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Abstract

Recommender systems are increasingly spread-
ing to different areas like e-commerce or video
streaming to alleviate information overload. One
of the most fundamental methods for recommen-
dation is Collaborative Filtering (CF), which lever-
ages historical user-item interactions to infer user
preferences. In recent years, Graph Neural Net-
works (GNNs) have been extensively studied to
capture graph structures in CF tasks. Despite
this remarkable progress, local structure model-
ing and embedding distortion still remain two
notable limitations in the majority of GNN-based
CF methods. Therefore, in this paper, we propose
a novel Hyperbolic Graph Transformer architec-
ture, to tackle the long-tail problems in CF tasks.
Specifically, the proposed framework is com-
prised of two essential modules: 1) Local Hyper-
bolic Graph Convolutional Network (LHGCN),
which performs graph convolution entirely in the
hyperbolic manifold and captures the local struc-
ture of each node; 2) Hyperbolic Transformer,
which is comprised of hyperbolic cross-attention
mechanisms to capture global information. Fur-
thermore, to enable its feasibility on large-scale
data, we introduce an unbiased approximation of
the cross-attention for linear computational com-
plexity, with a theoretical guarantee in approx-
imation errors. Empirical experiments demon-
strate that our proposed model outperforms the
leading collaborative filtering methods and signif-
icantly mitigates the long-tail issue in CF tasks.
Our implementations are available in https:
//github.com/EnkiXin/Hgformer.
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Figure 1. This figure highlights two key challenges that traditional
GNNs often face when dealing with long-tail items. The first one
is the message-passing paradigm in local neighborhoods, which
prevents the model from transferring information from less popular
items to most users, leading to poor recommendations for these
items. The second one is that the embeddings in Euclidean space
may fail to capture the long distance in graphs, and will lead to
serious information distortion in graph structure.

1. Introduction
Recommender systems have become an indispensable part
of our daily life, serving as fundamental tools for person-
alized information filtering and prioritization (Cheng et al.,
2016; Davidson et al., 2010; Gong et al., 2020; Min et al.,
2025; Xihong et al., 2025; Yang et al., 2025). The core of
a recommender system is to predict whether a user will en-
gage with an item, such as by clicking, rating, or purchasing
it. In this context, Collaborative Filtering (CF) (Rendle et al.,
2012; Xue et al., 2017; Zheng et al., 2018; He et al., 2020),
which leverages past interactions between users and items to
make these predictions, remains an essential component to
deliver effective personalized recommendations. The inter-
action patterns between users and items in CF tasks naturally
form a graph structure, motivating researchers to investigate
the use of Graph Neural Networks (GNNs) (He et al., 2020;
Wang et al., 2019a; Sun et al., 2021), which has proven
significant advantages in modeling graph structures(Kipf &
Welling, 2016; Hamilton et al., 2017).

Despite the significant attention and fruitful outcomes in
this field, most existing GNNs normally assume that the
degree of each node is balanced. However, data in the realm
of recommender systems generally exhibit a long-tail dis-
tribution (Park & Tuzhilin, 2008; Park, 2012; Yin et al.,
2012; Zhao et al., 2023): a small portion of items are highly
popular with numerous users, whereas most other items
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attract relatively few users. Recent studies have also shown
that GNNs-based methods perform well in recommending
popular items (head items), but often struggle to perform as
effectively with less popular items (tail items) (Sun et al.,
2021; Yang et al., 2022a). This issue primarily arises from
two factors, which are described in Fig. 1: i) Local struc-
ture modeling: GNN-based models normally follow the
neighborhood aggregation scheme and tend to be biased
towards nodes with high degree (Liu et al., 2023). More pre-
cisely, in the task of CF, head items that are interacted with
by many users typically have higher-quality representations,
while the vast majority of tail nodes with few interactions
are likely to be underrepresented (Yun et al., 2022). Sev-
eral GNN frameworks have been proposed to mitigate these
degree biases by introducing designated architectures or
training strategies specifically for low-degree nodes (Sun
et al., 2021; Yun et al., 2022; Zhao et al., 2023), but they still
fail to capture the global information as transformers (Ying
et al., 2021; Wu et al., 2022; 2023; 2024) and thus achieve
sub-optimal results. ii) Embedding distortion: Most exist-
ing methods encode items and users into Euclidean space
(Wang et al., 2019a; He et al., 2020), which is a flat geometry
with a polynomial expanding capacity. Data with the long-
tail distribution can be traced back to hierarchical structures
(Ravasz & Barabási, 2003), whose number of neighbors
increases exponentially. As a result, encoding these data via
Euclidean space naturally incurs information loss and could
subsequently deteriorate the performance of downstream
tasks. In contrast, hyperbolic manifold, a non-Euclidean
space characterized by constant negative curvature, allows
the space to expand exponentially with the radius, making
it particularly well-suited for representing tree-like or hier-
archical structures (Chami et al., 2019; Ganea et al., 2018).
For this reason, in recent years, significant advances have
been made in hyperbolic neural networks to better handle
the problem of long-tail distribution (Chami et al., 2019;
Zhang & Wu, 2023; Yue et al., 2023).
So far, most research in recommender systems has focused
on addressing either one of the two problems but has not
managed to tackle both simultaneously. Inspired by the
successful application of Graph Transformers in graph and
node classification tasks (Ying et al., 2021; Wu et al., 2022;
2024; Yang et al., 2024a), this study proposes a novel Graph
Transformer architecture in the hyperbolic manifold for Col-
laborative Filtering. Although the idea of extending Graph
Transformers to hyperbolic space for recommendations is
intriguing, it poses several challenges that must be over-
come:

• No well-defined parameter-free graph convolution
in hyperbolic space. Parameter-free message-passing
paradigms such as LightGCN (He et al., 2020) have shown
superior advantages in CF, however, most existing hyper-
bolic variants of LightGCN, such as HGCF, HRCF, and

HICF (Sun et al., 2021; Yang et al., 2022b;a) require to
first project embeddings in the hyperbolic manifold back to
the tangent space for subsequent graph convolution, which
causes information loss and limits their performance.

• No well-defined hyperbolic self-attention mechanism
for collaborative filtering. Although there are currently
some definitions of hyperbolic attention (Zhang et al., 2021a;
Yang et al., 2024a), in the field of Collaborative Filtering,
the user-item interaction structure is represented as a bi-
partite graph, existing methodologies are inadequate, and
hyperbolic self-attention mechanism tailored for CF tasks
has not yet been investigated.

• Scalability issue of hyperbolic self-attention mecha-
nism. In recommender systems, real-world graphs are often
large-scale, which poses a significant challenge in efficiency
when applying transformer architectures with quadratic time
complexity. Although many studies have tackled the scal-
ability problem of graph transformers in Euclidean space
(Wu et al., 2022; 2023; 2024), the solution for linear com-
putational complexity of hyperbolic self-attention is still
under-explored.

To solve these challenges, we propose a new Hyperbolic
Graph Transformer framework called Hgformer. For the
first challenge, we propose the Light Hyperbolic Graph
Convolutional Network (LHGCN), which performs graph
convolution entirely in the hyperbolic manifold. For the sec-
ond challenge, we propose a novel hyperbolic transformer
architecture tailored for CF tasks, which consists of a cross-
attention layer and a hyperbolic normalization layer; For
the last challenge, we propose an unbiased approximation
approach to reduce the computational complexity of hyper-
bolic self-attention to the linear level. Numerical experi-
ments show that our proposed model performs better than
the leading CF models and remarkably mitigates the long-
tail issue in CF tasks. We summarize our contributions as
follows:

• We propose a novel graph convolution method,
LHGCN, which removes the feature transformation
and non-linear activation functions from HGCNs and
ensures that the entire message passing can be per-
formed fully in hyperbolic manifold without mapping
back to Euclidean space.

• We propose a hyperbolic graph transformer framework
for CF tasks, which can simultaneously address the
challenges of local structure modeling and embedding
distortion.

• We propose a kernel function approximation method
in hyperbolic space, which reduces the computational
complexity of hyperbolic self-attention to a linear scale
and we theoretically prove that the approximation error
remains within a controllable range.
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• The numerical experiments show our proposed method
is superior to leading CF models. Moreover, compared
with traditional hyperbolic graph neural network meth-
ods, our approach can further enhance the model’s
performance on long-tail items.

2. Methods
In this section, we will elaborate on our proposed method.
All the notations of this paper are summerized in Ap-
pendix 2. We formally define our tasks as follows: In-
put: The interaction graph of users and items G =
(Vu,Vi, E), E ⊆ Vu × Vi. Output: A learned function
F = (u, i|G,Θ), where u ∈ Vu, i ∈ Vi and Θ denote the
model parameters.

As is shown in Fig. 2(a), in our framework, we first map the
users and items into embedding space according to their IDs
and use an exponential map to project the embeddings into
hyperbolic space. To capture the local structure of nodes
in the user-item interaction graph, we design a Light Hy-
perbolic Graph Convolutional Network (LHGCN) and to
capture the global structure of the entire interaction graph,
we propose a novel hyperbolic transformer, which is com-
posed of a hyperbolic cross-attention mechanism with linear
computation complexity and a hyperbolic normalization
layer(Bdeir et al., 2023). In the final step, we aggregate the
local structure information and the global information from
both perspectives for prediction, optimized by a hyperbolic
margin-ranking loss.

2.1. Hyperbolic Embedding

We first encode each user and item into the embedding
space, which is denoted as uE = [uE

1 ; . . . ;u
E
N ] and i =

[iE1 ; . . . ; i
E
M ], where the superscript E means Euclidean

space, N and M means the number of users and items.
Then, we use an exponential map to project the embeddings
into the hyperbolic space:

uH
k = ExpKo ((0,uE

k)), iHk = ExpKo ((0, iEk)).

For the detailed definition of the exponential map, see Defi-
nition B.6 in Appendix B. Since in the subsequent sections,
we will only use the embeddings within the hyperbolic man-
ifold, for convenience and to avoid confusion, we ignore the
superscript H and simply denote the embeddings of users
and items in the hyperbolic manifold as u = [u1; . . . ;uN ]
and i = [i1; . . . ; iM ].

2.2. LHGCN: Light Hyperbolic Graph Convolutional
Networks

In CF tasks, each node (user or item) is represented by a
unique ID, which lacks concrete semantics beyond being
an identifier. In such scenarios, LightGCN (He et al., 2020)
empirically demonstrated that performing multiple layers
of nonlinear feature transformation does not provide ben-

efits and increases the difficulty of model training. There-
fore, removing nonlinear feature transformation from GCNs
is a well-accepted approach in CF. To perform message-
passing in hyperbolic space, a straightforward solution is
to first project embeddings in the hyperbolic manifold back
to the tangent space at the north pole point, performing
parameter-free graph convolution, and then map them back
to the hyperbolic manifold (Sun et al., 2021; Yang et al.,
2022b;a). However, since the tangent space at the north
pole point is merely a local approximation of the north pole
point (Boumal, 2023) this can cause a certain degree of infor-
mation loss. For this sake, we design a simple yet efficient
graph convolution method tailed for CF called LHGCN.
Similar to HGCF (Sun et al., 2021) and LightGCN (He et al.,
2020), LHGCN does not have trainable parameters and all
computations are performed entirely on the hyperbolic man-
ifold, eliminating the need for transformations between the
hyperbolic manifold and Euclidean space. Specifically, we
adopted hyperbolic centroid to aggregate the messages of
neighbors:

ui
(l+1) = Centroid({ui

(l), {ik(l) : k ∈ Ni}}),

ij
(l+1) = Centroid({ij(l), {uk

(l) : k ∈ Nj}}),

where Ni denotes the neighbors of node i. For a detailed
definition of the hyperbolic centroid, see Definition B.7 in
Appendix B.

Then the outputs of LHGCN are

ulocal = u(L) and ilocal = i(L),

where L denotes the number of layers of LHGCN.

2.3. Hyperbolic Transformer Model

In this section, to address LHGCN’s limitations in capturing
the global information of the interaction graph and taking
into account the unique structure of the bipartite graph in
CF, we design a novel hyperbolic cross-attention mechanism
for modeling global user-item interactions. Furthermore,
since this cross-attention requires operating on all user-item
pairs, with computational complexity O(M ·N), we propose
an approximation approach to reduce the computational
complexity to O(M +N).

2.3.1. HYPERBOLIC CROSS-ATTENTION

In CF tasks, there are only interactions between the user set
and the item set, which form a bipartite graph. Intuitively,
modeling the inner interactions among user groups or item
groups would introduce noisy signals and thus deteriorate
the performance (Min et al., 2022). For this reason, we
introduce a cross-attention mechanism to model only all
possible user-item interactions, as detailed in the structure
presented in Fig. 2(c). Taking the i-th user vector as an
example, firstly, the correlation between the i-th user vector
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(a) Overall architecture of Hgformer

(b) Difference between HGCF and LHGCN
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Figure 2. Figure(a) shows the overall architecture of Hgformer. We first map the user and item embeddings into a hyperbolic manifold.
Then, we use several layers of LHGCN to capture the local information of the interaction graph and use a hyperbolic transformer to capture
the overall information of the interaction graph. Finally, we combine these two information and make predictions on the hyperbolic
manifold. Figure (b) shows the difference between HGCF and LHGCN in graph convolution. In HGCF, embeddings are mapped from the
hyperbolic manifold to the North Pole point’s tangent space for aggregation, then back to the hyperbolic manifold, causing information
distortion due to the local approximation. LHGCN, on the other hand, aggregates information directly in the hyperbolic manifold. Figure
(c) shows the process of hyperbolic cross-attention. Unlike GNN-based models that only consider items a user has interacted with,
Hyperbolic Cross-Attention takes both the interacted and non-interacted items into account.

(i ∈ {1, . . . , N}) and the j-th item vector (j ∈ {1, . . . ,M})
under a specific attention head h is defined as:

w
(h)
i,j =

exp
(
Sim(q

(h)
i ,k

(h)
j )/τ

)
∑M

l=1 exp
(
Sim(q

(h)
i ,k

(h)
l )/τ

) , (1)

where q
(h)
i = W

(h)
Q ⊗K ui, k

(h)
i = W

(h)
K ⊗K ii and ⊗K

denotes hyperbolic matrix multiplication, which is defined
in Definition B.8 in Appendix B. τ is the temperature pa-
rameter. Sim(·, ·) is a function to calculate the similarity of
two vectors in the hyperbolic manifold, and it was generally
defined as:

Sim(x,y) = f(−c1d
K
M(x,y) + c2), (2)

where f(·) is a monotonically increasing function, such as
exponential maps, linear functions, tanh, sigmoid, etc. and
dKM(·, ·) is the distance function in hyperbolic manifold,
which is detailed in Definition B.5 in Appendix B. Then, the
representation of the i-th user is updated by aggregating all
item embeddings with weights αi,j :

û
(h)
i =

M∑
j=1

w
(h)
i,j v

(h)
j , (3)

where v
(h)
j = W

(h)
V ⊗K ij .

To ensure that the embedding stays in the hyperbolic mani-
fold, we need an extra coefficient c to scale the embedding,

u
′(h)
i = cû

(h)
i , (4)

where c = K

| ||û(h)
i ||M|

and K is the curvature of the hyper-

bolic manifold. After that, we aggregate the embeddings
of different heads by the hyperbolic centroid defined in
Definition. B.7 in Appendix B:

uglobal
i = Centroid(u

′(1)
i ; . . . ;u

′(h)
i ). (5)

We calculate all item embeddings iglobalj , j ∈ {1, . . . ,M}
in the same way.

For all the embeddings x = [uglobal, iglobal]. Finally, for
numerical stability, we adopted the definition of Hyperbolic
Normalization from (Bdeir et al., 2023) and applied it to
normalize the final embeddings x:

HN(x) = expKβ

PTK
o→β

γ ·
PTK

µ→0

(
logKµ (x)

)
√
σ2 + ϵ

 ,

(6)
where µ = Centroid(x), which is Centroid of x in hy-
perbolic manifold and σ2 = 1

M+N

∑M+N
i=1 (dKM(xi, µ))

2,
which is the variance in hyperbolic space, β and ϵ are train-
able vectors and PTK

o→β(·) means the parallel transport from
the point o to point β, which is detailed in Definition.B.9 in
Appendix B.

2.3.2. TOWARDS LINEAR COMPLEXITY

In this section, we introduce the hyperbolic self-attention
with only linear computational complexity. Although the
above Hyperbolic cross-attention mechanism can model the
global interactions between all users and items, its quadratic
time complexity prevents its application in real-world sce-
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narios when there are numerous users or items. To en-
able the application of Hyperbolic Transformers to larger
datasets, as Fig. 3 shown, the previous complexity of the
similarity matrix of hyperbolic vectors is reduced to only
O((M +N)md) by our mechanism, where the dimensions
m and d are much smaller than M and N .

Since the most computationally intensive part of the model
is Eq. 3, in this section, our goal is to reduce the compu-
tational complexity of Eq. 3 to linear. Firstly, we rede-
fined Eq. 2. Since K > 0, arcosh(·) is a monotonically
increasing function, both

(
−dKM(·, ·)

)
and the Minkowski

inner product ⟨·, ·⟩M could be used to compare the similar-
ity between different vectors in hyperbolic space. Then
for x,y ∈ Hd+1, we redefine the similarity function
Sim(·, ·) as the Hyperbolic SoftMax similarity function,
HSM(·, ·) : Hd+1,K ×Hd+1,K → R:

HSM(x,y) ≜ exp (⟨x,y⟩M)

then Eq. 3 is redefined as:

û
(h)
i =

M∑
n=1

exp
(〈

q
(h)
i ,k

(h)
j

〉
M

/τ
)

∑M
l=1 exp

(〈
q
(h)
i ,k

(h)
l

〉
M

/τ
) · v(h)

n , (7)

where q
(h)
i , k(h)

i and v
(h)
i follows the settings of Eq. 1.

Then, we use an estimation κ̃(q
(h)
i ,k

(h)
j ) to approximate

exp
(〈

q
(h)
i ,k

(h)
j

〉
M

)
in Eq. 7 and we introduce Theorem

4.1, which proves that the aforementioned estimation is an
unbiased estimation.

Theorem 3.1. For x,y ∈ Hd+1,K , with x =
(x0, x1, · · · , xd)

⊤, y = (y0, y1, · · · , yd)⊤, and x̃ =
(x1, x2, · · · , xd)

⊤, ỹ = (y1, y2, · · · , yd)⊤, we have an esti-
mation function κ̃(·, ·) : Hd+1,K ×Hd+1,K → R:

κ̃(x,y) = exp

(
−(x0 + y0)

2 + 2K

2

)
· Eω∼N (0d,Id)

[
exp(ω⊤(x̃+ ỹ))

]
, (8)

where ω ∼ N (0d, Id) ,κ̃(·, ·) is an unbiased estimation of
the HSM function:

κ̃(x,y) = HSM(x,y). (9)

The proof of this theorem is given in Appendix C.1.

Then, such an unbiased estimation function (Eq. 8) can be
converted into a dot product of vector functions approxi-
mately; the method of converting it is akin to kernel tricks
shown as the following lemma:

Lemma 3.1. Define the hyperbolic positive random features
ϕ(·) : Hd+1,K → Rm :

ϕ(x) =
exp

(
K−x2

0

2

)
√
m

[
exp

(
ω⊤

1 x̃
)
, · · · , exp

(
ω⊤

mx̃
)]
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Figure 3. This figure shows how we reduce the complexity of hy-
perbolic graph transformers to linear. We first use ϕ to transform
the similarity matrix into the multiplication of two smaller matrices
and then, we change the order of computation order to reduce the
computation complexity.

where ωk ∼ N (0d, Id) is i.i.d., m is a constant that could
be chosen smaller than d. Then, we have:

ϕ(x)⊤ϕ(y) ≈ κ̃(x,y) = HSM(x,y). (10)

The proof of this Lemma is given in Appendix C.2. We
adopted a positive random feature map ϕ(·) : Hd+1,K →
Rm to approximate HSM function:

HSM(x,y)/τ ≈ ϕ(
x√
τ
)⊤ϕ(

y√
τ
)) (11)

Eq. 11 is proved in Lemma 4.2 and for x ∈ Hd+1,K , x =
(x0, x1 · · ·xd)

⊤, x̃ = (x1, x2 · · ·xd)
⊤, the explicit form of

positive random feature map with temperature parameter τ
is defined as:

ϕ(
x√
τ
) =

exp
(

K−x2
0

2τ

)
√
m

[
exp

(
ω⊤

1 x̃√
τ

)
, · · · , exp

(
ω⊤

mx̃√
τ

)]
.

Then, we can change the computation order and extract
common factors by using Eq. 10 to convert the HSM func-
tion into the dot product of two feature functions. Then
the approximating aggregation function Eq. 12 only has
linear complexity and the process is visualized in Fig. 3.
Subsequently, the final form of the aggregation function is
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proposed as follows:

û
(h)
i ≈

M∑
j=1

ϕ (qi/
√
τ)

⊤
ϕ (kj/

√
τ)∑M

n=1 ϕ (qi/
√
τ)

⊤
ϕ (kn/

√
τ)

· vj

=
ϕ (qi/

√
τ)

⊤∑M
j=1 ϕ (kj/

√
τ) · (vj)

⊤

ϕ (qi/
√
τ)

⊤∑M
k=1 ϕ (kn/

√
τ)

.

(12)

The error of approximation is bounded and we have:

Theorem 3.2: The error function of approximation

∆ =
∣∣HSM(x,y)− ϕ(x)⊤ϕ(y)

∣∣
is bounded by O

(√
exp(3(δ−K))

mϵ

)
with the probability

that:

1− ϵ ⩽ P(∆ ⩽

√
exp(3(δ −K))

mϵ
) (13)

assuming that ∥x∥2E ≤ δ ,∥y∥2E ≤ δ for x,y ∈ Hd+1,K .
The proof is given in Appendix C.3.

Since the upper bound of the error function depends only
on the Euclidean norm δ, the curvature constant K, the
number of positive random features m, and the demanding
error accuracy ϵ, we can reduce the error by normalizing the
vectors and process them in a suitable hyperbolic space, or
increase m.

2.4. Embedding Aggregation and Optimization

Embedding Aggregation. To aggregate both structural
and global information, we map the embeddings back to
Euclidean space using the Log function, and then perform a
weighted average:

ufinal = ExpKo (αLogKo (uglobal) + (1− α) LogKo (ulocal))

ifinal = ExpKo (αLogKo (iglobal) + (1− α) LogKo (ilocal))
(14)

where α is a hyperparameter between 0 and 1.

Prediction. Margin ranking loss has been extensively used
in recommendation tasks (Sun et al., 2021), which separates
positive and negative pairs of user items by a given margin.
When the gap between a negative and a positive user-item
pair exceeds this margin, neither pair contributes to the
overall loss, enabling the optimization process to focus on
the difficult pairs in the data set. In this work, we use the
hyperbolic version of margin-ranking loss as prediction loss.
The prediction loss is defined as:

L(ufinal, ifinalneg , ifinalpos ) = max

(
dM(ufinal, ifinalpos )2

−dM(ufinal, ifinalneg )2 + λ, 0

)
,

where λ is a non-negative hyperparameter. ifinalpos are the
embeddings of the positive samples of this user and ifinalneg

are the embeddings of negative samples of this user in the
same hyperbolic manifold. Positive samples refer to the
items that the user has interacted with, while negative sam-
ples refer to randomly sampled items that the user has not
interacted with.

3. Experiments
In this section, we conduct extensive experiments on mul-
tiple public datasets to evaluate the proposed method and
primarily address the following questions.

RQ1: How does Hgformer performs compared to baselines?
RQ2: How does each module contributes to the perfor-

mance?
RQ3: Why does Hgformer perform better than other models?

To ensure accuracy and fairness in our experiments, all
the models were tested on RecBole (Zhao et al., 2021), a
widely accepted framework in the field of recommender
systems. The dataset was split into training, validation, and
test sets with an 8:1:1 ratio. During training, we adopted an
early-stop mechanism for all models, stopping training if
no improvement was observed on the validation set for 30
epochs and the best-performing parameters on the validation
set were selected for final evaluation on the test set. Due
to space limitations, the details of experimental settings
are provided in Appendix D, and tail-item analysis and
sensitivity analysis are detailed in Appendix E.

3.1. Overall Performance Comparison (RQ1)

We compared Hgformer with traditional models, GNN-
based models, hyperbolic GNN-based models, and graph
transformer-based models across five datasets of different
sizes in Table 1. We find the following observations:

1. Across all datasets, Hgformer demonstrates consistent
performance improvements. The improvements are par-
ticularly significant in the Amazon Book and Amazon
CD datasets. On the Amazon Book dataset, compared to
the second-best model, HICF, Hgformer achieves rela-
tive improvements of 17.6%, 18.9%, 18.1%, and 19.3%
in Recall@10, Recall@20, NDCG@10, and NDCG@20,
respectively. Similarly, on the Amazon CD dataset, the
relative improvements are 18.3%, 15.7%, 15.9%, and
16.9%, respectively.

2. It can be seen that all three hyperbolic GCN-based mod-
els show noticeable improvements over traditional GNN
models, demonstrating the advantages of hyperbolic
GCN in handling recommendation tasks. This is at-
tributed to the fact that the capacity of hyperbolic space
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Table 1. Overview of performance. N@10 and R@10 are abbreviations for the metrics NDCG@10 and Recall@10, respectively. *
represents the significance level p-value < 0.05. The highest scores for each dataset and metric are emphasized in bold, while the
second-best ones are underlined.
Dataset Metric BPR NGCF LightGCN HMLET HGCF HICF HRCF SGFormer NodeFormer Hypformer Hgformer

Amazon Book

Recall@10 0.0357 0.0427 0.0581 0.0347 0.0748 0.0766 0.0745 0.0545 0.0379 0.0376 0.0901*
Recall@20 0.0538 0.0676 0.0910 0.0553 0.1089 0.1086 0.1080 0.0841 0.0602 0.0605 0.1291*
NDCG@10 0.0218 0.0250 0.0344 0.0201 0.0467 0.0485 0.0466 0.0332 0.0222 0.0215 0.0573*
NDCG@20 0.0267 0.0317 0.0433 0.0256 0.0560 0.0571 0.0560 0.0412 0.0282 0.0277 0.0681*

Amazon CD

Recall@10 0.0473 0.0755 0.0770 0.0601 0.0797 0.0826 0.0824 0.0435 0.0454 0.0613 0.0977*
Recall@20 0.0726 0.1151 0.1174 0.0874 0.1184 0.1211 0.1176 0.0695 0.0710 0.0936 0.1401*
NDCG@10 0.0268 0.0426 0.0437 0.0351 0.0451 0.0489 0.0477 0.0242 0.0253 0.0340 0.0567*
NDCG@20 0.0334 0.0529 0.0542 0.0421 0.0552 0.0580 0.0577 0.0310 0.0319 0.0424 0.0678*

Amazon Movie

Recall@10 0.0585 0.0580 0.0702 0.0491 0.0740 0.0740 0.0761 0.0560 0.0338 0.0294 0.0803*
Recall@20 0.0929 0.0913 0.1106 0.0817 0.1110 0.1135 0.1157 0.0871 0.0575 0.0528 0.1203*
NDCG@10 0.0362 0.0351 0.0440 0.0293 0.0464 0.0465 0.0481 0.0343 0.0200 0.0150 0.0503*
NDCG@20 0.0455 0.0442 0.0549 0.0382 0.0566 0.0572 0.0589 0.0428 0.0265 0.0210 0.0612*

Douban Book

Recall@10 0.1059 0.1280 0.1313 0.0926 0.1375 0.1388 0.1357 0.0886 0.0777 0.0446 0.1462*
Recall@20 0.1588 0.1832 0.1906 0.1440 0.1935 0.1938 0.1892 0.1349 0.1225 0.0772 0.2052*
NDCG@10 0.0706 0.0864 0.0922 0.0630 0.0960 0.0968 0.0943 0.0610 0.0484 0.0289 0.1030*
NDCG@20 0.0850 0.1013 0.1078 0.0768 0.1113 0.1117 0.1091 0.0734 0.0610 0.0380 0.1189*

Douban Movie

Recall@10 0.0616 0.1373 0.1339 0.1178 0.1348 0.1370 0.1393 0.1259 0.1118 0.0678 0.1405*
Recall@20 0.0970 0.2042 0.1989 0.1802 0.1992 0.2034 0.2036 0.1877 0.1722 0.1106 0.2068*
NDCG@10 0.0676 0.1256 0.1326 0.1227 0.1248 0.1297 0.1342 0.1263 0.1002 0.0780 0.1322*
NDCG@20 0.0725 0.1389 0.1435 0.1325 0.1377 0.1424 0.1456 0.1364 0.1133 0.0845 0.1447*

Douban Music

Recall@10 0.1084 0.1229 0.1258 0.0916 0.1218 0.1276 0.1271 0.1071 0.0791 0.0313 0.1386*
Recall@20 0.1606 0.1803 0.1802 0.1418 0.1791 0.1843 0.1791 0.1599 0.1239 0.0531 0.1955*
NDCG@10 0.0783 0.0899 0.0966 0.0727 0.0927 0.0942 0.0940 0.0842 0.0534 0.0253 0.1024*
NDCG@20 0.0917 0.1045 0.1095 0.0840 0.1068 0.1085 0.1070 0.0966 0.0656 0.0306 0.1165*

exponentially increases with radius, aligning well with
the power-law distributed user-item interaction graph.

3. We also compared our model with three graph trans-
former models (SGFormer, NodeFormer, and Hyp-
former). However, since these three models are designed
for node classification tasks and compute attention for all
node pairs, they tend to overemphasize the relationships
between users and between items. This leads to poor
performance in recommendation tasks.

3.2. Ablation Analysis (RQ2)

We conduct ablation studies on two main components of
Hgformer. The results are shown in Fig. 4.We have the
following observations:

1. The removal of LHGCN results in the most significant
drop in performance. This indicates that LHGCN plays
a dominant role in the CF task, and solely using the
Hyperbolic Transformer to capture global information
between users and items, while ignoring the inherent
topological structure of the existing interaction graph, is
not sufficient to effectively capture potential user-item
relations. Therefore, in recommendation tasks or link
prediction tasks, it is difficult to achieve good results
by completely abandoning GNNs and relying solely on
transformers for prediction. A better strategy for link pre-
diction and recommendation tasks is to use transformers
as a supplementary tool.

2. Removing the Hyperbolic Transformer also leads to a re-
markable decline in model performance. The Recall@10
metric decreased by 11.6%, 12.9%, and 10.8% on the
Amazon Book, Amazon CD, and Douban Music datasets,
respectively. Similarly, the NDCG@10 metric experi-
enced reductions of 13.4%, 10.9%, and 7.9% on the
Amazon Book, Amazon CD, and Douban Book datasets,
respectively. Furthermore, we observed that incorporat-
ing the Hyperbolic Transformer led to certain improve-
ments in HGCF, which demonstrates its effectiveness.

3. Replacing LHGCN with HGCF also results in a decline.
Through the direct comparison between LHGCN and
HGCF, we found that LHGCN outperforms HGCF on the
majority of datasets (Amazon Book, Amazon CD, Ama-
zon Movie, Douban Movie). The only exception is the
Douban Book dataset, where LHGCN performs slightly
worse than HGCF (Recall@10: 0.1368 vs. 0.1375; Re-
call@20: 0.1916 vs. 0.1935; NDCG@10: 0.0948 vs.
0.0960; NDCG@20: 0.1096 vs. 0.1113). As mentioned
in Section 2.2, HGCF requires mapping embeddings
back to the tangent space at the North Pole point during
message aggregation, which results in information distor-
tion during this process. In contrast, LHGCN performs
graph convolution entirely on the hyperbolic manifold.

3.3. Case study (RQ3)

In this section, we present a case study to demonstrate the
effectiveness of our model in addressing both the local struc-
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Figure 4. To validate the contribution of each module in the model, we individually removed the LHGCN and the Hyperbolic Transformer
for evaluation. In the figure, ’w/o LHGCN’ and ’w/o Transformer’ represent the effects after removing the LHGCN and the Hyperbolic
Transformer, respectively. Furthermore, to validate the effectiveness of LHGCN, we also compared LHGCN with HGCF. Specifically, we
replaced LHGCN in Hgformer with HGCF and tested the performance and in the figure, it is noted as ’HGCF+Transformer’.

ture modeling problem of GNN-based models and high
distortion problem of models in Euclidean space. We se-
lected a user who interacted with 28 items as the subject
of the case study. By analyzing items recommended by
Hgformer from both head and tail positions, we aim to un-
derstand why Hgformer recommended these items while
other models did not. It can be observed in Fig 5 that both
the Euclidean space models and hyperbolic space models ex-
hibit similar performance for head items, with their rankings
being relatively close. However, in the case of tail items, we
notice that Euclidean space models tend to rank these items
lower, while hyperbolic space models can more effectively
identify specific tail items that User 4 prefers. Nonetheless,
HGCF fails to recommend items that are far from User 4
in the interaction graph (i.e., items with hops greater than
5). In contrast, Hgformer introduces the Hyperbolic self-
attention mechanism, enabling the model to identify distant
but relevant items effectively.

4. Related Works
Hyperbolic Neural Networks. Hyperbolic manifolds, char-
acterized by negative curvature, are effective for modeling
hierarchical structures and long-tail distributions (Ravasz &
Barabási, 2003). Building on foundational works (Chami
et al., 2019; Ganea et al., 2018), various hyperbolic opera-
tions—linear layers, activation functions, and graph convo-
lutions—have been introduced. However, many methods
map embeddings back to Euclidean space for operations like
self-attention and linear transformations. Fully Hyperbolic
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Figure 5. We selected user number 4 from the Amazon CD dataset
as the subject of analysis. We analyzed the items recommended by
Hgformer in the @20 task.

Neural Network (FHNN) (Chen et al., 2021) resolves this
by using Lorentzian linear transformations, while H2HGCN
(Dai et al., 2021) and LGCN (Zhang et al., 2021b) employ
Einstein midpoints and Lorentzian aggregation for fully hy-
perbolic computations. Despite their efficacy, these methods
introduce additional parameters, which are less suitable for
collaborative filtering (CF). To address this, we propose
LHGCN, a parameter-free, fully hyperbolic graph convolu-
tion method tailored for CF.

Graph Neural Networks for CF. Graph Neural Networks
(GNNs) effectively capture complex user–item relationships,
making them widely adopted in CF (Wang et al., 2019a; He
et al., 2020; Sun et al., 2021; Chang et al., 2025; Li et al.,
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2025; Wang et al., 2025; Xie et al., 2024; Chang et al., 2024;
2023). NGCF (Wang et al., 2019a) enhances expressiveness
through multilayer graph convolutions, while LightGCN
(He et al., 2020) simplifies GCN architectures by removing
non-linear activations and self-loops, improving efficiency
and performance. However, traditional GNNs struggle with
hierarchical and scale-free graph structures. Hyperbolic
GNNs address this limitation: HGCF (Sun et al., 2021)
mitigates long-tail issues, HICF (Yang et al., 2022a) bal-
ances head and tail recommendations via hyperbolic margin
ranking, HRCF (Yang et al., 2022b) incorporates geometric
regularization to prevent over-smoothing, and HCTS (Yang
et al., 2024b) leverages hyperbolic contrastive learning for
cross-domain CF. Despite these advances, existing hyper-
bolic CF models primarily capture local structures, limiting
their ability to model the global user–item graph structure.
This highlights the need for more expressive hyperbolic
approaches in CF.

Graph Transformer. Graph transformers have demon-
strated strong representation capabilities for capturing
global graph structures and complex interactions (Yun et al.,
2019; Ying et al., 2021; Wu et al., 2022; 2023; 2024; Li
et al., 2023). However, their high computational complexity
restricts their application to small graphs. Recent meth-
ods have focused on reducing this complexity, enabling the
use of graph transformers in large-scale graphs (Wu et al.,
2022; 2024) and recommendation tasks (Li et al., 2023;
Chen et al., 2024; Wei et al., 2023; Min et al., 2022). Cur-
rently, Hypformer (Yang et al., 2024a) introduces a linear
complexity hyperbolic transformer, designed for node clas-
sification. The differences between their models with ours
can be summerized as follows: We propose LHGCN for ef-
fective local structure modeling in hyperbolic space, which
is not explored in their work. To achieve linear computa-
tional complexity, Hypformer first swaps the multiplication
order of space-like values in self-attention vectors and then
recalibrates the time-like values. In contrast, we adopt the
cross-attention for better performance in CF tasks and di-
rectly extends the kernel function to hyperbolic space, which
has a theoretical guarantee in approximation errors. Overall,
we are the first to propose a hyperbolic graph transformer in
the context of collaborative filtering.

5. Conclusion
Considering the local structure modeling and embedding
distortion issues in previous work of collaborative filtering,
we proposed a Hyperbolic Graph Transformer framework,
which leverages LHGCN for graph structure modeling and
hyperbolic cross-attention for global information modeling.
Both theoretical analysis and empirical results demonstrate
the superiority of our method, especially in mitigating the
long-tail problems in collaborative filtering.
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Appendix

A. Notations
We summerize all the notations of this paper as follows:

Table 2. Notations used in this paper

Notation Description

Vu & Vi The user and item set

N Number of users

M Number of items

Ni The neighbors of node i

E Interactions between users and items

Θ Model parameters

d Dimension of latent embeddings.

uE & iE User&item embeddings in Euclidean
space.

u & i User&item embeddings in hyperbolic
manifold.

uk & il k-th and l-th vector of u & i
u(l) & i(l) User&item embeddings after l-th layer

of LHGCN

q(h)
i & k(h)

j &

v(h)
j

i-th query, j-th key and value of
h-head

ulocal & ilocal User&item embeddings after LHGCN

uglobal & iglobal User&item embeddings of hyperbolic
cross attention.

w
(h)
i,j Similarity score of i-th user and j-item

of h-th head in the self-attention

û
(h)
i i-th user embedding of h-th head after

Euclidean weighted sum.

u
′(h)
i i-th user embedding of h-th head after

hyperbolic weighted sum.

m Number of random features.

B. Preliminaries of Hyperbolic Geometry
In this section, we summarize key concepts from hyperbolic geometry that form the foundation of our method.

Definition B.1 (Minkowski Inner Product). Let

⟨·, ·⟩M : Rn+1 × Rn+1 → R

be the bilinear map defined by

⟨u,v⟩M := −u0v0 +

n∑
i=1

uivi = uTJv,

where J = diag(−1, 1, . . . , 1) ∈ R(n+1)×(n+1). Although ⟨·, ·⟩M is not a true inner product (because J has a negative
eigenvalue), it is commonly referred to as the Minkowski (pseudo) inner product.
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For any K > 0, the condition

⟨x,x⟩M = −K

i.e.,

x2
0 = K +

n∑
i=1

x2
i ≥ K,

this defines two connected components, determined by the sign of x0. Note that x0 ≥ K or x0 ≤ −K. The condition
x0 > 0 selects one of them.

Definition B.2 (Hyperbolic Manifold). Consider the following subset of Rn+1:

Hn,K := {x ∈ Rn+1 : ⟨x,x⟩M = −K and x0 > 0}.

This is often called n-dimensional Hyperbolic Manifold with curvature − 1
K .

The defining function h(x) = ⟨x,x⟩M +K has differential Dh(x)[u] = 2⟨x,u⟩M = (2Jx)Tu.

Since J is invertible and Jx = 0 if and only if x = 0, we have Dh(x) ̸= 0 for all x ∈ Hn,K . Hence, Dh(x) is surjective,
implying Hn,K is a smooth embedded submanifold of Rn+1 of dimension n (see, e.g., (Boumal, 2023, Definition 3.10 &
Theorem 3.15)).

Definition B.3 (Tangent Space). For any x ∈ Hn,K , the tangent space is given by

TxHn,K = kerDh(x) = {u ∈ Rn+1 : ⟨x,u⟩M = 0} = {u ∈ Rn+1 : x0 u0 =

n∑
i=1

xi ui}.

Restricting the Minkowski product ⟨·, ·⟩M to each TxHn,K provides a Riemannian metric on Hn,K . Thus, Hn,K becomes
a Riemannian manifold with constant negative sectional curvature equal to − 1

K .

Definition B.4 (North Pole). Define the north pole of Hn,K by

o :=
(√

K, 0, . . . , 0
)
∈ Hn,K .

Its tangent space satisfies

ToHn,K = {u ∈ Rn+1 : ⟨o,u⟩M = 0, u0 = 0} = {(0,u′) : u′ ∈ Rn} ∼= Rn.

For a fixed dimension n, different curvatures − 1
K yield different manifolds Hn,K , each with its own north pole o but all

sharing the same tangent space structure at o.

Definition B.5 (Hyperbolic Distance). The distance function on Hn,K induced by the Minkowski product is

dKM(x,y) =
√
K arcosh

(
− ⟨x,y⟩M

K

)
,

for all x,y ∈ Hn,K .

Well-definedness of Hyperbolic Distance:

We define two vectors in Rn: x′ :=
(√

K, x1, . . . , xn

)
, y′ :=

(√
K, y1, . . . , yn

)
.

Since x,y ∈ Hn,K implies ∥x′∥2 = x0 > 0 and ∥y′∥2 = y0 > 0, we have

−⟨x,y⟩M = x0 y0 −
n∑

i=1

xi yi = ∥x′∥2 ∥y′∥2 −
n∑

i=1

xi yi + K = ∥x′∥2 ∥y′∥2 − ⟨x′,y′⟩ + K,

where ⟨·, ·⟩ on the right is the usual inner product in Rn.
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By the Cauchy–Schwarz inequality,

∥x′∥2 ∥y′∥2 − ⟨x′,y′⟩ ≥ 0 =⇒ −⟨x,y⟩M ≥ K =⇒ − ⟨x,y⟩M
K ≥ 1.

Hence, arcosh
(
− ⟨x,y⟩M

K

)
is well-defined, making dKM(x,y) well-defined for all x,y ∈ Hn,K .

Definition B.6 (Exponential and Logarithmic Maps). For x ∈ Hn,K and v ∈ TxHn,K with v ̸= 0, the exponential map is

ExpKx (v) = cosh
(

∥v∥M√
K

)
x +

√
K sinh

(
∥v∥M√

K

) v

∥v∥M
,

and for y ∈ Hn,K with y ̸= x, the logarithmic map is

LogKx (y) =
dKM(x,y)

∥Projx(y)∥M
Projx(y).

Example: Mapping Rn to Hn,K . Following (Chami et al., 2019), let xE ∈ Rn be a Euclidean vector and o :=
(
√
K, 0, . . . , 0) be the north pole in Hn,K . We interpret (0,xE) as a vector in ToHn,K . Then, using the exponential map,

xH := expKo
(
(0,xE)

)
=
(√

K cosh
(∥xE∥2√

K

)
,
√
K sinh

(∥xE∥2√
K

)
xE

∥xE∥2

)
.

Definition B.7 (Hyperbolic Centroid). Let N ⊂ Hd+1,K be a finite set of points {xi} with corresponding weights {wi}.
The weighted centroid c ∈ Hd+1,K is defined as the minimizer of

min
c∈Hd+1,K

∑
xi∈N

wi

(
dKM(c,xi)

)2
.

A closed-form solution (cf. (Chami et al., 2019)) is

Centroid(N ,w) =
√
K

∑
xi∈N wi xi∣∣∣∣∑

xi∈N wi xi

∣∣∣∣
M

.

When all weights are equal, we have

Centroid(N ) =
√
K

∑
xi∈N xi∣∣∣∣∑

xi∈N xi

∣∣∣∣
M

.

Definition B.8 (Hyperbolic Matrix Multiplication). Let W be a matrix in Rn×n and x ∈ Hn,K . Following (Chami et al.,
2019), the hyperbolic matrix multiplication is

W ⊗K x := ExpKo

(
W LogKo (x)

)
,

where o is the north pole.

Definition B.9 (Parallel Transport). If x,y ∈ Hn,K are connected by a unique geodesic, then the parallel transport of
v ∈ TxHn,K to TyHn,K along this geodesic is

Px→y(v) = v − ⟨logx(y), v⟩M(
dKM(x,y)

)2 (
logx(y) + logy(x)

)
.

These definitions equip us with the fundamental tools for hyperbolic geometry. They serve as the basis for our approach
described in this paper.
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C. Proof of Theorems
C.1. Proof of Theorem 3.1

Proof.

We set ω ∼ N (0d, Id) ∈ Rd. For any x ∈ Rd we have

(2π)−d/2

∫
ω

exp
(
−∥ω − x∥2E/2

)
dω = 1 (15)

and for any x ∈ Hd+1 : −x2
0 + x2

1 + · · ·x2
d = −K

Then by definition of HSM function, we have:

HSM(x,y) = exp (⟨x,y⟩M) (16)

= exp(−x0 · y0) exp
(
−∥x̃∥2E/2

)
exp

(
∥x̃+ ỹ∥2E/2

)
· exp

(
−∥ỹ∥2E/2

)
(17)

multiple 1 and utilize Eq. 15, we get:

= exp

(
−(2x0y0 +

d∑
i=1

x2
i +

d∑
i=1

y2i )/2

)
(2π)−d/2 · exp

(
∥x̃+ ỹ∥2E/2

) ∫
ω

exp
(
−∥ω − (x̃+ ỹ)∥2E/2

)
dω (18)

expand it inside:

= exp

(
−(2x0y0 + x2

0 −K + y20 −K)

2

)
(2π)−d/2

∫
ω

exp(−∥ω∥2E/2 + ω⊤(x̃+ ỹ)− ∥x̃+ ỹ∥2E/2 + ∥x̃+ ỹ∥2E/2)dω

(19)

simplify the expression:

= exp

(
−(x0 + y0)

2 + 2K

2

)
(2π)−d/2

∫
ω

exp
(
−∥ω∥2E/2 + ω⊤(x̃+ ỹ)

)
dω (20)

show this integration in a form similar to Eq. 15

= exp

(
−(x0 + y0)

2 + 2K

2

)
(2π)−d/2

∫
ω

exp
(
−∥ω∥2E/2

)
· exp

(
ω⊤x̃

)
· exp

(
ω⊤ỹ

)
dω (21)

So it is the expectation of
[
exp(ω⊤ (x̃+ ỹ)

]
:

= exp

(
−(x0 + y0)

2 + 2K

2

)
Eω∼N (0,Id)

[
exp(ω⊤ (x̃+ ỹ)

]
(22)

which shows that is an unbiased estimation of HSM function.
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C.2. Proof of Lemma 3.1

Proof.

By definition of function ϕ(x):

ϕ(x)⊤ϕ(y) = exp(
2K − x2

0 − y20
2

)
1

m

[
exp

(
ω⊤

1 (x̃+ ỹ)
)
, · · · , exp

(
ω⊤

m(x̃+ ỹ
)
)
]

(23)

since the error between exp(2K − x2
0 − y20/2) and exp

(
−(x0 + y0)

2 + 2K/2
)

are small, and the remaining part is the
sampling function of the expectation, then we can take the approximation:

≈ exp

(
−(x0 + y0)

2 + 2K

2

)
Eω∼N (0d,Id)

[
exp(ω⊤ (x̃+ ỹ)

]
(24)

which equals to κ̃(x,y), and by Eq. 8, it also equals to HSM(x,y), then complete the proof.

C.3. Proof of Theorem 3.2

Proof.

First, by the definition of error function:

∆(x,y) =
∣∣exp (⟨x,y⟩M)− ϕ(x)⊤ϕ(y)

∣∣ (25)

take an expansion:

∆(x,y) =

∣∣∣∣∣exp
(
2K − (x0 + y0)

2

2

)
exp

(
x̃⊤ỹ

)
− exp

(
2K − x2

0 − y20
2

)
1

m

m∑
i=1

exp(ω⊤
i (x̃+ ỹ))

∣∣∣∣∣ (26)

we set

a = exp (−x0y0) (27)

X = exp

(
2K − x2

0 − y20
2

)
1

m

m∑
i=1

exp(ω⊤
i (x̃+ ỹ)) (28)

then we have:

E(X) = exp

(
2K − x2

0 − y20
2

)
Eω∼N (0,Id)

[
exp

(
ω⊤(x̃+ ỹ)

)]
(29)

By Markov’s inequality:

P

(
∆ ⩽

√
exp(3(δ −K))

mϵ

)
⩾ 1−

[
E
(
(X − aE(X))2

)]
mϵ

exp(3(δ −K))
(30)

take an expansion:
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= 1−
[
E
(
X2
)
+
(
a2 − 2a

)
E2(X)

]
mϵ

exp(3(δ −K))
(31)

plug in the expectation:

= 1−
[
1

m
exp(∥x̃+ ỹ∥2E) exp(2x̃⊤ỹ)

(1 + (a2 − 2a) exp(−∥x̃+ ỹ∥2E))
]
mϵ/ (exp(3(δ −K)))

(32)

Since a = exp (−x0y0) ⩽ e−K , K ∈ (0,∞), we get:

⩾ 1− ϵ exp
(
∥x̃+ ỹ∥2E + 2x̃⊤ỹ − 3(δ −K)

)
(33)

We assume that ∥x∥2E ≤ δ,∥y∥2E ≤ δ, then

∥x̃∥2E ≤ δ −K

2
, ∥ỹ∥2E ≤ δ −K

2
(34)

and we also have:

∥x̃+ ỹ∥2E ⩽ 2(δ −K), x̃⊤ỹ ⩽
δ −K

2
, (35)

then the last inequality holds:

1− ϵ exp
(
∥x̃+ ỹ∥2E + 2x̃⊤ỹ − 3(δ −K)

)
⩾ 1− ϵ (36)

Finally, we prove the upper bound of the error with probability :

P

(
∆ ⩽

√
exp(3(δ −K))

mϵ

)
⩾ 1− ϵ (37)

which completes the proof.

D. Details of Experimental Setup
In this section, we will describe the detailed settings of our experiments.

D.1. Baselines

To demonstrate the effectiveness of our proposed model, we compare our model with four categories of models: (A)
Traditional models BPR(Rendle et al., 2012) and DMF(Xue et al., 2017). (B) GNN-based models NGCF(Wang et al., 2019b),
LightGCN(He et al., 2020) and HMLET. (C) Hyperbolic GNN-based methods HGCF(Sun et al., 2021), HRCF(Yang et al.,
2022b) and HICF(Yang et al., 2022a). (D) Graph Transformer-based methods SGFormer(Wu et al., 2024), NodeFormer(Wu
et al., 2022) and Hypformer(Yang et al., 2024b). Specifically, BPR, DMF, NGCF, LightGCN, and HMLET utilize the
RecBole implementations, while HGCF, HRCF, HICF, SGFormer, NodeFormer, and Hypformer are migrated from their
original implementations into RecBole.

We introduce the baseline models in detail as follows:
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• BPR (Rendle et al., 2012) is a foundational matrix factorization approach for recommendation. It optimizes a pairwise
ranking objective that directly models user preferences by enforcing higher scores for the positively interacted items
than for the negative ones.

• NGCF (Wang et al., 2019b) is a GCN-based recommendation model that exploits high-order user–item interactions by
iteratively propagating embeddings through the user–item graph, thus capturing collaborative signals beyond direct
neighbors.

• LightGCN (He et al., 2020) is a simplified GCN model for recommendation that removes feature transformations and
non-linear activation functions, focusing purely on neighborhood aggregation to reduce complexity while maintaining
strong performance.

• HMLET (Kong et al., 2022) combines both linear and non-linear propagation layers to capture various aspects of
user–item relationships, yielding improved performance on general recommendation tasks.

• HGCF (Sun et al., 2021) extends graph-based recommendation into hyperbolic geometry, aiming to better model
hierarchical or tree-like structures in the user–item graph.

• HRCF (Yang et al., 2022b) is also a hyperbolic graph neural network for recommendation, which incorporates
geometric regularization to further enhance representation learning in hyperbolic space.

• HICF (Yang et al., 2022a) leverages a margin ranking loss in hyperbolic space, explicitly exploiting geometric
properties for more accurate recommendation performance.

• SGFormer (Wu et al., 2024) is a linear graph transformer model designed for large-scale graphs, utilizing a kernel-like
attention mechanism to reduce the quadratic complexity typically associated with transformers.

• NodeFormer (Wu et al., 2022) is another kernel-based graph transformer model that achieves scalability through
linearized attention computations, making it suitable for large and dense graphs.

• Hypformer (Yang et al., 2024a) is a hyperbolic graph transformer model, bringing transformer-style attention into
hyperbolic space to better capture hierarchical structures and geometric relationships.

D.2. Datasets

To validate the effectiveness of the model, we conducted experiments on six datasets with varying sizes and densities,
including Amazon datasets1 (Amazon Book, Amazon CD, and Amazon Movie), as well as Douban datasets2 (Douban Book,
Douban Movie, and Douban Music). Detailed statistics of the datasets are summarized in Table 3.

Table 3. Dataset Statistics
Metric Amazon-Book Amazon-CD Amazon-Movie Douban-Book Douban-Movie Douban-Music

#User 211,170 66,317 26,969 18,086 22,041 15,996
#Item 163,789 58,869 18,564 33,068 25,802 39,749
#Interactions 5,069,747 952,547 762,957 809,248 2,553,305 1,116,984
Density 0.015% 0.024% 0.150% 0.140% 0.459% 0.176%

D.3. Definition of evaluation metrics

We used two metrics for the evaluation. The first metric is Recall@K, which measures the fraction of relevant items retrieved
out of all relevant items. The second metric is NDCG@K, which is a measure of ranking quality in which positions are
discounted logarithmically. It accounts for the position of the hits by assigning higher scores to hits at the top ranks. The
formal definition is given as follows: We employed two metrics for evaluation. i) Recall@K, which measures the fraction of
relevant items retrieved out of all relevant items, which is formally defined as:

1https://jmcauley.ucsd.edu/data/amazon
2https://www.douban.com
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Figure 6. We define the top 20% of items in terms of popularity as head items and the rest as tail items. We calculated the proportion of
head items and tail items among all recommended items for each model. To further analyze the performance of Hgformer on tail items,
we evaluate the performance of three hyperbolic-based models on tail items.

Recall@K =
1

|U|
∑
u∈U

|R̂(u) ∩R(u)|
|R(u)|

, (38)

where U is the set of all users, R̂(u) represent a ranked list of items that a model produces, and R(u) represent a ground-truth
set of items that user has interacted with. ii) NDCG@K, which is a measure of ranking quality where positions are discounted
logarithmically. It accounts for the position of the hits by assigning higher scores to hits at top ranks and it is formally
defined as:

NDCG@K =
1

|U|
∑
u∈U

 1∑min(|R(u)|,K)
i=1

1
log2(i+1)

K∑
i=1

δ(i ∈ R(u))

log2(i+ 1)

)
, (39)

where δ(·) is an indicator function. In this research, we set K as 10 and 20.

E. Extra experiments
We implement Sensitivity Analysis and Analysis on Tail Items to address the following questions:

RQ4: How well does Hgformer perform on the head and tail items?

RQ5: Is Hgformer sensitive to different hyperparameters?

E.1. Tail-item analysis(RQ4)

In this section, we analyze the results on tail items to demonstrate Hgformer’s capability to mitigate long-tail issues.

E.1.1. TAIL PERCENTAGE ANALYSIS

We calculate the proportion of tail items recommended by each model and tail items are defined as those whose popularity
ranks in the last 80%. For this purpose, we designed a metric called tail percentage, which is formally defined as follows:

TailPercentage@K =
1

|U |
∑
u∈U

∑
i∈Ru

δ(i ∈ T )

|Ru|
, (40)
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Figure 7. Sensitivity analysis on a number of LHGCN layers and aggregation weight α

where Ru is the set of items recommended to user u, T is the set of tail items and σ is an indicator function. This metric
gives the proportion of head items and tail items among all the items recommended by the model. We conducted evaluations
on the Amazon CD and Amazon Movie datasets. As shown in the upper part of Fig. 6, it can be observed that the Euclidean
space-based model (LightGCN) recommends almost only head items to users in both datasets (97.8% in the Amazon CD
dataset & 95.1% in the Amazon Movie dataset, 99.3% in Douban Movie dataset and 99.5% in Douban Music dataset).
This indicates Euclidean space-based models tend to overlook tail items in CF tasks and aggravate the Matthew Effect.
Conversely, this phenomenon is significantly mitigated by the three hyperbolic space-based models, showing that hyperbolic
space is more suitable for the long-tail setting in CF. It can be observed that the model’s emphasis on tail items differs
between the Amazon and Douban datasets, which is primarily due to their significant differences in the density and data
distribution.

E.1.2. ANALYSIS OF MODEL’S PERFORMANCE ON TAIL ITEMS

To further investigate the performance of each hyperbolic-based model on tail items, in the second experiment, we evaluate
the models’ performance solely on tail items by calculating the recall@10 metric. As shown in Fig. 6, Hgformer significantly
outperforms the other two hyperbolic space-based models on tail items. This is because Hgformer not only leverages the
hyperbolic manifold to capture the hierarchical structure of the data but also introduces hyperbolic cross-attention which
is beneficial for capturing global information. This allows the model to gather more information for tail nodes during the
message-passing process, thereby improving the accuracy of recommendation.

E.2. Sensitivity analysis(RQ5)

To evaluate the stability of our model, we conducted a sensitivity analysis on four hyperparameters of our model: number of
LHGCN layers and aggregation weight α. The results are shown in Fig. 7.

1. Our model remains relatively stable within a certain range for both aggregation weight and the number of LHGCN layers.
2. In the sensitivity analysis of aggregation weights, our model demonstrated relative stability in the range of 0.2 to 0.3,

achieving better performance within this interval.
3. For the number of LHGCN layers, we observe that the optimal performance range of the model differs between the

Amazon dataset and the Douban dataset. For the Amazon dataset, the optimal number of LHGCN layers falls within the
range of 6 to 7, whereas for the Douban dataset, the optimal performance is achieved roughly between 4 and 5 layers.

HR@K =
1

|U |
∑
u∈U

δ
(
R̂(u) ∩ R(u) ̸= ∅

)
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