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Abstract

The release of OpenAI’s O1 and subsequent
projects like DeepSeek R1 has significantly
advanced research on complex reasoning in
LLMs. This paper systematically analyzes ex-
isting reasoning studies from the perspective
of self-evolution, structured into three compo-
nents: data evolution, model evolution, and
self-evolution. Data evolution explores meth-
ods to generate higher-quality reasoning train-
ing data. Model evolution focuses on training
strategies to boost reasoning capabilities. Self-
evolution research autonomous system evolu-
tion via iterating cycles of data and model evo-
lution. We further discuss the scaling law of
self-evolution and analyze representative O1-
like works through this lens. By summarizing
advanced methods and outlining future direc-
tions, this paper aims to drive advancements in
LLMs’ reasoning abilities.

1 Introduction

Reasoning serves as the cornerstone in the do-
main of human cognition. The advent of OpenAI’s
O1 [OpenAI, 2024a] represents a transformative
milestone in the study of complex reasoning for
Large Language Models (LLMs), demonstrating
the ability to generate intricate, human-like reason-
ing pathways [OpenAI, 2024b]. This breakthrough
has ignited substantial interest across both indus-
try and academia [Qin et al., 2024, Guan et al.,
2025], driving efforts to replicate and extend its
achievements. Industry projects, like DeepSeek
R1 [DeepSeek-AI et al., 2025](shorted as R1)
and Kimi-k1.5 [Team et al., 2025], release open-
source models and pioneer advanced methodolo-
gies like Scaling Reinforcement Learning (RL).
Concurrently, academic research, exemplified by
OpenR [Wang et al., 2024e] and O1-Coder [Zhang
et al., 2024j], delve into RL frameworks. Studies
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Figure 1: A conceptual framework for self-evolving
complex reasoning capacities in LLMs. We identify
three components in a complete self-evolution frame-
work: data evolution, model evolution, and evolutionary
strategies and patterns.

like Slow Thinking [Jiang et al., 2024b, Min et al.,
2024] emphasize inference-time computing to en-
hance data quality. Furthermore, rStar-Math [Guan
et al., 2025] achieves notable performance parity
with O1 by leveraging a self-evolution framework,
underscoring the potential of iterative optimization
in advancing reasoning capabilities.

In this survey, we hope to systematically review
existing studies to propel the advancement of com-
plex reasoning in LLMs. The O1 blog and system
card [OpenAI, 2024a,b] allude to the employment
of RL and inference-time computing, drawing a
compelling parallel to AlphaGo Zero [Silver et al.,
2017], which achieved self-evolution through self-
play and iterative improvement via Monte Carlo
Tree Search (MCTS) [Browne et al., 2012] and
policy networks. Inspiredly, super reasoning mod-
els may also be realized through self-evolution.
Moreover, the scarcity of high-quality reasoning
data highlights the urgent necessity for automated
data synthesis frameworks [Sutskever, 2024, Wang
et al., 2024f]. Self-evolution not only leverages
synthetic data to elevate system performance but
also enables improved systems to generate even
higher-quality data, establishing a self-reinforcing
cycle of continuous advancement.



This paper presents a systematic and comprehen-
sive review of self-evolution for complex reason-
ing in LLMs. Self-evolution, or self-improvement,
empowers LLMs to independently synthesize train-
ing data and progressively enhance their reasoning
capabilities within a closed-loop system. For in-
stance, methods based on online RL exemplify self-
evolution, where the RL agent explores onlinely to
collect high-quality trajectories and then improve
itself through reward-guided optimization. This
survey is organized into three core sections: data
evolution, model evolution, and self-evolution.
Data evolution is dedicated to the synthesis of high-
quality data, encompassing two critical phases: (1)
task evolution generates challenging tasks, and
(2) CoT evolution pushes the boundaries of LLM
performance via inference-time computing [Snell
et al., 2024] and Chain-of-Thought (CoT) reason-
ing [Wei et al., 2022]. Model evolution optimizes
modules of the reasoning system based on synthetic
data. This involves training models on tasks that
previously posed difficulties and selectively learn-
ing from curated datasets. Building upon iterative
cycles of data evolution and model evolution, we
analyze the theory behind self-evolution and focus
on diverse evolutionary strategies and patterns.

Our contributions can be summarized as follows:
(1) Comprehensive Survey: This is the first com-
prehensive survey dedicated for the self-evolution
of LLM reasoning; (2) Taxonomy: We introduce
a meticulous taxonomy in Figure 5. (3) Theory:
We collect related underlying theory and discuss
the scaling law of self-evolution; (4) Frontier and
Future: We analyze the latest open-source studies
within the self-evolution framework and shed light
on future research.

2 Preliminaries

2.1 Background

This survey focuses on complex reasoning tasks in
LLMs. Specifically, we focus on CoT reasoning,
where the LLM generates a step-by-step reason-
ing process, i.e., CoT, before predicting the final
answer. Therefore, the reasoning process can be
formalized as: given a task q, the LLM generates a
CoT y before predicting the final answer z.

2.2 Framework Elements

We first define four key components within a
closed-loop self-evolution reasoning system:

Task Creator generates diverse tasks to prevent

performance convergence and ensure continuous
learning. Fixed task sets limit generalization, mak-
ing task diversity critical for self-evolution.

Reasoner is the core module, implemented us-
ing an LLM, and generates step-by-step CoTs.

Evaluator assesses the Reasoner’s CoTs. It pro-
vides feedback signals during training and guides
reasoning and post-processor during inference.

Post-Processor post-process the CoTs based on
feedback from Evaluator. It may filter or correct
errors or apply other operations during generation.

These modules, though logically distinct, can
be implemented using a single LLM due to its
instruction-following capabilities. We explore their
key roles in data evolution, model evolution, and
self-evolution, respectively.

3 Data Evolution

As illustrated in Figure 2, this section describes
how the reasoning system autonomously synthe-
sizes higher-quality data. This process comprises
two phases: task generation and CoT generation,
corresponding to task evolution and CoT evolution.

3.1 Task Evolution

Task evolution focuses on generating more diverse
and harder tasks, which is crucial yet underex-
plored in current self-evolution research. Anal-
ogous to the human learning process, we highlight
three directions of task evolution for improving the
models’ reasoning and generalization capabilities.
Task Diversity Existing research on generating
diverse tasks can be divided into two parts. The first
focuses on prompting LLMs to directly generate
tasks [Xu et al., 2023]. For example, Liu et al.
[2023] use temperature sampling and diversity-
focused prompts to enrich question generation. Wei
et al. [2023] provide LLMs with diverse code snip-
pets to inspire the generation of high-quality coding
tasks. However, these approaches often produce
low-quality outputs with a high proportion of in-
valid tasks. Other methods achieve diversity by
rewriting existing reference tasks. Yu et al. [2023b]
rephrase reference questions to generate new vari-
ants. [Haluptzok et al., 2022, Madaan et al., 2023a]
further modify data types and logical operations
to create structurally similar but logically distinct
tasks. In summary, direct generation is simple but
less reliable, whereas rewriting-based methods im-
prove validity at the expense of diversity. Balanc-
ing effectiveness and diversity remains a key chal-
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Figure 2: The pipeline of Data Evolution consists of Task Evolution and CoT Evolution. In CoT Evolution, we
define three meta operators, which enable two search paradigms to generate higher-quality CoTs.

lenge in task generation research.

Task Complexity To generate more complex
tasks, the most direct approach is to introduce ad-
ditional conditions to the reference questions. For
example, Shi et al. [2023] increase the difficulty of
comprehension by incorporating irrelevant condi-
tions, while Xu et al. [2023] adde extra constraints
to heighten the complexity. In addition, increasing
the number of reasoning steps has also emerged
as a common strategy. Liu et al. [2024a] employ
prompts to guide LLMs in generating new prob-
lems that include the original question as a sub-
problem or intermediate step. Beyond adding con-
ditions and extending reasoning steps, Xu et al.
[2023] further propose three distinct methods for
rewriting questions. Mitra et al. [2024] relax re-
strictions on usable strategies by proposing a dual-
agent collaborative framework: the Suggester agent
analyzes a given problem and proposes ways to en-
hance its complexity, while the Editor agent mod-
ifies the problem based on the Suggester’s recom-
mendations.

Task Reliability Automatically generated tasks
can sometimes be unsolvable or produce incorrect
reference answers. To address this, Li et al. [2023a]
fine-tune LLMs to rank and filter high-quality tasks,
ensuring reliability. Meanwhile, Kreber and Hahn
[2021] leverage GANs [Goodfellow et al., 2014] to
synthesize tasks, assessing their similarity to real-
world data for validity. [Haluptzok et al., 2022,
Liu et al., 2023] ensure programming task quality
by verifying correctness with Python interpreters
and predefined rules. To ensure the accuracy, Lu
et al. [2024b] propose two validation strategies:
(1) using the reference answer as a condition to
solve for the original problem’s variables and (2)
employing multiple reasoning approaches to solve
the same problem.

3.2 CoT Evolution

Before starting the reasoning process, it’s impor-
tant to conceptualize what an effective reasoning
CoT should look like and what main operations
it should consist of. We further review inference-
time computing methods, typically implemented
via search, to generate higher-quality CoTs. These
methods are categorized into heuristic search and
trial-and-error search. Heuristic search uses tree
search (mainly tree search) techniques to explore
reasoning paths that each step is correct. Trial-and-
error search leverages LLMs’ self-evaluation and
self-correction capabilities, enabling trial-and-error
processes and backtracking upon detecting errors.

With the advent of R1 [DeepSeek-AI et al.,
2025] and Kimi-k1.5 [Team et al., 2025], focus
has shifted toward trial-and-error search. Analysis
of O1’s CoT examples reveals its ability to self-
correct or backtrack upon detecting errors, mirror-
ing human reasoning. This reasoning process has
been further explored by Kimi-k1.5 [Team et al.,
2025] and Redstar [Xu et al., 2025], who describe
its outcome as Long CoT. In contrast, we refer to
results of heuristic search as Short CoT. A detailed
comparison between these two search methods and
CoTs is provided in Appendix A.5.1.

3.2.1 Meta Operators

An approach to enhance CoT reasoning is to design
more sophisticated and efficient reasoning chains
inspired by human cognition. Observations from
O1-like systems [Qin et al., 2024] have sparked dis-
cussions on meta operators such as decomposition,
verification, backtracking, and so on. Building on
previous work [Qin et al., 2024, DeepSeek-AI et al.,
2025], we summarize and categorize the following
key meta operators that could exist in CoTs:
Step-by-Step Reasoning Step-by-step reasoning
decomposes problems into sequential steps, solving
them incrementally through chain-based reasoning.



CoT [Wei et al., 2022] reveals the capabilities of
step-by-step thinking via in-context learning. Wang
et al. [2023b] uses zero-shot prompting to generate
a plan, followed by chain-based reasoning. Zhou
et al. [2022] explicitly decomposes problems into
sub-problems, solving them sequentially while in-
corporating previous outcomes. In contrast, Dua
et al. [2022] iteratively decomposes and solves sub-
problems until completion. And ReACT [Yao et al.,
2022] integrates iterative reasoning with actions,
enabling interaction with external tools or environ-
ments to enhance reasoning.
Evaluation & Verification This meta-operator
evaluates and verifies reasoning processes, guid-
ing search, correcting errors, and optimizing out-
comes. We systematically review existing research
at three granularities: outcome-level, step-level,
and token-level. Outcome-level methods evaluate
the entire CoT but are often too coarse-grained.
Token-level methods assess each token directly
but face challenges in accuracy. Step-level meth-
ods, evaluating at step-level granularity, provide
a balanced alternative. Due to space constraints,
we focus on outcome-level evaluation here; step-
level and token-level approaches are detailed in
Appendix A.1.
Outcome-level Evaluation Early works primar-
ily employed outcome-level evaluation, assessing
complete solutions [Cobbe et al., 2021, Wang
et al., 2023c, Lee et al., 2024a]. During train-
ing, some methods evaluate solutions using ground
truth [Cobbe et al., 2021, Hosseini et al., 2024]. Be-
sides answer correctness, R1 [DeepSeek-AI et al.,
2025] and T1 [Hou et al., 2025] incorporate format-
based outcome rewards to guide reasoning format
learning. During inference, [Cobbe et al., 2021,
Hosseini et al., 2024] use trained verifiers to score
and rank solutions. Other methods [Madaan et al.,
2023b, Zhang et al., 2024b] generate verbal feed-
back, playing the role of critic. [Peng et al., 2023,
Shinn et al., 2023, Gou et al., 2024] incorporate
both internal and external environmental informa-
tion to implement critic. Furthermore, some com-
bine verbal with score feedback for reliable eval-
uation [Ankner et al., 2024b, Yu et al., 2024b].
Consistency-based methods, such as Wang et al.
[2023c], use voting or forward and backward rea-
soning [Jiang et al., 2024c, Weng et al., 2023] to
assess answer quality.
Post-Processing Evaluated reasoning solutions
often require further processing. For example, key
knowledge can be extracted to aid subsequent rea-

soning, while low-quality solutions are typically
handled through filtering or correction. Filtering
removes unreliable solutions, whereas correction
rectifies errors or reverts to a correct state. Due
to space limitations, we focus on correction oper-
ations; for more post-processing strategies, please
refer to Appendix A.3.
Correction Early research relies on models’ in-
trinsic capabilities to refine solutions. For instance,
Madaan et al. [2023b] iteratively improves out-
puts using self-generated feedback and Zhang et al.
[2024g] aggregates differences across solutions
into checklists to enhance self-reflection stability.
Ramji et al. [2024] employs predefined metrics for
iterative correction, and Wu et al. [2024c] trains
a PSV model to identify and correct erroneous
steps. Shridhar et al. [2024] uses an Asker model
to generate sub-questions, guiding further correc-
tions. To enhance critique capabilities, Zheng et al.
[2024], Xi et al. [2024], Yan et al. [2024], Zhang
et al. [2024i] train models to autonomously gener-
ate critical reviews, improving correction processes.
The above iterative methods treat corrections as an
MDP, where solutions are states and corrections
are actions. Based on this, Zhang et al. [2024e,d]
combine MCTS with self-correction. These works
initialize a root node, select promising correction
actions until leaf nodes, and conduct different cor-
rections for expansion.

3.2.2 Heuristic Search for Short CoT
Heuristic Search for Short CoT employs heuris-
tic approaches (usually tree-structured search) to
explore multiple reasoning paths simultaneously,
aiming to efficiently identify concise CoTs where
each step is correct. Heuristic search algorithms,
such as BFS/DFS, Beam Search, A*, and MCTS,
underpin these methods. Due to space limitations,
we focus on MCTS-based methods here. For ad-
ditional works based on BFS/DFS, Beam Search,
and A*, please see Appendix A.4.
Search with MCTS MCTS is a search algorithm
that balances exploration and exploitation, showing
strong performance in tasks modeled by MDPs [Wu
et al., 2024a]. A notable application is AlphaGo
Zero [Silver et al., 2017], which uses MCTS to
search for optimal move actions, iteratively improv-
ing its policy network. Inspired by this, MCTS has
been adapted for complex reasoning tasks. Please
refer to Appendix A.5 for introduction of MCTS.

In the Selection phase of MCTS, the search is
guided by the expected cumulative reward Q(s,a),



which can be assessed using the evaluation meta-
operator discussed in Section 3.2.1 with the follow-
ing specific means:
Self-evaluation Early research uses strong prior
knowledge in LLM to evaluate reasoning states.
For instance, MCTS-DPO [Xie et al., 2024] pre-
dicts correct option probabilities as rewards, and
others use step generation probabilities as confi-
dence measures [Hao et al., 2023].
Consistency Consistency-based methods evalu-
ate answer quality through prediction consistency
across samples or models. Inspired by Self-
Consistency (SC) [Wang et al., 2023c], Zhou et al.
[2023] apply SC metrics for evaluation. Alterna-
tively, Feng et al. [2023] uses Jensen-Shannon di-
vergence, and Qi et al. [2024] measures consistency
between different models.
External Evaluator External model-based meth-
ods employ learned verifiers for evaluation. Rest-
MCTS∗ [Zhang et al., 2024c] uses a learnable Pro-
cess Reward Model (PRM) to assess step quality.
Zhu et al. [2022] train path- and token-level scorers
simultaneously.
Others Besides, more sophisticated evaluation
methods are developed for MCTS. Xin et al. [2024]
introduce intrinsic rewards for reward-free explo-
ration in proof search. Many studies integrate
multiple reward signals for improved accuracy:
Feng et al. [2023] combines JS divergence, gen-
eration probability, and self-evaluation; Hao et al.
[2023] integrates generation probability and self-
evaluation; and Zhou et al. [2023] merges self-
evaluation with self-consistency.

Other improvement works include enhancing
policy learning efficiency through static and dy-
namic gap calculations on preference pairs col-
lected by MCTS [Wang et al., 2024k]. Additionally,
Xin et al. [2024] propose parallelized MCTS meth-
ods to improve search efficiency.

3.2.3 Trial-and-error Search for Long CoT
We have explored methods for searching Short CoT,
where unpromising reasoning steps are passively
pruned to prioritize more viable branches, ensur-
ing only correct reasoning paths are retained. In
contrast, Long CoT [Xu et al., 2025] mirrors hu-
man cognitive processes by linearizing complex
search and leveraging LLMs’ self-evaluation, self-
correction, and backtracking mechanisms to dy-
namically adjust reasoning. This enables LLMs to
engage in trial-and-error, guided by internal feed-
back. It manifests as simultaneously generating
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Heuristic Search for 
Short CoT
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Golden 
Answer

Short CoT
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Figure 3: Comparison of Two Search Paradigms.
Heuristic search follows hand-crafted rules—e.g., al-
ways expanding the branch with the highest score—and
backtracks at the rule level when the current path proves
unproductive. This approach aims to identify a short
CoT that is correct at every step. In contrast, trial-and-
error more closely resembles human problem solving:
it explores the solution space through incremental at-
tempts, where earlier mistakes serve as experience to
guide future reasoning. This process ultimately yields
a long CoT that captures the full trajectory of thought,
including both errors and their corrections.

reasoning paths while subconsciously reflecting,
verifying, and correcting errors, with past failed
attempts serving as experiential guidance for sub-
sequent reasoning processes, ultimately leading to
the correct solution. We try to illustrate the dif-
ferences between these two search paradigms in
Figure 3. Unlike Short CoT, Long CoT does not de-
mand perfection at every step, as LLMs can realign
with the correct trajectory through internal self-
reflection and self-correction mechanisms. Conse-
quently, Long CoT demonstrates superior accuracy
and robustness compared to Short CoT, enhanc-
ing LLMs’ generalization when faced with novel
and complex tasks. However, it imposes higher
demands on LLMs, requiring not only step-by-step
reasoning, verification, and correction but also the
ability to actively adapt suitable reasoning strate-
gies. For further detailed comparison of these two
search paradigms, see Appendix A.5.1.

To acquire think in Long CoT, the O1 jour-
ney proposed a distillation method [Huang et al.,
2024c]. However, simple distillation may fall short
in cultivating efficient "slow thinking." To address
this, DeepSeek-R1 [DeepSeek-AI et al., 2025] and
Kimi-k1.5 [Team et al., 2025] independently pro-
posed reinforcement learning-based training strate-
gies. These approaches will be detailed in Sec-
tion 5.

4 Model Evolution

After collecting high-quality reasoning data, the
next step is to evolve modules in the system, lay-
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ing a strong foundation for further data evolution.
We focus on training the Reasoner, Evaluator, and
Post-Processor modules. Before delving into spe-
cific model training work, we first introduce several
representative RL algorithms in Appendix B.1 as
foundational knowledge.

4.1 Reasoner Optimization

From the view of RL, we categorize existing works
into Behavior Cloning, Preference Optimization,
and Reinforcement Learning.

4.1.1 Behavior Cloning
After collecting reasoning process data, a straight-
forward approach is to optimize LLMs via Be-
havior Cloning (BC), i.e., Supervised Fine-Tuning
(SFT). However, BC is typically limited to correct
data. [Yuan et al., 2023a, Tong et al., 2024] employ
rejection fine-tuning via filtering incorrect trajecto-
ries and fine-tuning on correct ones, while resulting
in significant data wastage. To address this, Zelik-
man et al. [2022] regenerates reasoning processes
for incorrect solutions, and Zhang et al. [2024c],
Wang et al. [2024k] use MCTS to efficiently search
for correct trajectories. Chen et al. [2024e] ex-
pands data by constructing reverse problems for
SFT. Zhang et al. [2023a] introduces HIR, relabel-
ing incorrect solutions (changing instructions for
incorrect solutions) to utilize failure data without
additional parameters. Despite these efforts, chal-
lenges remain in maximizing data utilization and
effectively leveraging negative data.

4.1.2 Preference Optimization
Preference optimization is a widely used method to
enhance LLM reasoning capabilities by promoting
high-quality reasoning paths while demoting infe-
rior ones. Early approaches, such as RRHF [Yuan
et al., 2023b], employed ranking-based preference
learning, using a reward model to rank responses
and optimize the LLM via ranking loss. Other
methods, notably DPO [Rafailov et al., 2023], sim-
plify the RLHF process while addressing SFT lim-

itations, gaining popularity due to their ease of
implementation. Please refer to Appendix B.1.5
for details of DPO.

We classify preference optimization works into
solution-level, step-level, and token-level optimiza-
tions and illustrate their differences in Figure 4.
Due to space constraints, we focus on step-level
methods here; for solution-level and token-level
approaches, please refer to Appendix B.2.
Step-level Optimization Solution-level prefer-
ence data is easy to obtain but suffers from coarse
granularity. This limitation arises because errors in
reasoning typically occur near the end, while pre-
ceding steps may remain correct. To address this,
researchers develop step-level preference optimiza-
tion methods. Based on constructing step-level
training data, existing works can be classified into:
active construction and heuristic search.

The active construction approach targets specific
incorrect or correct reasoning steps with the same
prefix. Hwang et al. [2024] uses MC sampling to
identify the first error step in a incorrect CoT, then
generates correct trajectories from the preceding
context. The incorrect and correct pairs are used for
preference optimization. Lai et al. [2024] employs
GPT-4 to detect incorrect steps and uses DPO for
step-level optimization. Lu et al. [2024c] generates
incorrect steps by setting a high temperature to
produce failure suffixes.

Heuristic tree search methods extract prefer-
ence pairs from the searching tree. Zhang et al.
[2024h] leverages ToT [Yao et al., 2023] with self-
evaluation to identify correct reasoning paths, and
filtered steps during search are viewed as negetive
ones. MCTS-based approaches, like those by Xie
et al. [2024] and Chen et al. [2024c], select prefer-
ence pairs based on Q-value differences.

4.1.3 Reinforcement Learning
Model-free Online RL For deterministic tasks
like mathematical reasoning, where environment
dynamics are fixed and no external interaction is
required, model-free online RL is highly effec-
tive. “Model-free” implies direct interaction with
the environment, while “online” refers to training
on data generated by the current policy interact-
ing with the environment, avoiding distribution
shifts common in offline learning. Popular on-
line RL methods for LLM training include RE-
INFORCE [Sutton et al., 1999], PPO [Schulman
et al., 2017], and GRPO [Shao et al., 2024]. [Li
et al., 2023d, Ahmadian et al., 2024] show that



REINFORCE [Sutton et al., 1999] can achieve
strong results without ORM or value models.
ylfeng et al. [2024] and Zhang et al. [2024j] use
PPO [Schulman et al., 2017] for solution- and
step-level reasoning improvements, respectively.
Zhong et al. [2024] integrate implicit rewards from
DPO to guide PPO at the token level. Works
like DeepSeek-Math [Shao et al., 2024], Qwen2.5-
Math [Yang et al., 2024a], and OpenR [Wang
et al., 2024e] employ PRM-based GRPO [Shao
et al., 2024] to enhance multi-hop reasoning. Re-
cently, R1 [DeepSeek-AI et al., 2025] and Kimi-
k1.5 [Team et al., 2025] have achieved remarkable
performance with ORM-based online RL, further
demonstrating the immense potential of RL in LLM
post-training.

We would like to emphasize significant works
including R1 [DeepSeek-AI et al., 2025] and Kimi-
k1.5 [Team et al., 2025]. Taking R1 as an example,
this study abandons traditional PRM, instead re-
lying solely on ORM-based online reinforcement
learning, achieving remarkable breakthroughs in
the process. This further underscores the immense
potential of reinforcement learning in the post-
training phase of LLMs. Specifically, R1 gener-
ates reasoning processes through self-exploration,
which, as outlined in Section 3.2.3, encompass not
only step-by-step logical derivations but also ad-
vanced behaviors such as self-reflection and self-
correction. During training, R1 employs answer
correctness and format as core reward metrics, en-
couraging LLM to learn correct reasoning path-
ways while discouraging those resulting in errors.
If the reasoning process includes self-reflection or
self-correction, these capabilities are also dynami-
cally strengthened or weakened based on the final
outcome rewards. Through this iterative mecha-
nism of continuous exploration and learning, mod-
els like R1 progressively acquire the ability to gen-
erate Long CoT and demonstrate enhanced reason-
ing performance.

While model-free online RL has shown success,
its limitations emerge in highly complex tasks, such
as those with long reasoning chains or external envi-
ronment interactions. In such scenarios, more diver-
sified RL algorithms are expected to play a crucial
role in post-training LLM optimization. Therefore,
we also introduce two additional RL paradigms
(model-based RL and hierarchical RL) for optimiz-
ing the reasoner under more complex scenarios in
Appendix B.3.

4.2 Evaluator Optimization

In this section, we will focus on the methodology
for constructing token-level data for evaluator opti-
mization. Due to space limitations, the more impor-
tant construction methods for outcome-level and
step-level data will be detailed in Appendix B.4.
Additionally, we discuss different training methods
for the evaluator in Appendix B.5.
Token-level To obtain finer-grained token-level
reward signals, automated methods for evaluating
token importance are crucial. Chen et al. [2024i]
trains a generative reward model to rewrite solu-
tions. By inputting the solution into this reward
model, the predicted probability of each original
token serves as its reward. This approach leverages
the intuition that incorrect tokens are likely to be
modified, resulting in lower probabilities, while
correct tokens remain consistent, yielding higher
probabilities. Similarly, Yoon et al. [2024] employ
a strong LLM to iteratively modify incorrect solu-
tions through addition, deletion, and replacement
operations. Token-level rewards are then assigned
based on the differences between the modified and
original solutions. In a different vein, [Rafailov
et al., 2024, Zhong et al., 2024] derive implicit
token-level rewards from the DPO framework, ex-
pressed as: β log

πdpo(yt|x,y<t)
πref (yt|x,y<t)

. Yang et al. [2024b]
refines this approach, labeling the top k% of tokens
in correct solutions with +1 and the lowest k% in in-
correct solutions with -1. OREA [Lyu et al., 2025]
aligns the summarize of all token-level rewards
with the outcome reward, enabling the learning of
a token-level reward model.

4.3 Post-Processor Optimization

Behavior Cloning Some methods [Zhang et al.,
2024a, An et al., 2023, Yan et al., 2024, Paul et al.,
2024, Gao et al., 2024c] use stronger models or
multiple self-samples to generate correct solutions,
then apply SFT to improve self-correction. Du
et al. [2024] fine-tune models with a progressive
dataset for iterative refinement. Others train auxil-
iary models, such as refiners [Welleck et al., 2023,
Zhang et al., 2024i, Wadhwa et al., 2024] or an
asker model [Shridhar et al., 2024] to assess and
assist corrections. Wang et al. [2024l] introduce
a codebook to store, retrieve, and apply reflective
insights for guiding problem-solving.
Reinforcement Learning Kumar et al. [2024]
identifies two challenges in SFT-based self-
correction: distribution shift (struggling with self-



generated errors) and behavior collapse (over-
optimizing initial outputs). To address this, Ku-
mar et al. [2024], Gehring et al. [2024] employ
the RL paradigm to learn this capability. Notably,
recent studies like R1 [DeepSeek-AI et al., 2025]
and T1 [Hou et al., 2025] do not explicitly differ-
entiate the reasoner, evaluator, and post-processor
physically. Instead, guided by the same outcome re-
ward, capacities of reasoning, self-evaluation, self-
correction, and so on are optimized in the same
action space simultaneously.

5 Self-Evolution

In this section, we focus on self-evolution, which
integrates data and model evolution in a cycli-
cal process to enable continuous system advance-
ment. We illustrate an intuitive explanation of how
self-evolution works in Figure 8. However, self-
evolution still poses specific implementation chal-
lenges during implementation, such as ensuring
continuous improvement and coordinating modules
co-evolution. We first introduce the convergence
properties of self-evolution and propose a Scaling
Law in Appendix C. Next, we survey self-evolution
works from evolutionary strategies and patterns. Fi-
nally, we reinterpret representative O1-like works
from a self-evolution perspective in Appendix D.

5.1 Self-Evolution Strategies

In the Preliminaries section, we defined four key
modules and their interactions, framing the system
as a multi-agent setup. Optimizing multiple agents
together can enhance overall performance. Here,
we summarize three multi-agent training strategies
for reasoning systems.
Independent Evolution Early self-evolution sys-
tems often targeted single modules or ignored mod-
ule interdependencies. For example, [Zelikman
et al., 2022, Gulcehre et al., 2023] use golden an-
swers to enhance the Reasoner, and [Hosseini et al.,
2024] trains the Reasoner and Evaluator indepen-
dently. Furthermore, [Madaan et al., 2023b, Wang
et al., 2023d] correct solutions iteratively to im-
prove quality without further Reasoner support.
While independent evolution is easily implemented,
its performance gains are limited.
Collaborative Evolution Joint evolution of mul-
tiple modules often involves leveraging cooperation
to enhance overall system. Jiang et al. [2024b] uses
the Reasoner to generate correct and incorrect solu-
tions for training the reward model, which in turn

filters solutions to train the Reasoner. Wang et al.
[2024e] employs RL to train the entire system: the
Evaluator provides reward signals to optimize the
Reasoner, while the Reasoner collects data to train
the Evaluator. More cooperation evolution could
be further explored in reasoning systems.
Adversarial Evolution Another joint learning
strategy is adversarial training [Goodfellow et al.,
2014]. The competitive relationship between the
Reasoner and Task Creator is obvious. Inspired
by this, Ye et al. [2024] improve Reasoner via
ReST [Gulcehre et al., 2023] under more chal-
lenging tasks, while the Task Creator generates
harder tasks according to uncertainty feedback
from Reasoner. Although adversarial relationships
are harder to identify and optimize, it can mitigate
the issue of local optima due to mutual catering
among modules during collaborative evolution.

5.2 Self-Evolution Patterns
Only Reasoner Most methods focus on improv-
ing the Reasoner to enhance system performance,
differing mainly in constructing training data. [Gul-
cehre et al., 2023, Min et al., 2024, Zelikman et al.,
2022] use SFT on correct reasoning processes,
while [Singh et al., 2023, Min et al., 2024, Pang
et al., 2024] rely on golden answers for data se-
lection. Without ground answers, [Huang et al.,
2022, Li et al., 2024b] filter data based on consis-
tency, and Song et al. [2024] use environmental
rewards to achieve it. [Aksitov et al., 2023, Dong
et al., 2023] employ reward models to rank trajec-
tories for training. To increase positive data, Zelik-
man et al. [2022] re-answer failed questions given
golden answers while Peng et al. [2024] provide
answers only during abstract reasoning to avoid
shortcuts. Additionally, [Chen et al., 2024b, Xie
et al., 2024, Wang et al., 2024j,k] employ MCTS
to search preference data for optimization.
Reasoner + Evaluator During self-evolution,
the fixed Evaluator suffers from the weak general-
ization as the Reasoner’s outputs deviate. There-
fore, training the Reasoner and Evaluator simulta-
neously is essential.

Yuan et al. [2024c], Wang et al. [2024c] train
the Reasoner using its generated correct solutions
and use all solutions to train the reward model.
Based on this, Jiang et al. [2024b] integrate the
reward model into solution selection, adopting ac-
tive learning to prioritize difficult cases. [Zhang
et al., 2024c, Guan et al., 2025] employs MCTS
for step-level action value estimates to train the



Evaluator, which then identifies high-quality rea-
soning trajectories for further Reasoner training.
[Zhang et al., 2024j, Wang et al., 2024e] use RL
to train the Reasoner, with a process reward model
scoring reasoning steps to guide learning, foster-
ing co-evolution between the Reasoner and Eval-
uator. Cheng et al. [2024], Chen et al. [2024j]
employ adversarial training, where the Evaluator
distinguishes responses from golden ones, while
the Reasoner aims to confuse the Evaluator.
Reasoner + Post-Processor A stronger Reasoner
decreases the pressure on the Post-Processor. Some
works aim to improve both modules simultaneously.
Dou et al. [2024] use the Reasoner to generate the
initial solution and refine it. Then they SFT the
Reasoner and Post-Processor using refined collect
solutions. Wang et al. [2023d] employs multi-turn
refinements until correctness, further using RL to
train both two modules. Ultimately, both the Rea-
soner and Post-Processor improve concurrently.
Reasoner + Task Creator Finally, restricting
evolution on fixed tasks may result in overfitting
of Reasoner, reducing its ability to handle out-of-
distribution tasks. Therefore, evolving the Task
Creator is necessary. Just as we mentioned in self-
evolution strategies, the adversarial relationship
between the Reasoner and Task Creator is obvious.
Ye et al. [2024] jointly trains the Reasoner and
Task Creator based on adversarial principles, which
have been discussed in the Adversarial Evolution
of Section 5.1.
Reasoner + Evaluator + Post-Processor Evolv-
ing the Reasoner, Evaluator, and Post-Processor to-
gether can theoretically yield greater improvements
than optimizing only one or two modules. Works
like DeepSeek R1 [DeepSeek-AI et al., 2025] and
Kimi-k1.5 [Team et al., 2025] exemplify this by op-
timizing reasoning, self-evaluation, reflection, and
correction simultaneously via online RL, leading
to co-evolution across all capacities and surpass-
ing earlier methods focused on isolated module
evolution.

6 Challenges and Future Directions

Despite the remarkable performance of open-
source works like R1 on complex reasoning tasks,
there are still some challenges from the self-
evolution perspective that require further investiga-
tion. We discuss existing challenges in Appendix E
and future directions in Appendix F.

7 Conclusion

This survey systematically reviews research on
complex reasoning with LLMs from a higher view
of self-evolution. We first explore data evolution
and model evolution for complex reasoning, estab-
lishing the groundwork for self-evolution. Next, we
have investigated self-evolution from the evolution-
ary strategies and patterns. Furthermore, we sum-
marize O1-like open-source studies, demonstrating
their alignment with our self-evolution framework.
We hope this work inspires further advancements
in LLM-based complex reasoning.

Limitations

This survey provides the first comprehensive study
of self-evolution in complex reasoning for LLMs.
Despite our best efforts, there may still be some
limitations. On one hand, due to space constraints,
we can only offer brief summaries of many meth-
ods rather than exhaustive technical details. Addi-
tionally, given the complexity of the technologies
involved and our supplementary analyses, some
content has been relegated to the appendix to pre-
serve these insights, for which we apologize for
any inconvenience caused during reading. On the
other hand, the breadth of research areas covered
means we cannot guarantee complete coverage of
every subfield. While we have made every effort
to collect relevant works, some important studies
may have been overlooked. We will remain en-
gaged with discussions in the research community
and plan to update our perspectives and incorporate
overlooked works in future revisions.
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A Data-Evolution Appendix

A.1 More Evaluation Granularity

Step-level Evaluation Outcome-level evaluation,
while straightforward to implement, exhibits lim-
ited applicability in practice, where more granu-
lar evaluation is often necessary. Among these,
step-level evaluation has emerged as a particularly
prominent approach. This evaluation paradigm em-
phasizes the assessment of individual reasoning
steps, as demonstrated in recent studies [Lightman
et al., 2024, Wang et al., 2024g,m, Gao et al., 2024a,
Lu et al., 2024a, Li et al., 2023b]. In the context
of tree search algorithms, process evaluation has
been extensively utilized to direct search trajec-
tories. For instance, Tian et al. [2024] employs
state scoring within MCTS to guide the search pro-
cess, whereas Xie et al. [2023] implements state
scoring in beam search to optimize path selection.
Furthermore, step-level evaluation has proven ef-
fective in both error correction and reasoning step
summarization. Notably, Zheng et al. [2024], Xi
et al. [2024] have developed methodologies capable
of pinpointing inaccuracies at specific reasoning
steps, thereby furnishing more precise and action-
able feedback for comprehensive evaluation.
Token-level Evaluation Some studies argue
that step-level evaluation granularity remains in-
sufficient for comprehensive reasoning assess-
ment [Yoon et al., 2024, Chen et al., 2024i]. This
has spurred the development of token-level evalua-
tion frameworks, which offer finer-grained analysis.
Yoon et al. [2024] introduces a methodology lever-
aging a powerful LLM to iteratively modify CoT
reasoning at the token level. Their approach as-
signs distinct rewards to tokens based on their mod-
ification operations and utilizes these rewards to
train a token-level reward model. Similarly, Chen
et al. [2024i] proposes a two-stage framework, first
training a correction model to identify and rectify
erroneous reasoning steps. By associating low gen-
eration probabilities with incorrect tokens and high
probabilities with correct ones, their method en-
ables the construction of precise token-level re-
ward signals. Furthermore, Lee et al. [2024c] pro-
poses a token-supervised value model, which super-
vises individual tokens to provide a more accurate
assessment of solution correctness. Meanwhile,
Yang et al. [2024b] derives a token-level evaluation
scheme grounded in maximum entropy reinforce-
ment learning principles. Their approach computes
token-level values through rank-based truncation,

assigning discrete rewards of +1, 0, or -1 to each
token, thereby enabling fine-grained optimization
of reasoning processes.

A.2 Evaluation Categories
Based on the presentation format of evaluation
feedback, existing evaluation methods can be cate-
gorized into two distinct paradigms: verifier and
critic. The verifier focuses on quantifying solu-
tion quality through scalar scoring, while the critic
provides verbal feedback in natural language.
Verifier The verifier paradigm assesses the cor-
rectness of a solution by assigning a quantitative
score. For instance, Cobbe et al. [2021] employs
a verifier to estimate the probability of a solution
being correct, while Hosseini et al. [2024] lever-
ages a trained DPO verifier to generate likelihood
scores that reflect solution validity. Furthermore,
[Lightman et al., 2024, Wang et al., 2024g, Lu et al.,
2024a] adopt a step-level scoring mechanism, as-
signing scores to individual reasoning steps and ag-
gregating them using metrics such as the minimum
or mean value to derive an overall solution quality
assessment. [Tian et al., 2024, Xie et al., 2023]
assign scores to each state within a tree search
process to optimize the search path. For finer gran-
ularity, [Yoon et al., 2024, Chen et al., 2024i, Lee
et al., 2024c, Yang et al., 2024b] introduce token-
level scoring mechanisms, assigning continuous or
discrete scores (e.g., neural, correct, or wrong) to
individual tokens.
Critic The critic paradigm generates natural lan-
guage feedback to facilitate error correction and
enhance the interpretability of scoring mechanisms.
For instance, Madaan et al. [2023b] exploits the
model’s inherent ability to produce critical feed-
back on its own solutions, enabling iterative refine-
ment. Meanwhile, [Peng et al., 2023, Shinn et al.,
2023, Gou et al., 2024] extend this approach by in-
corporating both internal model states and external
environmental information to generate comprehen-
sive critiques, which not only identify errors but
also guide subsequent improvements. Further ad-
vancing this line of work, [Zheng et al., 2024, Xi
et al., 2024] conduct granular, step-by-step critical
analyses to pinpoint and rectify errors at a finer
level of detail. [Ankner et al., 2024b, Yu et al.,
2024b] integrate critique generation with scoring
mechanisms. By producing natural language cri-
tiques prior to assigning scores, these methods en-
hance the transparency and reliability of the eval-
uation process, offering a more interpretable and
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Data Evolution (§3)

Task Evolution (§3.1)

Task Diversity E.g., Yu et al. [2023b], Wang et al. [2022],

Task Complexity E.g., Xu et al. [2023], Shi et al. [2023],

Task Reliability E.g., Li et al. [2023a], Liu et al. [2024a],

CoT Evolution (§3.2)

Meta Operators

Step-by-Step
Reasoning

E.g., Wei et al. [2022], Yao et al. [2022]

Evaluation

Granularity

Outcome-level E.g., Cobbe et al. [2021], Wang et al. [2023c]

Step-level E.g., Lightman et al. [2024], Zheng et al. [2024]

Token-level E.g., Lee et al. [2024c], Yoon et al. [2024]

Category
Verifier E.g., Cobbe et al. [2021], Hosseini et al. [2024]

Critic E.g., Madaan et al. [2023b], Zheng et al. [2024]

Post-Processing

Summary E.g., Hui et al. [2024], Wang et al. [2024l]

Filtering E.g., Singh et al. [2023], Gulcehre et al. [2023]

Correction E.g., An et al. [2023], Zhang et al. [2024e]

Heuristic Search
for Short CoT

BFS/DFS E.g., Yao et al. [2023], Gandhi et al. [2024]

Beam Search E.g., Setlur et al. [2024], Wang et al. [2024i]

A* Search E.g., Wang et al. [2024a], Zhuang et al. [2023]

MCTS Chen et al. [2024b], Zhang et al. [2024c]

Trial-and-error Search
for Long CoT

E.g., DeepSeek-AI et al. [2025], Team et al. [2025]

Model Evolution (§4)

Reasoner (§4.1)

Behavior Cloning E.g., Yuan et al. [2023a], Chen et al. [2024e]

Preference Optimization

Solution-level E.g., Pang et al. [2024], Yuan et al. [2024c]

Step-level E.g., Hwang et al. [2024], Lai et al. [2024]

Token-level E.g., Lin et al. [2024], Yang et al. [2024b]

Reinforcement Learning

Online Model-free E.g., Shao et al. [2024], Wang et al. [2024e]

Model-based E.g., Hao et al. [2023]

Hierarchical E.g., Liu et al. [2024b], Yang et al. [2025a]

Evaluator (§4.2)

Data Granularity

Outcome-level E.g., Hosseini et al. [2024], Lee et al. [2024a]

Step-level E.g., Lightman et al. [2023], Wang et al. [2024g]

Token-level E.g., Chen et al. [2024i], Yang et al. [2024b]

Training Format

Point-wise E.g., Wang et al. [2024m], Lu et al. [2024a]

Pair-wise E.g., Yu et al. [2024b], He et al. [2024b]

Verbal E.g., Xi et al. [2024], Mahan et al. [2024]

Post-Processor (§4.3)
Behaviour Cloning E.g., Welleck et al. [2023], Du et al. [2024]

Reinforcement Learning E.g., Kumar et al. [2024], Gehring et al. [2024]

Self-Evolution (§5)

Strategy (§5.1)

Independent E.g., Zelikman et al. [2022], Hosseini et al. [2024]

Collaborative E.g., Jiang et al. [2024b], Wang et al. [2024e]

Adversarial E.g., Ye et al. [2024], Chen et al. [2024j]

Patterns (§5.2)

Only Reasoner E.g., Gulcehre et al. [2023], Singh et al. [2023]

Reasoner+Evaluator E.g., Yuan et al. [2024c], Jiang et al. [2024b]

Reasoner+Post-Processor E.g., Dou et al. [2024], Wang et al. [2023d]

Reasoner+Task Creator E.g., Ye et al. [2024], Luo et al. [2023]

Reasoner+Evaluator
+Post-Processor

E.g., DeepSeek-AI et al. [2025], Team et al. [2025]

Figure 5: Taxonomy of Advanced Methods, including data evolution, model evolution, and self-evolution.

robust framework for assessing solution quality.

A.3 More Post-Processing Methods

Summarizing Knowledge from CoT To improve
model performance in reasoning tasks, some stud-
ies focus on summarizing the experiences from
previous solutions to guide subsequent reasoning.
For example, Zhang et al. [2024k] incorporates a
reflection component in training instances, such as
alternative solutions or problem extensions through
analogy and reasoning, guiding the model to un-
derstand the problem from different angles and

accumulate diverse reasoning experiences. While
Wang et al. [2024l] integrates reflection insights
into the codebook module via training alignment,
allowing the model to actively retrieve relevant re-
flections to assist reasoning during the process. In
tree search reasoning, Hui et al. [2024] identifies
important nodes and reflects on the subsequent ac-
tions and results, generating task-level guidelines
to optimize search efficiency and avoid repetitive
errors. Meanwhile, Liu et al. [2024c] introduces
textual principles for action selection, continually
refining these principles through iterative reflec-
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Figure 6: Three post-processing methods following evaluation: Filter, Summary, and Correction.

tion to flexibly guide action execution. Addition-
ally, Zhang et al. [2025a] proposes the CoT-based
Synthesizer, which improves reasoning by combin-
ing complementary information from multiple can-
didate solutions, generating better solutions even
when all candidate solutions are flawed.
Filtering Low-quality CoT When low-quality so-
lutions are identified during the evaluation phase,
the simplest approach is direct filtering. For ex-
ample, when ground truth is available, low-quality
solutions can be filtered based on answer correct-
ness [Singh et al., 2023, Gulcehre et al., 2023].
In the absence of ground answer, filtering strate-
gies can be refined based on consistency, such as
perplexity [Min et al., 2024], voting-based con-
sistency [Wang et al., 2023c, Chen et al., 2023],
forward-backward consistency [Jiang et al., 2024c,
Weng et al., 2023], or evaluating solution consis-
tency by constructing follow-up questions tailored
to the nature of multiple-choice questions [Ankner
et al., 2024a, Lee et al., 2024b]. Additionally, learn-
able verifier [Cobbe et al., 2021, Yu et al., 2023a,
Stiennon et al., 2020] can be leveraged to further en-
hance the filtering process. While simple filtering
is both efficient and straightforward to implement,
it often results in significant reasoning data waste.

Besides the aforementioned error correction, fil-
tering, and summarization, other post-processing
operations like backtracking [Qin et al., 2024, Yang
et al., 2025b] can also be performed: when an error
is detected, the system can backtrack to a previous
state and explore alternative reasoning paths.

A.4 More Tree Search Methods

Search with BFS/DFS Tree-of-Thoughts
(ToT) [Yao et al., 2023] decomposes a problem
into multiple thought nodes and leverages classic
search algorithms, that is, Breadth-First Search
(BFS) and Depth-First Search (DFS) to explore
diverse reasoning paths, significantly enhancing
the problem-solving capability of language

models in complex tasks. Qin et al. [2023]
combines the search process with tool utilization,
employing DFS to handle tool composition
and error management, thereby improving the
model’s performance in real-world tasks. The
above methods rely on external programs (e.g.,
Python code) to define search logic. However,
these passive search methods suffer from low
efficiency and limited flexibility. Autonomous
Tree-Search [Zhang et al., 2023b] guides LLM
directly through prompts to perform BFS or
DFS independently, enabling the exploration of
multiple solution paths and increasing reasoning
flexibility. Algorithm-of-Thought [Sel et al.,
2023] integrates the strengths of CoT and ToT
by using the entire search path of BFS/DFS as
a prompt to guide search. This approach allows
LLM to dynamically adjust their paths during the
CoT reasoning process, enabling more efficient
solution discovery. Moreover, AoT avoids the
multi-round querying required by ToT, thereby
reducing reasoning overhead.

Beam Seach Beam Search, a variant of BFS,
maintains k candidate sequences (referred to as
the beam) during the search process, achieving
an effective balance between search accuracy and
computational efficiency. Its alignment with the
autoregressive generation of LLMs makes it partic-
ularly suitable for guiding forward search during
decoding. Based on the granularity of the search,
Beam Search can be categorized into three levels:
token-level, step-level, and solution-level.

Token-level Beam Search operates at the small-
est unit of model generation, directly aligning with
the LLM decoding process. While traditional Beam
Search ranks sequences based on token log proba-
bilities, this approach prioritizes natural language
fluency over reasoning quality. To address this
limitation, Lee et al. [2024d] introduces token-
supervised value models, which score tokens to
enhance the accuracy of mathematical reasoning.



Additionally, to mitigate the issue of low diversity
in generated sequences, Vijayakumar et al. [2016]
proposes Diverse Beam Search, which partitions
the beam into multiple groups, independently opti-
mizing within each group while applying a diver-
sity penalty between groups to encourage varied
reasoning paths.

Step-level Beam Search decomposes multi-step
reasoning into sub-steps, scoring and validating
each sub-step to maintain high-quality candidate
paths. For instance, Wang et al. [2024i], Ma et al.
[2023] employ PRM to assign rewards to sub-
steps, using these scores to guide the search to-
ward promising reasoning paths. Similarly, Chen
et al. [2024b], Yu et al. [2023a] leverage learned
value models to enhance search efficiency at the
step level, avoiding the computational overhead
of MCTS. Setlur et al. [2024] further incorporates
process advantages to refine the search process. In
contrast to external evaluation methods, Xie et al.
[2023] utilizes the model itself for self-validation,
prompting it to verify step correctness while in-
troducing diversity through temperature-adjusted
randomization.

Solution-level Beam Search evaluates entire rea-
soning paths independently, offering faster infer-
ence by avoiding intermediate operations. Best-
of-N (BoN) sampling, for example, generates mul-
tiple complete solutions and selects the highest-
scoring one using a reward model. However, Wang
et al. [2024i] highlights the limitations of reward
models in distinguishing between similar reasoning
processes, proposing a pairwise preference model
for more effective ranking. Meanwhile, Wang
and Zhou [2024] observes that models can sponta-
neously generate CoT reasoning through sampling,
with CoT-derived answers exhibiting higher con-
fidence. Leveraging this insight, they introduce
CoT-decoding, a method that implicitly performs
CoT reasoning by altering the decoding process,
generating multiple sequences via top-k sampling,
and selecting the best based on answer confidence.

Search with A* The A* algorithm optimizes
search efficiency by expanding the most promis-
ing node using an evaluation function f(n) =
g(n) + h(n), where g(n) represents the accumu-
lated cost from the initial state to the current node,
and h(n) is a heuristic function estimating the **fu-
ture cost** to reach the goal. This framework has
been adapted to enhance multi-step reasoning in
LLMs, outperforming traditional ToT methods in
search efficiency.

Several studies have integrated A* principles
into LLM reasoning. Zhuang et al. [2023] proposes
ToolChain*, which maintains a “long-term mem-
ory” of reasoning experiences for specific tasks.
This memory, initially seeded with example data,
dynamically expands by incorporating correct solu-
tion paths during reasoning. By matching new tasks
to prior experiences using the Longest Common
Subsequence, ToolChain* estimates accumulated
and future costs, enabling efficient identification
of optimal solutions for complex planning and rea-
soning tasks. In contrast, Wang et al. [2024a] intro-
duces Q*, which employs a learned Q-value model
to compute heuristic values h(n) for each state,
making the A* algorithm adaptable to domains like
mathematics and programming.

Further advancements leverage the inherent ca-
pabilities of LLMs to refine A* search. Meng
et al. [2024] proposes LLM-A*, which utilizes the
global understanding of LLMs to generate way-
points, guiding the A* search direction and reduc-
ing unnecessary state exploration. Gupta and Li
[2024] trains an LLM to learn the residual between
the true cost h∗(n) and a heuristic estimate h(n),
accelerating search convergence by minimizing it-
erations. Lehnert et al. [2024] introduces Search-
former, which tokenizes A* execution traces and
bootstraps a Transformer model to iteratively sam-
ple shorter paths. Similarly, Su et al. [2024] pro-
poses Dualformer, which incorporates random in-
formation dropout during A* search, enabling the
model to balance fast and slow thinking for im-
proved search strategies.

A.5 Brief Introduction of MCTS

A classic MCTS typically consists of the following
four steps [Browne et al., 2012]:

• Selection Starting from the root node,
MCTS trades off exploration and exploitation
to calculate the weight of each child node.
The calculation of the weight can be done
using different design methods. Two com-
mon schemes are Upper Confidence Bound
(UCB) and Predictor Upper Confidence Tree
Bound (PUCT) [Rosin, 2011]. The UCB
formula is: UCB(s, a) = Q(s, a) + cp ·
πprior(a|s) ·

√
logN(s)
1+N(s,a) ; and the PUCT for-

mula is: PUCT (s, a) = Q(s, a) + cp ·

πprior(a|s) ·
√

N(s)

1+N(s,a) . Where Q(s, a) repre-
sents the action-state value, measuring the ac-



cumulated reward after taking action a from
state s, πprior(a|s) represents the prior proba-
bility of taking action a at state s, N(s) is the
number of times state s has been explored in
the current context, and N(s, a) is the number
of times action a has been explored at state s.
The final weight considers both exploration
and exploitation: if a child node has been
explored less, its exploration weight will be
increased; if past experience indicates higher
expected reward for selecting that node, its
exploitation weight will be increased. After
selecting an action, the process moves to the
corresponding child node and enters the new
state. This selection process repeats until the
leaf node is reached.

• Expansion Once a leaf node is reached, if
the leaf node is not a terminal state (e.g., the fi-
nal answer has not been reached), MCTS will
expand the node by selecting different actions
and adding several child nodes. The quality of
the expansion is mainly influenced by the def-
inition of the action space. Unlike Go, where
the action is defined as placing a stone, LLM
reasoning requires defining different action
spaces for different tasks. Additionally, the
definition of action spaces at different granu-
larities for the same task can result in vastly
different search outcomes.

• Evaluation After reaching the leaf node dur-
ing the Selection phase, the node’s state value
must be evaluated. Two common evaluation
methods are: 1) Using Monte Carlo sampling
to estimate the value. For example, using the
state-action sequence from the root to the cur-
rent node as context, several complete trajec-
tories are sampled, and the statistical metrics
(such as success rate) of these rollouts are
computed as the leaf node’s state value. This
method is simple and unbiased, but has high
variance and is inefficient, making it imprac-
tical in tasks with high sampling costs. 2)
Training a value model to directly estimate
the leaf node’s state value. However, training
a value model is more difficult than training
a reward model, as it estimates the expected
cumulative reward in the future.

• Backpropagation After calculating the
state value of a node, MCTS updates the state
values of all nodes along the path from the

leaf node to the root. The state value estimates
become more accurate as the number of sim-
ulations increases. This process is repeated
for multiple simulations until the maximum
number of simulations is reached, resulting
in a search tree that records the state values
and exploration counts for each node. Due
to the varying application tasks and specific
innovations in methods, MCTS is designed
differently for LLM reasoning scenarios.

A.5.1 Comparison and Correlation between
Heuristic & Trial-and-error Searches

Comparison of Heuristic & Trial-and-error
Searches

Before delving into a detailed comparison, we
briefly summarize the procedural distinctions be-
tween heuristic search for Short CoT and trial-and-
error search for Long CoT. As shown in Figure 3,
heuristic search (mainly tree search, e.g., MCTS,
A*, and beam search) to explore the solution space.
At each state, multiple actions are expanded for can-
didate states, resulting in a tree-structured search
process. During this process, the reasoning system
passively invokes operations such as evaluation and
pruning. Each reasoning step in the generated CoT
is guaranteed to be correct, and operations like
evaluation, pruning, and error correction are not
presented in the CoT. In contrast, trial-and-error
search does not rely on heuristic algorithms. In-
stead, the LLM actively invokes capabilities such
as self-evaluation and self-correction during the rea-
soning process, expressing these operations in natu-
ral language. As a result, the CoT in trial-and-error
search not only includes step-by-step reasoning but
also incorporates self-evaluation, self-correction,
backtracking, and other operations, making the rea-
soning process more transparent and dynamic.

In terms of performance, heuristic search has
also seen successful implementations like rStar-
Math [Guan et al., 2025], which uses MCTS and
PRM along with self-evolution training to achieve
performance comparable to O1 on small LLMs.
However, recent open-source projects, including
DeepSeek R1 [Team, 2024a] and Kimi-k1.5 [Team
et al., 2025], collectively choose the trial-and-error
search route for remarkable performance [Yeo et al.,
2025].

The reasons why these open-source projects
abandoned heuristic search for Short CoT in fa-
vor of trial-and-error search for Long CoT can be
inferred from their technical reports:



• First, heuristic tree search often relies on ver-
ifiers like reward models or value models to
provide scores. While these verifiers offer
fine-grained evaluation guidance, they suffer
from limited generalization and severe reward
hacking issues, leading to inaccurate interme-
diate evaluations and even training collapse
due to the LLM exploiting shortcuts to maxi-
mize rewards. In contrast, R1, Kimi-k1.5, and
T1 leverage self-evaluation capabilities dur-
ing search and employ rule-based outcome re-
wards during training, significantly mitigating
reward hacking and improving generalization.

• Additionally, the scores from verifiers in
heuristic search only reflect the relative qual-
ity of reasoning, failing to pinpoint errors or
their causes, resulting in limited evaluation
quality. In contrast, R1 and similar projects
generate verbal evaluation feedback via self-
evaluation, offering richer and more informa-
tive feedback.

• Finally, while heuristic tree search can explore
multiple paths simultaneously, these paths are
independent. Thus, intermediate experience
cannot be shared across them, lowering the uti-
lization of parallel reasoning processes. This
makes heuristic search significantly different
from human reasoning, where insights from
past errors guide subsequent reasoning, as
seen in trial-and-error search with Long CoT.

While the above discussion highlights the weak-
nesses of heuristic tree search compared to trial-
and-error search, it does not imply that trial-and-
error search is free from drawbacks.

• The application of Long Long CoT in im-
plicit search might introduce inefficiencies
in two key aspects. 1) For simple tasks,
Long CoT methods tend to exhibit overthink-
ing. As noted by [Chen et al., 2024g], ap-
proaches such as QwQ [Team, 2024b] and
R1 [DeepSeek-AI et al., 2025], often explore
multiple potential solutions even when the
initial solution is typically sufficient. This
propensity for excessive exploration incurs
substantial computational overhead. 2) For
complex tasks, Wang et al. [2025] observes
that QwQ and R1 are prone to underthinking.
These methods frequently abandon promis-
ing reasoning paths and switch strategies pre-
maturely, resulting in unstable and inefficient

search processes accompanied by unneces-
sarily lengthy reasoning chains. In contrast,
Short CoT-based methods produce more con-
cise reasoning paths, providing clear effi-
ciency benefits. Wu et al. [2025b] further
argue that longer CoTs do not necessarily im-
prove reasoning performance; instead, an opti-
mal CoT length exists for each model and task.
Thus, the inefficiency of implicit search not
only increases token usage and computational
costs but also degrades performance.

• Furthermore, implicit search heavily relies on
the self-evaluation and self-correction capabil-
ities of LLMs. On one hand, the background
mechanisms of these abilities remain an area
for further research; on the other hand, these
capabilities have not been specifically opti-
mized during the learning process of LLMs.
Models such as R1, kimi-k1.5, and T1 simul-
taneously learn reasoning, evaluation, reflec-
tion, and error correction within the same ac-
tion space using only outcome-level rewards,
but lack dedicated reward signals to guide the
learning of evaluation, reflection, and correc-
tion abilities. As a result, these capabilities
in LLMs are not specially optimized, and one
consequence is that even when LLMs engage
in low-quality reflection or error correction
during early stages, they can still receive pos-
itive rewards as long as the final answer is
correct. Moreover, the insufficiency of self-
evaluation capabilities is one of the reasons
why methods like R1 frequently fail to assess
reasoning paths accurately, thus abandoning
promising ones prematurely.

To address the inefficiency issue, Kimi-
k1.5 [Team et al., 2025] introduces a length penalty
as part of the length reward for response length con-
trol. Yeo et al. [2025] designs the Consine Reward
function, where the reward for a correct response
increases with shorter lengths, while for incorrect
responses, the reward increases with longer lengths.
Luo et al. [2025] proposes the Length-Harmonizing
Reward to suppress excessively long responses. In
addition to introducing new reward functions, Chen
et al. [2024f] employed preference learning, treat-
ing the shortest response as positive and the longest
response as negative, thereby encouraging LLMs
to generate shorter CoTs and suppressing the gener-
ation of overly long ones. However, these methods
have not specifically focused on directly enhanc-



ing self-evaluation and self-correction capabilities,
leaving their overall effectiveness to be further eval-
uated.

A.5.2 Correlation and Unification between
Heuristic & Trial-and-error Searches

These two search strategies—tree and trial-and-
error search—each offer distinct advantages, rais-
ing the critical question: what is the relationship
between them, and can they be unified together?
We explore this from two perspectives.

First, from the perspective of the search action
space, heuristic tree search focuses on exploring
action space defined by individual reasoning steps.
In contrast, trial-and-error search expands the ac-
tion space of heuristic tree search with other meta
operators, such as evaluation, verification, correc-
tion, and backtracking. In other words, with this
extension, heuristic tree search can also explore
Long CoT. The reduced dimensionality in heuristic
tree search might be one of the reasons why exist-
ing heuristic search methods are less generalizable
than trial-and-error search ones.

From the perspective of reasoning capability evo-
lution, Long CoT serves as an effective approach
to solving novel problems, while Short CoT repre-
sents the ultimate goal achieved through continu-
ous training on Long CoT. Specifically, when faced
with more challenging tasks, humans initially en-
gage in trial-and-error search and eventually iden-
tify efficient pathways to solve such tasks. These
efficient pathways can be learned to reduce unnec-
essary trial and error, thereby shortening the Long
CoT. Therefore, Long CoT can be viewed as an ini-
tial and intermediate solution for handling complex
tasks. Once a task is solved, the knowledge ex-
tracted from Long CoT can be used to learn Short
CoT, which in turn serves as prior knowledge to
reduce the trial-and-error iterations of Long CoT
when tackling even more complex tasks. In sum-
mary, a robust reasoning system should possess
the dual capabilities of Long CoT and Short CoT,
enabling it to adaptively balance exploration and
efficiency in problem-solving.

B Model-Evolution Appendix

B.1 Background RL Knowledge

For direct references to certain algorithms in the
main body, we would first like to introduce several
representative reinforcement learning algorithms
here.

B.1.1 Set Sail from RLHF
Given the tremendous success of products like
ChatGPT and Claude, we introduce RL in
LLM post-training, specifically starting from
Reinforcement Learning with Human Feedback
(RLHF) [Ouyang et al., 2022]. RLHF, as a
preference-based reinforcement learning frame-
work, consists of two key stages [Wang et al.,
2024h]:

• Rewarding: In this step, preference data is
collected to train the reward model rθ. Early
methods for collecting preference data in-
volved manual annotation, where multiple re-
sponses were sampled for the same prompt,
and annotators were asked to rank the re-
sponses based on quality. Based on this pref-
erence ranking, the reward model is trained to
capture human preferences:

max
θ

E(x,yw,yl)∈D[log(σ(rθ(x, y
w)

−rθ(x, y
l)))],

(1)

where yw ≻ yl is the preference relationship
labeled by the annotators.

• Policy Optimization: In this step, the LLM
is fine-tuned as a policy model πϕ, with the
goal of maximizing the reward it can receive.
During this process, the LLM generates con-
tent, the reward model scores the content, and
then PPO [Schulman et al., 2017] is used to
train the LLM:

Ex∼D,y∼πϕ(.|x)[rθ(x, y)

− βDKL(πϕ(y|x)||πref (y|x))],
(2)

where πref is the reference model, typically
an LLM with frozen parameters after super-
vised fine-tuning (SFT). The KL divergence
term DKL(πϕ(y|x)||πref (y|x)) aims to pre-
vent the policy model from deviating too far
from the reference model while also maintain-
ing diversity in the generated outputs and pre-
venting the model from collapsing to a single
high-reward answer.

Although RLHF was initially employed to opti-
mize LLMs for the alignment tasks, this training
framework can clearly be adapted to optimize the
reasoning capabilities of LLMs. By explicitly con-
structing preference data from the correctness of
reasoning outcomes, it can encourage the model to



generate correct reasoning processes while discour-
aging incorrect ones, thus enhancing its reasoning
ability.

B.1.2 From RLHF to more fine-grained PPO

Although RLHF uses PPO for optimization, in prac-
tice, classic RLHF is often considered a bandit
approach because it relies only on outcome-level
rewards, lacking finer-grained optimization signals.
Therefore, classic RLHF can be understood as treat-
ing the entire sentence as a single action [Zhong
et al., 2024].

As is well known, sparse rewards increase the
difficulty of the learning process compared to dense
rewards [Andrychowicz et al., 2017], and this is
especially evident in complex reasoning tasks. For
example, in multi-step reasoning, a failed solu-
tion does not necessarily mean that all reasoning
steps are incorrect; it is possible that the first few
steps were correct while later steps contained er-
rors. However, using only outcome rewards would
suppress the correct reasoning steps during training.
Therefore, relying solely on outcome rewards does
not fully leverage RL’s potential. An improvement
is to use step-level or even token-level rewards to
provide finer-grained optimization signals. How
to integrate these finer-grained reward signals into
the RL training process requires revisiting the PPO
algorithm.

PPO [Schulman et al., 2017] is a classic on-
policy algorithm that has proven its effectiveness
and stability across various fields. In its general
form, the training objective of PPO is:

Eq∼P (Q),y∼πϕ(y|q)
1

|y|

|y|∑
t=1

min[
πϕ(yt|q, y<t)

πref (yt|q, y<t)
At,

clip(
πϕ(yt|q, y<t)

πref (yt|q, y<t)
, 1− ϵ, 1 + ϵ)At],

(3)
where y represents the text generated by the policy
model, and |y| denotes the number of characters
in y. At = Q(st, yt) − V (st) is the advantage
function, which normalizes the action-value func-
tion Q(st, yt) to be around the state-value baseline
V (st), helping to reduce the variance and improve
learning stability. In practice, the Generalized Ad-
vantage Estimation (GAE) form of At is often used,
which balances the trade-off between bias and vari-

ance in the estimation:

AGAE
t = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1

δt = rt + γV (st+1)− V (st)

= Q(st, at)− V (at),
(4)

where γ is the discount factor, and λ is also a hy-
perparameter within [0, 1]. When γ = 0, AGAE

t =
δt = Q(st, at)− V (st).

Although PPO has proven its effectiveness
through RLHF, its high training resource re-
quirements and low training efficiency hinder its
widespread application in improving LLM reason-
ing. Specifically speaking, the full PPO framework
includes four modules: policy model, reference
model, value model, and reward model. The initial-
ization of the latter two modules further increases
the complexity of the training process and impacts
the stability of the policy model. As a result, a se-
ries of improvements have emerged to simplify the
PPO framework and training pipeline from the RL
perspective, such as by bypassing the direct mod-
eling and learning of the value model [Shao et al.,
2024] or reward model [Rafailov et al., 2023]. Be-
low, we introduce some representative works that
aim to simplify the PPO training process.

B.1.3 From PPO to REINFORCE
In order to reduce the overall training device bur-
den, recent work has revisited the potential of
REINFORCE [Sutton et al., 1999] for optimizing
LLMs [Li et al., 2023d, Ahmadian et al., 2024]. RE-
INFORCE is a classic Policy Gradient algorithm
and traditionally optimizes the following objective:

T∑
t=1

Eat∼πϕ(at|st)[R(st, at) log πϕ(at|st)], (5)

where R(st, at) =
∑T

s=t γ
s−trθ(st, at) refers to

the cumulative reward to control the direction and
step size of the policy gradient updates.

However, REINFORCE algorithm is known to
suffer from high variance in the R(st, at) , leading
to instability during training. To mitigate this issue,
methods replace the cumulative reward with the
action-value function Q(st, at) or the advantage
function A(st, at) as exemplified by the PPO algo-
rithm. Alternatively, variance reduction can also be
reduced by subtracting a baseline:

Eat∼πϕ(.|st)[(R(st, at)− b) log πϕ(at|st)]. (6)

The baseline b(st) can be implemented in various
ways. To avoid the need for an additional value



model, ReMax [Li et al., 2023d] opts to use the
reward of the action with the highest probability as
the baseline:

b(st) = r(st, at), at ∈ argmaxπϕ(.|st). (7)

[Ahmadian et al., 2024] proposed the REINFORCE
Leave-One-Out (RLOO) estimator. Given a task q,
RLOO samples multiple responses {r1, r2, ..., rK}
and then uses the mean of these sampled trajecto-
ries as the baseline:

b(ri) =
1

k − 1

∑
j ̸=i

R(rj , x). (8)

[Ahmadian et al., 2024] found that, in a Bandit
setting where only outcome rewards are available,
RLOO outperforms PPO. A possible reason for
this is that LLM, after large-scale pretraining and
instruction fine-tuning, is an extremely strong ini-
tialization policy. As a result, the variance issues
at the sentence level in the sampled trajectories are
not as pronounced. Furthermore, by estimating
the value function through sampling, RLOO re-
duces variance while avoiding the bias introduced
by learning a value function.

However, this advantage may only hold in ban-
dit settings. Although using REINFORCE [Sutton
et al., 1999] eliminates the value model and re-
duces the learning cost, RLOO [Ahmadian et al.,
2024] might suffer from more significant variance
in multi-hop reasoning tasks, which require denser
rewards, such as step-level or token-level rewards.

B.1.4 From PPO to GRPO
When step-level or token-level rewards are avail-
able, using PPO to fine-tune the policy model is
an ideal choice, as PPO ensures the stability of the
training process through the advantage function
and the clip operation. However, as can be seen in
Eq. 4, in order to compute AGAE

t , both a reward
model and a value model V (st) are required. Typi-
cally, the value model often matches the reasoner
model in parameter scale, and its training is chal-
lenging due to difficulties in data acquisition and
learning instability. Therefore, the introduction of a
value model not only increases the resource burden
but also leads to training instability.

To address this challenge, Shao et al. [2024]
propose the GRPO algorithm to modify PPO by
replacing the value model with Monte Carlo (MC)
sampling. Specifically, for a given task q, GRPO
simultaneously samples G complete solutions

y1, y2, ..., yG as a group, and reward signals can
be provided for each solution based on the reward
function. Depending on the granularity of reward
signals, GRPO provides two versions. When the
PRM is available, it assigns rewards for all steps
of each solution and obtains the reward set R =
{rindex(1)1 , ..., r

index(k1)
1 , ..., r

index(1)
G , ..., r

index(kG)
G },

where ki represents the number of steps in yi and
r
index(j)
i denotes the index of the end token in the
j-th step of yi. Therefore, the advantage function
in GRPO is calculated as follows:

Ãi,t =
∑

index(j)≥t

r̃
index(j)
i ,

s.t. r̃
index(j)
i =

r
index(j)
i − mean(R)

std(R)
.

(9)

When the ORM is available, it assigns rewards for
all G solutions, resulting in the reward set R =
{r1, ..., rG}. The advantage function in GRPO is
then computed as:

Ãi,t = r̃i =
ri − mean(R)

std(R)
. (10)

Regardless of whether PRM or ORM is used, re-
wards within the group are normalized, with the
mean replacing the value model as the baseline.
During training using the group trajectories, actions
with below-average rewards are suppressed, while
those with above-average rewards are reinforced.
Finally, the optimization objective of GRPO is:

E[q ∼ P (Q), {yi}Gi=1 ∼ πϕold
(yi|q)]

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

{
min[

πϕ(yi,t|q, yi,<t)

πϕold
(yi,t|q, yi,<t)

Ãi,t,

clip(
πϕ(yi,t|q, yi,<t)

πϕold
(yi,t|q, yi,<t)

, 1− ϵ, 1 + ϵ)Ãi,t]

− βDKL[πθ||πref ]
}
,

(11)
where πϕold

is the reference model from the pre-
vious training iteration. Additionally, GRPO en-
hances training stability by incorporating KL di-
vergence on top of PPO. However, instead of the
conventional KL implementation, it employs an
alternative unbiased estimator [Schulman, 2020] to
ensure positive and stable:

DKL[πϕ||πϕold
] =

πϕold
(yi,t|q, yi,<t)

πϕ(yi,t|q, yi,<t)

− log
πϕold

(yi,t|q, yi,<t)

πϕ(yi,t|q, yi,<t)
− 1.

(12)



Framework Online Remove VM Remove RM Remove RefM Low Variance Architecture

PPO [Schulman et al., 2017] ✓ ✗ ✗ ✗ ✓ Actor-Critic
RLOO [Ahmadian et al., 2024] ✓ ✓ ✗ ✓ ✗ Policy Gradient
GRPO [Shao et al., 2024] ✓ ✓ ✗ ✗ ✓ Actor-Critic
DPO [Rafailov et al., 2023] ✗ ✓ ✓ ✗ ✓ BT Model
PRIME (RLOO) [Cui et al., 2025] ✓ ✓ ✗ ✗ ✓ Policy Gradient

Table 1: A comparison of 5 RL algorithms: PPO, RLOO, GRPO, DPO, and PRIME. VM means Value Model; RM
is Reward Model; and RefM means Reference Model.

In summary, GRPO estimates the advantage func-
tion through MC sampling, which allows the over-
all framework to include only the policy model,
reference model, and reward model. This approach
maintains the advantages of PPO while simplifying
the training architecture. Moreover, since LLMs
inherently possess strong prior knowledge, vari-
ance issues are less pronounced. The use of Monte
Carlo sampling to estimate the baseline ensures
unbiased estimation. Additionally, the unified op-
timization within groups reinforces high-quality
trajectories, further stabilizing the training process.
As a result, GRPO has been successfully applied in
many open-source O1-like works [Shao et al., 2024,
Yang et al., 2024a, Wang et al., 2024e, DeepSeek-
AI et al., 2025].

B.1.5 From PPO to DPO
RLHF requires modeling and pretraining a reward
model explicitly, increasing the computational re-
source demands and the training complexity. To
address this, DPO first points out the closed-form
solution in Equation 2:

π∗(y|x) = 1

Z(x)
πref (y|x) exp(

1

β
r(x, y)). (13)

This conclusion indicates that the optimal policy
model π∗(y|x) is strongly bound to the reward
model r(x, y). In other words, by setting a cer-
tain reward model, a specific optimal policy can be
optimized, which maximizes the probability of the
optimal trajectory implied by this reward model.
DPO further transforms Equation 13, leading to a
new expression:

r(x, y) = β log
π∗(y|x)
πref (y|x)

+ β logZ(x). (14)

That is, the reward model r(x, y) can be repre-
sented by the policy model π(y|x). Based on this,
Rafailov et al. [2023] argue that it may be more
efficient to directly optimize the π(y|x), rather than
performing reward modeling first and then using
the learned r(x, y) to guide the optimizing π(y|x).

RLHF uses Bradley-Terry model to learn the
reward model:

E(x,yw,yl)∈D,yw≻yl [σ(rθ(x, yw)− rθ(x, yl))].

(15)
By bringing Equation 14 into Equation 15, the ob-
jective of reward modeling can be transformed into
directly learning the policy model:

E(x,yw,yl)∈D[ log σ(β log
πr(yw|x)
πref (yw|x)

− β log
πr(yl|x)
πref (yl|x)

)].

(16)

Although DPO has simplified RLHF and lowers
the threshold for optimizing LLMs, several issues
have emerged in subsequent applications:

• Insufficient Granularity of Optimization:
The vanilla DPO approach focuses on pref-
erence learning at the response level, which
suffers from overly coarse granularity, partic-
ularly in tasks involving complex reasoning
that require multiple steps. Such coarse granu-
larity may result in instability during the pref-
erence learning, where even partially correct
reasoning steps within erroneous solutions are
incorrectly treated as negative steps uniformly.
To address this challenge, subsequent works
have introduced methods like step-DPO and
token-DPO, which enable more fine-grained
preference optimization. A comprehensive
discussion of these will be provided in Sec-
tion 4.1.2.

• Data Distribution Shift: DPO is commonly
optimized using the offline setting, where a
fixed dataset of preference data is first col-
lected using πref , and subsequently, DPO is
used to train the policy model πϕ. While
this approach offers high training efficiency,
training exclusively on a static offline dataset
may hinder the learning process [Chen et al.,
2024a]. To address this issue, subsequent



work has explored the adaptation of DPO for
online learning [Chen et al., 2024a]. Specif-
ically, after collecting a batch of preference
data, DPO is applied to train the policy model,
which then replaces πref with the newly
trained model πϕ before collecting the next
batch of preference data.

• Suppression of Positive Samples: A notable
issue of DPO is the unexpected suppression
of positive samples during training, alongside
the reduction in negative sample probabilities.
This phenomenon can occur when the distinc-
tion between positive and negative samples is
not sufficiently pronounced. To address this,
several studies have proposed modifications
to the DPO loss function, incorporating reg-
ularization terms that quantify the difference
in quality between positive and negative sam-
ples [Azar et al., 2023, Le et al., 2024].

• Data Collection and Reward Signal Uti-
lization: One limitation of DPO is its lack
of explicit modeling of the preference de-
gree [Wang et al., 2024b]. In scenarios where
reward values are available, DPO constructs
preference pairs by solely comparing the re-
wards, neglecting the direct use of these re-
ward signals. This results in insufficient uti-
lization of the reward signal. Furthermore,
reliance on preference pair data increases the
construction difficulty of training data. To ad-
dress these limitations, OREO [Wang et al.,
2024b] proposes a novel offline RL algorithm
that requires only reward signals, eliminating
the need for preference data.

Besides, experimental results indicate that DPO
generalizes worse than PPO [Li et al., 2023c],
with some tasks even benefiting more from di-
rect SFT [Yuan et al., 2024a, Chen et al., 2024d].
fDPO [Wang et al., 2023a] extends the method by
incorporating divergence constraints to manage a
broader range of preference complexity and model
uncertainty. cDPO [Chowdhury et al., 2024] en-
hances the robustness of DPO, ensuring consistent
performance in environments with noisy feedback.
KTO [Ethayarajh et al., 2024] combines model
behavior with human decision patterns using the
Kahneman-Tversky function based on psycholog-
ical factors. GPO [Tang et al., 2024] defines a
family of convex functions to parameterize the loss
function, aiming to theoretically unify the DPO

preference alignment approaches. ORPO [Hong
et al., 2024] introduces a new method for optimiz-
ing preferences without the need for a reference
model, simplifying the optimization process and
broadening its applicability.

B.1.6 From PPO to PRIME
Rafailov et al. [2024] further analyze DPO and
introduce the concept of Implicit Reward, which
is formulated as follows:

r(x, y) = β log
πθ(x, y)

πref (y|x)
. (17)

Rafailov et al. [2024] argue that the policy model
trained using DPO essentially serves as a token-
level reward function, where the reward assigned
to each token is exactly the implicit reward. The
effectiveness of implicit rewards has been proven
in several works [Zhong et al., 2024, Chen et al.,
2024a].

[Yuan et al., 2024b] proof that by defining the
outcome reward function as rθ(y) = β log πθ(x,y)

πref(y|x) ,
the learned ORM can directly compute token-level
rewards. In other words, the ORM learned in this
format inherently functions as a PRM. Specifically,
PRIME [Cui et al., 2025] comprises four key com-
ponents: a policy model πϕ, an outcome reward
verifier ro, a PRM πθ, and its corresponding ref-
erence model πref. After generating a response
y, PRIME first obtains the outcome-level reward
ro(y) and trains rθ(y) using a cross-entropy loss:

ro(y)·log σ(rθ(y))+(1−ro(y))·log(1−σ(rθ(y))),
(18)

where rθ(y) is optimized to approximate the true
outcome reward. During this process, the PRM πθ
is also optimized. The trained PRM πθ can then
express token-level rewards for each token yt as:

rθ(yt) = β log
πθ(yt|x, y<t)

πref(yt|x, y<t)
, (19)

which is exactly the implicit reward. By leverag-
ing the trained πθ, PRIME provides token-level
rewards for training the policy model πϕ. This de-
sign enables PRIME to integrate seamlessly with
various existing reinforcement learning algorithms,
such as RLOO, as demonstrated in the paper.

The core idea behind PRIME is to distribute the
outcome reward across individual tokens, allowing
the model to learn token-level rewards through ex-
tensive sampling. Tokens that contribute to higher



outcome rewards are assigned higher token-level re-
wards. PRIME learns token-level rewards directly
from outcome rewards without requiring manual
annotation, thus it can simultaneously train both
the policy model and the reward model. This dual
training approach mitigates issues such as reward
hacking and improves the generalization capability
of the reward model.

B.2 More Preference Optimization Paradigms
for Reasoner

Solution-level Optimization Solution-level pref-
erence signals are often the most accessible, lead-
ing early preference optimization efforts to focus
primarily on this level. Given a set of solutions,
Pang et al. [2024], Jiang et al. [2024b] categorize
them into correct and incorrect groups based on
answer labels, creating preference pairs for op-
timization. However, in self-evolution scenarios
where answer labels are typically unavailable, pref-
erence data can be constructed using methods such
as LLM-as-a-Judge [Gu et al., 2024] or pre-trained
reward models [Yu et al., 2024a, Ouyang et al.,
2022]. For instance, Yuan et al. [2024c] utilizes
the LLM’s self-evaluation capability to score its
own generated solutions. Despite this, LLMs’ self-
evaluation abilities remain limited, and the gener-
alizability of reward functions is constrained, ren-
dering the evaluation process susceptible to noise.
To address this issue, Wang et al. [2024c] pro-
poses the Uncertainty-enhanced Preference Opti-
mization framework, which employs a Bayesian
Neural Network-based estimator to quantify the
uncertainty of each preference pair. By integrat-
ing this uncertainty into the DPO training process,
the framework enables the LLM to evaluate the
reliability of preference pairs during optimization,
thereby enhancing robustness.
Token-level Optimization Recent research has
explored token-level preference optimization to en-
able finer-grained learning. A central challenge lies
in acquiring token-level preference pairs. Rafailov
et al. [2024], Zhong et al. [2024] demonstrate
that policy models trained via Direct Preference
Optimization (DPO) can implicitly capture token-
level reward signals, termed "implicit reward":
β log

πdpo(yt|x,y<t)
πref (yt|x,y<t)

. This insight facilitates the de-
velopment of token-level DPO algorithms. Yang
et al. [2024b] further refine implicit rewards to en-
hance token-level optimization.

In a complementary approach, Lin et al. [2024]

propose the cDPO algorithm, which annotates
token-level importance from an alternative perspec-
tive. By fine-tuning two LLMs on correct and in-
correct solutions, cDPO computes the probability
difference between these models to determine the
weight of each token in incorrect solutions. A lower
difference score st indicates that the token bears
greater responsibility for reasoning errors, enabling
the identification of critical tokens for weighted op-
timization.

While DPO-based methods are widely adopted
due to their simplicity, they exhibit limitations, as
discussed in Appendix B.1.5. Notably, as high-
lighted in the O1 blog [OpenAI, 2024b], achieving
substantial improvements in complex reasoning
capabilities may ultimately necessitate the integra-
tion of RL techniques [DeepSeek-AI et al., 2025],
underscoring the need for more advanced optimiza-
tion frameworks.

B.3 More RL Paradigms for Reasoner

B.3.1 Model-based RL

For tasks involving interaction with external envi-
ronments, such as dialogue systems and visual nav-
igation, modeling the environment is crucial [Mo-
erland et al., 2020]. A simulated environment, or
world model [Zhu et al., 2024], can provide feed-
back, state transitions, and internal planning ca-
pabilities, significantly reducing interaction costs
during both training and inference. Effective world
models must possess sufficient task-specific knowl-
edge to accurately simulate rewards and state tran-
sitions in response to policy model actions.

A prominent example is AlphaGo Zero [Silver
et al., 2017], which models opponents and employs
MCTS to simulate game states for policy learn-
ing. Similarly, Hao et al. [2023] demonstrates that
LLMs can serve as world models for planning tasks
and He et al. [2024c] applies LLMs to dialogue
planning, simulating user interactions within an
MCTS framework.

Despite these advancements, model-based RL
for LLM-based complex reasoning remains under-
explored, particularly in tasks like mathematical
reasoning that lack external environment dynamics.
However, as research progresses toward more in-
tricate tasks, the integration of world models and
model-based RL with LLMs is poised to become a
focal point, offering promising avenues for enhanc-
ing reasoning capabilities.
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B.3.2 Hierarchical RL

Many reasoning tasks can be effectively modeled
as Hierarchical MDPs, mirroring human cognitive
processes. For instance, in mathematical reasoning,
students typically do not reason word-by-word; in-
stead, they first outline a sequence of reasoning
steps and then generate specific content based on
these steps. This process naturally decomposes
into high-level and low-level MDPs: the high-level
model generates abstract reasoning thoughts, while
the low-level model produces the corresponding
tokens during implementation.

Liu et al. [2024b] formalize reasoning tasks as
hierarchical MDPs, where the high-level model
selects a reasoning strategy (e.g., CoT [Wei et al.,
2022], L2M [Zhou et al., 2022], or PoT [Chen et al.,
2022]) before generating detailed reasoning steps.
If the reasoning fails, the model iteratively selects
a new strategy. While SMART optimizes the high-
level MDP using policy gradient algorithms [Lee
et al., 2024d], it does not address the low-level rea-
soning process. ReasonFlux [Yang et al., 2025a]
constructs a series of thought templates first. It
begins by performing high-level thought planning
to generate a sequence of thoughts. Subsequently,
each thought is instantiated within the context of
the specific problem, forming a complete and co-
herent reasoning process. This structured approach
decomposes complex tasks into manageable, high-
level abstractions and their corresponding concrete
instantiations. Similarly, Zhou et al. [2024] propose
ArCHer, a hierarchical RL framework for LLMs:
at the high level, it employs the value-based offline
RL algorithm IQL [Kostrikov et al., 2021] to learn
utterance-level Q- and V-networks, assessing re-
sponse quality with outcome rewards. At the low
level, ArCHer uses REINFORCE [Sutton et al.,
1999] to optimize token-level MDPs, with rewards
derived from the high-level advantage function.

By leveraging hierarchical learning, LLMs can
establish coherence between abstract reasoning
steps, moving beyond token-by-token recall to

learn structured reasoning strategies. This approach
enhances their ability to tackle more complex rea-
soning tasks effectively.

B.4 More Training Data Construction for
Evaluator

Outcome-level Outcome-level rewards are rela-
tively straightforward to construct. Early RLHF
methods relied on manually annotated preference
data to train reward models, but the high cost of
manual annotation has spurred the development of
automated labeling approaches.

The simplest automated method uses correct an-
swer labels to classify solutions as correct or incor-
rect, forming preference pairs for training reward
models based on DPO [Hosseini et al., 2024]. Al-
ternatively, more powerful LLMs can be employed
to evaluate reasoning correctness. For instance,
Lee et al. [2024a] utilize a stronger LLM to score
responses on a scale from 0 to 10, subsequently
training a reward model on this annotated dataset.
Beyond these methods, Mu et al. [2024] introduce
rule-based rewards, which decompose desired be-
haviors into specific rules and assign scores accord-
ingly. These rule-based rewards are combined with
traditional RLHF rewards and optimized through
PPO to enhance model performance. Similarly,
DeepSeek-AI et al. [2025] design a rule-based re-
ward system for reasoning tasks, incorporating ac-
curacy and format rewards to construct comprehen-
sive reward signals for training.

These automated approaches not only reduce
reliance on costly manual annotation but also pro-
vide scalable and efficient mechanisms for reward
model training, advancing the practicality of RLHF
in complex reasoning tasks.
Step-level To obtain step-level evaluation sig-
nals, OpenAI released the Process Reward Dataset
PRM800K [Lightman et al., 2023]. However, given
the continuous emergence of reasoning tasks and
the high generalization requirements of evaluator,
it is necessary to expand the training data for PRM.



Manual annotation is clearly impractical, necessi-
tating more automated labeling methods. Based on
different approaches, current automated labeling
methods can be divided into three categories:

• The first type of methods estimates the cor-
rectness of each reasoning step. [Wang
et al., 2024g,m, Jiao et al., 2024] use Monte
Carlo (MC) sampling to estimate step rewards,
where the success rate of N completions for
step Si serves as its reward. Luo et al. [2024]
focus on identifying the first error using bi-
nary search combined with MC sampling, and
improve the utilization of MC samples us-
ing MCTS. [Zhang et al., 2024f, Xia et al.,
2024, Gao et al., 2024a] employ LLM-as-
a-judge to directly evaluate step correctness.
Zhang et al. [2025b] highlight that MC sam-
pling may introduce significant noise and pro-
pose a consensus filtering mechanism, com-
bining MC estimation with LLM validation
to eliminate inconsistencies and improve data
accuracy. Unlike the aforementioned meth-
ods, Chen et al. [2024h] decompose prob-
lems into subproblems and directly extracted
ground-truth intermediate results from stan-
dard solutions, comparing model-generated
sub-solutions with ground-truth results to eval-
uate step correctness.

• The second category of methods first prede-
fines labels and then generates correspond-
ing step content based on those labels. This
primarily involves actively introducing errors
into correct reasoning processes to construct
datasets containing error steps. Yan et al.
[2024] introduces errors by sampling at higher
temperatures and then generates reflection and
corresponding corrections referred to the cor-
rect solutions. Similarly, Xi et al. [2024] de-
liberately insert errors and prompt the model
to generate reflections, creating high-quality
correction data.

• The third thought evaluates step quality by
measuring reliability changes during the rea-
soning process. The underlying assumption
is that good reasoning steps increase the rea-
soning reliability, while poor steps decrease
it. Lu et al. [2024a] label step correctness
based on relative confidence changes, using
an Outcome-Supervised Verifier to assess con-
fidence differences between adjacent steps,

reducing computational costs by avoiding ex-
tensive sampling.

B.5 Training Format for Evaluator

Point-wise When the evaluation outcome is a
scalar value, the most straightforward approach is
to use supervised learning to train an evaluation
model. For example, Wang et al. [2024g,m] sam-
ple and complete reasoning steps, using the success
probability of the completed paths as the score for
each step, thereby training a step-level Process-
Supervised Verifier (PSV). Lu et al. [2024a] first
utilizes ground truth to annotate each reasoning
step and then trains an Outcome-Supervised Ver-
ifier (OSV) to estimate the probability of each
step ultimately leading to a correct solution. Sub-
sequently, by calculating the relative confidence
changes between steps, step-level annotations were
generated, which were then used to train the PSV.
Pair-wise Inspired by the Bradley-Terry (BT)
model [Bradley and Terry, 1952], several studies
have adopted preference learning to train evalu-
ation models. These approaches collect prefer-
ence pairs (x, y+, y−) and optimize the evaluation
model r(., .) using the BT objective:

maxE(x,y+,y−)∈D log(σ(r(x, y+)− r(x, y−))),
(20)

eliminating the need for precise scalar evaluations
and relying solely on preference data for train-
ing. For instance, Yu et al. [2024b], Hosseini et al.
[2024] utilize DPO to learn reward models from
preference pairs, Liang et al. [2024] classifies solu-
tions sampled from multiple LLMs into preference
pairs based on answer correctness, and train reward
models using SimPO.

To address the limitation of existing verifiers,
which are often trained on binary-labeled reason-
ing paths and fail to capture relative differences
between intermediate steps, He et al. [2024b] pro-
pose a tree-based method. This approach samples
completions for each tree node and uses the propor-
tion of completions leading to correct solutions as
rewards. By comparing sibling node rewards, step-
level preference pairs are collected, and a step-level
ranking loss is employed to train the verifier.

Building on these advancements, Yuan et al.
[2023b] introduce Reward-Weighted Preference
Learning (RRHF), which simplifies preference
learning by sampling multiple responses from di-
verse sources (e.g., the model itself, other LLMs,
human experts) and ranking them based on human



preferences or reward model scores. RRHF directly
optimizes the conditional probability of responses
using a ranking loss, enhancing the model’s gener-
ative capabilities. These methods collectively ad-
vance the efficiency and effectiveness of preference-
based evaluation and optimization.
Verbal Recognizing the limitations of models
in self-correction [Huang et al., 2024a], Xi et al.
[2024] introduce an effective method for error lo-
calization in responses. Their approach involves
deliberately introducing errors at specific reasoning
steps to construct flawed reasoning paths, followed
by generating step-level critiques based on these er-
rors. These critique data are then used to fine-tune
a critique model via SFT, enabling it to identify
erroneous steps in responses. In code generation
tasks, Xie et al. [2025] proposes leveraging RL to
develop the ability to evaluate reasoning processes
and generate verbal feedback. This approach en-
ables iterative evaluation and refinement until rea-
soning is achieved.

In reward model optimization, leveraging natural
language feedback has emerged as a key strategy
for enhancing scoring reliability and interpretabil-
ity. One approach extracts generation probabilities
of specific tokens from natural language feedback
as the basis for scoring. For example, Mahan et al.
[2024], Zhang et al. [2024f] fine-tune models to
perform next-token prediction, generating scores
that not only improve interpretability but also ef-
fectively guide model optimization.

Another approach integrates natural language
critiques to assist in score generation. Ankner et al.
[2024b], Gao et al. [2024a] propose training mod-
els to first generate critiques and then refine reward
models to produce scores based on these critiques.
By incorporating natural language critiques, this
method significantly enhances the reliability and
interpretability of scoring, offering a more trans-
parent and robust evaluation framework.

C Theory Behind Self-evolution

Self-evolution requires the system to leverage its
own generated data to continuously enhance its per-
formance without external intervention [Zelikman
et al., 2022]. However, the theory behind this “self-
driven” training process needs first investigation.
To ensure the validity of this training approach,
two key questions need to be addressed: (1) Can
the self-evolution architecture converge? (2) Does
self-evolution follow a Scaling Law?

[RQ1] Can the self-evolution architecture con-
verge?

To address the first question, Singh et al. [2023]
provide an explanation from the perspective of
Expectation Maximization (EM) [Moon, 1996].
Specifically, this work formulates the reasoning
task as p(a = â|x), where x represents the ques-
tion and â is the correct answer. Typically, the
LLM generates a chain of reasoning y which as-
sists in deriving the final answer. Therefore, y can
be modeled as a latent variable. For convenience,
we define the variable O = 1 to indicate a cor-
rect answer, i.e., a = â. The final optimization
objective is formulated as:

max
ϕ

log pϕ(O = 1|x)

=max
ϕ

logEq(y|x)

[pϕ(O = 1, y|x)
q(y|x)

]
≥max

ϕ
Eq(y|x) log

[pϕ(O = 1, y|x)
q(y|x)

]
=max

ϕ
Eq(y|x) log

[pϕ(O = 1, y|x)
q(y|x)

]
=max

ϕ
−DKL[q(y|x)||pϕ(O = 1, y|x)]

=max
ϕ

Eq(y|x)[pϕ(O = 1|x, y)]

− DKL[q(y|x)||pϕ(y|x)].

(21)

For optimization problems involving latent vari-
ables, the Expectation-Maximization (EM) algo-
rithm is often employed.

In the E-Step, we fix p(O = 1, y|x),
and maximize the objective by optimizing
DKL(q(y|x)||p(O = 1, y|x)). This optimization
ultimately leads to q(y|x) = p(O = 1, y|x) =
p(O = 1|x, y)p(y|x). The empirical interpretation
of this result is: first, generate the reasoning pro-
cess y, and then estimate the correctness of the
answer derived from y using p(O = 1|x, y). Thus,
the E-Step can be understood as modeling the data
generation process, including both the generation
of data and its subsequent evaluation.

While in the M-Step, we fix q(y|x),
and maximize the objective by optimizing
DKL(q(y|x)||p(y|x)), ultimately resulting in:

min
ϕ

DKL(q(y|x)||pϕ(y|x))

= max
ϕ

q(y|x) log pϕ(y|x).
(22)

Therefore, the M-Step aims to train the reasoning
model pϕ(y|x) using the generated data, leveraging
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Figure 8: An intuitive understanding of self-evolution. Each iteration consists of data evolution and model evolution:
the system first achieves a scaled performance boundary beyond its original capability boundary through data
evolution (primarily via search), presented as higher-quality solutions serving as training data. Subsequently, the
system expands its capability boundary by learning from these data through model evolution.

data of varying quality weightedly. In other words,
the M-Step learns the process of model evolution.

Considering the convergence properties of the
EM algorithm, we have reason to believe that this
iterative training process, which continuously im-
proves both the data and the model, will converge.
[RQ2] Does self-evolution follow a Scaling Law?

While we aspire reasoning systems to achieve
continuous self-evolution, a practical and unavoid-
able question arises: does self-evolution have an
inherent upper limit—in other words, does self-
evolution also follow a scaling law? To explore
this question, we conducted a thought experiment.
We begin by acknowledging that self-evolution en-
compasses multiple dimensions, including task evo-
lution, CoT evolution, model evolution, and diverse
evolutionary strategies and patterns. As such, we
hypothesize that the potential for self-evolution is
governed by the synergistic interaction of these
four components. To formalize this relationship,
we propose a concise formula to quantify the po-
tential for self-evolution:

Sself-evolution =min(Stask × SCoT, Smodel)

× Sstrategies & patterns.
(23)

Here, Stask, SCoT, Smodel, and Sstrategies & patterns de-
note the size of the task space, the evolutionary po-
tential of CoT, the evolutionary potential of model
capabilities, and the potential gains derived from
employing diverse evolutionary strategies and pat-
terns, respectively. The inclusion of the “min” func-
tion due to the inherent limitation of a model’s
capacity (determined primarily by its parameter
count and architecture). Beyond this capacity, even
an increase in data may not enable the model to
learn additional reasoning patterns. On one hand,
the number of modules within a system and the
diversity of evolutionary strategies and patterns are

inherently limited, suggesting that the potential for
improvement through these mechanisms is likewise
constrained. On the other hand, CoT evolution and
model evolution align with inference-time comput-
ing and post-training, respectively.

The scaling law for inference-time computation
has been empirically validated, indicating that the
gains from scaling inference-time computation pos-
sess inherent limits [Wu et al., 2024b]. However,
whether a scaling law exists for post-training re-
mains an open question. OpenAI has previously in-
vestigated scaling laws in the context of RL [Hilton
et al., 2023], while focusing on traditional RL tasks,
such as Dota2, rather than LLM reasoning tasks.
Zeng et al. [2024b] also discussed the scaling law
for RL in LLMs, but without definitive conclu-
sions being reached. If a post-training scaling
law exists—implying that post-training also has
an upper limit—then self-evolution would simi-
larly be governed by a scaling law. Conversely,
if no such scaling law exists for post-training, the
upper bound of self-evolution would be limited by
the Stask × SCoT. At this situation, whether self-
evolution has an upper bound may be determined
by task evolution. However, the existence of the
scaling law of task evolution remains an open ques-
tion and requires further investigation. Of course,
this remains merely a hypothesis, and definitive
conclusions will require further experimental vali-
dation.

Assuming our perspective holds, the remaining
critical question is how to achieve effective self-
evolution. Zeng et al. [2024a] notes that in existing
self-evolution methods, the performance gain di-
minishes obviously after 3–4 epoches of training,
with even performance degradation observed. To
investigate the bottleneck affecting model perfor-
mance, Zeng et al. [2024a] analyzes the diversity of



reasoning trajectories searched by the model. The
results show that, as the self-evolution training pro-
gresses, the diversity of the reasoning trajectories
explored decreases significantly. This is because
the trajectories that are evaluated more highly are
increasingly likely to be sampled again, leading
the reasoning model to converge on narrow reason-
ing patterns. While this reduction in exploration
helps the model focus on generating higher-quality
reasoning processes, it also means that the model
fails to explore new knowledge, preventing further
improvements in its generalization ability.

Based on these observations, Zeng et al. [2024a]
proposes a new self-evolution framework, B-STAR.
First, they design the Balance Score metric to mea-
sure exploration ability during the training process.
Then, they introduce a dynamic training strategy
based on sampling temperature and reward filter-
ing thresholds to relieve the issue of exploration
reduction during the self-evolution process.

The conclusion of B-STAR highlights that a key
factor influencing the convergence performance
of self-evolution is the diversity of reasoning tra-
jectories encountered by the LLM during training.
When this diversity decreases, the evolution also
diminishes. Therefore, in addition to explicitly en-
hancing the exploration of the reasoner model, pos-
sible solutions include: 1) increasing task diversity
and difficulty could directly enhances reasoning
trajectory diversity and improves system general-
ization [Li et al., 2024a]; 2) enhancing the sys-
tem’s self-evaluation and self-correction abilities
can significantly improve the system’s robustness
and generalization.

D Reinterpretation of Representative
O1-like Studies

Building on the discussion of the self-evolution
technical framework, this section seeks to reinter-
pret existing representative O1-like works from the
lens of self-evolution.
Marco-O1

Marco-o1 [Zhao et al., 2024] generates a dataset
using MCTS search and performs SFT on this
dataset. While Marco-o1 does not incorporate iter-
ative training, the use of MCTS for data collection
aligns with the concept of data evolution, and its
SFT process represents model evolution. However,
the absence of further iterations restricts the overall
improvement in reasoning performance.
O1 Journey

O1 Journey [Qin et al., 2024, Huang et al.,
2024c] introduces the concept of Journey Learn-
ing, which explores reasoning processes involving
self-reflection, self-correction, and backtracking,
corresponding to the Long CoT discussed in Sec-
tion 3.2.3. The generated Long CoTs are classified
into positive and negative samples based on an-
swer correctness, with DPO used for optimization,
reflecting model evolution. Although it does not
incorporate self-evolution, its strong performance
is driven by the deep learning of trial-and-error
search capabilities.
Slow Thinking with LLMs

Part 1: Part 1 of Slow Thinking [Jiang et al.,
2024b] with LLMs involves iterative training
across two stages. Initially, the reasoner and evalua-
tor generate a series of solutions and corresponding
scores via MCTS-based inference-time comput-
ing. Subsequently, DPO is applied to optimize
both the reasoner and evaluator. The MCTS-based
inference-time computing represents an heuristic
tree search within data evolution, while DPO op-
timization aligns with model evolution. With the
joint evolution of both the reasoner and evaluator,
this work can be classified into the “reasoner +
evaluator” self-evolution pattern.

Part 2: Building on long-form thought capa-
bilities distilled from QwQ [Team, 2024b] and
DeepSeek [DeepSeek-AI et al., 2025], Part 2 of
Slow Thinking [Min et al., 2024] with LLMs per-
forms self-evolution through a cycle of exploration
and learning. The generation of Long CoTs via
Long-form Thought reflects the deeply implicit
search in data evolution, followed by SFT or DPO
to evolve the reasoner. This iterative process facili-
tates the self-evolution of the whole system.
rStar-Math

rStar-Math [Guan et al., 2025] is a representative
example of self-evolution for reasoning capabili-
ties, consisting of three training rounds: 1) The
first round employs terminal-guided MCTS to col-
lect accurate data for SFT on the reasoner. 2) The
second round trains the PRM (evaluator) using the
high-quality data gathered through MCTS. 3) The
third round utilizes PRM-guided MCTS to collect
additional high-quality data and retrains both the
reasoner and the PRM. Each round integrates both
data evolution and model evolution. Unlike prior
works, rStar-Math focuses on evolving specific ca-
pabilities on each iteration, leading to overall per-
formance improvement across multiple cycles.
OpenR/O1-Coder



Both OpenR [Wang et al., 2024e] and O1-
Coder [Zhang et al., 2024j] utilize traditional RL
approaches to enhance LLM reasoning capabilities.
They simultaneously train the policy model (rea-
soner) and the PRM (evaluator). Specifically, the
policy model explores new solutions via heuristic
tree search, e.g., beam search and MCTS. And
the PRM guides the training process, aligning
with data evolution and model evolution, respec-
tively. Through continuous RL-based exploration
and learning, both modules achieve self-evolution.
DeepSeek R1/Kimi-k1.5

R1 [DeepSeek-AI et al., 2025] and Kimi-
k1.5 [Team et al., 2025] represent the current state-
of-the-art open-source works, achieving perfor-
mance that closely rivals or even surpasses that
of O1 [OpenAI, 2024b]. Not only do these mod-
els demonstrate exceptional results, but they also
conduct a fundamentally similar core algorithm.
These works leverage online RL for training and
rely solely on ORM to guide optimization, which
encourages exploration and facilitates the emer-
gence of Long CoT generation capabilities.

Furthermore, the RL-based training paradigm
employed by these models aligns with the princi-
ples of the self-evolution paradigm. Specifically,
the RL agent explores new trajectories, correspond-
ing to the data evolution phase; and is trained
under the guidance of rewards, corresponding to
the model evolution phase. Through iterative cy-
cles of self-exploration and training, the system
achieves self-evolution. Notably, works like R1
advance not only step-by-step reasoning but also
self-evaluation and self-correction capabilities dur-
ing self-evolution, which aligns with the Reasoner
+ Evaluator + Post-Processor pattern defined in
Section 5.2. This holistic evolution of three compo-
nents explains why R1 and Kimi-k1.5 significantly
outperform previous systems that evolved only one
or two modules.

E Challenges for Research Fields

E.1 Challenges for Evaluation

E.1.1 Reward Hacking
Reward hacking is defined as the situation where
the policy model exploits ambiguities or loop-
holes in the reward definition to obtain high re-
wards, without actually learning the desired ca-
pacities [Weng, 2024]. Corresponding to specific
phases, there are two main paths to mitigate the re-
ward hacking. During the reward modeling phase,

designing more complex process rewards may help
mitigate this issue. However, overly complex re-
ward signals could also shift the convergence ob-
jectives. An alternative approach is to forgo fine-
grained PRM and rely solely on ORM, which is
particularly suitable for reasoning tasks. For in-
stance, R1 [DeepSeek-AI et al., 2025] and T1 [Hou
et al., 2025] only adpot rule-based outcome rewards
based on answer correctness and format compli-
ance, effectively mitigating the reward hacking is-
sue using PRM. Besides, using larger-scale LLMs
as the base reward model could improve its gener-
alization ability and reduce the risk of exploiting
loopholes. Meanwhile, during RL training, mech-
anisms such as clipping and reward shaping can
help alleviate this issue to some extent [Gao et al.,
2024b].

E.1.2 Generalization
Furthermore, the generalization capability of re-
ward models is equally critical. Parameterized
evaluators, such as reward models, are typically
trained on specific data distributions, which lim-
its their applicability to out-of-distribution (OOD)
tasks. This limitation can lead to biased or unsta-
ble evaluations upon novel tasks, further hindering
task generalization [DeepSeek-AI et al., 2025, Cui
et al., 2025]. Therefore, enhancing the generaliza-
tion ability of reward models to provide reliable
feedback across a broader range of tasks is essential
for improving task generalization. On one hand,
non-parameterized evaluators, such as answer cor-
rectness or format accuracy, can be prioritized to
mitigate these issues [DeepSeek-AI et al., 2025,
Hou et al., 2025]. On the other hand, if the parame-
terized evaluator is necessary, ensuring its contin-
uous updates is crucial. A key challenge lies in
efficiently and cost-effectively constructing train-
ing data for these evaluators.

Although works like R1 [DeepSeek-AI et al.,
2025] have circumvented issues such as reward
hacking and generalization limitations in existing
evaluators by leveraging rule-based outcome re-
wards, they have also revealed new challenges, in-
cluding excessively long CoT, inefficient reflection,
and overthinking. These issues suggest that relying
solely on outcome rewards may be insufficient. A
more fine-grained, step-level evaluation could po-
tentially address these shortcomings. Combining
the strengths of PRMs and ORMs to achieve fine-
grained evaluation while mitigating reward hacking
and ensuring generalization remains a significant



challenge for future research.

E.2 Challenges for Post-Processing

E.2.1 Theory behind Self-Correction
Mechanism

Early research indicates that in-context learn-
ing alone struggles to enable self-correction in
LLMs [Huang et al., 2024b, Tyen et al., 2024,
Jiang et al., 2024a]. To address this, training-based
methods have been explored, such as supervised
fine-tuning (SFT) on curated datasets [Yan et al.,
2024]. However, some studies argue that SFT
alone is insufficient, and reinforcement learning
(RL) may be a more effective alternative [Kumar
et al., 2024], which we will discuss in Section 4.
Nevertheness, a key unresolved question is why a
model requiring correction can produce improved
answers—suggesting it already possesses the nec-
essary knowledge. One explanation is the knowl-
edge boundary theory [Yin et al., 2023, Huang
et al., 2023], which posits a gap between stored
knowledge and its effective expression. Correc-
tions, through reflection or feedback, may help
surface latent knowledge [Yin et al., 2024]. Un-
derstanding this could clarify the limits of LLMs’
self-correction. Furthermore, a critical challenge
remains: how to enable models to fully utilize their
knowledge during initial generation, reducing re-
liance on correction. Addressing this is an urgent
research priority.

E.3 Challenges for Self-Evolution

E.3.1 More Promising Self-Evolution Patterns
We’ve discussed five common self-evolution pat-
terns in the above content, but there are 24 − 1 =
15 possible optimization combinations for these
four modules theoretically. By exploring different
module combinations and strategies like coopera-
tion and adversarial learning, more effective self-
evolution frameworks can be achieved. Ideally,
simultaneous enhancement of all modules would
lead to sustained and significant improvements.

E.3.2 System Generalization
Self-evolution enhances system performance
through iterative training. The key to sustained
evolution lies in preventing overfitting and ensur-
ing generalization during this process. First, task
generalization is crucial; synthesizing more di-
verse and complex tasks ensures broader coverage,
which is fundamental to addressing generalization

issues [Yu et al., 2024a]. Second, the generaliza-
tion ability of the reasoner, evaluator, and post-
processor is vital. B-StAR [Zeng et al., 2024a]
shows that enhancing the reasoner’s exploration
reduces overfitting. The post-processor also plays
a key role in diversifying solutions. Moreover, re-
ward hacking highlights that current evaluators may
overfit to the reasoner and exploit reward shortcuts.
In summary, the generalization of the reasoning
system is crucial for continuous enhancement in
the self-evolution framework.

F Future Directions

How can we further enhance the complex rea-
soning capabilities of LLMs within the self-
evolution framework?

Although models like O1 and R1 exhibit im-
pressive reasoning capabilities, there is still signifi-
cant room for improvement, including enhancing
reasoning abilities and increasing token efficiency.
Continuous training is essential, but it should focus
on addressing key challenges. In future research,
several critical issues remain to be resolved, which
we summarize as follows:

• How can we further enhance task diversity?
More challenging tasks are the most effective
way to improve system generalization. For
instance, Min et al. [2024] observe that mod-
els tend to converge after just a few turns of
iterative training due to the sparsity of the task
pool. To sustain self-evolution, increasing
task diversity is crucial. Current methods re-
main relatively simplistic, and further research
is needed to generate more diverse, complex,
and effective tasks.

• How can we further enhance the self-
evaluation and self-correction capabilities
of LLMs during trial-and-error search?
Works like R1 do not explicitly train for self-
reflection abilities; instead, they rely on out-
come rewards to guide the learning of step-
by-step reasoning and self-reflection. This
approach results in the final reward being
granted as long as the final answer is correct,
even if errors are repeatedly encountered dur-
ing the process. This may explain why tokens
of Long CoT in R1 and similar works grad-
ually increase over the training steps. The
key to addressing this challenge lies in im-
proving the efficiency of self-evaluation and



self-correction while simultaneously advanc-
ing overall reasoning performance.

• How can we develop more effective reward
modeling? Recent work (e.g., R1) has shown
that using ORM alone can lead to strong rea-
soning performance. R1 also presents a de-
tailed failure analysis of MCTS+PRM, cast-
ing doubt on the practical effectiveness of
PRM. Compared to learnable PRMs, the rule-
based ORM used in R1 offers clear benefits
in generalization and robustness against re-
ward hacking. However, R1 also observes
that the number of generated tokens increases
over training, raising questions about whether
frequent self-reflection truly helps extend the
CoT [Chen et al., 2024f, Wang et al., 2025].
A plausible explanation is that ORM rewards
only the correctness of the final output, with-
out shaping the intermediate steps. These limi-
tations of PRM—poor generalization and sus-
ceptibility to reward hacking—highlight an
open challenge: how can we design a more
reliable and effective PRM?

Moreover, the rule-based ORM in R1 is
evaluated primarily on tasks like math rea-
soning and code generation, where cor-
rectness is well-defined. Extending this
training paradigm to more open-ended do-
mains such as retrieval-augmented generation
(RAG) [Zheng et al., 2025, Jin et al., 2025],
creative writing, or agentic tool use [Feng
et al., 2025] introduces additional challenges.
In these settings, rule-based ORMs are insuf-
ficient due to the absence of clear gold stan-
dards or the non-uniqueness of valid outputs.
To generalize this framework, it is critical to
develop ORMs that better align with human
preferences and exhibit stronger accuracy and
generalization across diverse task formats [Liu
et al., 2025].

How can self-evolution be applied to multimodal
scenarios?

This survey focuses on self-evolution for com-
plex reasoning tasks in the text modality. However,
future AI systems will inevitably need to interact
with the real world [Wang et al., 2024d], where
numerous scenarios require reasoning across multi-
modal data [Xiang et al., 2024, Wu et al., 2025a].
To achieve this goal, several challenges require to
be addressed. First, a comprehensive understand-

ing of multimodal data is essential as the founda-
tion for multimodal reasoning. Second, the format
of CoT might be redefined, such as considering
whether CoT should include tokens composed of
multimodal data [Li et al., 2025a]. Third, leverag-
ing the existing complex reasoning capabilities of
LLMs for cross-modal data transfer is crucial. Ad-
ditionally, many reasoning tasks in multimodal sce-
narios (e.g., embodied AI) face challenges such as
high costs of environmental interaction and limited
data resources during training [He et al., 2024a].
Overall, multimodal reasoning, especially embod-
ied AI, grounded in multimodal scenarios is ex-
pected to become one of the primary pathways for
AI to serve humans in the real world [Li et al.,
2025b]. Reasoning serves as the foundational ca-
pability that enables embodied agents to tackle a
wide range of practical tasks. To remain effective,
such reasoning must continually evolve through
ongoing interactions with complex and dynamic
environments.
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