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ABSTRACT

Aligning large language models with human preferences is important, and there
are two kinds of alignment methods. The first class of algorithms is based on
reinforcement learning (RL), which involves learning a reward function from a
human preference dataset and improving performance via online reward max-
imization. Another class is characterized by direct preference optimization,
exemplified by DPO (Rafailov et al., 2023), which learns an implicit reward
and improves performance directly using a static offline dataset. Which algo-
rithm performs well? We investigate this question using contextual bandits,
which serve as mathematical models for alignment. We have two findings:
First, we show that DPO may suffer from a reward quality issue when the fea-
ture representation is misspecified. Second, we present the error bounds for
RL algorithms and show that they achieve the best improvement when the on-
line updates are sufficient. The code to reproduce our results is available at
https://github.com/liziniu/policy_optimization.

1 INTRODUCTION

Developing large language models (LLMs) requires alignment with human preferences. A standard
practice involves providing a human preference dataset to guide LLMs. According to utility theory
(Fishburn et al., 1979), preference is connected with a certain reward function. Currently, there are
two kinds of alignment methods:

• The first class of methods investigated in (Christiano et al., 2017; Stiennon et al., 2020; Ouyang
et al., 2022) is based on reinforcement learning (RL) (Sutton & Barto, 2018). These methods learn
a separate reward function from the preference data and improve performance via online reward
maximization (using algorithms like PPO (Schulman et al., 2017) or ReMax (Li et al., 2023)).

• The second class of methods is characterized by direct preference optimization, exemplified by
DPO (Rafailov et al., 2023). Essentially, it parameterizes the reward function using the language
model itself and thus avoids the explicit learning of the reward function.

While both approaches are able to improve performance by leveraging preference data, the superiority
of one method over the other remains an open question, crucial for driving future advancements.

2 MAIN RESULTS

We investigate the above question within the framework of contextual bandits (Lattimore & Szepesvári,
2020). We study a linear bandit task and denote the prompt by s and response by a. The ground truth
reward function is r⋆(s, a) = ϕr(s, a)

⊤θ⋆r , with ϕr(s, a) ∈ Rd denoting a known feature mapping
and θ⋆r ∈ Rd as the parameter to learn. In particular, a preference data Dpref = {(si, ai, a′i)}ni=1 is
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collected by a reference policy πref with ai is more likely preferred to a′i if r(si, ai) is larger than
r(si, a

′
i). More details are provided in Appendix B.

DPO is inferior to RL when the representation is misspecified. The key to RLHF is the quality of
the recovered reward function. The RL-based methods learn a separate reward function r(s, a) =
ϕr(s, a)

⊤θr via maximum likelihood estimation; see Eq. (1), where σ denotes the sigmoid function.

r̂ ← argmax
r

n∑
i=1

log σ (r(si, ai)− r(si, a
′
i)) , (si, ai, a

′
i) ∼ Dpref . (1)

On the other hand, DPO reparameterizes the reward using the language model π, i.e., r(s, a) ∝
β log(π(a|s)/πref(a|s)); see Eq. (2), where β is a small positive number. Thus, the reward quality in
DPO is restricted by the representation power of the language model.

π̂DPO ← argmax
π

n∑
i=1

log σ

(
β log

π(ai|si)
πref(ai|si)

− β log
π(a′i|si)
πref(a′i|si)

)
, (si, ai, a

′
i) ∼ Dpref . (2)

We argue that DPO could face a reward quality issue when the representation feature is misspecified,
i.e., ϕπ ̸= ϕr. This scenario often occurs in practice when networks have different architectures or are
trained on different datasets. We evaluated the reward functions from RL and DPO using preference
classification accuracy on a test dataset, as shown in Figure 1. When ϕπ = ϕr, DPO matches RL
in preference classification accuracy. However, when ϕπ ̸= ϕr, DPO’s accuracy significantly lags
behind RL. We also report the optimality gaps of the learned policies in Figure 2, where DPO is
comparable to RL only when ϕπ = ϕr and underperforms otherwise.
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Figure 1: Preference classification accuracy (the
larger, the better).

0

0.125

0.25

0.375

0.5

DPO RL

ϕπ = ϕr ϕπ ≠ ϕr

O
p#

m
al

ity
 G

ap

Figure 2: Alignment preference in the optimality
gap (the smaller, the better).

Sufficient Online Update is Crucial for RL. Once the reward function is learned, the quality of
policy optimization becomes crucial for RL-based algorithms. Unlike DPO, RL-based algorithms
utilize online optimization, meaning that responses to be improved are generated from the language
model itself, which changes over iterations. The goal of reward maximization, as described in
Eq. (3), involves two expectations: one over the prompt distribution and the other over the response
distribution. Since these two distributions are not directly accessible, we typically use Monte Carlo
approximations to estimate them or their gradients.

π̂RL ← argmax
π

Es∼ρ(·)
{
Ea∼π(·|s) [r̂(s, a)]− βDKL(π(·|s), πref(·|s))

}
. (3)

We present the error bounds for this stochastic approximation; refer to the detailed analysis in
Appendix A. Focusing on the representation mismatch scenario to explore key factors, we conduct
the ablation study below. We show that when prompts or responses generated from the language
model are insufficient, the optimality gap becomes large, indicating that the potential of RL-based
algorithms is not fully realized. Note that using a large number of prompts and responses does not
require preference annotations, as the reward model can provide weak supervision signals.

RL RL (prompts are not sufficient) RL (responses are not sufficient)
Optimality gap 0.2874 0.3078 0.2999

Table 1: Alginment performance in the optimality gap of RL-based algorithms.
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A ANALYSIS

A.1 PROBLEM FORMULATION

We consider the so-called contextual bandits (Langford & Zhang, 2007; Lu et al., 2010) formulation,
which serves mathematical models for alignment. Let s and a be the state and action, respectively.
We aim to obtain a decision policy π that acts optimally in terms of reward maximization:

π⋆
r ← argmax

π
Es∼ρ(·)Ea∼π(·|s) [r(s, a)] , (4)

4



Published as a Tiny Paper at ICLR 2024

where the symbol ρ denotes the state distribution, and r is the ground truth reward function. We
omit the subscript r in π⋆

r when the context is clear. For language models, the term “states” refers to
prompts, while “actions” denote responses. The language model functions as the decision-making
policy. It is worth noting that terminologies may be used interchangeably.

In the context of RLHF, it is usually to connect the human preference with reward by the Bradley-
Terry-Luce model (Plackett, 1975; Luce, 2005):

P (a > a′ | s) = exp(r(s, a))

exp(r(s, a)) + exp(r(s, a′))
.

Here a > a′ means that the event that a is more preferred to a′. Then, by maximum likelihood
estimation, we get the reward learning objective in (1).

A.2 THEORETICAL ANALYSIS OF RL-BASED METHODS

In this section, we present a preliminary analysis of errors in RL-based methods. At a high level, we
identify three types of errors for RL-based methods:

1) the reward evaluation error |r̂(s, a)− r(s, a)|;
2) the estimation error when using finite samples to calculate the expectation Ea∼π(·|s)[·];
3) the estimation error when using finite samples to calculate the expectation Es∼ρ(·)[·].

In the following part, we will provide the theoretical analysis of the above three types of errors in
RL-based methods.

We first formulate the optimization procedure of RL-based methods. For simplicity, we consider
β = 0. We define Vr(π) := Es∼ρ(·),a∼π(·|s)[r(s, a)] as the expected reward of π under the reward
function r. Since the true reward function r and state distribution ρ are unknown, RL turns to
maximize the following empirical objective:

max
π

V̂r̂(π) := Es∼ρ̂(·),a∼π(·|s)[r̂(s, a)]. (5)

Here r̂ is the reward function recovered by maximum likelihood estimation from the preference
dataset and ρ̂ is the state distribution estimated from finite samples.

RL often applies stochastic gradient ascent to solve the optimization problem in (5). Here we consider
the direct parameterization for policies, i.e., Π = {π ∈ R|S||A| : ∀(s, a) ∈ S × A, π(a|s) >
0,
∑

a∈A π(a|s) = 1}. According to the policy gradient theorem (Sutton et al., 1999), we have that

∇V̂r̂(π) = Es∼ρ̂(·),a∼π(·|s)[∇ log π(a|s)r̂(s, a)].
In this policy gradient formula, there is an expectation over the policy Ea∼π(·|s)[·], which is difficult
to calculate in practice. Consequently, RL-based methods often collect finite actions from the current
policy to estimate this expectation, which results in the following stochastic gradient.

∇̂V̂r̂(π) = Es∼ρ̂(·),a∼π̂(·|s)[∇ log π(a|s)r̂(s, a)].
Then a projected stochastic gradient ascent step is performed repeatedly for the policy update.

πt+1 = ProjΠ
(
πt + ηt∇̂V̂r̂(πt)

)
,∀t = 1, 2, · · · , T. (6)

The following proposition presents the error bounds of RL-based methods. The proof is based on
some analysis for stochastic-gradient-based methods (Bottou et al., 2018).

Proposition 1. Consider the RL-based method in (6) and the output policy π =
∑T

t=1 πt/T . We
define the reward evaluation error εr := max(s,a)∈S×A |r(s, a) − r̂(s, a)|, the state distribution
estimation error εs := supπ∈Π |Es∼ρ(·),a∼π(·|s)[r(s, a)]− Es∼ρ̂(·),a∼π(·|s)[r(s, a)]| and the action
distribution estimation error εa := supπ∈Π ∥∇V̂r̂(π)− ∇̂V̂r̂(π)∥2. Then we have that

max
π∈Π

Vr(π)− E [Vr(π)] ≤ 2 (εr + εs) +

√
2 (εa + |S||A|2R2

max)

T
,

where Rmax = max(s,a)∈S×A |r̂(s, a)| and the expectation is taken with respect to the randomness
of π.
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Proposition 1 implies that there are three types of errors in the optimality gap bound of RL-based
methods. The reward evaluation error εr is due to the limited preference data. The state estimation
error εs arises from using finite state samples to estimate the state distribution ρ. We can effectively
reduce εs by additionally collecting sufficient state samples. Finally, the policy estimation error
εa is caused by using finite actions sampled from the policy to estimate the policy gradient. With
more computation power, we can employ the policy model to sample sufficient actions and thereby
estimate the policy distribution accurately.

Proof. We use π⋆ := argmaxπ Vr(π) to denote the optimal policy. By the standard error decomposi-
tion analysis, we have that

Vr(π
⋆)− E [Vr(π)]

= Vr(π
⋆)− V̂r̂(π

⋆) + V̂r̂(π
⋆)−max

π
V̂r̂(π) + max

π
V̂r̂(π)− E

[
V̂r̂(π)

]
+ E

[
V̂r̂(π)

]
− E [Vr(π)]

≤ Vr(π
⋆)− V̂r̂(π

⋆) + max
π

V̂r̂(π)− E
[
V̂r̂(π)

]
+ E

[
V̂r̂(π)

]
− E [Vr(π)] .

By Lemma 1, we have that

Vr(π
⋆)− E [Vr(π)] ≤ Vr(π

⋆)− V̂r̂(π
⋆) + E

[
V̂r̂(π)

]
− E [Vr(π)] +

√
2 (εa + |S||A|2R2

max)

T
.

For any policy π, we have that∣∣∣Vr(π)− V̂r̂(π)
∣∣∣ = ∣∣Es∼ρ(·),a∼π(·|s) [r(s, a)]− Es∼ρ̂(·),a∼π(·|s) [r̂(s, a)]

∣∣
≤

∣∣Es∼ρ(·),a∼π(·|s) [r(s, a)]− Es∼ρ̂(·),a∼π(·|s) [r(s, a)]
∣∣

+
∣∣Es∼ρ̂(·),a∼π(·|s) [r(s, a)]− Es∼ρ̂(·),a∼π(·|s) [r̂(s, a)]

∣∣
≤ εs + εr.

Then we obtain that

Vr(π
⋆)− E [Vr(π)] ≤ 2 (εs + εr) +

√
2 (εa + |S||A|2R2

max)

T
.

We complete the proof.

The following Lemma provides the optimization error bound of applying stochastic gradient ascent
to solve the optimization problem in Eq. (5).

Lemma 1. Consider the RL-based method in (6) with the step size of η =√
2/(T (εa + |S||A|2R2

max)), and the output policy π̂ =
∑T

t=1 πt/T . We define the action
distribution estimation error εa := supπ∈Π ∥∇V̂r̂(π)− ∇̂V̂r̂(π)∥2. Then we have that

max
π

V̂r̂(π)− E
[
V̂r̂(π)

]
≤

√
2 (εa + |S||A|2R2

max)

T
,

where Rmax = max(s,a)∈S×A |r̂(s, a)| and the expectation is taken with respect to the randomness
of π.

Lemma 1 indicates that the optimization error of RL depends on the policy estimation error εa. With
more computation power, we can employ the policy model to sample more actions and thereby
estimate the policy distribution accurately, reducing the optimization error effectively.

Proof. For any policy π ∈ Π, we have that

V̂r̂(π)− E
[
V̂r̂(πt)

]
= E

[
V̂r̂(π)− V̂r̂(πt)

]
(a)

≤ E
[
(π − πt)

⊤∇V̂r̂(πt)
]

(b)
= E

[
(π − πt)

⊤ E
[
∇̂V̂r̂(πt)|πt

]]
(c)
= E

[
(π − πt)

⊤ ∇̂V̂r̂(πt)
]
.
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Here inequality (a) holds since V̂r̂(π) is a concave function with π, equation (b) holds due to the
unbiasedness of ∇̂V̂r̂(πt) and equation (c) follows the Tower property. Furthermore, we have that

E
[
(π − πt)

⊤ ∇̂V̂r̂(πt)
]
=

1

η
E
[
(π − πt)

⊤
η∇̂V̂r̂(πt)

]
=

1

2η
E
[(
∥π − πt∥22 + η2

∥∥∥∇̂V̂r̂(πt)
∥∥∥2
2
−

∥∥∥π − πt − η∇̂V̂r̂(πt)
∥∥∥2
2

)]
≤ 1

2η
E
[(
∥π − πt∥22 + η2

∥∥∥∇̂V̂r̂(πt)
∥∥∥2
2
− ∥π − πt+1∥22

)]
.

Here the last inequality follows the non-expansivity of the projection operator, see Lemma 3.1 in
(Bubeck, 2015) for details. Then we continue to upper bound the second moment of the stochastic
gradient.

E
[∥∥∥∇̂V̂r̂(πt)

∥∥∥2
2

]
= E

[∥∥∥∇̂V̂r̂(πt)−∇V̂r̂(πt)
∥∥∥2
2

]
+
∥∥∥E [
∇̂V̂r̂(πt)

]∥∥∥2
2

≤ εa +
∥∥∥∇V̂r̂(πt)

∥∥∥2
2
.

By simple calculation, we have that∇V̂r̂(πt) = {ρ(s)r̂(s, a)}(s,a)∈S×A ∈ R|S||A|. Then we obtain
that ∥∥∥∇̂V̂r̂(πt)

∥∥∥2
2
≤ εa +

∑
(s,a)∈S×A

ρ2(s)r̂2(s, a) ≤ εa + |S||A|2R2
max.

With the above bound on the second moment of the stochastic gradient, we have that

V̂r̂(π)− E
[
V̂r̂(πt)

]
≤ E

[
(π − πt)

⊤ ∇̂V̂r̂(πt)
]

≤ 1

2η
E
[(
∥π − πt∥22 − ∥π − πt+1∥22

)]
+

η

2

(
εa + |S||A|2R2

max

)
.

Taking a summation from t = 1 to t = T yields that
T∑

t=1

V̂r̂(π)− E
[
V̂r̂(πt)

]
≤ 1

2η
E
[(
∥π − π1∥22 − ∥π − πT+1∥22

)]
+

ηT

2

(
εa + |S||A|2R2

max

)
≤ 1

2η
∥π − π1∥22 +

ηT

2

(
εa + |S||A|2R2

max

)
≤ 1

η
+

ηT

2

(
εa + |S||A|2R2

max

)
(a)
=

√
2T (εa + |S||A|2R2

max).

Equation (a) is obtained by using the step size of η =
√

2/(T (εa + |S||A|2R2
max)). Finally, we

obtain at

max
π

V̂r̂(π)− E
[
V̂r̂(π)

]
= max

π

1

T

T∑
t=1

V̂r̂(π)− E
[
V̂r̂(πt)

]
≤

√
2 (εa + |S||A|2R2

max)

T
,

which completes the proof.

A.3 REWARD MODELING IN DPO

In this section, we elaborate on the reward modeling in DPO (Rafailov et al., 2023). In general,
we may define a reward class R = {r : S × A → R} with the hope that the ground truth reward
function in this class. RL-based methods typically learn a separate reward function. In contrast, DPO
parameterizes the reward function by

RDPO = {r : S ×A → R | r(s, a) ∝ [log π(s, a)− log πref(s, a)]} .
That is, DPO uses the log probability of policy to model the reward function. Thus, the reward
quality in DPO is limited to the representation power of the policy model. If the representation is
misspecified, i.e.,R ≠ RDPO, the reward and associated optimal policy may be of poor quality. We
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note that this issue can arise in practical scenarios where the reward model and policy model take
different architectures; see Figure 3.
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(a) Reward neural network.
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Figure 3: Architectures of the reward and policy models used in practice differ.The reward neural
network learns the joint representation of state and action, while the policy model first learns the state
representation. As a result, the representations for these two models are different.

B EXPERIMENT SETUP

In this section, we introduce the experiment setup of this paper. All of our experiments are run with
10 different random seeds (2021-2030), and the averaged results are reported. Note that we set πREF
to be a policy with a uniform action distribution in all experiments and β = 0.01 for all methods.
Besides, we use a policy with a uniform action distribution to collect the preference data.

We study a linear bandit task, where we have r(s, a) = ϕr(s, a)
⊤θ⋆r , with ϕr(s, a) ∈ Rd denoting the

feature representation and θ⋆r ∈ Rd as the parameter. In this case, the reward learning optimization
problem is convex, so we use CVXPY (Diamond & Boyd, 2016) to find the solution r̂. In particular,
we use the feature map ϕr(s, a) and the parameter θ⋆r as

ϕr(s, a) =

(
(a+ 1) · cos(s · π), 1

a+ 1
· sin(s · π)

)⊤

, θ⋆r = (1, 2)⊤,

where s ∈ S = [0, 1] and a ∈ A = {0, 1, 2, 3}. A uniform distribution over S is studied. For the
policy, we consider the parameterization

π(a|s) = exp(ϕπ(s, a)
⊤θπ)∑

a′ exp(ϕπ(s, a′)⊤θπ)
,

with ϕπ(s, a) and θπ both in R2. In this case, the policy optimization problem is a non-convex
problem, but the gradient domination condition holds (Agarwal et al., 2021). We use the gradient
ascent method with the AdaGrad optimizer (Duchi et al., 2011) (a step size of 0.1 is used).

We examine two scenarios. In the first scenario, there is no representation misspecification, i.e.,
ϕπ = ϕr. In the second, we consider the representation misspecification case and use a different
feature map for policy:

ϕπ(s, a) =

(
(a+ 1) · sin(s · π), 1

a+ 1
· cos(s · π)

)⊤

.

In our experiments, we set the size of training preference data to be n = 20. In Figure 1, we use 100
test preference data to evaluate the reward functions. In Figure Figure 2, the RL method uses the
states in the training preference data to estimate the state distribution ρ(·) in Eq. (3).

In Table 1, we evaluate three RL-based methods: RL, RL (prompts are not sufficient), RL
(responses are not sufficient). In particular, RL additionally collects a preference-free data
Dpref-free = {sj}mj=1 with m = 100, and apply it to estimate the state distribution ρ. We note
that, unlike the preference dataset, it is relatively cheap to collect such a large preference-free
dataset. Besides, RL utilizes the exact policy distribution to construct the policy gradient of
∇V̂r̂(π) = Es∼ρ̂(·),a∼π(·|s)[∇ log π(a|s)r̂(s, a)]. We use this to simulate the case that sufficient
responses are collected to approximate the policy distribution accurately.

RL (prompts are not sufficient) differs from RL in the use of state samples for estimating the state
distribution. Specifically, RL (prompts are not sufficient) only uses the states in the preference dataset.
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Besides, unlike RL utilizes the exact policy distribution, RL (responses are not sufficient) uses 5
responses to estimate the policy distribution, i.e., ∇̂V̂r̂(π) = Es∼ρ̂(·),a∼π̂(·|s)[∇ log π(a|s)r̂(s, a)].

C CONNECTION WITH OTHER RESEARCH

Our research is related to imitation learning (Osa et al., 2018), which aims to learn a policy from
expert demonstrations. A popular approach to achieve this goal is through behavioral cloning (BC)
(Pomerleau, 1991), which trains a policy model by maximizing the likelihood of expert data. Note
that the working mechanism of BC is quite similar to DPO: the likelihood of positively preferred
actions is increased and that of negatively preferred actions is decreased:

πBC ← argmax
π

n∑
i=1

log π(ai|si), (si, ai) ∼ DE,

where DE is the expert dataset.

Ghasemipour et al. (2019) showed that another class of imitation methods, known as adversarial
imitation learning (AIL) methods, (such as GAIL (Ho & Ermon, 2016)), usually performs better
than BC. In particular, AIL methods leverage a recovered reward function to perform online policy
optimization, significantly improving performance. Following the formulation in (Xu et al., 2022),
the training objective of reward-model-based AIL can be re-formulated as

πAIL ← argmin
π

∑
s∈S

∑
a∈A

∣∣∣dπ(s, a)− d̂E(s, a)
∣∣∣ ,

where d̂E is the empirical state-action distribution estimated from DE, and dπ(s, a) is obtained
from online interaction. For the optimization objective of AIL, it utilizes states beyond those in
the expert dataset (reflected in the summation over all state-action pairs). We notice that Xu et al.
(2022) theoretically proved that AIL can outperform BC in terms of addressing the distribution shift
issue with this online optimization. The idea of recovering a reward function and using it to perform
extensive policy optimization is quite similar to the RL methods in RLHF.

Additionally, our research is related to transition-model-based reinforcement learning methods, where
the goal is to find an optimal policy through interactions with environments. Many empirical successes
suggest that transition-model-based approaches are superior in terms of sample complexity (Luo
et al., 2019; Janner et al., 2019). We do not aim to present a detailed discussion since RL involves
lots of concepts and notations. Instead, we would like to highlight that our findings align with the
understanding that additional policy optimization on transition-model-generated data is helpful. We
would like to refer readers to (Hafner et al., 2020; Schrittwieser et al., 2020; Yu et al., 2020; Luo
et al., 2023) for the effect of data augmentation in transition-model-based RL methods.

Finally, we note that compared with DPO (Rafailov et al., 2023), RL-based methods do not require
extra preference annotation. For applications such as language models, training and storing a reward
model has been shown to be highly efficient, as demonstrated in (Yao et al., 2023). The primary
challenge in RL-based methods lies in the huge action space during policy optimization. However,
this issue can be effectively addressed by computationally efficient methods like those proposed by
(Dong et al., 2023; Li et al., 2023). Notably, Li et al. (2023) showed that optimizing the language
model with prompts-only data can improve performance, a setting that cannot achieved by DPO.
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