
Under review as a conference paper at ICLR 2024

RECURRENT DISTANCE-ENCODING NEURAL
NETWORKS FOR GRAPH REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks based on iterative one-hop message-passing have been
shown to struggle in harnessing information from distant nodes effectively. Con-
versely, graph transformers allow each node to attend to all other nodes directly,
but suffer from high computational complexity and have to rely on ad-hoc posi-
tional encodings to bake in the graph inductive bias. In this paper, we propose a
new architecture to reconcile these challenges. Our approach stems from the re-
cent breakthroughs in long-range modeling provided by deep state-space models
on sequential data: for a given target node, our model aggregates nodes at dif-
ferent distances and uses a parallelizable linear recurrent network over the chain
of distances to provide a natural encoding of its neighborhood structure. With
no need for positional encoding, we empirically show that the performance of
our model is competitive compared with that of state-of-the-art graph transform-
ers on various benchmarks, at a drastically reduced computational complexity. In
addition, we show that our model is theoretically more expressive than one-hop
message-passing neural networks.

1 INTRODUCTION

Graphs are ubiquitous for representing complex interactions between individual entities, such as in
social networks (Tang et al., 2009), recommender systems Ying et al. (2018) and molecules (Gilmer
et al., 2017), and have thus attracted a lot of interest from researchers seeking to apply deep learn-
ing to graph data. Message passing neural networks (MPNNs) (Gilmer et al., 2017) have been the
dominant approach in this field. These models iteratively update the representation of a target node
by aggregating the representations of its neighbors. Despite progress on semi-supervised node clas-
sification tasks (Kipf & Welling, 2016; Veličković et al., 2017), MPNNs have been shown to have
intrinsic limitations. Firstly, the expressive power of any message passing neural network is upper
bounded by the Weisfeiler-Lehman graph isomorphism test (1-WL) (Xu et al., 2018). Moreover, to
utilize the information from a node that is k hops away from the target node, an MPNN needs to per-
form k rounds of message passing. As a result, the receptive field for the target node grows exponen-
tially with k, including many duplicates of nodes that are close to the target node. The information
from an exponentially growing receptive field is compressed into a fixed-size representation, making
it difficult to effectively harness the information of the distant nodes (a.k.a. over-squashing (Alon
& Yahav, 2020; Topping et al., 2021)). These limitations may hinder the application of MPNNs to
tasks that require reasoning between distant nodes.

Recently, inspired by the success of attention-based transformers in modeling natural lan-
guage (Vaswani et al., 2017; Devlin et al., 2018) and images (Dosovitskiy et al., 2020), several
works have adapted transformers for graph representation learning (Ying et al., 2021; Kim et al.,
2022; Chen et al., 2022; Zhang et al., 2023). Graph transformers allow each node to attend to all
other nodes directly through a global attention mechanism, and therefore make information flow be-
tween distant nodes easier. However, a naive implementation of a global attention mechanism alone
doesn’t encode any structural information about the underlying graph. As a result, state-of-the-art
graph transformers rely on ad hoc positional encodings (e.g., eigenvectors of the graph Laplacian) as
extra features to incorporate the graph inductive bias. There is no consensus yet on the optimal type
of positional encodings, and what positional encoding to use is often a hyper-parameter that needs
to be carefully tuned (Rampášek et al., 2022). Besides, while graph transformers have empirically

1

Under review as a conference paper at ICLR 2024

1
2

36

4

5

7
8

9

3 1
6

2

4

85
9

7

(a)

(b)

MLPLN Task
Head

LN LRU MLP

skip

sum MLPLN

skip

Encoder
Multiset aggregation

(Nodes at same distance w.r.t. target)

+ΛWin +Λ2WinWin= MLP
+

1

2
3
4
5

7
6

8
9

1

+ΛWin +Λ2WinWin
+

2
3
4
8

9
+Λ3Win5 5 1

7
6

Mutiset
Aggreg.

=

Graph Recurrent Encoding by Distance (GRED) block

x number of layers

Linear Recurrent Network
(Aggregated features propagated to target)

= MLP

Figure 1: (a) Sketch of the architecture. MLPs and Layer Normalization operate independently
at each node or node multiset. Information is propagated along edges through a linear RNN –
specifically an LRU (Orvieto et al., 2023b). (b) Depiction of the block operation for two target
nodes. The gray rectangular boxes indicate the application of multiset aggregation. Finally, the new
representation for the target node is computed from the RNN output through an MLP.

shown improvement on some graph benchmarks compared with classical MPNNs, the former has a
much higher computational complexity (Ying et al., 2021).

Captivated by the above challenges and the need for powerful, theoretically sound and computation-
ally efficient approaches to graph representation learning, we propose a new model, Graph Recurrent
Encoding by Distance (GRED). To learn the representation for a target node, our model categorizes
all other nodes into multiple sets according to their shortest distances to the target node. The first
component of a GRED layer is a permutation-invariant neural network (Zaheer et al., 2017) which
generates a representation for each set of nodes that have the same shortest distance to the target
node. The second component of a GRED layer is a linear recurrent neural network (Orvieto et al.,
2023b) to encode the sequence of the set representations, starting from the set with the maximum
shortest distance towards the target node. Since the order of the sequence is naturally encoded by
the recurrent neural network, our model can encode the shortest distance of each set and thus the
neighborhood structure of the target node. The architecture of GRED is illustrated in Figure 1.

The combination of a permutation-invariant neural network and a linear recurrent neural network
brings several advantages to our model compared to existing approaches. First, the recurrent neural
network allows the target node to effectively harness the information from distant nodes, and at the
same time encodes the hierarchical structure of its neighborhood. As a result, our model doesn’t
require any positional encoding, unlike graph transformers. Second, the expressive power of the
linear recurrent neural network strengthens that of the permutation-invariant neural network, making
our model strictly more expressive than any one-hop message passing neural network (see Section 4
for detailed analysis). Third, both the linear recurrent neural network and the permutation-invariant
neural network enable fast parallelizable computation, making our model significantly more efficient

2

Under review as a conference paper at ICLR 2024

than graph transformers. We evaluate our model on a series of graph benchmarks to support its
efficacy. The performance of our model is consistently better than that of existing MPNNs and
is also competitive compared with that of the state-of-the-art graph transformers, with drastically
reduced computation time.

To summarize, the main contributions of our paper are as follows:

1. We propose a principled new architecture for graph representation learning to more effectively
and efficiently utilize the information of large neighborhoods. The proposed architecture consists
of linear recurrent neural networks interleaved with permutation-invariant neural networks.

2. We theoretically prove the expressiveness of the combination of permutation-invariant neural
networks and linear recurrent neural networks, which is strictly greater than that of any one-hop
MPNN and aligned with that of k-hop MPNNs, while using fewer parameters.

3. We empirically show that the performance of our model is significantly better than that of mes-
sage passing neural networks, and comparable to that of state-of-the-art graph transformers, with
greatly reduced computational time.

2 RELATED WORK

We review below recent literature on increasing the receptive field of MPNNs as well as current
trends in recurrent models for long-range reasoning on sequential data.

Increasing the receptive field of MPNNs. There is a rich literature on using higher hop informa-
tion for MPNNs. Among them, MixHop (Abu-El-Haija et al., 2019) uses powers of the normalized
adjacency matrix to access k-hop nodes. k-hop GNN (Nikolentzos et al., 2020) iteratively applies
MLPs to combine two consecutive hops and propagates information towards the target node. While
they have shown higher hop information can improve the expressiveness of MPNNs, they have the
problem of over-squashing (Topping et al., 2021) due to neighborhood mixing. SPN (Abboud et al.,
2022) first aggregates nodes of the same hop and then combines hop representations using weighted
summation. Although SPN can alleviate over-squashing empirically, weighted summation of hops
cannot guarantee the expressiveness of the model. Graph transformers (Ying et al., 2021; Chen et al.,
2022; Rampášek et al., 2022; Zhang et al., 2023; Wu et al., 2021) have attracted a lot of attention
recently because the global attention mechanism allows each node to directly attend to all other
nodes. To bake in the inductive bias of the underlying graph structure, graph transformers typically
use positional encodings (Li et al., 2020; Dwivedi et al., 2021) as extra node features. Among them,
Graphormer (Ying et al., 2021) adds learnable bias to the attention matrix to make the model aware
of nodes with different shortest distances. However, the sequential order of the distances is not en-
coded into the model and Graphormer also needs local node degrees as extra input node features.
SAT (Chen et al., 2022) and GraphTrans (Wu et al., 2021) stack message passing layers and self-
attention layers together to obtain local information before the global attention. GPS (Rampášek
et al., 2022) applies the linear attention (Choromanski et al., 2020) to graph transformers and empir-
ically investigates different configurations of positional encoding. Zhang et al. (2023) theoretically
prove the expressive power of different distance encodings regarding biconnectivity and proposes to
use Resistance Distance as a kind of relative positional encoding. GRIT (Ma et al., 2023) utilizes
learnable positional encodings initialized with random walk probabilities.

Issues with attention for long-range reasoning in sequential data. Efficient processing of long
sequences is one of the paramount challenges in contemporary deep learning. Attention-based trans-
formers (Vaswani et al., 2017) provide a scalable approach to sequential modeling but suffer from
quadratically increasing inference/memory complexity as the sequence length grows. While many
approaches exist to alleviate this issue, efficient memory management (Dao et al., 2022; Dao, 2023)
and architectural modifications (Wang et al., 2020; Kitaev et al., 2020; Child et al., 2019; Beltagy
et al., 2020; Wu et al., 2020), the sequence length in modern large language models is usually kept
to 2k/4k tokens for this reason (e.g. Llama2 (Touvron et al., 2023)). On top of high inference
and memory cost, the attention mechanism often does not provide the correct inductive bias for
long-range reasoning beyond text. Indeed, most transformers (including long-range/sparse variants,
reduced complexity variants, or variants with other tricks) are often found to perform poorly in
discovering long-range dependencies in data (Tay et al., 2020). Due to the issues outlined above,
the community has witnessed in the last year the rise of new, drastically innovative, recurrent al-

3

Under review as a conference paper at ICLR 2024

ternatives to the attention mechanism, named state-space models (SSMs). The first SSM, S4, was
introduced by Gu et al. (2021) based on the theory of polynomial signal approximations (Gu et al.,
2020; 2023), and since then, a plethora of variants have been proposed (Hasani et al., 2022; Gupta
et al., 2022; Gu et al., 2022; Smith et al., 2022; Peng et al., 2023). These models achieve remarkable
performance, surpassing all modern attention-based transformer variants by an average 20% accu-
racy on challenging sequence classification tasks (Tay et al., 2020). Deep state-space models have
reached outstanding results in various domains, including vision (Nguyen et al., 2022), audio (Goel
et al., 2022), biological signals (Gu et al., 2021), reinforcement learning (Lu et al., 2023) and online
learning (Zucchet et al., 2023b). SSMs also were successfully applied to language modeling and are
sometimes used in combination with attention (Fu et al., 2023; Wang et al., 2023; Ma et al., 2022).
At inference time, all SSMs coincide with a stack of linear Recurrent Neural Networks (RNNs), in-
terleaved with position-wise MLPs and normalization layers. Such combination was recently shown
to have fully expressiveness in modeling nonlinear dynamical systems (Orvieto et al., 2023a) – no
recurrent nonlinearities are needed, since an MLP is placed at the output (cf. LSTMs (Hochreiter
& Schmidhuber, 1997), GRUs (Chung et al., 2014)). Most importantly, the linearity of the RNNs
allows for fast parallel processing using FFTs (Gu et al., 2022) or parallel scans (Smith et al., 2023).

Linear recurrent unit. Among modern architectures for long-range reasoning based on recur-
rent modules, the simplest is perhaps Linear Recurrent Unit (LRU) (Orvieto et al., 2023b): while
SSMs rely on the discretization of a structured continuous-time latent dynamical system, the LRU is
directly designed for discrete-time systems (token sequences), and combines easy hyperparameter
tuning with solid performance and scalability. The only difference between the LRU and the stan-
dard RNN update sk = Ask−1 +Bxk (x is the input at a specific layer and s is the hidden-state,
then fed into a position-wise MLP) is (1) the system operates in the complex domain (required for
expressivity, see discussion in Orvieto et al. (2023b)) (2) to enhance stability and prevent vanishing
gradients, A (diagonal) is learned using polar parametrization and log-transformed magnitude and
phase. Finally, (3) the recurrence is normalized through an extra optimizable parameter that scales
the input to stabilize signal propagation. The parametrization of linear RNNs of (Orvieto et al.,
2023b) was found to be effective also in surpassing deep LSTMs and GRUs (Zucchet et al., 2023a).

3 ARCHITECTURE

In this section, we present the GRED block, which is the building unit of our architecture. We start
with some preliminary notations and then describe how our block computes node representations.
Finally, we analyze its computational complexity. We defer the discussion on expressive power of
our module to Section 4.

Preliminaries. Let G = (V,E) denote an undirected and unweighted graph, where V denotes the
set of nodes with |V | = N , and E denotes the set of edges. For any two nodes v, u ∈ V , we use
d(v, u) to represent the shortest distance between v and u, and we let d(v, v) = 0. For each target
node v, we categorize all other nodes into different hops according to their shortest distances to v:

Nk(v) = {u | d(v, u) = k} for k = 0, 1, . . . ,K (1)

where K can be the diameter of G or a hyper-parameter specified for the task in hand. {Nk(v)}Kk=1
can be obtained for each node v ∈ V by running the Floyd–Warshall algorithm (Floyd, 1962;
Warshall, 1962) in parallel once during data pre-processing.

Graph Recurrent Encoding by Distance (GRED). The input to the ℓ-th block is the set of node
representations {h(ℓ−1)

v ∈ Rd | v ∈ V }. To compute the output representation h
(ℓ)
v for a generic

target node v, the block first generates a representation for each set of nodes that have the same
shortest distances to v (grey dashed box in Figure 1):

x
(ℓ)
v,k = AGG

({{
h(ℓ−1)
u | u ∈ Nk(v)

}})
for k = 0, 1, . . . ,K (2)

where AGG is an injective multiset function (Zaheer et al., 2017; Xu et al., 2018), which we
parametrize, as usual in the literature (Zaheer et al., 2017; Xu et al., 2018; Feng et al., 2022), by

4

Under review as a conference paper at ICLR 2024

two wide multi-layer perceptrons (MLPs)1:

x
(ℓ)
v,k = MLP2

(∑
u∈Nk(v)

MLP1

(
h(ℓ−1)
u

))
. (3)

The sequence of the set representations (x(ℓ)
v,0,x

(ℓ)
v,1, . . . ,x

(ℓ)
v,K) is then encoded by a linear recurrent

network (RNN), starting from the set of nodes x(ℓ)
v,K which is the farthest away from the target node

to the target node itself2, which gives:

s
(ℓ)
v,k = As

(ℓ)
v,k−1 +Bx

(ℓ)
v,K−k for k = 0, 1, . . . ,K (4)

where s
(ℓ)
v,k ∈ Rds represents the hidden state of the recurrent neural network and s

(ℓ)
v,−1 = 0.

A ∈ Rds×ds denotes the state transition matrix and B ∈ Rds×d is a matrix to transform the input of
the RNN. It is well-known that wide enough linear RNNs can parameterize any convolutional filter
over arbitrarily long input sequences (Li et al., 2022). Moreover, it was recently shown that, when
interleaved with MLPs (placed at the recurrence output), a stack of linear RNNs can actually model
any non-linear dynamical system (Orvieto et al., 2023a).

An important advantage of linear recurrences, crucial for computational speed-up over sequential
processing, is that they can be represented without loss of generality in diagonal complex form (see
discussion in (Smith et al., 2023; Orvieto et al., 2023b)). Recall that, over the space of ds × ds non-
diagonal real matrices, the set of non-diagonalizable (in the complex domain) matrices has measure
zero (Bhatia, 2013). Hence, with probability one over random initialization, A is diagonalizable,
i.e. A = V ΛV −1, where Λ = diag(λ1, . . . , λds

) ∈ Cds×ds gathers the eigenvalues of A, and
columns of V are the corresponding eigenvectors. Eq. (4) is equivalent to the following diagonal
complex recurrence, up to a linear transformation of the hidden state s which can be merged with
the output projection Wout (c.f. eq. (6).

s
(ℓ)
v,k = Λs

(ℓ)
v,k−1 +Winx

(ℓ)
v,K−k (5)

where Win = V −1B ∈ Cds×d. Eq. (5) can be thought of as a filter over the hops from the target
node, and the magnitudes of the eigenvalues Λ control how fast the filter decays as the shortest
distance from the target node increases. Following the modern literature on long-range reasoning,
we directly initialize (without loss in generality) the system in diagonal form (Gupta et al., 2022; Gu
et al., 2022), and train3 Λ and Win. To guarantee stability (eigenvalues in the unit disk), increased
resolution at |λ| ≈ 1 and strong signal propagation from distant nodes, we adopt the recently intro-
duced LRU initialization and parametrization (Orvieto et al., 2023b), which also leverages parallel
scans (Blelloch, 1990; Smith et al., 2023) to avoid computing s sequentially on modern hardware.

The output representation h
(l)
v is generated by a non-linear transformation of the hidden state s

(ℓ)
v,K :

h(ℓ)
v = MLP

(
ℜ
[
Wouts

(ℓ)
v,K

])
(6)

where Wout ∈ Cd×ds is a trainable weight matrix and ℜ[·] denotes the real part of a complex-
valued vector. While sufficiently wide MLPs with one hidden layer can parametrize any non-linear
map, following again the literature on state-space models we choose to place here a gated linear
unit (GLU, Dauphin et al. (2017)): GLU(x) = (W1x)⊙ σ(W2x), with σ the sigmoid function.

The final architecture is composed of stacking several of such blocks described above. In practice,
we merge MLP1 in Eq. (3) with the non-linear transformation in Eq. (6) at the previous layer (or at
the encoding layer) to make the entire architecture more compact. We apply layer normalization to
the input of both the MLP and the linear RNN, and also add skip connections.

1In practice, with just one hidden layer.
2Standard RNNs on sequences would have input xk and not xK−k. Here propagation starts from the

farthest away node, and proceeds right-to-left as opposed to left-to-right, ending at the target node.
3As done in all state-space models Gu et al. (2021); Smith et al. (2023), we do not optimize over the complex

numbers but instead parameterize, for instance, real and imaginary components of B as real parameters. The
imaginary unit i is then used to aggregate the two components in the forward pass.

5

Under review as a conference paper at ICLR 2024

Computational complexity For each shortest distance k, the complexity of aggregating repre-
sentations of nodes from Nk(v) for every v ∈ V is at most that of one round of message passing,
which is O(|E|). So the complexity of the first part of the computation of our block (Eq. (3)) is
less than O(K|E|). In practice, since {Nk(v)}Kk=1 are pre-computed, computing Eq. (3) for every
k can be parallelized. The sequential encoding of Eq. (5) has total complexity O(K|V |). However,
the linearity of the recurrence and the diagonal state transition matrix enable a parallel scan over
the sequences, which further speeds up the computation. As a result, our model is highly efficient
during training, as evidenced by our experimental results.

4 EXPRESSIVENESS ANALYSIS

We briefly recap the computation performed by a single GRED layer to update node representations
{hu}u∈V (obtained via a previous layer or encoder) in some graph V . For each node v ∈ V and
distance k, we compute the k-hop neighbors Nk(v), and aggregate their features using an injective
multiset function AGG. The result is a set of node-dependent sequences {(xv,k)

Kv

k : v ∈ V } of
different lengths Kv , such that xv,k = AGG({{hu | u ∈ Nk(v)}}). All these sequences are then
processed by a linear RNN, which we name here R for convenience, and injectively mapped to the
updated features for each node v through a non-linear transformation.

4.1 PROPERTIES OF RNN-BASED FILTERING OF k-HOP NEIGHBORS FEATURES

Up to zero-padding, linear RNNs can be seen as maps R : (xv,0,xv,1,xv,2, . . . ,xv,K) 7→ sv,K ,
where v ∈ V is a generic node and sv,K is the last hidden state of the recurrence sv,k = Λsv,k−1 +
Winxv,K−k, with s−1 = 0. Unrolling the recurrence:

sv,0 = Winxv,K

sv,1 = ΛWinxv,K +Winxv,K−1

sv,2 = Λ2Winxv,K +ΛWinxv,K−1 +Winxv,K−2

· · ·
sv,K = ΛKWinxv,K +ΛK−1Winxv,K−1 + · · ·+ΛWinxv,1 +Winxv,0,

(7)

where xv,k = AGG({{hu | u ∈ Nk(v)}}). Hence, we have that sv,K =
∑K

k=0 Λ
kWinxk: ag-

gregated features of nodes distant from the target v are scaled by a large power of Λ, while the
target node features and the one-hop neighbor features are scaled by I and Λ, respectively. Under
the LRU parametrization (see appendix), Λ is initialized and trained to keep entries inside the unit
disk (for stability), hence for large Λk will induce a decay structure (low-pass filter) over distance.
In the limiting case of vanishing Λ, the RNN just linearly transforms the features of each node:
sv,K = Winxv,0 = WinAGG({{hv}}).
A surprising feature of linear recurrences is that if the hidden state is large enough, they are injective
— crucial property for expressiveness.

Lemma 4.1 (Injectivity of Linear RNNs). Let {xv, v ∈ V : xv = (xv,0,xv,1,xv,2, . . . ,xv,Kv
)} be

a set of sequences (with different lengths Kv ≤ K) of vectors in a (possibly uncountable) set of fea-
tures X ⊂ Rd. Consider a diagonal linear complex-valued RNN with ds-dimensional hidden state,
parameters Λ ∈ diag(Cds),Win ∈ Cd×ds and recurrence rule sv,k = Λsv,k−1 + Winxv,Kv−k,
initialized at sv,−1 = 0 ∈ Rds for all v ∈ V . If ds ≥ Kd, then there exist Λ,Win such that the
map R : (xv,0,xv,1,xv,2, . . . ,xv,K) 7→ sv,K (with zero right-padding if Kv < K) is bijective.
Moreover, if the set of RNN inputs has countable cardinality |X | = N ≤ ∞, then selecting ds ≥ d
is sufficient for the existence of an injective linear RNN mapping R.

The proof can be found in the appendix, and leverages the representation sv,K =
∑K

k=0 Λ
kWinxk

and techniques from Orvieto et al. (2023a). Intuitively, this property guarantees that linear RNNs
provide representations that retain feature and distance information4 from k-hop neighbors.

4A careful reader might have realized that the result assumes zero-padding for node sequences shorter than
the diameter. This implies that, in principle, our block cannot differentiate between nodes with vanishing
features and virtual nodes. This issue can be easily fixed by replacing zero-padding with padding with a

6

Under review as a conference paper at ICLR 2024

4.2 GRED EXPRESSIVENESS AND COMPARISON WITH GENERAL K-HOP MESSAGE PASSING

The findings in the last subsection directly imply the following corollary.

Corollary 4.2 (Information kept by GRED). Assuming wide enough architectural components, then
the RNN output at any node v ∈ V , in combination with an injective multiset function AGG
aggregating neighbors, is an injective function of the list (hv, {{hu | u ∈ N1(v)}, {{hu | u ∈
N2(v)}}}, . . . , {{hu | u ∈ NKv (v)}}). That is, GRED provides an updated representation for each
node v, gathering all nodes connected to v through a path and keeping distance information.

1 2

3 6

54

4

5

3

1 6

2

61

3

2 4

5

2 4

5

6

3

1 1
3
2 4

5
1
+

6

1
3
2

1
+

Figure 2: GRED provides distinct updates
for the two graphs above. Such graphs,
however, are indistinguishable under the
1-WL isomorphism test, assuming (worst-
case) nodes features are identical.

The corollary, in turn, implies the following result:

Theorem 4.3. One wide enough GRED layer (linear
RNN and AGG injective) is strictly more powerful one
iteration of any 1-hop message passing algorithm.

Proof. The linear RNN output at a target node v is
an injective function with arguments the outputs of in-
jective multiset aggregation at different distances from
v (Cor. 4.2). This means, in particular, that the output
changes at any perturbation of the 1-hop neighbor fea-
tures. However, GRED can also sometimes recognize if
graphs are isomorphic using structural information be-
yond 1-hop, see e.g. Figure 2.

It is well known that the power of 1-hop message passing is bounded by the bounded by the
Weisfeiler-Lehman (1-WL) test (Xu et al., 2018). It is, therefore, interesting to ask if GRED’s power
can be aligned with an higher-order WL test. This is not the case, since GRED can be thought of as
a specific K-hop proper message passing method.

Definition 1 (Feng et al. (2022)). A K-hop message passing algorithm 5 is a method that provides
an update hv 7→ h+

v , for all v ∈ V , as follows:

xv,k = AGGi({{hu|u ∈ Nk(v))}}), hk
v = UPDk(xv,k,hv), h

+
v = CMB({{hk

v |k = 1, 2, ...,K}}),

Further, a K-hop algorithm is called proper if the aggregations (AGGk)Kk=1, updates (UPDk)Kk=1,
and combine (CMB) functions are all injective given input from a countable space.

Corollary 4.2 shows that GRED provides a very convenient implementation of proper (i.e, injective)
K-hop message passing with no need for a set of distance-specific injective multiset aggregation
functions {AGGk, UPDk|k = 1, 2, ...,K} — drastically reducing the number of network parame-
ters. Further, to study the limitations of GRED, we can then rely on the following result.

Theorem 4.4 (Bound for K-hop Feng et al. (2022)). The expressive power of a proper K-hop
message passing GNN of any kernel is bounded by the 3-WL test.

Therefore, the expressive power of GRED lies in between the 1-WL and the 3-WL test — and is
aligned to that of K-hop message passing where the maximum number of considered hops equals
the graph diameter. As such, especially for large graphs, our approach provides a competitive alter-
native to general K-hop message passing, offering also aggregation of distant nodes through parallel
scans (see also Tb. 4).

5 EXPERIMENTS

In this section, we evaluate our model on a series of graph benchmarks (Dwivedi et al., 2023; 2022).
We compare against popular MPNNs including GCN (Kipf & Welling, 2016), GAT (Veličković
et al., 2017), GIN (Xu et al., 2018), GatedGCN (Bresson & Laurent, 2017) and PNA (Corso et al.,
2020), as well as state-of-the-art graph transformers: Graphormer (Ying et al., 2021), EGT (Hussain

specifically designed token that is not in the dictionary X . In practice, such operation is not necessary since
node features are first fed into an encoder with bias, which can then learn to shift them away from zero.

5We consider K-hop algorithms considering the shortest path distance kernel, see Feng et al. (2022).

7

Under review as a conference paper at ICLR 2024

Table 1: Test classification accuracy (in percent) of our model and baselines. Performance of base-
lines is from their original papers (Dwivedi et al., 2023; Rampášek et al., 2022; Ma et al., 2023). “-”
indicates the baseline didn’t report its performance on that dataset. # params ≈ 500K.

Method Model MNIST CIFAR10 PATTERN CLUSTER

MPNNs

GCN 90.705±0.218 55.710±0.381 85.614±0.032 69.026±1.372
GAT 95.535±0.205 64.223±0.455 78.271±0.186 70.587±0.447
GIN 96.485±0.252 55.255±1.527 85.590±0.011 64.716±1.553

GatedGCN 97.340±0.143 67.312±0.311 85.568±0.088 73.840±0.326

GTs

EGT 98.173±0.087 68.702±0.409 86.821±0.020 79.232±0.348
SAN - - 86.581±0.037 76.691±0.65
SAT - - 86.848±0.037 77.856±0.104
GPS 98.051±0.126 72.298±0.356 86.685±0.059 78.016±0.180
GRIT 98.108±0.111 76.468±0.881 87.196±0.076 80.026±0.277

GRED (Ours) 98.195±0.090 75.370±0.621 86.759±0.020 78.495±0.103

et al., 2022), SAT (Chen et al., 2022), GPS (Rampášek et al., 2022) and GRIT (Ma et al., 2023).
We also compare the training efficiency of our model and that of graph transformers to demonstrate
the high efficiency of our model. We use three distinct colors to indicate our model, the best graph
transformer and the best MPNN. We detail hyper-parameters we use in Appendix C.

Benchmarking GNNs We first evaluate our model on the node classification datasets: PATTERN
and CLUSTER, and graph classification datasets: MNIST and CIFAR10 from Dwivedi et al. (2023).
To get the representation for the entire graph, we simply do average pooling over all node represen-
tations. We train our model four times with different random seeds and report the average accuracy
with standard deviation. The comparison with baselines is shown in Table 1. From the table we see
that graph transformers generally perform better than MPNNs. Among the four datasets, PATTERN
models communities in social networks and all nodes are reachable within 3 hops, which we conjec-
ture is the reason for the marginal performance gap between graph transformers and MPNNs. For a
more difficult task, like CIFAR10, that requires information from a relatively larger neighborhood,
graph transformers work more effectively. GRED performs well on all four datasets and consistently
outperforms MPNNs. Especially, on MNIST GRED achieves the best accuracy, and on CIFAR10
the accuracy of GRED is comparable to GRIT and better than the other graph transformers, which
validates that our model can effectively aggregate information beyond the local neighborhood. Ad-
ditional ablation studies are shown in Appendix D.

Table 2: Test MAE on ZINC 12K. # params ≈ 500K.

Model Test MAE ↓
GCN 0.278 ± 0.003
GAT 0.384 ± 0.007
GIN 0.387 ± 0.015
GatedGCN 0.282 ± 0.015
PNA (Corso et al., 2020) 0.188 ± 0.004
SAN (Kreuzer et al., 2021) 0.139 ± 0.006
Graphormer (Ying et al., 2021) 0.122 ± 0.006
K-subgraph SAT (Chen et al., 2022) 0.094 ± 0.008
KP-GIN (Feng et al., 2022) 0.093 ± 0.007
GPS (Rampášek et al., 2022) 0.070 ± 0.004
PathNN (Michel et al., 2023) 0.090 ± 0.004
GRIT (Ma et al., 2023) 0.059 ± 0.002
GRED (Ours) 0.089 ± 0.004

Performance on ZINC 12K Next, we report the test MAE of our model on ZINC 12K (Dwivedi
et al., 2023). The average and standard deviation of four runs with different random seeds are

8

Under review as a conference paper at ICLR 2024

shown in Table 2 along with baseline performance from their original papers. From Table 2 we
see that the performance of our model is significantly better than that of MPNNs. Although our
performance is worse than the state-of-the-art graph transformer GRIT, our model outperforms some
other graph transformer variants (SAN, Graphormer and K-subgraph SAT). This is impressive given
that our model doesn’t use any positional encoding, and provides evidence that our model is able to
effectively encode graph structural information through the natural inductive bias of recurrence over
distances.

Table 3: Test performance on Peptides-func/struct.

Model Peptides-func Peptides-struct
Test AP ↑ Test MAE ↓

GCN 0.5930±0.0023 0.3496±0.0013
GINE 0.5498±0.0079 0.3547±0.0045
GatedGCN 0.5864±0.0077 0.3420±0.0013
GatedGCN+RWSE 0.6069±0.0035 0.3357±0.0006
Transformer+LapPE 0.6326±0.0126 0.2529±0.0016
SAN+LapPE 0.6384±0.0121 0.2683±0.0043
GPS 0.6535±0.0041 0.2500±0.0005
GRIT 0.6988±0.0082 0.2460±0.0012
GRED (Ours) 0.7041±0.0049 0.2584±0.0015

Peptides-struct

CIFAR10

Real Part

Im
ag

ina
ry

 P
ar

t

GRED Recurrence Eigenvalues

Figure 3: Learned eigenvalues of the first
GRED layer: CIFAR10 and Peptides-struct.

Long range graph benchmark To test the long range modeling capacity of our model, we eval-
uate it on the Peptides-func and Peptides-struct datasets from Dwivedi et al. (2022). We follow the
500K parameter budget and train our model four times with different random seeds. The results
are shown in Table 3. We observe that GRED significantly outperforms all MPNN baselines. On
Peptides-func, GRED even outperforms the best graph transformer GRIT, with no need for posi-
tional encoding. GRED’s performance on Peptides-struct is also competitive compared with graph
transformers. To illustrate how GRED can learn to encode the graph structure, we examine the eigen-
values of the linear recurrent neural network after training, as shown in Figure 3. We observe from
the figure that the eigenvalues are pushed close to 1 for the long-range task Peptides-struct, which
prevent distant information from decaying too quickly. Compared with Peptides-struct, CIFAR10
requires the model to utilize more information from the local neighborhood, so the magnitudes of
the eigenvalues become smaller.

Table 4: Average training time per epoch and GPU memory consumption of GRIT and GRED.

Model ZINC 12K CIFAR10 Peptides-func

GRIT 25.6s / 1.9GB 244.4s / 4.6GB 225.6s / 22.5GB
GRED (Ours) 4.1s / 1.4GB 27.8s / 1.4GB 158.9s / 18.5GB

Speedup 6.2× 8.8× 1.4×

Training efficiency Finally, to demonstrate the high efficiency of our model, we record the average
training time per epoch and GPU memory consumption on ZINC, CIFAR10 and Peptides-func. We
compare our measurements with those of the state-of-the-art graph transformer GRIT, shown in
Table 4. Both models are trained using a single RTX A5000 GPU with 24GB memory.

6 CONCLUSION

In this paper, we introduced the Graph Recurrent Encoding by Distance (GRED) model for graph
representation learning. By integrating permutation-invariant neural networks with linear recurrent
neural networks, GRED effectively harnesses distant node information without the need for posi-
tional encodings or computationally expensive attention mechanisms. Theoretical and empirical
evaluations confirm GRED’s superior performance compared to existing MPNNs, and competitive
results with state-of-the-art graph transformers at a significantly reduced computation time. This
positions GRED as a powerful, efficient, and promising tool for graph representation learning.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest path networks for graph
property prediction. In Learning on Graphs Conference, 2022.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In ICML, 2019.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

Guy E Blelloch. Prefix sums and their applications, 1990.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph rep-
resentation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR,
2022.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
2022.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

10

Under review as a conference paper at ICLR 2024

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
2023.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=nN3aVRQsxGd.

Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In International
Conference on Learning Representations, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. International Conference on Machine Learning, 2022.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in Neural Information Processing Systems, 2020.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 2022.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your hippo:
State space models with generalized orthogonal basis projections. International Conference on
Learning Representations, 2023.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. In Advances in Neural Information Processing Systems, 2022.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. In The International Conference on Learning
Representations, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, 35:14582–14595, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

11

https://openreview.net/forum?id=nN3aVRQsxGd

Under review as a conference paper at ICLR 2024

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. Approximation and optimization theory for
linear continuous-time recurrent neural networks. The Journal of Machine Learning Research, 23
(1):1997–2081, 2022.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 2023.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
arXiv preprint arXiv:2305.17589, 2023.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: moving average equipped gated attention. arXiv preprint
arXiv:2209.10655, 2022.

Gaspard Michel, Giannis Nikolentzos, Johannes F Lutzeyer, and Michalis Vazirgiannis. Path neu-
ral networks: Expressive and accurate graph neural networks. In International Conference on
Machine Learning, pp. 24737–24755. PMLR, 2023.

Eric Nguyen, Karan Goel, Albert Gu, Gordon W. Downs, Preey Shah, Tri Dao, Stephen A. Baccus,
and Christopher Ré. S4nd: Modeling images and videos as multidimensional signals using state
spaces. Advances in Neural Information Processing Systems, 2022.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 2020.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. On the
universality of linear recurrences followed by nonlinear projections. ICML Workshop on High-
dimensional Learning Dynamics, 2023a.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. International
Conference on Machine Learning, 2023b.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. International Conference on Learning Representations, 2023.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 807–816, 2009.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2020.

12

Under review as a conference paper at ICLR 2024

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M. Rush. Pretraining without attention,
2023.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Stephen Warshall. A theorem on boolean matrices. Journal of the ACM (JACM), 9(1):11–12, 1962.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-short range
attention. arXiv preprint arXiv:2004.11886, 2020.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. In Advances in
Neural Information Processing Systems, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via
graph biconnectivity. arXiv preprint arXiv:2301.09505, 2023.

Nicolas Zucchet, Seijin Kobayashi, Yassir Akram, Johannes von Oswald, Maxime Larcher, Angelika
Steger, and João Sacramento. Gated recurrent neural networks discover attention. arXiv preprint
arXiv:2309.01775, 2023a.

Nicolas Zucchet, Robert Meier, Simon Schug, Asier Mujika, and João Sacramento. Online learning
of long-range dependencies, 2023b.

13

Under review as a conference paper at ICLR 2024

A PROOFS

Lemma 4.1 (Injectivity of Linear RNNs). Let {xv, v ∈ V : xv = (xv,0,xv,1,xv,2, . . . ,xv,Kv)} be
a set of sequences (with different lengths Kv ≤ K) of vectors in a (possibly uncountable) set of fea-
tures X ⊂ Rd. Consider a diagonal linear complex-valued RNN with ds-dimensional hidden state,
parameters Λ ∈ diag(Cds),Win ∈ Cd×ds and recurrence rule sv,k = Λsv,k−1 + Winxv,Kv−k,
initialized at sv,−1 = 0 ∈ Rds for all v ∈ V . If ds ≥ Kd, then there exist Λ,Win such that the
map R : (xv,0,xv,1,xv,2, . . . ,xv,K) 7→ sv,K (with zero right-padding if Kv < K) is bijective.
Moreover, if the set of RNN inputs has countable cardinality |X | = N ≤ ∞, then selecting ds ≥ d
is sufficient for the existence of an injective linear RNN mapping R.

Proof. For now, let us assume for ease of exposition that all sequences are of length K, coinciding
with the graph diameter. The extension to the general setting is trivial and presented at the end of
the proof as a separate paragraph. Also, let us, for simplicity, drop the dependency on v ∈ V and
talk about generic sequences.

The proof simply relies on the idea of writing the linear recurrence in matrix form (Orvieto et al.,
2023a; Gu et al., 2022). Note that for a generic input x = (x0,x1,x2, . . . ,xK) ∈ Rd×(K+1), the
recurrence output can be rewritten in terms of powers of Λ = diag(λ1, λ2, . . . , λds

) as follows (see
Sec. 4):

sK =

K∑
k=0

ΛkWinxk. (8)

We now present sufficient conditions for the map R : (x0x1,x2, . . . ,xK) 7→ sK to be injective or
bijective. The proof for bijectivity does not require the set of node features to be in a countable set,
and it is simpler.

Bijective mapping. First, let us design a proper matrix Win ∈ Rds×d. We choose ds = (K+1)d
and set Win = Id×d ⊗ 1(K+1)×1. As a result, the RNN will independently process each sequence
dimension with a sub-RNN of size K. The resulting sK ∈ R(K+1)d will gather each sub-RNN
output by concatenation. We can then restrict our attention to the first components of the input
sequence.

(sK)1:(K+1) =

K∑
k=0

diag(λ1, λ2, . . . , λds
)k1(K+1)×1xk,1. (9)

This sum can be written conveniently with multiplications using a Vandermonde matrix:

(sL)1:(K+1) =


λK
1 λK−1

1 · · · λ1 1
λK
2 λK−1

2 · · · λ2 1
...

...
. . .

...
...

λK
K+1 λK−1

K+1 · · · λK 1

x←0:K,1. (10)

where x←0:K,1 is the input with reversed arrow of time. The proof is concluded by noting that Van-
dermonde matrices of size (K + 1) × (K + 1) are full-rank since they have non-zero determinant∏

1≤i<j≤ds
(λi −λj) ̸= 0, under the assumption that all λi are distinct. Note that one does not need

complex eigenvalues to achieve this, both Λ and Win are real. However, as discussed in (Orvieto
et al., 2023a), complex eigenvalues improve conditioning of the Vandermonde matrix.

Injective mapping. The condition for injectivity is that if x ̸= x̂, then R(x) ̸= R(x̂). In formulas,

sK − ŝK =

K∑
k=0

ΛkWin(xk − x̂k) ̸= 0 (11)

Let us assume the state dimension coincides with the input dimension, and let us set Win = Id×d.
Then, we have the condition

sK − ŝK =

K∑
k=0

Λk(xk − x̂k) ̸= 0. (12)

14

Under review as a conference paper at ICLR 2024

Since Λ = diag(λ1, λ2, . . . , λds
) is diagonal, we can study each component of sK − ŝK separately.

We therefore require

sK,i − ŝK,i =

K∑
k=0

λk
i (xk,i − x̂k,i) ̸= 0 ∀i ∈ {1, 2, . . . , d}. (13)

We can then restrict our attention to linear one-dimensional RNNs (i.e. filters) with one-dimensional
input x ∈ R1×(K+1). We would like to choose λ ∈ C such that

K∑
k=0

λk(xk − x̂k) ̸= 0 (14)

Under the assumption |X | = N ≤ ∞, x− x̄ is a generic signal in a countable set (N(N − 1)/2 =
Ω(N2) possible choices). Let us rename z := x− x̄ ∈ Z ⊂ R1×(K+1), |Z| = Ω(N2). We need

⟨λ̄, z⟩ ≠ 0, ∀z ∈ Z, where λ̄ = (1, λ, λ2, · · · , λK) (15)

Such λ can always be found in the real numbers, and the reason is purely geometric. We need

λ̄ /∈ Z⊥ :=
⋃
z∈Z

z⊥.

Note that dim(z⊥) = K, so dim(Z⊥) = K due to the countability assumption — in other words
the Lebesgue measure vanishes: µ(Z⊥;RK+1) = 0. If λ̄ were an arbitrary vector, we would be
done since we can pick it at random and with probability one λ̄ /∈ Z⊥. But λ̄ is structured (lives on
a 1-dimensional manifold), so we need one additional step.

Note that λ̄ is parametrized by λ, and in particular R ∋ λ 7→ λ̄ ∈ RK+1 is a curve in RK+1,
we denote this as γλ. Now, crucially, note that the support of γλ is a smooth curved manifold for
K > 1. In addition, crucially, 0 /∈ γλ. We are done: it is impossible for the γλ curve to live in a
K dimensional space composed of a union of hyperplanes: it indeed has to span to whole RK+1,
without touching the zero vector (see Figure 4). The reason why it spans the whole RK+1 comes
from the Vandermonde determinant! Let {λ1, λ2, · · · , λK} be a set of K distinct λ values. The
Vandermonde matrix 

λK
1 λK−1

1 · · · λ1 1
λK
2 λK−2

2 · · · λ2 1
...

...
. . .

...
...

λK+1
K λK−2

K · · · λK 1


has determinant

∏
1≤i<j≤ds

(λi − λj) ̸= 0 — its full rank, meaning that the vectors
λ̄1, λ̄2, . . . , λ̄K+1 span the whole RK+1. note that λ 7→ λ̄ is a continuous function, so even though
the single λ̄i might live on Z⊥ there exist a value in between them which is not contained in Z⊥.

15

Under review as a conference paper at ICLR 2024

γλ

(zv1)⊥ (zv2)⊥

Figure 4: Proof illustration for Proposition 4.1 (injectivity proof). The set Z⊥ is depicted as union
of hyperplanes, living in RK+1 and here sketched in three dimensions. The curve γγ : γ 7→
(1, γ, γ2, · · · , γK) is shown as a blue line. The proof shows that, for γ ∈ R, the support of γλ
is not entirely contained in Z⊥.

B SIMPLIFIED IMPLEMENTATION OF ONE GRED LAYER

1 import jax.numpy as jnp
2 import flax.linen as nn
3 from typing import Callable
4
5 class MLP(nn.Module):
6 dim_h: int
7 drop_rate: float = 0.
8
9 @nn.compact

10 def __call__(self, inputs, training: bool = False):
11 x = nn.LayerNorm()(inputs)
12 x = nn.Dense(self.dim_h)(x)
13 x = nn.gelu(x)
14 x = nn.Dropout(self.drop_rate, deterministic=not training)(x)
15 x = nn.Dense(self.dim_h)(x)
16 x = nn.Dropout(self.drop_rate, deterministic=not training)(x)
17 return x + inputs
18
19 def binary_operator_diag(element_i, element_j):
20 # Binary operator for parallel scan of linear recurrence.
21 a_i, bu_i = element_i
22 a_j, bu_j = element_j
23 return a_j * a_i, bu_i * a_j + bu_j
24
25 class LRU(nn.Module):
26 dim_v: int # State dimension
27 dim_h: int
28 drop_rate: float
29 init_eigenvalue_magnitude: Callable
30 init_eigenvalue_phase: Callable
31 init_kernel: Callable
32
33 @nn.compact
34 def __call__(self, inputs, training: bool = False):
35 # Shape of inputs: (K+1, batch_size, num_nodes, dim_h)
36 xs = nn.LayerNorm()(inputs)
37
38 # Construct Lambda:
39 nu_log = self.param("nu_log", self.init_eigenvalue_magnitude, (self.dim_v,))
40 theta_log = self.param("theta_log", self.init_eigenvalue_phase, (self.dim_v,))
41 diag_lambda = jnp.exp(-jnp.exp(nu_log) + 1j * jnp.exp(theta_log))
42
43 # Construct W_in:
44 W_in_re = self.param("W_in_re", self.init_kernel, (self.dim_h, self.dim_v))
45 W_in_im = self.param("W_in_im", self.init_kernel, (self.dim_h, self.dim_v))
46 W_in = W_in_re + 1j * W_in_im
47
48 # Parallel scan over the sequence of length K+1:
49 xs = xs @ W_in
50 lambdas = jnp.repeat(diag_lambda[None, ...], inputs.shape[0], axis=0)
51 lambdas = jnp.expand_dims(lambdas, axis=(1, 2))

16

Under review as a conference paper at ICLR 2024

52 _, xs = jax.lax.associative_scan(binary_operator_diag, (lambdas, xs), reverse=True)
53 x = xs[0]
54
55 # Project the complex-valued hidden state to real:
56 W_out_re = self.param("W_out_re", self.init_kernel, (self.dim_v, self.dim_h))
57 W_out_im = self.param("W_out_im", self.init_kernel, (self.dim_v, self.dim_h))
58 W_out = W_out_re + 1j * W_out_im
59 x = nn.gelu((x @ W_out).real)
60
61 # Apply GLU:
62 x = nn.Dropout(self.drop_rate, deterministic=not training)(x)
63 x = nn.Dense(self.dim_h)(x) * jax.nn.sigmoid(nn.Dense(self.dim_h)(x))
64 x = nn.Dropout(self.drop_rate, deterministic=not training)(x)
65 return x + inputs[0]
66
67 class GRED(nn.Module):
68 dim_v: int # State dimension
69 dim_h: int
70 drop_rate: float
71 init_eigenvalue_magnitude: Callable
72 init_eigenvalue_phase: Callable
73 init_kernel: Callable
74
75 @nn.compact
76 def __call__(self, inputs, dist_masks, training: bool = False):
77 # Shape of inputs: (batch_size, num_nodes, dim_h)
78 # Shape of dist_masks: (batch_size, K+1, num_nodes, num_nodes)
79 xs = jnp.swapaxes(dist_masks, 0, 1) @ inputs
80 xs = MLP(self.dim_h, self.drop_rate)(xs)
81 x = LRU(
82 self.dim_v,
83 self.dim_h,
84 self.drop_rate,
85 self.init_eigenvalue_magnitude,
86 self.init_eigenvalue_phase,
87 self.init_kernel
88)(xs, training=training)
89 return x

C HYPERPARAMETERS

Table 5: Hyperparameters for GRED. “-” indicates that K is the diameter of the graph.

Hyperparameter ZINC 12K MNIST CIFAR10 PATTERN CLUSTER Peptides

Layers 11 4 8 10 16 8
K 4 2 4 - - 40

Dropout 0.2 0.15 0.15 0.2 0.2 0.2
d 72 128 96 64 64 88
ds 72 128 64 64 64 88

Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Weight decay 0.1 0.1 0.1 0.1 0.1 0.2

Epochs 2000 200 200 100 100 200
Batch size 32 16 16 32 32 32

17

Under review as a conference paper at ICLR 2024

D ADDITIONAL EXPERIMENTS

Effect of K on performance We show how different K values affect the performance of GRED on
CIFAR10 (Table 6), ZINC (Table 7) and Peptides-func (Table 8). We use Kmax to denote the maxi-
mum diameter of all graphs in the dataset. For Peptides-func, the maximum K we tried was smaller
than Kmax in order to fit the model into a single RTX A5000 GPU with 24GB memory. From the
three tables, we can observe that larger K values generally yield better performance. On CIFAR10
and ZINC, while directly using Kmax already outperforms MPNNs, the optimal value of K yielding
best performance lies strictly between 1 and Kmax. This may be because information that is too far
away is less important for these two tasks (interestingly, the best K value for CIFAR10 is similar
to the width of a convolutional kernel on a normal image). On Peptides-func, the change of per-
formance is more monotonic in K. When K = 40, GRED outperforms the best graph transformer
GRIT. This result is impressive considering that GRED doesn’t use any positional encoding, and
further validates that the architecture of GRED alone can encode the graph structure. We observe
no further performance gain when we increase K to 60.

Table 6: Effect of K on the performance on CIFAR10.

K 1 4 7 Kmax=10

Test Acc (%) 72.540±0.336 75.370±0.621 74.490±0.335 74.210±0.274

Table 7: Effect of K on the performance on ZINC.

K 1 2 4 8 Kmax=22

Test MAE ↓ 0.231±0.002 0.161±0.003 0.089±0.004 0.108±0.004 0.131±0.008

Table 8: Effect of K on the performance on Peptides-func.

K 5 10 20 40 60

Test AP ↑ 0.6657±0.0069 0.6883±0.0076 0.6960±0.0060 0.7041±0.0049 0.7031±0.0017

Vanilla RNN vs LRU We replace the LRU component (5) of GRED with a vanilla RNN:

s
(ℓ)
v,k = tanh

(
Wrecs

(ℓ)
v,k−1 +Winx

(ℓ)
v,K−k

)
, (16)

where Wrec ∈ Rds×ds and Win ∈ Rds×d are two trainable real weight matrices, and show the
difference in performance in Table 9. We use the same number of layers and the same K for both
models. We can observe that the performance of GRED with a vanilla RNN drops significantly. On
CIFAR10 and ZINC where K is small, GREDRNN still outperforms the best MPNN. However, on
Peptides-func where we use 8 layers and K = 40 per layer, the vanilla RNN becomes difficult to
train and the performance of GREDRNN is even worse than the best MPNN.

Table 9: Performance of GRED using vanilla RNN or LRU.

CIFAR10 ↑ ZINC ↓ Peptides-func ↑
Best MPNN 67.312±0.311 0.188±0.004 0.6069±0.0035
GREDRNN 69.215±0.080 0.160±0.005 0.4945±0.0024
GREDLRU 75.370±0.621 0.089±0.004 0.7041±0.0049

Performance on TUDataset We further evaluate GRED on NCI1 and PROTEINS from TU-
Dataset. We follow the experimental setup of Abboud et al. (2022), and report the average accuracy
and standard deviation of 10 splits, as shown in Table 10. Our model generalizes well to TUDataset
and shows good performance. Furthermore, GRED outperforms SPN (Abboud et al., 2022) with
the same number of hops, which validates that GRED is a more effective architecture for utilizing
information from a large neighborhood.

18

Under review as a conference paper at ICLR 2024

Table 10: Performance (accuracy) of GRED on TUDataset.

Model NCI1 PROTEINS

DGCNN 76.4±1.7 72.9±3.5
DiffPool 76.9±1.9 73.7±3.5
ECC 76.2±1.4 72.3±3.4
GIN 80.0±1.4 73.3±4.0
GraphSAGE 76.0±1.8 73.0±4.5
SPN (Abboud et al., 2022) (K = 10) 78.2±1.2 74.5±3.2
GRED (K = 10) 82.6±1.4 75.0±2.9

E COMPUTATIONAL GRAPHS OF MPNN AND GRED

Figure 5: We compare the computational graphs of MPNN and GRED that generate the represen-
tation for the same target node v1 in the graph (a). For MPNN to access all nodes in the graph, 2
rounds of message passing are needed. As a result, the computational graph of MPNN (b) includes
duplicate nodes (red circles). On the contrary, the computational graph of GRED (c) encodes each
node exactly once, and GRED relies on the inductive bias of recurrence to encode the distance in-
formation.

19

	Introduction
	Related Work
	Architecture
	Expressiveness Analysis
	Properties of RNN-based filtering of k-hop neighbors features
	GRED expressiveness and comparison with general K-hop message passing

	Experiments
	Conclusion
	Proofs
	Simplified implementation of one GRED layer
	Hyperparameters
	Additional experiments
	Computational graphs of MPNN and GRED

