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Abstract— We present the first application of 3D Gaussian
Splatting to incremental 3D reconstruction using a single
moving monocular or RGB-D camera. Our Simultaneous Lo-
calisation and Mapping (SLAM) method, which runs live at
3fps, utilises Gaussians as the only 3D representation, unifying
the required representation for accurate, efficient tracking,
mapping, and high-quality rendering. Several innovations are
required to continuously reconstruct 3D scenes with high fidelity
from a live camera. First, to move beyond the original 3DGS
algorithm, which requires accurate poses from an offline Struc-
ture from Motion (SfM) system, we formulate camera tracking
for 3DGS using direct optimisation against the 3D Gaussians,
and show that this enables fast and robust tracking with a
wide basin of convergence. Second, by utilising the explicit
nature of the Gaussians, we introduce geometric verification
and regularisation to handle the ambiguities occurring in
incremental 3D dense reconstruction. Finally, we introduce
a full SLAM system which not only achieves state-of-the-art
results in novel view synthesis and trajectory estimation, but
also reconstruction of tiny and even transparent objects.

The full version of this paper has been accepted to
CVPR 2024. For complete technical details, please refer
to our work [1].

I. INTRODUCTION

A long-term goal of online reconstruction with a single
moving camera is near-photorealistic fidelity, which will
surely allow new levels of performance in many areas of
Spatial AI and robotics as well as opening up a whole range
of new applications. While we increasingly see the benefit of
applying powerful pre-trained priors to 3D reconstruction, a
key avenue for progress is still the invention and development
of core 3D representations with advantageous properties.
While many “layered” SLAM systems exist which combine
multiple representations, the most interesting advances are
when a new unified dense representation can be used for all
aspects of a system’s operation: local representation of detail,
large-scale geometric mapping and also camera tracking by
direct alignment.

In this paper we present the first online visual SLAM
system based solely on the 3D Gaussian Splatting (3DGS)
representation [2] recently making a big impact in offline
scene reconstruction. In 3DGS a scene is represented by a
large number of Gaussian blobs with orientation, elongation,
colour and opacity. Other previous world/map-centric scene
representations used for visual SLAM include occupancy or
Signed Distance Function (SDF) voxel grids [3]; meshes [4];
point or surfel clouds [5], [6]; and recently neural fields [7].
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Fig. 1: Our SLAM reconstruction on Replica/office0.
From a single monocular camera, we reconstruct a high
fidelity 3D scene live at 3fps. For every incoming RGB
frame, 3D Gaussians are incrementally formed and optimised
together with the camera poses. We show both the rasterised
Gaussians (left) and Gaussians shaded to highlight the ge-
ometry (right).

Each of these has disadvantages: grids use significant mem-
ory and have bounded resolution, and even if octrees or
hashing allow more efficiency they cannot be flexibly warped
for large corrections [8], [9]; meshes require difficult, ir-
regular topology to fuse new information; surfel clouds are
discontinuous and difficult to fuse and optimise; and neural
fields require expensive per-pixel raycasting to render. We
show that 3DGS has none of these weaknesses. As a SLAM
representation, it is most similar to point and surfel clouds,
and inherits their efficiency, locality and ability to be easily
warped or modified. However, it also represents geometry in
a smooth, continuously differentiable way: a dense cloud of
Gaussians merge together and jointly define a continuous
volumetric function. And crucially, the design of modern
graphics cards means that a large number of Gaussians can be
efficiently rendered via “splatting” rasterisation, up to 200fps
at 1080p. This rapid, differentiable rendering is integral to
the tracking and map optimisation loops in our system.

Our contributions are as follows:
• The first near real-time SLAM system which works with

a 3DGS as the only underlying scene representation.
• Novel techniques within the SLAM framework, includ-

ing the analytic camera pose Jacobian, Gaussian shape
regularisation and geometric verification.

• Extensive evaluations on a variety of datasets both for
monocular and RGB-D settings, demonstrating compet-
itive performance in real-world scenarios.

II. METHOD

A. Gaussian Splatting

Our SLAM representation is 3DGS, mapping the scene
with a set of anisotropic Gaussians G . Each Gaussian G i
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Fig. 2: SLAM System Overview: Our SLAM system uses
3D Gaussians as the only representation, unifying all com-
ponents of SLAM, including tracking, mapping, keyframe
management, and novel view synthesis.

contains optical properties: colour ci and opacity α i. For
continuous 3D representation, the mean µ i

W and covariance
Σ

i
W , defined in the world coordinate, represent the Gaussian’s

position and its ellipsoidal shape. Since 3DGS uses volume
rendering, explicit extraction of the surface is not required.
Instead, by splatting and blending N Gaussians, a pixel
colour Cp is synthesised:

Cp = ∑
i∈N

ciαi

i−1

∏
j=1

(1−α j) . (1)

3DGS performs rasterisation, iterating over the Gaussians
rather than marching along the camera rays, and hence, free
spaces are ignored during rendering. During rasterisation, the
contributions of α are decayed via a Gaussian function, based
on the 2D Gaussian formed by splatting a 3D Gaussian. The
3D Gaussians N (µW ,ΣW ) in world coordinates are related
to the 2D Gaussians N (µ I ,ΣI) on the image plane through
a projective transformation:

µ I = π(TCW ·µW ) ,ΣI = JWΣW WT JT , (2)

where π is the projection operation and TCW ∈ SE(3) is the
camera pose of the viewpoint. J is the Jacobian of the linear
approximation of the projective transformation and W is the
rotational component of TCW .

B. Camera Pose Optimisation
In order to avoid the overhead of automatic differentiation,

3DGS implements rasterisation with CUDA with derivatives
for all parameters calculated explicitly. Since rasterisation is
performance critical, we similarly derive the camera Jaco-
bians explicitly. We use Lie algebra to derive the minimal
Jacobians, ensuring that the dimensionality of the Jacobians
matches the degrees of freedom, eliminating any redundant
computations. The terms of Eq. (2) are differentiable with
respect to the camera pose TCW ; using the chain rule:

∂ µ I
∂TCW

=
∂ µ I
∂ µC

DµC
DTCW

, (3)

∂ΣI

∂TCW
=

∂ΣI

∂J
∂J

∂ µC

DµC
DTCW

+
∂ΣI

∂W
DW

DTCW
. (4)

We take the derivatives on the manifold to derive minimal
parameterisation. Borrowing the notation from [10], let T ∈
SE(3) and τ ∈ se(3). We define the partial derivative on the
manifold as:

D f (T )
DT

≜ lim
τ→0

Log( f (Exp(τ)◦T )◦ f (T )−1)

τ
, (5)

where ◦ is a group composition, and Exp,Log are the
exponential and logarithmic mappings between Lie algebra
and Lie Group. With this, we derive the following:

DµC
DTCW

=
[
I −µ

×
C

]
,

DW
DTCW

=

0 −W×
:,1

0 −W×
:,2

0 −W×
:,3

 , (6)

where × denotes the skew symmetric matrix of a 3D vector,
and W:,i refers to the ith column of the matrix.

C. SLAM

In this section, we present details of full SLAM frame-
work. The overview of the system is summarised in Fig. 2.

1) Tracking: In tracking only the current camera pose
is optimised, without updates to the map representation. In
the monocular case, we minimise the following photometric
residual:

Epho = ∥I(G ,TCW )− Ī∥1 , (7)

where I(G ,TCW ) renders the Gaussians G from TCW , and Ī
is an observed image.

We further optimise affine brightness parameters for vary-
ing exposure. When depth observations are available, we
define the geometric residual as:

Egeo = ∥D(G ,TCW )− D̄∥1 , (8)

where D(G ,TCW ) is depth rasterisation and D̄ is the
observed depth. Rather than simply using the depth mea-
surements to initialise the Gaussians, we minimise both pho-
tometric and geometric residuals: λphoEpho +(1−λpho)Egeo,
where λpho is a hyperparameter.

As in Eq. (1), per-pixel depth is rasterised by alpha-
blending:

Dp = ∑
i∈N

ziαi

i−1

∏
j=1

(1−α j) , (9)

where zi is the distance to the mean µW of Gaussian i along
the camera ray. We derive analytical Jacobians for the camera
pose optimisation in a similar manner to Eq. (3), (4).

2) Keyframing:
Since using all the images from a video stream to jointly

optimise the Gaussians and camera poses online is infeasible,
we maintain a small window Wk consisting of carefully
selected keyframes based on inter-frame covisibility. Ideal
keyframe management will select non-redundant keyframes
observing the same area, spanning a wide baseline to provide
better multiview constraints.

a) Selection and Management: Every tracked frame is
checked for keyframe registration based on our simple yet ef-
fective criteria. We measure the covisibility by measuring the
intersection over union of the observed Gaussians between
the current frame i and the last keyframe j. If the covisibility
drops below a threshold, or if the relative translation ti j is
large with respect to the median depth, frame i is registered
as a keyframe. For efficiency, we maintain only a small
number of keyframes in the current window Wk following



the keyframe management heuristics of DSO [11]. The main
difference is that a keyframe is removed from the current
window if the overlap coefficient with the latest keyframe
drops below a threshold.

b) Gaussian Covisibility: An accurate estimate of co-
visibility simplifies keyframe selection and management.
3DGS respects visibility ordering since the 3D Gaussians are
sorted along the camera ray. This property is desirable for
covisibility estimation as occlusions are handled by design.
A Gaussian is marked to be visible from a view if used in
the rasterisation and if the ray’s accumulated α has not yet
reached 0.5. This enables our estimated covisibility to handle
occlusions without requiring additional heuristics.

c) Gaussian Insertion and Pruning: At every keyframe,
new Gaussians are inserted into the scene to capture newly
visible scene elements and to refine the fine details. When
depth measurements are available, Gaussian means µW are
initialised by back-projecting the depth. In the monocular
case, we render the depth at the current frame. For pixels
with depth estimates, µW are initialised around those depths
with low variance; for pixels without the depth estimates, we
initialise µW around the median depth of the rendered image
with high variance. In the monocular case, the positions
of many newly inserted Gaussians are incorrect. While the
majority will quickly vanish during optimisation as they
violate multiview consistency, we further prune the excess
Gaussians by checking the visibility amongst the current
window Wk. If the Gaussians inserted within the last 3
keyframes are unobserved by at least 3 other frames, we
prune them out as they are geometrically unstable.

3) Mapping: The purpose of mapping is to maintain a
coherent 3D structure and to optimise the newly inserted
Gaussians. During mapping, the keyframes in Wk are used
to reconstruct currently visible regions. Additionally, two
random past keyframes Wr are selected per iteration to
avoid forgetting the global map. Rasterisation of 3DGS
imposes no constraint on the Gaussians along the viewing
ray direction, even with a depth observation. This is not a
problem when sufficient carefully selected viewpoints are
provided (e.g. in the novel view synthesis case); however,
in continuous SLAM this causes many artefacts, making
tracking challenging. We therefore introduce an isotropic
regularisation:

Eiso =
|G |

∑
i=1

∥si − s̃i ·1∥1 (10)

to penalise the scaling parameters si (i.e. stretch of the
ellipsoid) by its difference to the mean s̃i. Let the union
of the keyframes in the current window and the randomly
selected one be W = Wk ∪Wr. For mapping, we solve the
following problem:

min
T k

CW∈SE(3),G ,
∀k∈W

∑
∀k∈W

Ek
pho +λisoEiso . (11)

If depth observations are available, as in tracking, geometric
residuals Eq. (8) are added to the optimisation problem.

III. EVALUATION

A. Experimental Setup

a) Datasets: For our quantitative analysis, we evaluate
our method on the TUM RGB-D dataset [12] (3 sequences)
and the Replica dataset [13] (8 sequences), following the
evaluation in [7]. For qualitative results, we use self-captured
real-world sequences recorded by Intel Realsense d455.
Since the Replica dataset is designed for RGB-D SLAM
evaluation, it contains challenging purely rotational camera
motions. We hence use the Replica dataset for RGB-D
evaluation only. The TUM RGB-D dataset is used for both
monocular and RGB-D evaluation.

b) Implementation Details: We run our SLAM on a
desktop with Intel Core i9 12900K 3.50GHz and a single
NVIDIA GeForce RTX 4090. We present results from our
multi-process implementation aimed at real-time applica-
tions. For a fair comparison with other methods on Replica,
we additionally report result for single-process implemen-
tation which performs more mapping iterations. As with
3DGS, time-critical rasterisation and gradient computation
are implemented using CUDA. The rest of the SLAM
pipeline is developed with PyTorch. Details of hyperparam-
eters are provided in the supplementary material.

c) Metrics: For camera tracking accuracy, we report the
Root Mean Square Error (RMSE) of the Absolute Trajectory
Error (ATE) of the keyframes. We report the average across
three runs for all our evaluations. In the tables, the best result
is in bold, and the second best is underlined.

B. Quantitative Evaluation

a) Camera Tracking Accuracy: Table I shows the track-
ing results on the TUM RGB-D dataset. In the monocular
setting, our method surpasses other baselines without re-
quiring any deep priors. Furthermore, our performance is
comparable to systems which perform explicit loop closure.
This clearly highlights that there still remains potential for
enhancing the tracking of monocular SLAM by exploring
fundamental SLAM representations.

Our RGB-D method shows better performance than any
other baseline method. Notably, our system surpasses ORB-
SLAM in the fr1 sequences, bridging the gap between Map-
centric SLAM and the state-of-the-art sparse frame-centric
methods. Our system demonstrates strong performance on
real-world data, as our system flexibly handles real sensor
noise by direct optimisation of the Gaussian positions against
information from every pixel.

Method seq1 seq2 seq3 Avg.
Neural SDF (Hash Grid) 0.13 0.15 0.16 0.14

Neural SDF (MLP) 0.40 0.38 0.22 0.33
Ours w/o depth 0.82 0.91 0.65 0.79
Ours w/ depth 0.83 1.0 0.65 0.82

TABLE II: Camera convergence analysis.

b) Convergence Basin Analysis: We conducted a con-
vergence funnel analysis, an evaluation methodology pro-
posed in [24] and used in [25]. Here, we train a 3D
representation (e.g. 3DGS) using 9 fixed views arranged in a
square. We set the viewpoint in the middle of the square to



Input
Loop-
closure

Method fr1/desk fr2/xyz fr3/office Avg.

90Monocular
w/o

DSO [11] 22.4 1.10 9.50 11.0
DROID-VO [14] 5.20 10.7 7.30 7.73
DepthCov [15] 5.60 1.20 68.8 25.2

Ours 4.15 4.79 4.39 4.44

w/
DROID-SLAM [14] 1.80 0.50 2.80 1.70
ORB-SLAM2 [16] 2.00 0.60 2.30 1.60

90RGB-D

w/o

iMAP [7] 4.90 2.00 5.80 4.23
NICE-SLAM [17] 4.26 6.19 6.87 5.77

DI-Fusion [18] 4.40 2.00 5.80 4.07
Vox-Fusion [19] 3.52 1.49 26.01 10.34

ESLAM [20] 2.47 1.11 2.42 2.00
Co-SLAM [21] 2.40 1.70 2.40 2.17

Point-SLAM [22] 4.34 1.31 3.48 3.04
Ours 1.52 1.58 1.65 1.58

w/
BAD-SLAM [6] 1.70 1.10 1.70 1.50
Kintinous [23] 3.70 2.90 3.00 3.20

ORB-SLAM2 [16] 1.60 0.40 1.00 1.00

TABLE I: Camera tracking result on TUM for monocular
and RGB-D. ATE RMSE in cm is reported. We divide
systems into with and without explicit loop closures. In both
monocular and RGB-D cases, we achieve state-of-the-art
performance.

Point-SLAM Ours GT

Fig. 3: Rendering examples on Replica. Due to the
stochastic nature of ray sampling, Point-SLAM struggle with
rendering fine details.

be the target view. As shown in Fig 4, we uniformly sample a
position, creating a funnel. From the sampled position, given
the RGB image of the target view, we perform camera pose
optimisation for 1000 iterations. The optimisation is success-
ful if it converges to within 1cm of the target view within
the fixed iterations. We compare our Gaussian approach with
Co-SLAM [21]’s network (Hash Grid SDF) and iMAP’s [7]
network with Co-SLAM’s SDF loss for further geometric
accuracy (MLP Neural SDF). We render the training views
using a synthetic Replica dataset and create three sequences
for testing (seq1, seq2 and seq3). The width of the square
formed by the training view is 0.5m, and the test cameras are
distributed with radii ranging from 0.2m to 1.2m, covering a
larger area than the training view. When training the map, the
three methods— Ours w/depth, Hash Grid SDF, and MLP
SDF—use RGB-D images, whereas Ours w/o depth utilises
only colour images. Fig. 4 shows the qualitative results and

Ours w/ depth Ours w/o depth

Hash Grid SDF MLP SDF

Camera Layout

Fig. 4: Convergence basin analysis: Left: 3D Gaussian
reconstructed using the training views (Yellow) and visu-
alisation of the test poses (Red). Right: Visualisation of
convergence basin of our method (top, with and without
depth for training) and other representations (bottom). The
green circle marks successful convergence, and the red cross
marks failure.

Fig. 5: Monocular SLAM result on fr1/desk sequence: We
show the reconstructed 3D Gaussian maps (Left) and novel
view synthesis result (Right).

Table II reports the success rate. For both with and without
depth for training, our method shows better convergence.
Unlike hashing and positional encoding which can lead to
signal conflict, anisotropic Gaussians form a smooth gradient
in 3D space, increasing the convergence basin.

IV. CONCLUSION

We have proposed the first SLAM method using 3D
Gaussians as a SLAM representation. Via efficient volume
rendering, our system significantly advances the fidelity
and diversity of object materials a live SLAM system can
capture. Our system achieves state-of-the-art performance
across benchmarks for both monocular and RGB-D cases.
Interesting directions for future research are the integration
of loop closure for handling large-scale scenes and extraction
of geometry such as surface normal as Gaussians do not
explicitly represent surface.
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