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A B S T R A C T

Micro-expression recognition is becoming an increasingly attractive research topic due to its useful applications 
in a widespread area including psychology, criminology, and security. Different from macro-expressions, the 
facial muscle movements of micro-expressions have the characteristics of being short duration, and weak in-
tensity, which makes micro-expression recognition extremely challenging. To deal with these problems, we 
propose a dual-branch classification network that integrates entire and detail motions for effective micro- 
expression recognition. In this network, one branch is responsible for capturing the overall motion, while the 
other branch focuses on capturing the detail motion. In addition, to improve the recognition accuracy, we also 
design a Swin-Transformer module with accumulated attention to focus more on the Region of Interest. By 
utilizing Grad-CAM to obtain the facial expression activation heatmaps, we find a good match between the 
activated regions and facial action units. Finally, we validate the effectiveness of the method on the SMIC, 
CASME II, SAMM, and MMEW datasets, achieving recognition performance that are more competitive than many 
other state-of-the-art methods. Code is available at https://github.com/likemby/EDMDBN.

1. Introduction

Facial expressions can generally be categorized into two types: 
macro-expressions and micro-expressions. Macro-expressions are the 
most common and widely recognizable facial expressions in daily life. 
When a macro-expression occurs, individuals can typically observe and 
readily identify the corresponding emotion. This is attributed to the 
longer duration of macro-expressions (0.5 s to 2 s), the broader 
involvement of facial motion, and more intensive muscle movements. In 
contrast, micro-expressions are rapid, spontaneous, and low-intensity 
facial expressions that often appear when individuals attempt to 
conceal their true emotions, particularly in high-pressure, nervous, and 
anxious situations. Micro-expressions last for a short period of time, 
typically ranging from 1/25 to 1/3 s [1]. Additionally, 
micro-expressions have minimal coverage in the facial movement area, 
primarily focusing on the mouth, nose, and eyes, with subtle muscle 
movements. These characteristics of micro-expressions make them 
challenging to conceal, and thus convey genuine human emotions [2], 
lending them greater credibility than macro-expressions. Micro--
expressions find applications in various fields such as national security, 

judicial trials, clinical medicine and public service, among others [3,4,5,
6].

The characteristics of micro-expressions such as subtle facial muscle 
movements and short duration make accurate recognition of micro- 
expressions highly challenging. Many algorithms have been developed 
thus far to recognize micro-expressions. From the perspective of model 
feature extraction, these algorithms are mostly based on spatial features, 
temporal features, and spatiotemporal features of micro-expressions. 
For instance, Liu et al. [7] and Li et al. [8] focused on 
micro-expression recognition based on single-frame facial images. 
However, due to the small magnitude of micro-expression movements, it 
often requires motion enhancement techniques to achieve satisfactory 
recognition results [7,8]. Zhi et al. [9] and Hong et al. [10] employed the 
RGB image sequences as input. While this maximizes feature retention, 
redundant spatial information may introduce more background noise, 
making it difficult for the model to accurately identify and distinguish 
key features of micro-expressions during the learning process, thus 
deteriorating the model performance. Consequently, additional studies 
[11,12] based on sequential input aim to eliminate background infor-
mation through techniques like optical flow and pixel difference, 
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leading to improved performance. This observation indirectly un-
derscores the importance of temporal features, namely motion features, 
in micro-expression analysis. Some motion-based works [13–15], while 
maintaining model conciseness, have demonstrated improved recogni-
tion results.

A complete micro-expression motion comprises the onset of facial 
movement, reaching its peak, and returning to a neutral state, which can 
be described by the onset, apex, and offset frames. Some studies 
[13–15], directly extracted motion features from the onset and apex 
frames of micro-expressions, which is proved to be straightforward and 
effective. However, this kind of approaches inevitably overlook details 
of the motion information spanning from the apex to the offset frame. 
Other approaches [9,10] extracted motion information from adjacent 
frames of the entire sequence, which can yield richer motion informa-
tion. Nevertheless, these methods do not fully leverage the annotated 
apex frames and may entail redundant action representations. Based on 
the considerations, we propose a dual-branch micro-expression classi-
fication network that integrates entire and detail motions to address the 
aforementioned challenges.

Additionally, micro-expressions predominantly occur in localized 
facial regions, specifically the mouth, nose, and eye areas. Hence, there 
are typically two types of input for micro-expression recognition models: 
the region of interest (ROI) and the entire face. In previous research, Van 
et al. [16] demonstrated that selecting the ROIs as the model input helps 
mitigate interference from irrelevant areas. Conversely, the recent work 
by Li et al. [15] aimed to automate ROIs selection and allocated greater 
attention to the area of interest. In this study, to increase focus on 
distinct facial regions, we introduce an accumulated attention Swin 
Transformer module. Serving as a network backbone, this module di-
rects the model to prioritize the region of interest.

The main contributions of this paper are outlined as follows:
A micro-expression recognition network with entire and detail mo-

tion extraction is proposed, which can improve the performance by 
capturing both the overall and detailed movement of the expression.

A Swin-Transformer module with accumulated attention is devel-
oped, which can effectively enhance the features extracted by the 
network.

Experimental results on SMIC, CASME II, SAMM, and MMEW data-
sets demonstrate the effectiveness of our proposed model in micro- 
expression recognition.

The rest of this paper is organized as follows: Section 2 briefly re-
views the related work. Section 3 introduces the technical details of our 
proposed method. Section 4 firstly demonstrates the experimental re-
sults on four common datasets to justify the effectiveness of our pro-
posed method on the MER task, and then presents the ablation studies 
and visual analysis for further discussion. Finally, we make a conclusion 
in Section 5.

2. Related work

2.1. Motion extraction

Many previous works have focused on studying the motion features 
for micro-expression recognition [9,10,13,14]. At first, optical flow 
features were manually extracted to represent micro-expression mo-
tions, which were then fed into CNNs for further feature extraction. 
However, due to the high computational complexity of optical flow, 
many recent studies opted to automatically learn micro-expression 
motion features using deep networks. Fan et al. [18] developed a 
self-supervised learning framework, in which motion features are 
learned through reconstructing apex frames from the onset frames after 
which Micro-expression classification was performed using the learned 
motion features. However, such approaches typically require substantial 
amounts of data to learn good feature representations and two training 
phases, thus increasing the overall training cost. In the study conducted 
by Li et al. [15], a motion extractor was designed for supervised 

micro-expression classification. This extractor computes the difference 
between two frames before further learning motion features through 
CNNs. In this paper, manual optical flow features are discarded in favor 
of representing motion through frame differences, which provide a 
simpler and computationally more efficient alternative.

2.2. Backbone network

In the field of micro-expression recognition, CNN [19], GCN [20] and 
Vision Transformer (ViT) [21] have been employed as backbone net-
works by previous studies. Among them, ViT, as a visual model based on 
self-attention mechanism, excels in processing global information and 
various image features. ViT divided the images into fixed-size patches, 
akin to word tokens in a language model like BERT [22]. This processing 
approach renders ViT somewhat more interpretable compared to CNNs, 
as it enables self-attention calculations among input tokens, facilitating 
a more intuitive understanding of the model’s attention distribution 
across different image parts. However, ViT requires a large amount of 
data for model training. Swin-Transformer [23] addresses the issue by 
leveraging the pyramid structure and locality in CNN. In this paper, 
given the sequential nature of the micro-expression recognition data, we 
also employ the video version of Swin-Transformer [24] (Swin-T) as the 
backbone network for feature learning.

2.3. Localization of ROI areas

In the early work [16], Van et al. cropped the ROI area in the face as 
network input, which can enhance the micro-expression recognition 
performance by eliminating the interference from redundant facial in-
formation. Despite the requirement for manual labor, precise localiza-
tion of the ROIs is necessary as it aids in more accurate micro-expression 
recognition. The trend of current study is on automating attention 
design to enable the model to allocate varying attention levels to distinct 
areas. Li et al. [15] utilized CNNs as the backbone network and incor-
porated spatial attention modules to integrate multiple stage-wise at-
tentions. In contrast, He et al. [17] employed ViT as the backbone and 
aggregated self-attention feature maps from various stages to enhance 
attention effects. In this paper, we propose a Token Attention module 
with Swin-Transformer as the backbone to achieve accumulated atten-
tion, denoted as Accumulated Attention (AA).

2.4. Data scarcity

Micro-expression datasets are typically small, which can lead to 
challenges such as overfitting and insufficient generalization ability 
during model training. To address these challenges, it is essential to 
ensure that the complexity of the model matches the complexity of the 
data, specifically through two strategies: reducing model complexity 
and increasing data complexity. Alzubaidi at al. [25] suggested that 
methods such as transfer learning, self-supervised learning, and gener-
ative adversarial networks (GANs) [26] can be applied to address this 
issue. Transfer learning and self-supervised learning reduce the diffi-
culty of micro-expression recognition tasks by designing pre-training 
tasks and reusing parameters from pre-trained models. Additionally, 
Huang at al. [27] combined the LBP-TOP concept with integral projec-
tion for micro-expression recognition, where integral projection reduces 
global feature dimensions, simplifying the model’s feature representa-
tion. Moreover, GANs can generate new samples to expand the training 
dataset and increase data complexity, while online data augmentation 
can effectively enhance sample diversity, improving the model’s 
generalization ability. These methods collectively offer strong support in 
tackling the challenges posed by small-scale datasets. In this paper, we 
increase the diversity of training samples through online data augmen-
tation methods.
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3. Methodology

As shown in Fig. 1, the algorithm consists of five stages: data pre-
processing, extraction of entire and detail motions, motion feature 
extraction, feature fusion, and feature classification. Firstly, the original 
micro-expression sequence undergoes preprocessing. Next, entire and 
detail motions are extracted from the preprocessed sequence, and 
further motion features are extracted using the Swin-Transformer 
module with accumulated attention (Swin-T with AA). Subsequently, 
the extracted entire and detail motion features are fused, and finally, the 
fused features are fed into the classifier for micro-expression 
recognition.

3.1. Data preprocessing

Data preprocessing involves spatial and temporal normalization to 
ensure that the faces are aligned and the height, width, and number of 
frames in the input micro-expression sequence are uniform.

Spatial normalization of faces includes face alignment, cropping, and 
image scale normalization. First, facial keypoints are detected in the first 
frame of the micro-expression sequence. Then, the coordinates of the 
keypoints including the left outer eye, right outer eye, and nose tip are 
selected and matched with the corresponding keypoints in a standard 
template face to calculate the affine transformation matrix between 
them. After that, the affine transformation matrix is applied to every 
frame in the sequence to achieve face alignment. Then, based on the 
coordinates of keypoints on the chin, eyebrows, and eyes, the cropping 
boundary is determined and used to crop the face. Finally, the size of the 
cropped images is set uniformly to H× W.

Due to the numbers of frames for different micro-expression video 
samples vary, we perform temporal normalization by linearly interpo-
lating the three keyframes (onset frame, apex frame, and offset frame) of 
the micro-expression sample to T+1 frames. It needs to be noted that the 
SMIC dataset lacks the apex frame annotation. Therefore, we designate 
the middle frame of the sequence as the apex frame.

3.2. Extraction of entire and detail motions

After the preprocessing, a micro-expression sequence consists of T +
1 frames, denoted as {F1, F2, F3, …, FT+1}, where Fi represents the i-th 
frame in the sequence, and each frame tensor has a shape of H × W × 3. 
In addition, we denote the starting frame of the sequence as Fonset and the 
apex frame as Fapex.

In our approach, entire motion is defined as the pixel difference 
between the apex frame and the onset frame, represented as Mentire =

Fapex − Fonset, with a tensor shape of H× W× 3; whereas detail motion is 
defined as the pixel difference between adjacent frames throughout the 
sequence, denoted as Mdetail = {F2 − F1, F3 − F2,F4 − F3,…,FT+1 − FT}, 
with a tensor shape of T× H× W× 3.

3.3. Motion feature extraction

To extract features from the entire and detail motions, we have 

developed a Swin-Transformer module with an accumulated attention 
mechanism, as is illustrated in Fig. 2.

Specifically, the module is utilized for the two branches respectively 
to extract entire and detail motion features. Taking the detail motion 
branch as an example, the extracted detail motion is first divided into 
multiple spatio-temporal blocks with each block having a size of 8× 4×

4× 3. Since the size of the detail motion is T× H× W× 3, we obtain 
T/8 × H/4 × W/4 blocks and each block (or Token) comprises a 384- 
dimensional feature vector. Subsequently, a linear embedding layer is 
applied to project the features of each Token to a C dimensional space. 
Due to the characteristics of Swin-Transformer, the backbone network 
executes spatial downsampling twice in the Patch Merging layer of each 
stage, reducing the number of Tokens to 1/4 of the original and doubling 
the dimensionality.

In addition, a Token Attention module that calculates the accumu-
lating attention is integrated into every stage. The implementation de-
tails of the Token Attention module are illustrated in Fig. 3. In particular, 
it receives the output from the current Video Swin-Transformer block 
and performs weighting operations. Firstly, the current attention weight 
Acur is calculated. 

(Acur = Sig(FC([Max(TK);Avg(TK)]))) (1) 

In Eq. (1), TK denotes the input Token, with a size of N × D, where 
N represents the number of Tokens and D represents the dimensionality 
of each Token. Additionally, Max(TK) represents its maximum value 
along the feature dimension, Avg(TK) denotes its average value along 
the feature dimension, the symbol ";" represents a concatenate operation 
in the feature dimension, Sig represents the Sigmoid activation function, 
and FC represents the Fully Connected layer.

Then, the attention matrix of the last stage is combined to obtain the 
final attention matrix TKatten of this stage. 
(
Afinal =Acur ⊙ DownSampling

(
Aprev

))
(2) 

where Aprev denotes the attention matrix from the previous stage. Since 
Swin-T conducts a 2× spatial downsampling at each stage, we also need 
to perform a 2× spatial downsampling on Aprev.

Finally, the input Token undergoes element-wise multiplication with 
the attention weight TKfinal of this stage, resulting in the output Token 
TK’.

For the entire motion branch, its processing logic is similar to the 
module shown in Fig. 2, except that the temporal dimension is removed, 
as the input is an image.

3.4. Feature fusion

The feature dimensions of entire and detail motions differ, being H ×

W × 3 and T × H × W × 3 respectively. As each spatial block and each 
spatiotemporal block has an initial size of 4 × 4 × 3 and 8 × 4 × 4 × 3 
respectively, after three stages of processing by the backbone network, 
the number of spatial blocks produced by entire motion is ultimately 
Nentire = H/16× W/16, while the number of spatiotemporal blocks 
produced by detail motion is Ndetail = T/8× H/16× W/16. Here, Ndetail 

Fig. 1. Pipeline of the entire-detail motion dual-branch network (EDMDBN).
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is T/8 times Nentire, which may lead to the inability to directly perform 
feature fusion.

To address this issue, we perform average pooling on the spatio-
temporal blocks in the time dimension for the same spatial location. This 
ensures that the number of spatiotemporal blocks is equal to the number 
of spatial blocks, as shown in Fig. 4.

3.5. Feature classification

The classifier consists of a fully connected layer, and the model is 
optimized through the cross-entropy loss function.

The input dimension of the fully connected layer is determined by Cin 
= 4C× N, and the output dimension Cout is determined by the number of 
categories. For a classification problem with K categories, the formula 
for weighted cross-entropy loss is as follows: 

LWCE(y, t,w) = − ΣK
i=1witi⋅log (yi) (3) 

Here, y =
[
y1, y2,…, yK

]
represents the model’s predicted probability 

for each category; t = [t1, t2,…, tK] denotes the one hot encoded vector of 
actual labels; and w = [w1,w2,…,wK] represents the weight vector of 

categories.

4. Experiments

To validate the effectiveness of the proposed method, experiments 
were conducted on four common micro-expression datasets, including 
SMIC [28], CASME II [29], SAMM [30] and MMEW [31]. In this section, 
we will first introduce the datasets used in the experiment, the evalua-
tion method, implementation details, etc. Then, we compare our method 
with other state-of-the-art methods and perform the ablation study. 
Finally, analysis is made to further disclose the method.

4.1. Datasets

The SMIC [28] dataset specifically refers to the HS data subset, 
consisting of 164 samples with 16 participants and 3 emotional labels. 
The CASME II [29] dataset comprises 249 samples and 5 emotional la-
bels, involving 26 participants with an average age of 22.59, all from 
China. Similarly, the SAMM [30] dataset contains 159 samples and 8 
emotional labels, involving 32 participants with a male-to-female ratio 
of 1 and an average age of 33.24 years, from 13 ethnic groups. Lastly, the 
MMEW [31] dataset includes 300 micro-expression sequences and 7 
emotional labels, with 36 participants averaging 22.35 years, all from 
China.

Table 1 provides further details on the contents of each dataset. The 
"Three Emotions" row represents the reclassification based on basic 
emotions, such as categorizing Happiness as Positive emotions and 
Repression and Disgust as Negative emotions. The "Five Emotions" row 
lists the emotion labels used in the five-class classification for the 

Fig. 2. The schematic diagram of the Swin-Transformer structure with accumulated attention (Taking the detail motion branch as an example, the formula above 
each stage in the figure consists of two parts, representing the number of Tokens at that stage and the number of channels).

Fig. 3. Token Attention module.

Fig. 4. The spatiotemporal blocks are averaged pooled along the 
time dimension.

Table 1 
The distribution of data in SMIC–HS, CASME II, SAMM, and MMEW datasets.

SMIC–HS CASME II SAMM MMEW

Subjects 16 25 28 30

FPS 100 200 200 90

Three 
Emotions

Positive 
(51), 
Negative 
(73), 
Surprise 
(42)

Positive (32), 
Negative (90), 
Surprise (28)

Positive (26), 
Negative (92), 
Surprise (15)

Positive (36), 
Negative 
(109), 
Surprise (89)

Five 
Emotions

– Happiness (32), 
Repression (27), 
Surprise (28), 
Disgust (63), 
Others (99)

Happiness (26), 
Surprise (15), 
Anger (57), 
Contempt (12), 
Others (26)

Happiness 
(36), Surprise 
(89), Disgust 
(72), 
Fear (16), 
Others (66)
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CASME II, SAMM, and MMEW datasets.

4.2. Evaluation methods

The evaluation uses leave-one-subject-out (LOSO) cross-validation to 
reduce dependence on individuals and accurately gauge generalization. 
In LOSO, each subject’s samples serve as the test set while others form 
the training set, with metrics averaged across test sets. The evaluation 
metrics include accuracy (Acc) for correct classification, unweighted 
average recall (UAR), and unweighted F1 score (UF1). They are calcu-
lated as: 

Acc =
ΣK

i=1TPi

M
(4) 

UAR =
1
K
∑K

i=1

TPi

Mi
(5) 

UF1 =
1
K
∑K

i=1

2T⋅Pi

2⋅TPi + FPi + FNi
(6) 

where K represents the number of micro-expression categories, Mi de-
notes the total number of samples belong to the i-th micro-expression 
category, M represents the total number of all samples. TPi represents 
the number of true positive samples, FPi represents the number of false 
positive samples, and FNi represents the number of false negative sam-
ples for the i-th class.

4.3. Implementation details

Since CASME II and MMEW provide preprocessed facial data, facial 
alignment and cropping were only performed on the SMIC and SAMM 
datasets. The data preprocessing involves cropping facial keypoints 
using the Dlib algorithm [32] and the template face coordinates from 
Openface [33]. The input data for the model consists of RGB frame se-
quences, with T frames set to 8, and frame height H and width W both set 
to 224. The hyperparameter C is set to 128. The weight vector w is 
calculated according to the formula wi = M/(K⋅Mi) on the SAMM data-
set. In other datasets, w defaults to a vector of all ones.

The model is trained from scratch using AdamW [34] as the opti-
mizer. The learning rate is linearly warmed up to 5e-5 for the first 15 
epochs, followed by cosine decay for the next 45 epochs. The total 
number of epochs is 60, with a batch size of 4. The online data 
augmentation includes horizontal flipping, random cropping, and 
random rotation ( − 4∘, + 4∘).

All experiments in this work were conducted on Ubuntu 22.04, with 
a GPU environment consisting of one GeForce GTX 1080 Ti. The deep 
learning framework used is PyTorch 1.12.

4.4. Model summary

Summary of our proposed EDMDBN model is shown in Table 4. The 
model has 50.8 million parameters, which is fewer than conventional 
Transformer-based image classifier like ViT-Base [21] and has lower 
computational complexity. In the GPU environment used in this study, 
the inference speed is 8.20 ms per video, approximately 975 frames per 
second (fps), which can meet the real-time processing requirements for 
most videos. Overall, our model achieves a good balance between 
parameter count and inference speed, making it suitable for applications 
that require real-time performance.

4.5. Comparison of with other methods

As shown in Table 2, experiments were conducted on the SMIC–HS, 
CASME II, and SAMM datasets, and our method achieves state-of-the-art 
results. On the SMIC–HS dataset, our method demonstrates 

improvements of 3.73 % and 2.4 % in ACC and UF1 indicators, respec-
tively, over the second-best method AMAN [37]. On the CASME II 
dataset, our method shows improvements of 6.37 % and 2.91 % in Acc 
and UF1 indicators, respectively, compared to the second-best method 
MERSiamC3D [12]. On the SAMM dataset, our method exhibits im-
provements of 7.32 % and 5.28 % in Acc and UF1, respectively, 
compared to the second-best method AUGCN [36].

The composite dataset is the union of the three-classification datasets 
SMIC–HS, CASME II, and SAMM. As shown in Table 3, our method 
achieves the best performance on the composite dataset, as well as on 
each individual dataset, demonstrating the effectiveness of our method. 
Specifically, compared to the performance of TACL [38] on the com-
posite dataset, our method shows improvements of 4.52 % and 8.42 % in 
terms of UF1 and UAR, respectively. This highlights the robustness and 
generalization capability of our method across different 
micro-expression recognition datasets.

Due to that the MMEW micro-expression dataset was released very 
recently, few studies have reported the results for both three and five 
classifications simultaneously. As shown in Table 5, our method ach-
ieves the Acc and UF1 of 92.70 % and 0.9216 respectively in the three- 
classification experiments. In the five-classification experiments, 
compared to Micro-ExpMultNet [42], our method exhibits slightly lower 
Acc and UF1 by 1.26 % and 2.9 %, respectively. Nevertheless, it should 
be noted that our method does not require computing optical flow se-
quences, making it more efficient than Micro-ExpMultNet [42].

4.6. Ablation & comparative experiments

Ablation experiments on the entire and detail branch. As shown 
in Table 6, we conducted three-classification experiments on the com-
posite dataset and five-classification experiments on the CASME II and 
SAMM datasets for the ablation study. In the three-classification sce-
nario, the fusion effect of the two branches, as indicated by the UF1 
metric, is superior to that of the detail-motion branch, albeit slightly 
inferior to the entire motion branch. In the five-classification scenario, 
both the UF1 and Acc metrics demonstrate that the effect of using both 
entire and detail motion branches surpasses that of using single 
branches, with the advantages being more pronounced. From the 
perspective of the improved metrics, it can be seen that our model is 
more suitable for scenarios requiring fine-grained classification.

Ablation experiments on Token Attention module. Three- 
classification experiments were performed on the composite dataset, 
and five classification experiments were carried out on the CASME II and 
SAMM datasets, as presented in Table 8. According to the experimental 
results, the Swin-T model with accumulated attention demonstrates 

Table 2 
Comparison on individual datasets.

Methods SMIC–HS (3 
classes)

CASMEII (5 
classes)

SAMM (5 classes)

Acc 
(%)

UF1 Acc 
(%)

UF1 Acc 
(%)

UF1

MERSiamC3D 
(2021) [12]

73.56 0.7598 81.89 0.8300 68.75 0.6400

GEME (2021) [35] 64.63 0.6158 75.20 0.7354 55.88 0.4538
AUGCN (2021) 

[36]
N/A N/A 74.27 0.7047 74.26 0.7045

SLSTT-LSTM 
(2022) [11]

75.00 0.7400 75.81 0.7530 72.39 0.6400

AMAN (2022) 
[37]

79.87 0.7708 75.40 0.7125 68.85 0.6682

TACL (2023) [38] 75.61 0.7584 76.30 0.7366 68.38 0.5436
FRL-DGT (2023) 

[39]
N/A N/A 75.70 0.7480 N/A N/A

EDMDBN (ours) 83.60 0.7948 88.26 0.8591 81.58 0.7573

*Data in bold indicates best results, underlines indicate next best results, and N/ 
A indicates no reported results.
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superior performance compared to the baseline Swin-T model. The 
accumulated attention brought by the Token Attention Module enables 
the model to effectively capture relevant spatial information, enhancing 
its ability to extract discriminative features from the input, thereby 
improving classification accuracy.

Comparative experiments on feature fusion. The results presented 
in Table 9 demonstrate that feature addition yields better results 
compared to feature concatenation in our three-classification experi-
ments on the composite dataset, and five-classification experiments on 
CASME II and SAMM datasets. Moreover, this effect is more pronounced 
in the five-classification process.

Comparative experiments on Feature vs. Pixel Subtraction. As 
shown in Table 7, we conducted three-classification experiments on the 
composite dataset and five-classification experiments on the CASME II 
and SAMM datasets. The experimental results indicated that directly 
using pixel subtraction for motion feature extraction yields better results 
than using feature subtraction. We think the reasons are as follows. On 
the one hand, the convolution operation in the feature extraction pro-
cess may lead to subtle and local changes being blurred or overlooked, 
thereby reducing sensitivity to micro-expression motion. On the other 
hand, the data used in the current micro-expression experiments were 

collected in a controlled laboratory environment, with strict lighting and 
a uniform background, which makes it easier to detect and represent 
micro-expression actions at the pixel level.

4.7. Analysis and discussion

As depicted in Fig. 5, we present the confusion matrices for both 
composite dataset and individual datasets. Overall, it can be observed 
that our model demonstrates high consistency in performing category- 
based micro-expression recognition.

It can be seen from the confusion matrix shown in Fig. 5(a) that our 
model achieves recognition accuracies of 82 % or above for all the three 
categories on the composite dataset. Considering the confusion matrix 
illustrated in Fig. 5(b), our model attains a recognition accuracy of 93 % 
for Surprise on the CASME II dataset. However, Repression tends to be 
misclassified, indicating potentially low discriminative features. 

Table 3 
Comparison with other state-of-the-art methods on the three-classification composite dataset.

Methods Composite SMIC–HS CASME II SAMM

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

MERSiamC3D (2021) [12] 0.8068 0.7986 0.7356 0.7598 0.8818 0.8763 0.7475 0.7280
GEME (2021) [35] 0.7221 0.7303 0.6038 0.6087 0.8831 0.8790 0.5843 0.5455
AUGCN (2021) [36] 0.7914 0.7933 0.7192 0.7215 0.8798 0.8710 0.7751 0.7890
SLSTT-LSTM (2022) [11] 0.8160 0.7900 0.7400 0.7200 0.9010 0.8850 0.7150 0.6430
FeatRef (2022) [40] 0.7838 0.7832 0.7011 0.7083 0.8915 0.8873 0.7372 0.7155
TACL (2023) [38] 0.8369 0.8092 0.7739 0.7584 0.9370 0.9271 0.7919 0.7404
FRL-DGT (2023) [39] 0.8120 0.8110 0.7430 0.7490 0.9190 0.9030 0.7720 0.7580
EDMDBN (ours) 0.8821 0.8933 0.7948 0.8085 0.9484 0.9619 0.8336 0.8661

*Data in bold indicates best results, and underlines indicate next best results.

Table 4 
Summary of the proposed EDMDBN model.

Parameter Count Model Size Computational Complexity Inference Speed1

50.8 M 101.64 MB 13.2 G FLOPs 8.20 ms/video

1 Inference Speed is calculated in the GPU environment of this experiment, 
averaging over 1000 preprocessed video (8 RGB frames, 224×224 pixels.).

Table 5 
Three-classification and five-classification experiments on the MMEW dataset.

Methods Three classifications Five classifications

Acc (%) UF1 Acc (%) UF1

Micro-ExpMultNet (2022) [42] N/A N/A 82.97 0.8086
LD-FMEN (2023) [41] 88.23 0.8787 N/A N/A
EDMDBN (ours) 92.70 0.9216 81.71 0.7796

Table 6 
Ablation experiments on the entire and detail branch.

Methods Composite (3 
classes)

CASME II (5 
classes)

SAMM (5 classes)

Acc 
(%)

UF1 Acc 
(%)

UF1 Acc 
(%)

UF1

Only entire 
branch

90.86 0.8839 82.98 0.8107 77.96 0.7381

Only detail 
branch

88.89 0.8705 86.26 0.8421 76.89 0.6837

Both 91.03 0.8821 88.26 0.8591 81.58 0.7573

Table 7 
Comparative experiments on Feature vs. Pixel Subtraction.

Methods Composite (3 
classes)

CASME II (5 
classes)

SAMM (5 classes)

Acc 
(%)

UF1 Acc 
(%)

UF1 Acc 
(%)

UF1

Feature 
subtraction1

87.84 0.8508 79.72 0.7469 0.7665 0.6999

Pixel 
Subtraction

91.03 0.8821 88.26 0.8591 0.8158 0.7573

1 An additional learnable ResNet block is added before the dual-branch 
network to extract features frame by frame, while the rest remains unchanged.

Table 8 
Ablation experiments on Token Attention module.

Methods Composite (3 
classes)

CASME II (5 
classes)

SAMM (5 classes)

Acc (%) UF1 Acc (%) UF1 Acc (%) UF1

Swin-T 90.74 0.8750 85.51 0.8231 0.8028 0.7279
Swin-T with 

AA
91.03 0.8821 88.26 0.8591 0.8158 0.7573

Table 9 
Comparative experiments on feature fusion.

Methods Composite (3 
classes)

CASME II (5 
classes)

SAMM (5 classes)

Acc 
(%)

UF1 Acc 
(%)

UF1 Acc 
(%)

UF1

Feature 
concatenation

89.50 0.8777 84.56 0.8116 77.90 0.7264

Feature addition 91.03 0.8821 88.26 0.8591 81.58 0.7573
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Regarding the confusion matrix shown in Fig. 5(c) and Fig. 5(d), the 
SAMM dataset exhibits significant class imbalance, with nearly a four-
fold difference in sample counts between two classes. Consequently, we 
employed a weighting strategy to enhance the loss function, and the 
recognition accuracies of Happiness and Contempt witness notable in-
creases by 39 % and 25 %, respectively.

To further explain our model, we use Grad-CAM to visualize the 
attention map. Grad-CAM is a gradient-based visual explanation 

technique that effectively highlights attention regions in deep neural 
networks, elucidating the model’s predictive basis for specific cate-
gories. The heatmaps generated by Grad-CAM help us understand which 
facial regions are more attended to for specific categories of micro- 
expressions.

As illustrated in Fig. 6, on the CASME II dataset, different facial re-
gions are activated during specific micro-expressions. For instance, 
when the micro-expression Happiness occurs, we observe activation in 

Fig. 5. Confusion matrices on composite and single datasets.

Fig. 6. Visualization of the attention maps of samples from different categories of the datasets.
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the corners of the mouth (AU 12, mouth stretch) and cheeks (AU14, 
cheek raise). Conversely, during the occurrence of the micro-expression 
Surprise, the activation is prominent in the eyebrows (AU1 AU2, 
eyebrow raise) region. Similarly, for the micro-expression Disgust, the 
activation mainly occurs in the eyebrows (AU4, eyebrow lower) area, 
while for the micro-expression Repression, the chin (AU17, chin raise) 
region is activated. On the other hand, similar observations can be made 
for the SAMM dataset. For example, the micro-expression Happiness 
primarily activates the mouth corners (AU12, mouth stretch). 
Conversely, the micro-expression Surprise prompts activations in both 
the eyelids (AU5, eyelid raise) and mouth (AU 27, mouth open) regions. 
Furthermore, the micro-expression Contempt is characterized by acti-
vations in the mouth corners (AU12 L, left mouth stretch) and chin 
(AU17, chin raise). Lastly, the micro-expression Anger elicits activations 
in both the eyebrows (AU4, eyebrow lower) and eyelids (AU6, eyelid 
tighten) regions. The visualization of the attention maps further dem-
onstrates the reliability of our proposed model.

5. Conclusions

In this study, based on the analysis of the characteristics of entire and 
detail motions in micro-expressions, we introduce a dual-branch 
network, named EDMDBN, for micro-expression recognition. Addition-
ally, to better focus on the ROIs of micro-expressions, we propose 
incorporating the accumulated attention Swin-Transformer module to 
improve the model’s capability in extracting micro-expression motion 
features. Experimental results on four micro-expression datasets, 
namely SMIC, CASME II, SAMM, and MMEW, showcase the superiority 
of our approach compared to state-of-the-art methods.

In our future work, we intend to introduce some contrastive learning 
methods to enhance the model’s discrimination capability for those 
easily confused categories. Additionally, pixel differences are highly 
sensitive to factors such as noise and lighting changes, which may lead 
to unstable motion feature extraction. In practical applications, it is 
necessary to increase the model’s robustness to noise and lighting 
changes through data augmentation techniques and adversarial training 
methods.
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