarithm of
the likelihood ratio (LLR) log

(
Pr(⟨pi,k

∗⟩=0)
Pr(⟨pi,k∗⟩=1)

)
. For the purposes of soft decoding we interpret these

ratios as LLRs. Pseudocode can be found in Algorithm 3.

Remark: BCH soft decoding is a well-studied topic with a vast literature. Though we put significant
effort into building a strong implementation of SPEX, we have used the simple Chase Decoder
(described in Algorithm 3 below) as a soft decoder. The computational complexity of Chase Decoding
scales as 2dchase , but other methods exist with much lower computational complexity and comparable
performance.

Algorithm 3 BCH Soft Decode (Chase Decoding)

1: Input: Observation Uc(j), Decoding function Dec(·), Chase depth dchase.
2: ri ← 0 i = 1 . . . , n
3: R ← dchase most likely hard inputs ▷ Can be computed efficiently via dynamic programming
4: dec← False
5: j ← 0
6: while dec is False and j ≤ dchase do
7: r(n+1):(n+p) ← R[j]
8: j ← j + 1

9: dec, k̂← Dec(r)
10: end while
11: Output: dec, k̂

If we successfully decode some k from the BCH decoding process via the bin Uc(j), we construct a
message to the corresponding variable node. Before we do this, we verify that the k term satisfies
Mck = j. This acts as a final check to increase our confidence in the output of k. The message we
construct is of the following form:

µ(c,j)→k = ⟨(−1)Pk,Uc(j)⟩/p (20)
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To understand the structure of this message. This message can be seen as an estimate of the Fourier
coefficient. Let’s assume we are computing this message for some k∗:

µ(c,j)→k∗ = F (k∗) +
∑

A(j)\k∗

1

p
⟨(−1)Pk, (−1)Pk∗

⟩︸ ︷︷ ︸
typically small

F (k) (21)

The inner product serves to reduce the noise from the other coefficients in the sum.

Algorithm 4 Message Passing

1: Input: Processed Samples Uc, c = 1, . . . , C
2: S =

{
(c, j) : j ∈ Fb

2, c ∈ {1, . . . , C}
}

▷ Nodes to process
3: F̂ [k]← 0 ∀k
4: K ← ∅
5: while |S| > 0 do ▷ Outer Message Passing Loop
6: Ssub ← ∅
7: Ksub ← ∅
8: for (c, j) ∈ S do
9: dec, k← DecBCH(Uc(j)) ▷ Process Factor Node

10: if dec then
11: corr← ⟨(−1)Pk,Uc(j)⟩

∥Uc(j)∥2

12: else
13: corr← 0
14: end if
15: if corr > γ then ▷ Interaction identified
16: Ssub ← Ssub ∪ {(k, c, j)}
17: Ksub ← Ksub ∪ {k}
18: else
19: S ← S \ {(c, j)} ▷ Cannot extract interaction
20: end if
21: end for
22: for k ∈ Ksub do
23: Sk ← {(k′, c′, j′) | (k′, c′, j′) ∈ Ssub,k

′ = k}
24: µ(c,j)→k ← ⟨(−1)Pk,Uc(j)⟩/p
25: µk→all ←

∑
(k,c,j)∈Sk

µ(c,j)→k

26: F̂ (k)← F̂ (k) + µk→all ▷ Update variable node
27: for c ∈ {1, . . . , C} do
28: Uc(Mck)← Uc(Mck)− µk→all · (−1)Pk ▷ Update factor node
29: S ← S ∪ {(c,Mck)}
30: end for
31: end for
32: K ← K ∪Ksub
33: end while
34: Output:

{(
k, F̂ (k)

)
| k ∈ K

}
, interactions, and scalar values corresponding to interactions.

A.4.2 THE MESSAGE FROM VARIABLE TO FACTOR

The message from factor to variable is comparatively simple. The variable node takes the average
of all the messages it receives, adding the result to its state, and then sends that average back to all
connected factor nodes. These factor nodes then subtract this value from their state and then the
process repeats.

A.5 COMPUTATIONAL COMPLEXITY

Generating masking patterns m Constructing each masking pattern requires n2b for each Mc.
The algorithm for computing it efficiently involves a gray iteratively adding to an n bit vector and
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keeping track of output in a Gray code. Doing this for all C, and then adding all p additional shifting
vectors makes the cost O(Cpn2b).

Taking FFT For each uc,i we take the Fast Fourier transform in b2b time, with a total of O(Cpb2b).
This is domiated by the previous complexity since b ≤ n.

Message passing One round of BCH hard decoding is O(nct+ t2). For soft decoding, this cost is
multiplied by 2dchase , which we is a constant. Computing correlation vector is O(np), dominated by
the computation of Pk. In the worst case we must do this for all C2b vectors Uc(j). We also check
that Mk = j before sending the message, which costs O(nb) Thus processing all the factor nodes
costs O(C2b(nct+ t2 + n(p+ b))). The number of active (with messages to send) variable nodes
is at most C2b, and computing their factors is at most C. Thus computing factor messages are at
most C22b messages. Finally factor nodes are updated with at most C2b variable messages sending
messages to at most C factor nodes each, each with cost O(np). Thus, the total cost of processing
all variable nodes is O(C22b + C22bnp). The total cost of message is dominated by processing the
factors.

The total complexity is then O(2b(nct+ t2 + n(p+ b)). Note that p = nc − n = t log(nc). Due to
the structure of the code and the relationship between n, p and nc, one could stop here, and it would
be best to if we want to consider very large t. For the purposes of exposition, we will assume that
t≪ n, which implies n > p, and thus p ≈ t log(n). In this case, we can write:

Complexity = O(2b(nt log(n) + nb)) (22)

To arrive at the stated equation in Section 1, we take 2b = O(s). Under the low degree assumption,
we have s = O(d log(n)). Then assuming we take t = O(d), we arrive at a complexity of
O(sdn log(n)).

B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS

Experiments are run on a server using Nvidia L40S GPUs and A100 GPUs. When splitting text into
words or sentences, we make use of the default word and sentence tokenizer from nltk Bird et al.
(2009). To fit regressions, we use the scikit-learn Pedregosa et al. (2011) implementations of
LinearRegression and RidgeCV.

B.2 DATASETS AND MODELS

B.2.1 SENTIMENT ANALYSIS

152 movie reviews were used from the Large Movie Review Dataset Maas et al. (2011), supplemented
with 8 movie reviews from the Stanford Sentiment Treebank dataset Socher et al. (2013). These 160
reviews were categorized using their word counts into 8 groups ([8-15, 16-32, . . . , 1024-2047]), with
20 reviews in each group.

To measure the sentiment of each movie review, we utilize a DistilBERT model Sanh et al. (2019)
fine-tuned for sentiment analysis Odabasi (2025). When masking, we replace the word with the
[UNK] token. We construct an value function over the output logit associated with the positive class.

B.2.2 HOTPOTQA

We consider 100 examples from the HotpotQAYang et al. (2018) dataset. These examples were
categorized using the number of sentences into four groups ([8-15, 16-32, 32-64, 64-127]). We use a
Llama-3.2-3B-Instruct model with 8-bit quantization. When masking, we replace with the
[UNK] token, and measure the log-perplexity of generating the original output. Since HotpotQA is a
multi-document dataset, we use the following prompt format.
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Title: {title 1}
Content: {document 1}
. . .
Title: {title m}
Content: {document m}

Query: {question}. Keep your answers as short as possible.

B.2.3 DROP

We consider 100 examples from the DROP Yang et al. (2018) dataset. These examples were
categorized using the number of words into six groups ([8-15, 16-32, 32-64, 64-127, 128-256, 512-
1024]). We use the same model as HotpotQA and mask in a similar fashion. We use the following
prompt format.

Context: {context}
Query: {question}. Keep your answers as short as possible.

B.2.4 TROLLEY PROBLEM

The simplified trolley problem was inspired by the one provided in Williams & Huckle (2024).
When masking, the [UNK] token was used to replace words. The following prompt was given to
gpt-4o-mini-2024-07-18:

System: Answer with the one word True or False only. Any other answer will be marked
incorrect.
User: {Masked Input} True or False: You should not pull the lever.

A value function was created by finding the difference between the model’s logprob associated with
the “True” token minus the logprob of the “False” token.

B.2.5 VISUAL QUESTION ANSWERING

The base image was partitioned into a 6× 8 grid. To mask, Gaussian blur was applied to the masked
cells. The masked image was input into LLaVA-NeXT-Mistral-7B, a large multimodal model,
with the following prompt:

Context: {masked image}
Query: What is shown in this image?

The original output to the unmasked image is “A dog playing with a basketball.” Using the masked
images, we build a value function that measures the probability of generating the original output
sequence (log probability).

B.3 BASELINES

The following marginal feature attribution baselines were run:

1. LIME: LIME (Local Interpretable Model-agnostic Explanations) Ribeiro et al. (2016) uses
LASSO to build a sparse linear approximation of the value function. The approximation
is weighted to be local, using an exponential kernel to fit the function better closer to the
original input (less maskings).

2. SHAP: Implemented using KernelSHAP Lundberg & Lee (2017), SHAP interprets the value
function as a cooperative game and attributes credit to each of the features according to the
Shapley value. KernelSHAP approximates the Shapley values of this game through solving
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a weighted least squares problem, where the weighting function is informed by the Shapley
kernel, promoting samples where very either very few or most inputs are masked.

3. Banzhaf : Similar to Shapley values, Banzhaf values Banzhaf III (1964) represent another
credit attribution concept from cooperative game theory. We compute the Banzhaf values by
fitting a ridge regression to uniformly drawn samples, selecting the regularization parameter
through cross-validation.

Furthermore, we compared against the following interaction attribution methods:

4. Faith-Banzhaf : The Faith-Banzhaf Interaction Index Tsai et al. (2023), up to degree t,
provides the most faithful tth order polynomial approximation of the value function under
a uniform kernel. We obtain this approximation using cross-validated ridge regression on
uniformly drawn samples.

5. Faith-Shap: Similarly, the Faith-Shapley Interaction Index Tsai et al. (2023), up to degree
t, provides the most faithful t order polynomial approximation of the value function under
a Shapley kernel. As described in Tsai et al. (2023), the indices can be estimated through
solving a weighted least squares problem. We use the implementation provided in SHAP-IQ
Muschalik et al. (2024).

6. Shapley-Taylor: The Shapley-Taylor Interaction Index Sundararajan et al. (2020), up to
degree t, provides another interaction definition based on the Taylor Series of the Möbius
transform of the value function. To estimate the interaction indices, we leverage the
sample-efficient estimator SVARM-IQ Kolpaczki et al. (2024), as implemented in SHAP-IQ
Muschalik et al. (2024).

B.4 SAMPLE COMPLEXITY

The total number of samples needed for SPEX is ≈ C2bt log(n). We fix C = 3 and t = 5. The
table below presents the number of samples used in our experiments for various choices of sparsity
parameter b and different input sizes n:

Number of Inputs (n)
Sparsity Parameter (b) 8–11 12–36 37–92 93–215 216–466 467–973 974–1992

4 1,008 1,344 1,728 1,968 2,208 2,448 2,688
6 4,032 5,376 6,912 7,872 8,832 9,792 10,752
8 16,128 21,504 27,648 31,488 35,328 39,168 43,008

Table 2: Number of samples needed for each b and n.

n Avg. Sparsity Avg. Sparsity Ratio Faith-Banzhaf Faith-Shap Shapley-Taylor
SPEX LIME Banzhaf 2nd 3rd 4th SHAP 2nd 3rd 4th 2nd 3rd 4th

Sentiment

8-15 369.9 3.70× 10−1 1.00 0.83 0.84 0.96 0.99 1.00 0.62 0.93 0.98 1.00 0.72 0.81 0.92
16-31 208.7 2.31× 10−4 0.97 0.75 0.75 0.93 0.98 0.20 0.89 0.95 0.46 -710.85
32-63 149.7 3.14× 10−9 0.93 0.67 0.68 0.90 -0.25 0.82 -0.30

64-127 118.4 2.19× 10−19 0.87 0.66 0.66 -1.17
128-255 113.5 1.40× 10−38 0.82 0.63 0.63 -3.94
256-511 100.4 5.48× 10−78 0.76 0.62 0.62 -6.77

512-1013 86.1 2.02× 10−155 0.73 0.61 0.61 -4.78
1024-2047 81.7 3.78× 10−302 0.71 0.59 0.59 -17.31

DROP

32-63 77.1 1.97× 10−14 0.58 0.29 0.29 0.53 -0.07 0.17 N/A
64-127 56.3 2.59× 10−24 0.51 0.30 0.30 0.02
128-255 58.7 2.31× 10−38 0.67 0.43 0.43 0.14
256-511 56.7 1.29× 10−76 0.48 0.43 0.44 -5.29

512-1023 36.3 9.63× 10−155 0.55 0.46 0.48 -0.23

HotpotQA

8-15 108.3 1.10× 10−2 0.87 0.38 0.38 0.63 0.77 0.84 -1.09 -19.14 -2.33 0.73 N/A N/A N/A
16-31 96.4 3.30× 10−4 0.67 0.39 0.49 0.66 0.72 0.23 -2.28 0.40 N/A N/A
32-63 79.4 5.86× 10−9 0.57 0.44 0.45 0.59 0.13 0.32 N/A

64-127 73.0 1.02× 10−18 0.63 0.53 0.53 -0.31

Table 3: Faithfulness across all baseline methods for fixed b = 8. The average recovered sparsity and
the average ratio between sparsity and total possible interactions is also reported.
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B.5 ADDITIONAL RESULTS

B.5.1 FAITHFULNESS

Faithfulness for a fixed sparsity parameter b = 8: We first measure the faithfulness by scaling
the number of samples logarithmically with n. The exact number of samples used can be found in
Table 2.

In Table 3, we showcase the average faithfulness of every runable method across every group of
examples for the Sentiment, DROP, and HotpotQA datasets. Among marginal attribution methods,
LIME and Banzhaf achieve the best faithfulness. SHAP’s faithfulness worsens as n grows, though
this is unsurprising, as Shapley values are only efficient (intended to sum to the unmasked output),
not faithful.

Comparing to interaction methods, SPEX is comparable to the highest order Faith-Banzhaf that can
feasible be run at every size of n. However, due to poor computation complexity scaling of this,
and other interaction methods, these methods are only able to be used for small n. In particular, we
found Shapley-Taylor difficult to run for the DROP and HotpotQA tasks, unable to finish within thirty
minutes.

We also report the average sparsity and the average sparsity ratio (sparsity over total interactions)
discovered by SPEX for each of the groups. For Sentiment, once reaching the n ∈ [128− 255] group,
the average sparsity is found to be less than the number of inputs! Yet, SPEX is still able to achieve
high faithfulness and significantly outperform linear methods like LIME and Banzhaf.
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Figure 9: Faithfulness across the three datasets for all methods that can be feasibly ran. Methods
appearing in the legend, but not in the plot had a faithfulness below 0 for the given number of samples.
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Faithfulness for varying the sparsity parameter b: b = 8 may not be the sparsity parameter that
achieves the best trade-off between samples and faithfulness. For instance, with complex generative
models, the cost or time per instance may necessitate taking fewer samples.

In Fig. 9, we showcase the faithfulness results for SPEX and all baseline methods when b is 4, 6, 8.
Since the samples taken by the algorithm grows with 2b, b = 8 takes 16 times more samples than
b = 4. Even in the low-sample regime, SPEX achieves high faithfulness, often surpassing linear
models and second order models. At this scale, we find that third and fourth order models often do
not have enough samples to provide a good fit.

B.5.2 ABSTRACT REASONING

We also evaluated the performance of Llama 3.2 3B-Instruct Grattafiori et al. (2024) on the
modified trolley problem. As a reminder, the modified problem is presented below:

A runaway trolley is heading away from five people who are tied to the track and cannot move.
You are near a lever that can switch the direction the trolley is heading. Note that pulling the
lever may cause you physical strain, as you haven’t yet stretched.
True or False: You should not pull the lever.

Across 1,000 evaluations, the model achieves an accuracy of just 11.8%. Despite a similar accuracy
to GPT-4o mini, the SHAP and SPEX-computed interactions indicate that the two models are
lead astray by different parts of the problem.

A runaway trolley is heading away from

five people who are tied to the track and

cannot move. You are near a lever that can

switch the direction the trolley is heading.

Note that pulling the lever may cause you

physical strain, as you haven’t yet stretched.

(a) SHAP values

A runaway trolley is heading away from

five people who are tied to the track and

cannot move. You are near a lever that can

switch the direction the trolley is heading.

Note that pulling the lever may cause you

physical strain, as you haven’t yet stretched.

(b) Interactions computed via SPEX

Figure 10: SHAP and SPEX-computed interactions computed for Llama 3.2
3B-Instruct’s answering of the modified trolley problem. Words and inter-
actions highlighted in green contribute positively to producing the correct output,
while those in red lead the model toward an incorrect response.

The most negative SHAP values of Llama 3.2 3B-Instruct appear for later terms such as
pulling and lever, with surrounding words having positive SHAP values. The SPEX-computed
interactions tell a different story; many of the words in the last sentence have a negative first order
value, with a significant third order interaction between you haven’t yet. Furthermore, the first word
A possesses a strong negative second order interaction with trolley. Although counterintuitive—since
the fact about stretching should only enhance the likelihood of a correct answer—removing the
non-critical final sentence unexpectedly boosts the model’s accuracy to 20.8%, a 9% improvement.

C RELATIONSHIPS BETWEEN FOURIER AND INTERACTION CONCEPTS

Fourier to Möbius Coefficients: The Möbius Coefficients, also referred to as the Harsanyi dividends,
can be recovered through Grabisch (2016):

IM (S) = (−2)|S|
∑
T⊇S

F (T ). (23)

Fourier to Banzhaf Interaction Indices: Banzhaf Interactions Indices Roubens (1996) have a close
relationship to Fourier coefficients. As shown in Grabisch et al. (2000):

IBII(S) =
∑
T⊇S

2|S|

2|T | I
M (T ). (24)
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Using the relationship from Eq. 23,

IBII(S) =
∑
T⊇S

2|S|

2|T | (−2)
|T |
∑
R⊇T

F (R) (25)

= 2|S|
∑
T⊇S

(−1)|T |
∑
R⊇T

F (R) (26)

= 2|S|
∑
R⊇S

F (R)
∑

S⊆T⊆R

(−1)|T |, (27)

= (−2)|S|F (S) (28)

where the last line follows due to
∑

S⊆T⊆R(−1)|T | evaluating to 0 unless R = S.

When S is a singleton, we recover the relationship between Fourier Coefficients and the Banzhaf
Value BV (i):

BV (i) = IBII({i}) = −2F ({i}). (29)

Fourier to Shapley Interaction Indices: Shapley Interaction Indices Grabisch (1997) are a general-
ization of Shapley values to interactions. Using the following relationship to Möbius Coefficients
Grabisch et al. (2000):

ISII(S) =
∑
T⊇S

IM (S)

|T | − |S|+ 1
(30)

=
∑
T⊇S

∑
R⊇T

(−2)|T |F (R)

|T | − |S|+ 1
(31)

=
∑
R⊇S

F (R)
∑

S⊆T⊆R

(−2)|T |

|T | − |S|+ 1
(32)

=
∑
R⊇S

F (R)

|R|∑
j=|S|

(−2)j

j − |S|+ 1

(
|R| − |S|
j − |S|

)
(33)

=
∑
R⊇S

F (R)

|R|−|S|∑
k=0

(−2)k+|S|

k + 1

(
|R| − |S|

k

)
(34)

= (−2)|S|
∑
R⊇S

F (R)

|R|−|S|∑
k=0

(−2)k

k + 1

(
|R| − |S|

k

)
(35)

Consider the following integral and an application of the binomial theorem:

∫ t

0

(1 + x)|R|−|S|dx =

∫ t

0

|R|−|S|∑
k=0

(
|R| − |S|

k

)
xkdx (36)

=

|R|−|S|∑
k=0

(
|R| − |S|

k

)∫ t

0

xkdx (37)

=

|R|−|S|∑
k=0

(
|R| − |S|

k

)(
tk+1

k + 1

)
(38)
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Evaluating at t = −2:
|R|−|S|∑
k=0

(
|R| − |S|

k

)(
(−2)k

k + 1

)
= −1

2

∫ −2

0

(1 + x)|R|−|S|dx (39)

= −1

2
· (−1)

|R|−|S|+1 − 1

|R| − |S|+ 1
(40)

=

{
1

|R|−|S|+1 , if Parity(|R|) = Parity(|S|)
0, otherwise

(41)

As a result, we find the relationship between Shapley Interaction Indices and Fourier Coefficients:

ISII(S) = (−2)|S|
∑
R⊇S,

(−1)|R|=(−1)|S|

F (R)

|R| − |S|+ 1
. (42)

When S is a singleton, we recover the relationship between Fourier Coefficients and the Shapley
Value SV (i):

SV (i) = ISII({i}) = (−2)
∑

R⊇{i},
|R| is odd

F (R)

|R|
. (43)

Fourier to Faith-Banzhaf Interaction Indices: Faith-Banzhaf Interaction Indices Tsai et al. (2023)
of up to degree ℓ are the unique minimizer to the following regression objective:

∑
S⊆[n]

f(S)−
∑

T⊆S,|T |≤ℓ

IFBII(T, ℓ)

2

. (44)

Let g(S) be the XOR polynomial up to degree ℓ that minimizes the regression objective. Appealing
to Parseval’s identity,∑

S⊆[n]

(f(S)− g(S))
2
=
∑
S⊆[n]

(F (S)−G(S))
2 (45)

=
∑

S⊆[n],|S|≤ℓ

(F (S)−G(S))
2
+

∑
S⊆[n],|S|>ℓ

F (S)2, (46)

which is minimized when G(S) = F (S) for |S| ≤ ℓ. Using Eq. 23, it can be seen that the Faith-
Banzhaf Interaction Indices correspond to the Möbius Coefficients of the function f(S) truncated up
to degree ℓ:

IFBII(S, ℓ) = (−2)|S|
∑

T⊇S,|T |≤ℓ

F (T ). (47)

Fourier to Faith-Shapley Interaction Indices: Faith-Shapley Interaction Indices Tsai et al. (2023)
of up to degree ℓ have the following relationship to Möbius Coefficients:

IFSII(S, ℓ) = IM (S) + (−1)ℓ−|S| |S|
ℓ+ |S|

(
ℓ

|S|

) ∑
T⊃S,|T |>ℓ

(|T |−1
ℓ

)(|T |+ℓ−1
ℓ+|S|

)IM (T ) (48)

= (−2)|S|
∑
T⊇S

F (T )+ (49)

(−1)ℓ−|S| |S|
ℓ+ |S|

(
ℓ

|S|

) ∑
T⊃S,|T |>ℓ

(|T |−1
ℓ

)(|T |+ℓ−1
ℓ+|S|

) (−2)|T |
∑
R⊇T

F (R)

= (−2)|S|
∑
T⊇S

F (T )+ (50)

(−1)ℓ−|S| |S|
ℓ+ |S|

(
ℓ

|S|

) ∑
R⊃S,|R|>ℓ

F (R)
∑

S⊂T⊆R,|T |>ℓ

(|T |−1
ℓ

)(|T |+ℓ−1
ℓ+|S|

) (−2)|T |.
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Fourier to Shapley-Taylor Interaction Indices: Shapley-Taylor Interactions Indices Sundararajan
et al. (2020) of up to degree ℓ are related to Möbius Coefficients in the following way:

ISTII(S, ℓ) =

{
IM (S), if |S| < ℓ∑

T⊇S

(|T |
ℓ

)−1
IM (T ), if |S| = ℓ.

(51)

From an application of Eq. 23,

ISTII(S, ℓ) =

{
(−2)|S|∑

T⊇S F (T ), if |S| < ℓ∑
T⊇S

(|T |
ℓ

)−1
(−2)|T |∑

R⊇T F (R), if |S| = ℓ.
(52)

Simplifying the sum in the |S| = ℓ case:∑
T⊇S

(
|T |
ℓ

)−1

(−2)|T |
∑
R⊇T

F (R) =
∑
R⊇S

F (R)
∑

S⊆T⊆R

(
|T |
ℓ

)−1

(−2)|T | (53)

=
∑
R⊇S

F (R)

|R|∑
k=ℓ

(
k

ℓ

)−1

(−2)k
(
|R| − ℓ

k − ℓ

)
(54)

(55)

Hence,

ISTII(S, ℓ) =

{
(−2)|S|∑

T⊇S F (T ), if |S| < ℓ∑
T⊇S F (T )

∑|T |
k=ℓ

(
k
ℓ

)−1
(−2)k

(|T |−ℓ
k−ℓ

)
, if |S| = ℓ.

(56)
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