
General Characterization of Agents by
States they Visit

Anssi Kanervisto
University of Eastern Finland

anssk@cs.uef.fi

Tomi Kinnunen
University of Eastern Finland

Ville Hautamäki
University of Eastern Finland

National University of Singapore

Abstract

Behavioural characterizations (BCs) of decision-making agents, or their policies,
are used to study outcomes of training algorithms and as part of the algorithms
themselves to encourage unique policies, match expert policy or restrict changes
to policy per update. However, previously presented solutions are not applicable
in general, either due to lack of expressive power, computational constraint or
constraints on the policy or environment. Furthermore, many BCs rely on the
actions of policies. We discuss and demonstrate how these BCs can be misleading,
especially in stochastic environments, and propose a novel solution based on what
states policies visit. We run experiments to evaluate the quality of the proposed
BC against baselines and evaluate their use in studying training algorithms, novelty
search and trust-region policy optimization. The code is available at https:
//github.com/miffyli/policy-supervectors.

1 Introduction

While creating or training autonomous agents, whether it is via manual coding, reinforcement learning
(RL) [49] or evolution strategy (ES) [18] algorithms, one wishes to compare the solutions to find
out which work and which do not. A common approach is comparing the performance of agents’
policies in the given task [20] or by studying how policy behaves [39]. In addition to these explicit
comparisons, RL and ES algorithms include implicit comparisons to encourage finding novel solutions
[29, 8, 12, 37], to match the behaviour of an expert policy [24, 35] or to limit changes on policy’s
behaviour to avoid catastrophic failure [45, 46].

To facilitate such comparisons, behavioural characterizations (BCs) [29] aim to capture policy’s
behaviour in a fixed representation accompanied by a distance metric. A general BC could be used
to generalize previously proposed methods [8, 36]. However, BCs in the previous work are often
domain-specific or depend on policy’s actions which are not descriptive of behaviour in general, as
we will discuss in Section 3.

Recent work attempted to generalize the notion of a behavioural embedding [36], considering policies
as distributions over trajectories, and providing a principled mechanism to compare policies in the
behavioural space. However, this approach relies on “behavioural embedding mappings”, which map
trajectories to structures that are believed to describe the trajectory (e.g., reward-to-go, terminal state).
It remains unclear how the choice of this mapping affects the results.

In this work, we propose and evaluate a more general BC that can be applied to different domains.
Our work provides the following contributions: (1) We summarize and compare BCs used in the
previous work. (2) We discuss and demonstrate the shortcomings of action-based BCs which have
been actively used in the previous work. (3) Propose a novel BC method based on which states the
agent visits, borrowing techniques from the field of speaker recognition [28]. (4) We use the proposed

Deep Reinforcement Learning Workshop, NeurIPS 2021

https://github.com/miffyli/policy-supervectors
https://github.com/miffyli/policy-supervectors

Table 1: Comparison of different BCs. Required compute describes CPU and memory requirements
for comparing a large set of policies, excluding the sampling of the environment. Environment
agnostic methods do not pose requirements for the environment, and action agnostic methods can
compare policies across action spaces.

Description and reference Required
compute Describes Expressiviness Agnostic

Env. Action
Returns [20] Low Policy Low 3 3
Policy parameters [13] Low Policy Low 3 7
Comparing actions [36, 19] Low Policy Low 3 7
Termination state [8] Low Policy Low 7 3
Transition matrix [32] V.High Policy High 7 7
Trajectories [8] High Trajectory High 7 3
States + Discriminator [12] N/A Skill [12] High 3 3
States + Gaussian [3] Low Policy Low 3 3
Trajectory encoder [52, 43] High Trajectory High 3 7
Aggregate state-actions [17, 50] High Policy High 3 7

States + Discriminator (Adapted) Low Policy High 3 3
Trajectory encoder (Adapted) High Policy High 3 3

States + GMM (Proposed) Low Policy High 3 3

BC to study and visualize different training algorithms and also explore their use in novelty search
[29] and trust-region policy optimization [45].

2 Preliminaries and definitions

We model environments as stochastic Markov decision processes (MDPs) [49], where agent acts on
states s ∈ S. The environment begins in an initial state s0 ∼ p(s0). The policy π ∈ Π provides an
action a ∈ A as a stochastic function a ∼ π(s). After executing an action, the environment evolves
to the next state according to a stochastic function s′ ∼ p(s′|s, a) (transition dynamics), and agent is
provided with a reward r ∼ p(r|s, a, s′). This process repeats until environment lands into a terminal
state sT ∈ S . A single episode begins from an initial states and ends to a terminal state. A trajectory
is a tuple of states and actions experienced during one episode. An environment is defined by tuple
(S,A, p(s0), p(s′|s, a), p(r|s, a, s′), T).

Behaviour characterization is a function b : Π→ B, where B is space of all behaviours, accompanied
with a pseudo-distance function d : B × B → R+. This need not be a proper distance metric, as long
it is non-negative and symmetric. Ideally, the more different behaviour of two policies is, the larger
this distance should be. Note that b may be a stochastic function if, for example, it relies on randomly
sampled data to map policy to a behaviour.

3 Choosing behavioural characterization

Table 1 compares various BCs used in the previous research, which have been either used explicitly
for visualization (returns, terminal state) or implicitly in the training algorithm (e.g., novelty search
[47], diversity [12]). Table 1 also includes methods which model trajectories or skills (e.g., fixed
policy conditioned on a latent vector), rather than policies.

While we could use policy’s parameters to compare agents, this does not generalize over different
types of algorithms nor can we tell if a change in parameter vector is truly meaningful to the agent’s
behaviour [8, 19]. Episodic returns are the de facto approach for measuring quality of policies, but
policies with distinct behaviour can achieve same returns (see Figure 1) [1]. Using a termination
state, such as the final coordinates of the robot, has been successful in novelty search but is limited to
environments where such heuristics can be used. Element-wise comparisons of trajectories require
either fixed-length episodes or heuristics to combine varying length episodes. Finally, one can
estimate transition dynamics by sampling the environments [32], but this has a high computational

2

cost that limits the number of policies compared. With these options discarded, we are left with BCs
which focus on actions policy takes or states they visit.

3.1 Actions and stochastic environments

Start

Goal
Distinct policies Doorway Unreachable states

0 100
0.0

0.2

0.4

0.6

0.8

1.0

Di
ffe

re
nc

e
be

tw
ee

n
po

lic
ie

s m
ea

su
re

d
by

...

... returns
Distinct
Doorway
Unreach.

0 100
Prob. of random action (%)

5

10

15

20

25

30

35
... taken actions

0 100
0.0

0.5

1.0

1.5

... visited states

Figure 1: Difference between the two policies, blue
and green, as measured by different BCs. State
BC is obtained with ten thousand trajectories per
policy, and distance is measured as the sum of the
absolute errors over states. Action BC difference is
the sum of the absolute difference between action
distributions. Details are available in Appendix A.

Comparing policies by what actions they chose
is intuitively a sound solution, as one may argue
the policy’s actions are what define its behaviour.
Action-based BCs are used in gradient-based
RL algorithms to restrict changes to policy’s
behaviour [45, 46] or to encourage diversity [37].
This is done by comparing actions of policies
they would take in a fixed set of states (an “off-
policy embedding” [36]).

However, using actions alone for BC would ig-
nore the transition dynamics of the environment.
As discussed by Pacchiano et al. [36], a small
change to actions could lead the agent to wildly
different states or a large change in actions could
have no effect.1 To illustrate this, Figure 1 shows
three scenarios where the behaviour of two poli-
cies are represented with the average episodic
return, distribution of the taken actions and dis-
tribution of the visited states.

Action-based BC is agnostic to environment
stochasticity. As stochasticity of the environ-
ment increases, the policies tend towards random behaviour, and action-based BC describes them as
two very different policies while they both behave the same (random agents). Another weakness is the
insensitivity to “doorway” scenarios, where a single action can lead to different states. Action-based
BC shows the two policies are very similar, but the green policy never reaches the other side of the
world until we increase stochasticity. In real environments, doorway scenarios may manifest as literal
doorways, critical points in grasping an object or pressing a button in a video game. Finally, even if
some of the states used to compare action-differences were unreachable, they affect the results. In
the right-most figure of Figure 1, both policies behave exactly the same in the area where they can
traverse, yet the action-based distance is high.

In summary, while action-based BCs are useful for RL training, they can not be relied upon as a
general BC: without accounting for the environment dynamics, one can not say if the difference in
actions is meaningful.

3.2 Describing policies by states they visit

A common alternative [12, 3] to action-based BCs is comparing what states policies visit. This
requires sampling states for each policy, but in turn, it captures the environment dynamics. Referring
to Figure 1, where action-based BC provided misleading descriptions, state-based BC captures
correctly the increasing stochasticity and the effect of the doorway and unreachable states. Compared
to returns, it also captures the difference between two optimal but distinct policies.

A simple state-based BC is to fit a multivariate Gaussian on the states visited by the policy [3]. Both
fitting and comparing policies is fast (e.g., KL-divergence, which can be evaluated in a closed-form),
but limits the description to a unimodal distribution. The true distribution of states can be complex
even for a simple environment (see scatter plots in Figure 2). Instead of a single Gaussian, a neural
network discriminator can be trained to measure the probability of a state coming from a given policy,
as done by Eysenbach et al. [12] and Ni et al. [35], Alternatively, one can train an auto-encoder to
encode varying-length trajectories into fixed length [52]. Alas, the BCs of these works are tightly
integrated with the training loop, and can not be used with policies trained by other algorithm. Instead,

1If an agent takes an action and it has no effect on the environment, did the agent take an action from an
outside observer’s point of view?

3

we propose using a mixture of Gaussian models to model complex distributions of states, which is
detailed in the next section.

4 Policy supervectors

We consider a setup with N policies πi, i ∈ {1 . . . N} which we want to compare. For each policy,
we playM episodes and store all encountered states s to a per-policy datasetBi = (s{i,1}, s{i,2}, . . .).
Note that the stored states may differ from states the policy acts upon; stored states can be a separate
piece of information believed to describe the behaviour, such as x-y coordinates of a maze robot [39].
In the case of high-dimensional environments, one can train an encoder to turn images into more
compact latent codes [3] or to preprocess them into low-dimensional representations [9].

Environment Random agent Fixed-action agent Trained neural
network

1.
Play episodes

and collect
states

Combine
data

2.
Fit GMM
(UBM)

3.
Adapt component means (supervectors) from UBM

Figure 2: Computing policy supervec-
tors for three policies in the Pendulum
environment, using real data and policies.
Each faint dot represents a single state
of the Pendulum environment, and red
circles represent Gaussian components
of the GMMs.

Gaussian mixture models (GMMs) [33] can be used to
model multi-modal data, and with enough components
they can model almost any continuous distribution to an ar-
bitrary accuracy [4]. However, measuring KL-divergence
requires expensive sampling. While approximations exist,
they come with different assumptions and drawbacks [22].

Instead, we draw inspiration from the field of speaker ver-
ification where GMMs have been used to model speaker
characteristics [28]. Instead of training one GMM per
speaker, Reynolds et al. [44] presented universal back-
ground models (GMM-UBMs, later UBMs) to model a
distribution of speaker-independent features by fitting a
large GMM on a large pool of speaker data. Speaker-
specific model can then be adapted with Maximum a Pos-
teriori (MAP) adaptation of GMM components [15] using
individual speaker’s data. The acquired parameters can
then be concatenated into a long vector, called a supervec-
tor [7], describing the speaker with a fixed-length vector.

We apply this method to policies instead of speakers. We
first fit a GMM on state datasets from all policies and then
MAP-adapt a supervector for each policy, which we call
a policy supervector. Under the Bayesian view, the UBM
represents an informative prior while the adapted GMM
is a point estimate of the posterior, where we use the same
data as part of the prior and adapting the posterior. We treat
UBM as a common feature extractor, and by including data
from all policies we ensure the prior covers all states visited by all of the policies. This process is
illustrated in Figure 2.

Formally, policies’ datasets are pooled together into an UBM-training set Bubm = (B1, . . . ,BN).
This set is then used to fit an UBM with K components and parameters µubm ∈ RK×d, Σubm ∈
RK×d×d andwubm ∈ RK , wk ≥ 0,

∑
k wk = 1 with EM-algorithm until convergence. We can then

perform MAP-adaptation on a per-policy dataset B to obtain adapted mean µ̂k of kth component
with [44]

p(k|st) =
wkN (µk,Σk)∑K
l=1wlN (µl,Σl)

(1)

nk =
∑
t=1

p(k|st) (2)

Ek(B) =

∑
t=1 p(k|st)st

nk
(3)

αk =
nk

nk + r
(4)

µ̂k =αkEk(B) + (1− αk)µk, (5)

4

where r, known as a relevance factor, is a control parameter that impacts how much new data can
affect the adapted mean.

To measure the distance between two policy supervectors, Campbell et al. [7] show that an upper-
bound for KL-divergence of means of two adapted GMMs µi and µj is

dKL(µi,µj) ≤
1

2

K∑
k=1

wkubm(µki − µkj)Σ−1ubm(µki − µkj) . (6)

Unlike KL-divergence, this upper-bound is symmetric [7]. In this work, we will only adapt the
means of the UBM to allow the use of the above metric, but this method can be extended by adapting
covariances and weights (see [44] equations (11)-(13)). We use this upper bound as a distance metric
for policies.

Limitations. Policy supervectors require each policy to sample data from the environment which
can be expensive in slow environments. In highly stochastic environments we need more samples to
accurately describe policies, which will make the training phase of these methods more demanding.
Policy supervectors also require the environment to be the same for all policies, which can be difficult
for real-world robotics, for example.

5 Adapted baselines from related work

Given the number of work towards characterising policies (Table 1), we adapt two of the previous
work to form two baseline solutions. These methods share the same limitations as supervectors
discussed above.

5.1 Discriminator as a state-density estimator

Motivated by the earlier use of discriminator networks as a density estimator [12, 35], we train one
network per policy to distinguish between states this policy encounters versus all other policies.
Specifically, we train a discriminator neural network Dπ by ascending the loss

Li = Es∼Bi [logDi(s)] + Es∼Bj 6=i
[log(1−Di(s))] , (7)

where i is the index of the policy we are about to compare to others. Optimal discriminator satisfies
properties [16, 35]

D∗(s) =
pi(s)

pi(s) + pj 6=i(s)
(8)

⇒ pi(s)

pj 6=i(s)
=

D∗(s)

1−D∗(s)
= ri(s) , (9)

where pi(s) is shorthand for pBi(s). This value ri(s) represents how likely it is the state was
observed by πi than by the rest of the policies. With this in mind, we define a pseudo-distance
between two policies,

fi(s) = e− log ri(s) (10)
d(i, j) = Es∼Bi

[fj(s)] + Es∼Bj
[fi(s)] , (11)

summing distance both ways for symmetry. Essentially, for each policy, we measure how likely it is
that their data is also contained in others’ datasets and vice versa. In practice, the expectations are
computed as averages over the datasets. We opt for training one discriminator per policy (policy’s
states versus all others) rather than one per comparison (policy X’s states versus policy Y’s) to avoid
the quadratic explosion of discriminator training operations required. Training details can be found in
Appendix B.4.

5.2 Trajectory encoder

Wang et al. [52] proposed to train a variational autoencoder (VAE) [27] to reconstruct trajectories.
The encoder turns a sequence of states (trajectory) into an embedding z, and the decoder reconstructs
original state-action pairs from this embedding. We adapt this method for policies by modelling

5

the distribution of trajectory embeddings. We train the system on data from all policies, then
use the encoder to sample one embedding per trajectory, and then fit a multivariate Gaussian on
these embeddings. The distance between two policies is then symmetric KL-divergence of these
two Gaussians, where we sum the KL-divergences both ways. Further details are available in
Appendix B.5.

Compared to the two other proposed methods, this method can capture temporal dependencies
between states, while the other two methods discard this information. However, this could lead to
posterior collapse where the decoder predicts future states purely based on previous states, ignoring
the embedding. If the environment and/or policy are complex, we need a complex model to encode
the whole policy into a fixed embedding. Finally, out of the three methods, training the encoder is the
most computationally expensive.

6 Related work

The de facto method for comparing policies is by evaluating their performance in a task [25], or if the
environment permits it, we can compare the different coordinates policy visits [39, 8]. Hernandez
et al. [21] make use of dimensional reduction to plot fixed-length trajectories of different self-play
algorithms to study the evolution of policies, and Matusch et al. [32] compare discretized transition
matrices to study which metrics correlate with human behaviour. Others propose decompressing
compact representations of policies back into functional policies, such as from genomes [13] or
random generator seeds [48].

Trust-region policy optimization [45] limits per-update change to policy’s behaviour to ensure
improvement in returns, but similar methods can also be used to encourage novel behaviour [29, 8] or
diverse behaviour [12, 37]. An RL agent can be encouraged to visit unseen states [2], where visit
counts can be estimated by prediction error [6]. Framing imitation learning as a task of matching state
or state-action distributions has also been successful [24, 35, 30]. Compact policy embeddings have
also been used to create generalized value functions [43, 50, 19] or to improve imitation learning [52].

7 Experiments and results

For an empirical assessment of the proposed BC (policy supervectors), we first evaluate it against the
baseline BCs and then explore their use in various tasks. We aim to answer the following research
questions (RQs). RQ1 Does the BC separate truly different policies (expressivity)? RQ2 How
sensitive are the BCs to the random sampling of the environment? If BC does not describe the
policy, there is no reason to use it. If it produces wildly different results even with a lot of data, its
results may not be trusted. Note that we have not included action-based BCs because of the reasons
discussed in Section 3.1 (their measurements can not be trusted). However, we will compare to them
in trust-region experiments later (Section 7.5).

We use five classic control environments from the OpenAI Gym library [5] which include low
dimensional environments (Cartpole, Pendulum and Acrobot) as well as two higher-dimensional en-
vironments (Lunarlander and Bipedal-walker). We opt for these simple environments to allow scaling
the experiments. We train three proximal policy optimization (PPO) [46] agents per environment and
store 100 versions of the policy during training. For each policy, we then collect a set of trajectories,
which we use to compute the state-based BCs and finally measure distances between these 100
policies. We repeat this data collection and distance measurement three times. Distance matrices are
min-max normalized to [0, 1] to allow comparison between different repetitions. Technical details,
source code and further results described can be found in the Appendix B.

7.1 Baselines

In addition to adapted baselines (Section 5), we include two baseline solutions.

Discretization. Similar to Matush et al. [32], we discretize each state dimension to ten equally spaced
bins, count occurrences of each bin and divide by the number of states visited. The distance between
two policies is then d(pi, pj) = 1

2

∑
s |pi(s)− pj(s)|. We opt to use this sum over KL-divergence

due to the prevalence of zeros in the distributions. While simple, this method’s computational
requirements explode with the increasing number of dimensions.

6

Single Gaussian. We fit a multivariate Gaussian on the sampled states and define distance between
two policies as dKL(pi||pj) + dKL(pj ||pi) for symmetry. This has been used previously in tracking
what states policy has visited [3].

7.2 Evaluation metrics

100502510

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

Correlation with return-distance

100502510
0

50

100

150

200

250

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
)

Pendulum
Distance error

Supervector
Gaussian
Discriminator
Encoder
Discretization

100502510

0.1

0.2

0.3

0.4

0.5

0.6

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

Distance variance

100502510

0.2

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

100502510
0

20

40

60

80

100

120

140

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
) CartPole

100502510
0.0

0.1

0.2

0.3

0.4

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

100502510

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

100502510
0

100

200

300

400

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
) Acrobot

100502510
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

100502510

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

100502510
0

250

500

750

1000

1250

1500

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
) BipedalWalker

100502510

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

100502510

0.2

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

100502510
Number of trajectories

0

100

200

300

400

500

600

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
) LunarLander

100502510

0.1

0.2

0.3

0.4

0.5

0.6

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

Figure 3: Evaluation results of different BCs. Averaged
over three repetitions. The shaded region is plus/minus one
standard deviation.

Correlation with return-distance.
To measure how well BC separates dif-
ferent policies, we measure the Pear-
son correlation between the absolute
difference between average returns
and distances measured by the BC.
While returns are limited in their ex-
pressiveness, it still indicates the poli-
cies are doing something different if
the returns differ. This especially ap-
plies to the environments we use, as
the reward signal is tied to the states
agent visits.

Distance error. Given a “ground
truth” distance between policies under
the same BC, we measure the aver-
age relative error between this ground
truth and predicted distances. We se-
lect one of the repetitions with the
highest amount of data (100 trajec-
tories) to represent this ground truth.
This metric aims to measure how sen-
sitive the method is to the amount of
data we collect.

Distance variance. As behavioural
distances between a fixed set of poli-
cies should stay the same relative to
each other, we study the variance in
the results by computing coefficient
of variation (CV) [11] σ/µ over the
repetitions, where σ is the standard de-
viation of the distance over repetitions
and µ is the sample average of dis-
tances. A lower value indicates more
similar results over repetitions.

7.3 Evaluation results

Figure 3 shows the results for each environment separately. The single Gaussian and discriminator
methods correlate with return differences, but require many trajectories per policy to stabilize results.
Policy supervectors with 64 Gaussian components offer stabler results even at a lower number of
trajectories, which we believe is due to the use of data from all policies in the UBM training. By
sweeping over the different number of components, we find a strong connection between environments
and the optimal number of components: in some environments one to four components provides the
stablest results (Appendix B).

The discretization method appears to capture the behaviour as well as remain stable, but this method
is computationally limited: experiments in the BipedalWalker environment ran out of memory (64GB
of system memory) when trying to build the transition matrix over multiple dimensions. Trajectory
encoders were similarly limited, which we found to be slow to train due to long sequences. We believe
the low performance of encoder method is due to the difficulty of predicting future states. In summary,

7

Figure 4: t-SNE plot of the evolution of policies under different training algorithms, where each point
represents a single policy. Plots under the same environment share the same plot scales. Rewards are
scaled according to minimal and maximal attainable reward per environment.

we find policy supervectors a scalable and functioning state-based BC, with discretization a viable
option in low-dimensional environments but not generally applicable due to memory constraints.

7.4 Studying evolution of policies under training algorithms

Evolution-based methods such as neuroevolution of augmenting topologies (NEAT) [47] and co-
variance matrix adaptation ES (CMA-ES) explore by modifying promising solutions and testing
which location of the parameter space works better [18], while gradient-based RL methods like
advantage actor critic (A2C) [34] and PPO update a single policy towards higher episodic reward.
To better understand how these training algorithms evolve policies, we train agents with them and
store checkpoints during training. We then extract policy supervectors of these checkpoints (with
64 components) and plot the resulting points with t-SNE [31] dimensionality reduction using the
adapted distance (6). The hypothesis is that evolution-based methods cover a wider area of policies
(random mutation of the parameters leads to different behaviours), while RL algorithms remain in
a small region per run. We are not comparing which of these algorithms is better, rather we aim to
understand if they explore different behaviours and how they evolve the policies.

Figure 4 shows the results with five A2C/PPO runs and one NEAT/CMA-ES run. In total, roughly
30,000 policies are compared against each other, with a varying number of policies from different
algorithms depending on the settings (see Appendix C for details and remaining plots). NEAT and
CMA-ES cover a wide area of behaviours, as expected. RL solutions cover smaller areas, with PPO
forming distinguishable “worms” in more complicated environments (BipedalWalker), while A2C
forms small clouds. This suggests the trust-region restriction of PPO is visible in policy supervectors
as well, where the change in behaviour between successive policies is small, whereas A2C updates
may change behaviour considerably.

Indeed, we find a positive correlation between total distance travelled by the trained policy and PPO
ratio-clip value (Appendix C), which controls the size of the trust region. We also find a negative
correlation between distance travelled after an update and average return, indicating that the initial
learning steps change the agent’s behaviour the most. These results concur with observations of
Engstrom et al. [10], where the KL-distance between successive policies first increases and then
decreases as training moves on. The results with behavioural cloning [40] indicate that distance
between the expert policy and trained policy decreases as training progresses, with change to
behaviour slowing down as training reaches closer to the expert’s performance.

7.5 Applying supervectors to trust-region policy optimization

The above insights on trust-region optimization and BC distances suggest that state-based BCs could
also be used in trust-region optimization. To test this, we construct a N -dimensional grid world
environment where the agent can move to one of N directions per grid, where one direction is correct
(+1 reward) and rest either reset the episode or do nothing. This environment is constructed to reflect

8

the doorway scenario: some actions have a large impact, while others do not. Agents are trained with
a modified PPO where we disable the policy ratio clip and instead check if state-based BC distance
is larger than the threshold after every network update. We compare state-based BCs against no
constraint and total variation divergence (Max TV) d(π, π′) = maxs

1
2

∑
a |π(a|s)− π′(a|s)| [45].

We sweep over threshold values and present results for the method with the largest area under the
learning curve. Further details are available in Appendix E.

Results in Figure 5a indicate that action-based BC is best suited for this task, but both Gaussian
and supervector approaches outperform no constraint. Gaussian BC slowly improves to the highest
score overall, while supervector quickly reaches peak and then drops. We believe this is due to
the non-gaussian nature of the state distribution, where supervector BC is able to move individual
components on different modalities, allowing it to learn fast in the beginning but later become
unstable. In the current form, state-based BCs are not practical as part of the training loop, but their
advantage lies in the analysis of policies (Section 7.4) and when encouraging novelty (Section 7.6).

7.6 Applying supervectors to novelty search

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

1

2

3

4

5

6

Av
er

ag
e

re
tu

rn

No Constraint
Max Action TV
Gaussian
Supervector

(a) Trust region

0 25 50 75 100 125
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

re
tu

rn

ES
NSR-ES (Terminal)
NSR-ES (Gaussian)
NSR-ES (Supervector)

(b) Novelty search

Figure 5: Results in novelty search (10 repetitions)
and trust-region policy optimization (50 repeti-
tions). Shaded region represents 95% confidence
interval.

Novelty search encourages policies to find new
behaviours to approach the task [29], which can
take the form of maximizing BC distance be-
tween policies [8]. While successful, previous
work has used domain-specific heuristics like
terminal states as BCs to describe the behaviour.
Supervectors, or Gaussians, could be used in-
stead as a more generalizable alternative. To test
this, we construct a continuous 2D point envi-
ronment similar to Pacchiano et al. [36], where
policy is rewarded for travelling to the positive
y-direction. A wall prevents the policy from di-
rectly moving in this direction, and the policy
has to learn to go around it. We use the methods
and code of Conti et al. [8], where novelty en-
couragement is combined with fitness (NSR-ES)
or agent is trained only for fitness (ES). Further
details are in Appendix D.

Results in Figure 5b show that both single Gaussian and policy supervector help policy to overcome
the obstacle. Using terminal state yields slightly better (but not significantly so) results, likely due to
it being an “aligned” [8] BC with the objective, as walking away from previous locations can improve
fitness. This demonstrates that supervectors (or even simple Gaussians) could be used as state-based
BCs to encourage novel behaviour.

8 Discussion and conclusions

As demonstrated, state-based BCs, and especially policy supervectors based on GMMs, can be used
regardless of the environment while also scaling to thousands of policies. Compared to using returns
or actions to define behaviour, state-based BC methods are more descriptive and capture dynamics
of the environment into a behavioural description. These BCs can be used in the study of policies
under different training algorithms, or to encourage exploration/novelty or impose limits on how
much behaviour can change per policy update.

While policy supervectors are applicable to studying policies as an outside observer, they are not
yet practical as a part of the training loop: they require expensive sampling of the environment (as
opposed to reusing already collected samples). This direction could be further explored by creating
more sample efficient solutions or differentiable state-based BCs to train agents. Other topics include
combining supervectors with the behavioural embeddings framework [36], extending the novelty
search experiments [37] and further analysis of parameters learned by policy supervectors, such as
the meaning of each adapted Gaussian component.

9

References
[1] R. Agarwal, M. C. Machado, P. S. Castro, and M. G. Bellemare. Contrastive behavioral

similarity embeddings for generalization in reinforcement learning. In International Conference
on Learning Representations, 2021.

[2] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in neural information processing
systems, pages 1471–1479, 2016.

[3] G. Berseth, D. Geng, C. Devin, C. Finn, D. Jayaraman, and S. Levine. SMiRL: Surprise
minimizing rl in dynamic environments. arXiv preprint arXiv:1912.05510, 2019.

[4] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[6] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
In International Conference on Learning Representations, 2019.

[7] W. M. Campbell, D. E. Sturim, and D. A. Reynolds. Support vector machines using gmm
supervectors for speaker verification. IEEE signal processing letters, 13(5):308–311, 2006.

[8] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune. Improving exploration
in evolution strategies for deep reinforcement learning via a population of novelty-seeking
agents. In Advances in neural information processing systems, pages 5027–5038, 2018.

[9] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-explore: a new approach
for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[10] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry. Imple-
mentation matters in deep policy gradients: A case study on PPO and TRPO. In International
Conference on Learning Representations, 2020.

[11] B. Everitt and A. Skrondal. The Cambridge dictionary of statistics, volume 106. Cambridge
University Press Cambridge, 2002.

[12] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv:1802.06070, 2018.

[13] A. Gaier and D. Ha. Weight agnostic neural networks. In Advances in Neural Information
Processing Systems, pages 5364–5378, 2019.

[14] A. Gaier and D. Ha. Weight agnostic neural networks. arXiv preprint arXiv:1906.04358, 2019.

[15] J.-L. Gauvain and C.-H. Lee. Maximum a posteriori estimation for multivariate gaussian
mixture observations of markov chains. IEEE transactions on speech and audio processing,
2(2):291–298, 1994.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems,
27:2672–2680, 2014.

[17] A. Grover, M. Al-Shedivat, J. Gupta, Y. Burda, and H. Edwards. Learning policy representations
in multiagent systems. In International conference on machine learning, pages 1802–1811.
PMLR, 2018.

[18] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary computation, 9(2):159–195, 2001.

[19] J. Harb, T. Schaul, D. Precup, and P.-L. Bacon. Policy evaluation networks. arXiv preprint
arXiv:2002.11833, 2020.

[20] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

10

[21] D. Hernandez, K. Denamganai, S. Devlin, S. Samothrakis, and J. A. Walker. A comparison of
self-play algorithms under a generalized framework. In IEEE Conference on Games, 2019.

[22] J. R. Hershey and P. A. Olsen. Approximating the kullback leibler divergence between gaussian
mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pages IV–317. IEEE, 2007.

[23] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable
baselines. https://github.com/hill-a/stable-baselines, 2018.

[24] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in neural information
processing systems, pages 4565–4573, 2016.

[25] S. M. Jordan, Y. Chandak, D. Cohen, M. Zhang, and P. S. Thomas. Evaluating the performance
of reinforcement learning algorithms. In International Conference on Machine Learning, 2020.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

[27] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

[28] T. Kinnunen and H. Li. An overview of text-independent speaker recognition: From features to
supervectors. Speech communication, 2010.

[29] J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems through the search
for novelty. In ALIFE, pages 329–336, 2008.

[30] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[31] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[32] B. Matusch, J. Ba, and D. Hafner. Evaluating agents without rewards. arXiv preprint
arXiv:2012.11538, 2020.

[33] G. J. McLachlan and K. E. Basford. Mixture models: Inference and applications to clustering,
volume 38. M. Dekker New York, 1988.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International Conference on
Machine Learning, 2016.

[35] T. Ni, H. Sikchi, Y. Wang, T. Gupta, L. Lee, and B. Eysenbach. f-IRL: Inverse reinforcement
learning via state marginal matching. In Conference on Robot Learning, 2020.

[36] A. Pacchiano, J. Parker-Holder, Y. Tang, K. Choromanski, A. Choromanska, and M. Jordan.
Learning to score behaviors for guided policy optimization. In International Conference on
Machine Learning, pages 7445–7454. PMLR, 2020.

[37] J. Parker-Holder, A. Pacchiano, K. Choromanski, and S. Roberts. Effective diversity in
population-based reinforcement learning. In Advances in Neural Information Processing
Systems, 2020.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[39] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba. Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. In International Conference on Machine Learning,
2020.

11

https://github.com/hill-a/stable-baselines

[40] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
neural information processing systems, pages 305–313, 1989.

[41] A. Raffin. Rl baselines zoo. https://github.com/araffin/rl-baselines-zoo, 2018.

[42] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable baselines3.
https://github.com/DLR-RM/stable-baselines3, 2019.

[43] R. Raileanu, M. Goldstein, A. Szlam, and R. Fergus. Fast adaptation to new environments via
policy-dynamics value functions. In International Conference on Machine Learning, pages
7920–7931. PMLR, 2020.

[44] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted gaussian
mixture models. Digital signal processing, 10(1-3):19–41, 2000.

[45] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz. Trust region policy optimization.
In International Conference on Machine Learning, 2015.

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017.

[47] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

[48] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep neuroevo-
lution: Genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

[49] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[50] H. Tang, Z. Meng, J. Hao, C. Chen, D. Graves, D. Li, W. Liu, and Y. Yang. Represent your
own policies: Reinforcement learning with policy-extended value function approximator. arXiv
preprint arXiv:2010.09536, 2020.

[51] S. Wang, S. Toyer, A. Gleave, and S. Emmons. The imitation library for imitation learning and
inverse reinforcement learning. https://github.com/HumanCompatibleAI/imitation,
2020.

[52] Z. Wang, J. S. Merel, S. E. Reed, N. de Freitas, G. Wayne, and N. Heess. Robust imitation of
diverse behaviors. In Advances in Neural Information Processing Systems, pages 5320–5329,
2017.

12

https://github.com/araffin/rl-baselines-zoo
https://github.com/DLR-RM/stable-baselines3
https://github.com/HumanCompatibleAI/imitation

	Introduction
	Preliminaries and definitions
	Choosing behavioural characterization
	Actions and stochastic environments
	Describing policies by states they visit

	Policy supervectors
	Adapted baselines from related work
	Discriminator as a state-density estimator
	Trajectory encoder

	Related work
	Experiments and results
	Baselines
	Evaluation metrics
	Evaluation results
	Studying evolution of policies under training algorithms
	Applying supervectors to trust-region policy optimization
	Applying supervectors to novelty search

	Discussion and conclusions

