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Abstract
Task-oriented dialogue (TOD) systems aim to001
achieve specific goals through interactive di-002
alogue. Such tasks usually involve following003
specific workflows, i.e. executing a sequence of004
actions in a particular order. While prior work005
has focused on supervised learning methods to006
condition on past actions, they do not explicitly007
optimize for compliance to a desired workflow.008
In this paper, we propose a novel framework009
based on reinforcement learning (RL) to gen-010
erate dialogue responses that are aligned with011
a given workflow. Our framework consists of012
ComplianceReward, a metric designed to eval-013
uate how well a generated response executes014
the specified action, combined with an RL op-015
timization process that utilizes an interactive016
sampling technique. We evaluate our approach017
on two TOD datasets, Action-Based Conversa-018
tions Dataset (ABCD) (Chen et al., 2021a) and019
MultiWOZ 2.2 (Zang et al., 2020) on a range020
of automated and human evaluation metrics.021
Our findings indicate that our RL-based frame-022
work outperforms baselines and is effective at023
generating responses that both comply with the024
intended workflows while being expressed nat-025
urally and fluently.026

1 Introduction027

Task-oriented dialogue (TOD) focuses on creating028

conversational systems that assist users in attain-029

ing specific objectives. While prior TOD literature030

has extensively looked at predicting user intents031

and identifying relevant slots and values (Hender-032

son et al., 2014; Wei et al., 2018; Budzianowski033

et al., 2018; Byrne et al., 2019; Rastogi et al., 2020;034

Shalyminov et al., 2020; Balaraman et al., 2021),035

real-world interactions often involve nuanced work-036

flows and optimizing for such workflows remains037

underexplored (Chen et al., 2021a; Hattami et al.,038

2022; Raimondo et al., 2023). Consider a customer039

support interaction where agents must follow multi-040

step procedures that adhere to company policies.041

Figure 1: In this interaction, the customer requests as-
sistance with an expired promo code. The agent must
help the customer while following the steps in the agent
guideline, consisting of a sequence of actions to be taken
to resolve the issue. For example, offering to generate a
new promo code without querying the system results in
a non-workflow-compliant behavior.

For example, in Figure 1, a customer asks for help 042

with an expired promotional code. A model that ac- 043

counts for the user intent might respond reactively, 044

offering to generate a new promo code. However, 045

assisting the customer involves not only model- 046

ing their intent but also staying consistent with a 047

workflow, in this case, the company policy. This 048

involves the agent executing the necessary actions 049

in the right order, such as pulling up account infor- 050

mation and querying the system to make sure the 051

customer qualifies for the promotion. 052

Many prior approaches in task-oriented dialogue 053

(TOD), such as SimpleTOD (Hosseini-Asl et al., 054

2020) and PPTOD (Su et al., 2022), have employed 055

supervised learning alongside utterance-level user 056

intents and system dialogue acts (DAs) for sys- 057

tem response generation. However, these frame- 058

works lack explicit optimization for compliance 059

in response generation, resulting in responses that 060

may fail to execute the specified action. This prob- 061
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lem arises because the response generators neither062

receive rewards nor penalties based on adherence063

to the specified actions. Additionally, there is a064

notable absence of a metric or model to quantita-065

tively assess the degree of compliance, hindering066

the evaluation and training of response generators.067

In this work, we tackle the problem of workflow-068

compliant response generation in TOD and pro-069

pose an RL-based approach that addresses the070

limitations of existing systems. Our approach071

(COMPLIANCEOPT) employs RL with compliance072

scoring to construct training data for the Quark073

(Lu et al., 2022) framework. We evaluate our074

approach using the Action-Based Conversations075

Dataset (ABCD) (Chen et al., 2021a), a TOD076

dataset enriched with policy-based agent behav-077

ior constraints in the form of action sequences,078

and MultiWOZ 2.2 (Zang et al., 2020). Our ex-079

periments show that models integrating workflow080

information surpass baseline models, producing re-081

sponses that adhere to policies while maintaining a082

natural and fluent tone. Furthermore, we observe083

that direct compliance optimization through RL084

can lead to additional enhancements in the work-085

flow compliance levels of the dialogue system. We086

validate our results through automated metrics and087

human evaluations. Our contributions include:088

• A reinforcement learning (RL)-based frame-089

work for training workflow-compliant response090

generators, based on an interactive sampling091

technique to optimize model behavior over mul-092

tiple dialogue exchanges.1093

• A new compliance metric based on a reward094

model validated against human evaluations.095

• Evaluation on both automated and human eval-096

uation metrics showing that our models, en-097

hanced with workflow information and direct098

compliance optimization through RL, consis-099

tently outperform baselines.100

2 Related Work101

Task-oriented Dialogue. Recently, there has102

been an increase in TOD tasks and datasets103

(Budzianowski et al., 2018; Byrne et al., 2019; Wei104

et al., 2018; Rastogi et al., 2020), indicating a grow-105

ing emphasis on advancing natural language pro-106

cessing techniques for practical applications. These107

datasets encompass diverse domains and enable re-108

searchers to tackle a wide spectrum of real-world109

challenges. However, previous benchmarks have110

1We open-source our code at github.com/ANON.

predominantly focused on evaluating only some 111

aspects of TOD systems, such as intent recognition 112

and slot filling, with limited focus on aspects like 113

workflow compliance (Chen et al., 2021a). 114

Workflow Compliance. The problem of work- 115

flow compliance is closely related to, but distinct 116

from, dialogue policy management. The primary 117

objective of dialogue policy management is to pre- 118

dict the optimal dialogue action based on the cur- 119

rent conversation state (Takanobu et al., 2019; He 120

et al., 2022). In this context, dialogue actions rep- 121

resent intentions or decisions that are isolated to a 122

single user query, such as “book a flight” or “find a 123

nearby restaurant.” In contrast, workflow compli- 124

ance adopts a more holistic approach, considering 125

the sequential workflow from the larger context of 126

the conversation to define success. For example, 127

offering a new promo code is only valid after a 128

system check has been executed first (Figure 1). It 129

emphasizes the fact that user interactions are not 130

isolated actions but rather part of a continuous pro- 131

cess with multiple steps. Raimondo et al. (2023) 132

expands upon Chen et al. (2021a)’s work to show 133

that models augmented with workflow-specific in- 134

formation such as workflow names or action plans 135

can boost the generalizability of action prediction 136

models, but does not consider the problem of gen- 137

erating workflow-compliant responses, which is a 138

focus of our work. 139

SimpleTOD (Hosseini-Asl et al., 2020) is sim- 140

ilar to the baselines in our work as both methods 141

involve training an end-to-end model with inter- 142

leaved actions and utterances as inputs. PPTOD 143

(Su et al., 2022) also uses interleaved actions, but 144

they use a more complex training pipeline that in- 145

volves multi-task pretraining. While this can help 146

improve performance, such baselines optimize for 147

an objective that is different from our goal of in- 148

creasing the compliance quality of generated re- 149

sponses. 150

Reinforcement Learning. RL has been success- 151

fully used to improve TOD systems (Pietquin et al., 152

2011; Gašić et al., 2013; Fatemi et al., 2016; Lewis 153

et al., 2017; Singh et al., 2002). One application 154

is training dialogue managers that maintain dia- 155

logue state transitions (Rieser and Lemon, 2011). 156

Another is to use RL in conjunction with super- 157

vised learning to improve the quality of language 158

generation, such as in (Lewis et al., 2017). This 159

line of research applies similar techniques used in 160

RL for general-domain dialogue generation, such 161
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as interleaving supervised learning and RL, offline162

and online RL, policy gradients, and Q-learning (Li163

et al., 2016b; Jang et al., 2022; Snell et al., 2023;164

Sodhi et al., 2023). Our work adopts a similar165

strategy of supervised learning followed by RL but166

introduces an interactive sampling step.167

3 Problem Formulation168

3.1 Workflow-Compliant Response169

Generation as an MDP170

We formalize the problem of workflow-compliant171

response generation as a Markov Decision Process172

(MDP). Given a dataset of context-response pairs173

{xi, yi}Ni=1, where context x is the conversation174

history, and response y = {y1, . . . , yT } is a target175

sequence of tokens.176

Additionally, each dialogue is associated with a177

domain d representing the task (e.g., troubleshoot-178

site, subscription-inquiry). Every domain has an179

associated set of workflow Gd, which is a natural180

language description of the steps the system must181

follow to assist the user, as well as a sequence of182

actions Wd, which represents a flat action list or183

workflow sequence based on the guidelines. Fully184

compliant dialogues do not necessarily follow the185

full sequence Wd and may instead only include a186

subset of these actions since the guideline includes187

conditional branching. For example, in Figure 1,188

the step 3 is dependent on the result of step 2.189

Each data instance, denoted as (x, y,Gd), can190

be viewed as an episode within an MDP, which we191

define as follows:192

• States, st ∈ S is the context x, workflow193

Gd, and the partially generated sequence of194

tokens up to and including time step t, which195

we denote as ŷ<t := ŷ1, . . . , ŷt.196

• Actions, at ∈ A are the set of possible next197

tokens ŷt+1 from the vocabulary V .198

• Transition function, T (st+1|st, at) is deter-199

ministic , as each state-action pair (ŷ<t, ŷt+1)200

leads to a unique state ŷ<t+1 for the next step.201

• Rewards, rt : S × A → [0, 1] provide a202

measure of how well the generated response203

ŷ executes the provided workflow Gd. It is204

a terminal reward. Since workflow compli-205

ance can be computed only after multiple ex-206

changes, the reward is computed using block207

evaluation.208

• Horizon, T represents the time span of each209

episode, concluding either when the current210

time step t exceeds T or when an end-of-211

sentence (EOS) token is generated. 212

The goal is to learn a policy π : st → at maxi- 213

mizing return, i.e. the cumulative reward over an 214

episode Eπ
∑T

t=0 γ
trt. We assume undiscounted 215

cumulative rewards, i.e. γ = 1. 216

Block Evaluation. One of our key observations 217

is that compliance is not easily captured in a sin- 218

gle dialogue response. For example, in a customer 219

service use case, an agent may need to verify the 220

identity of the user before proceeding to issue res- 221

olution. To successfully comply with the next 222

workflow action e.g. verify-identity, the agent 223

needs to take several steps. To better model and 224

leverage this insight, we consider “blocks” of user 225

and agent utterances when evaluating and optimiz- 226

ing for compliance. Blocks refer to the sequence of 227

user and system utterances that occur between two 228

action executions. We define an interaction “block” 229

b as a list of user and system utterances between 230

consecutive action executions by the system. 231

4 Approach 232

We introduce COMPLIANCEOPT, which directly 233

optimizes compliance with the specified workflow. 234

We define compliance as the extent to which the 235

generated system utterances adhere to the pre- 236

scribed workflow action at turn t. 237

Algorithm 1 shows our overall training proce- 238

dure, which is adapted from the Quark algorithm 239

(Lu et al., 2022). The Quark framework is similar 240

to Decision Transformer in that it treats RL as a 241

sequence modeling problem (Chen et al., 2021b). 242

After interactively sampled (Figure 2-(i)) gener- 243

ations are scored (Figure 2-(ii)), the rewards are 244

quantized to produce reward tokens rk, which are 245

then used to condition the generations during train- 246

ing (Figure 2-(iii)). 247

4.1 Interactive Sampling 248

Diverging from the Quark method, we implement 249

an interactive sampling step, using two distinct 250

models, a system model, and a user simulator. This 251

is because achieving workflow compliance often 252

requires multiple dialogue turns between the par- 253

ticipants. Consider a customer service agent who 254

needs to gather a user’s name, email, and order id to 255

validate their purchase. This is a multi-turn process 256

where the system needs to gather information over 257

multiple dialogue turns of questions and answers. 258

We warm-start with a system model trained with 259

standard autoregressive training. The user simula- 260
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1. Interactive Sampling

Agent

Agent: Let me look into the system for 
your refund

User: Okay 
Agent: Your refund is $50 …

User

Update

Generate utterance blocks by using a 
turn-by-turn interaction between an 
agent model and user simulator 

Block 1

Agent: Let me offer you a $100 refund

User: Thanks!

Block N
⋮

Agent: Let me look into the system for 
your refund

User: Okay 
Agent: Your refund is $50 …

Agent: Let me offer you a $100 refund

User: Thanks!

⋮
Compliance 

Reward Model

2. Compliance Scoring & Quantization Rewards
Quantized 

reward tokens

⋮ ⋮
[ ]Rk

[ ]R10.91

0.25

Each block receives a reward that is sorted & quantized as K quantiles

3. Learning Agent Model
Finetune agent model on (reward token 
+ conversation context, interaction 
block) and KL-divergence

<context> [ ] Agent: Let me look 
into the system for your refund

User: Okay 
Agent: Your refund is $50 …

R1
Agent <context> [ ] Agent: Let me offer 

you a $100 refund

User: Thanks!

Rk

Figure 2: Approach Overview. RL optimizes the model towards better workflow compliance. Interaction-score
pairs are processed into RL data in the Quark framework.

tor remains fixed during Quark training and is only261

used for the interactive sampling procedure. Given262

a dialogue context c0 = [u0], the system model first263

samples an utterance, which is then concatenated264

to c0, forming c1 = [u0, s1]. Then, conditioned on265

c1, the user simulator samples a user turn, forming266

another context c2 = [u0, s1, u2]. This process is267

repeated M times, which is a hyperparameter. We268

denote the generated user and system utterances269

block as b, which are fed alongside planned work-270

flow actions as inputs to the ComplianceReward.271

Our interactive sampling technique is indepen-272

dent of Quark and can be used as a sampling ap-273

proach for other RL methods, such as proximal274

policy optimization (PPO) (Schulman et al., 2017).275

Previous studies, such as those by Zhang et al.276

(2022), have employed similar multi-utterance sam-277

pling techniques to simulate dialogue interactions.278

However, our approach diverges significantly from279

these methods. Instead of using a database of dia-280

logue logs between real users and bots to construct281

RL data, our framework fully simulates responses282

for both users and systems, recognizing that com-283

pleting an action typically requires multiple inter-284

actions. This introduces a more complex challenge285

for reinforcement learning (RL) optimization, as286

it necessitates the inclusion of simulated user re-287

sponses within the block of utterances.288

4.2 Compliance Scoring Model289

To quantify compliance and use it as a reward for290

RL, we developed the ComplianceReward, which291

measures the alignment between the generated sys-292

tem utterances and the prescribed workflow action.293

Reward modeling. We train the ComplianceRe-294

ward using the reward modeling loss for ranking295

two responses (Ouyang et al., 2022).296

l(θ) = −
∑

(p,bw,bl)∼D log (σ (rθ(p, bw)− rθ(p, bl))) (1)297

Algorithm 1 COMPLIANCEOPT RL Training
Input: Initial Policy l0, User Simulator µ, Dialogue Contexts

C, reward r(·), KL weight β, number of quantiles K,
number of interactions M , number of train iterations N

1: Make a copy lθ of initial policy l0.
2: for iteration = 1, 2, · · · , N do
3: for ci ∈ C do
4: Do interactive_sample(lθ , µ, M , ci) to obtain

bi. ▷ Interactive Sampling
5: Add ci, si, r(ci, si)into data pool D ▷ Scoring
6: end for
7: D̄i← quantize
8: for step = 1, 2, · · · ,M do
9: Draw a batch of data (ci, bi, rki) from quantized

data pool D̄i

10: Compute the objective in Eqn 2 and update policy
θ with gradient descent ▷ Update

11: end for
12: end for

r(p, b) represents the scalar output generated by 298

ComplianceReward (parametrized by θ), given the 299

planned workflow action p and the generated block 300

b. The term bw denotes the favored choice among 301

the pair of responses, bw and bl, in the comparison 302

dataset D. 303

The generated block b can include multiple utter- 304

ances by both the user and the system. We found 305

that there are advantages in excluding the dialogue 306

context and presenting only b to the model due 307

to the following reasons: (1) The model can fo- 308

cus more effectively on evaluating the text itself 309

rather than being distracted by the typically longer 310

context, (2) Constructing negative instances (bl) be- 311

comes straightforward by replacing the workflow 312

of the positive instance bw with an alternative. 313

Data Collection. We first segment each conversa- 314

tion into multiple blocks s, comprising contiguous 315

utterances that are annotated with the same work- 316

flow step p. By pairing utterances from different 317

segments with different workflow annotation pl 318

such that p ̸= pl, we generate (p, bw, bl) triplets. 319
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4.3 Compliance Optimization320

Finally, the system model is updated according to321

a combination of the standard LM loss and a KL322

divergence loss between the updated model and the323

reference model, shown in Equation 2.324

max
θ

Ek∼U(1,K)E(c,b)∼Dk [log lθ(b|c, rk)

−β
T∑
t=1

KL (l0(·|b<t, c)∥lθ(·|b<t, c, rk))]
(2)325

5 Experimental Setup326

Datasets. We evaluate our approach using two327

TOD datasets, where users aim to accomplish spe-328

cific tasks through dialogue. Each dataset consists329

of conversations between two speakers, a system330

or agent, and a user or customer.331

• Action Based Conversations Dataset332

(ABCD) (Chen et al., 2021a): Contains333

∼10,000 dialogues between customers and334

agents and spans 55 intents. The agents335

have explicit workflows they need to follow336

according to company guidelines, making337

it an ideal dataset to evaluate compliance338

requirements.339

• MultiWOZ 2.2 (Zang et al., 2020): Contains340

over ∼10,000 dialogues spanning multiple do-341

mains. We designate annotated user intents as342

workflow actions to be predicted and include343

agent dialogue acts (DAs) in the context.344

Evaluation. We evaluate the different ap-345

proaches and baselines on a variety of metrics:346

• LLM compliance: We automatically evalu-347

ated compliance using an LLM (prompt in348

Appendix A). We used a categorical labeling349

scheme involving two levels: 0 = ’not compli-350

ant,’ and 1 = ’fully compliant.’351

• Human compliance: For human evaluation, we352

randomly selected 100 generated outputs from353

each model (guideline in Appendix A). We used354

binary labeling (0, 1) for compliance and had355

three annotators rate each example. The annota-356

tors had access to the complete policy document357

containing guidelines for all workflow actions.358

• Human coherence: Annotators were asked to359

also rate each of the same 100 examples on360

coherence, represented as a binary (0,1) label.361

• Semantic Similarity: We measure the similar-362

ity between generated responses and the cor-363

responding human-annotated ground truth us-364

ing commonly-used similarity measures such as365

BLEU, Meteor, BLEURT, and BERTScore (Pa- 366

pineni et al., 2002; Banerjee and Lavie, 2005; 367

Sellam et al., 2020; Zhang et al., 2020). We 368

report the “Block” version for each, computed 369

by taking the max between each prediction and 370

target utterance pair over all targets and taking 371

the average over predictions. 372

• Diversity: We measure generated response di- 373

versity using the dist-3 metric (Li et al., 2016a). 374

• Workflow Accuracy: For the ACTIONPLAN 375

and COMPLIANCEOPT models that predict the 376

next workflow action, we report the exact match 377

accuracy of the predicted action against ground 378

truth. 379

Methods & Baselines. 380

• NOACTION: A simple model that only sees 381

user and system utterances without access to 382

completed actions or next workflow steps as 383

done in Sodhi et al. (2023). 384

• ACTIONAWARE: Action executions are inter- 385

leaved in the input alongside utterances, allow- 386

ing the model to understand the history of com- 387

pleted workflow actions in the dialogue context. 388

The model may implicitly learn the relationship 389

between workflow policies and agent utterances, 390

enabling the generation of more contextually 391

relevant responses. This approach applies super- 392

vised learning on dialogue context augmented 393

with prior and future actions and is similar to the 394

SimpleTOD model (Hosseini-Asl et al., 2020). 395

• ACTIONPLAN: The ACTIONPLAN model goes 396

beyond ACTIONAWARE by explicitly modeling 397

future compliance to workflow policy guide- 398

lines. It introduces the concept of a "planned" 399

workflow action, representing the next action 400

that must be completed based on the policy. 401

This planned action is incorporated into the 402

dialogue context, and the model generates re- 403

sponses that align with the intended workflow. 404

This approach treats the planned future work- 405

flow action as a latent variable in the generation 406

process, resulting in better workflow compli- 407

ance in responses. 408

• GUIDELINE: Instead of relying on completed 409

actions or predicted future workflow actions, 410

the GUIDELINE approach conditions on a fixed 411

"standard" sequence of actions, referred to as 412

the guideline in (Chen et al., 2021a). 413

• LLM-PROMPTING: We use prompting and 414

in-context learning with large language mod- 415

els (LLMs) to explore the option of using nat- 416
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ural language policy guidelines as a source of417

workflow information. Similar to prior work418

(Zhang et al., 2023), our LLM prompt consists419

of instructions that describe the task and task-420

related text that consists of guidelines, exam-421

ple conversations, and the dialogue context Ct.422

Our LLM-prompting method assumes ORACLE423

next workflow and generates corresponding re-424

sponses. We include our prompt in Appendix A.425

• PREDICTED/ORACLE variants: At test time,426

our ACTIONPLAN and COMPLIANCEOPT mod-427

els predict the next workflow action and condi-428

tion system response generation on this action429

(referred to as PREDICTED). ORACLE models430

are supplied with ground truth next workflow431

actions, to gauge the upper bound of perfor-432

mance. Finally, ACTIONPLANALL FUTURE433

ORACLE uses all future remaining workflow434

steps annotated in the ground truth data.435

Training. Our dialogue system models and user436

simulators are both initialized with pretrained Dis-437

tilGPT2 (Sanh et al., 2019), which is a condensed438

variant of GPT-2 (Radford et al., 2019). Tokeniza-439

tion of inputs to the system and user models use440

pre-trained BPE codes (Sennrich et al., 2016). For441

the ComplianceReward model, we start with a pre-442

trained RoBERTa model, with its associated BPE443

tokenizer. (Liu et al., 2019). Training procedure444

and hyperparameters are included in Appendix A.445

6 Results and Analyses446

6.1 Overall Results447

• Workflow-awareness consistently improves per-448

formance: Models incorporating workflow in-449

formation show higher compliance over the450

NOACTION baseline (Table 5, Figure 3).451

• Direct compliance optimization leads to peak452

system compliance: Our investigation re-453

veals that COMPLIANCEOPT, which utilizes454

reinforcement learning to optimize compli-455

ance scores, outperforms models trained with456

teacher-forcing. This approach not only suc-457

cessfully optimizes response for the Compli-458

anceReward model (Table 5), but also leads to459

high performance in human compliance and460

LLM-based evaluations (Figure 3).461

• Human evaluation validates automated metrics:462

Human evaluators corroborate the results ob-463

tained from automated evaluations, confirming464

that workflow-aware models consistently out-465

perform baselines. Remarkably, RL optimiza-466

tion achieves higher compliance without com- 467

promising coherence (Figure 3). 468

• Consistent performance across datasets: The 469

improved performance of workflow-aware mod- 470

els, particularly ACTIONPLAN and COMPLI- 471

ANCEOPT, extends beyond the primary ABCD 472

dataset. These findings hold even when vali- 473

dated on more general task-oriented dialogue 474

datasets, such as MultiWoz (Table 3). 475

• Ablation studies: We also conduct ablation stud- 476

ies to investigate the effectiveness of explic- 477

itly predicting workflow actions compared to 478

directly following standardized workflow guide- 479

lines. We also explore the impact of predicting 480

and conditioning on future action sequences as 481

opposed to single actions (Tables 5,2). 482

• Workflow-aware models maintain high perfor- 483

mance on dialogue metrics: While our ap- 484

proach generates responses directly without pre- 485

dicting intermediate slot values, we include Ac- 486

tion State Tracking (AST) dialogue metrics in 487

Appendix A.2 by extracting these values from 488

the response. We show that we can perform 489

comparably to prior work on these metrics. 490

6.2 Compliance 491

First, we evaluate all approaches on how well they 492

generate compliant responses. We conduct human 493

and LLM evaluations. We also report Compli- 494

anceReward on the test dataset and show that it 495

correlates with both LLM and human scores. 496

LLM evaluation: We first evaluate compliance 497

using the LLM evaluation prompt. The results, 498

shown on the leftmost plot in Figure 3, indicate 499

that ground truth responses achieve the highest 500

compliance and workflow-aware models outper- 501

form baselines. COMPLIANCEOPT achieves higher 502

compliance scores compared with ACTIONPLAN, 503

which highlights the benefit of directly optimizing 504

for compliance. Also, the ORACLE model variants 505

perform better than their PREDICTED counterparts, 506

which means that we can generate more compli- 507

ant responses when we have access the true next 508

workflow action. 509

ACTIONAWARE
ACTIONPLAN
PREDICTED

COMPLIANCEOPT
PREDICTED

Ground Truth

Avg Compliance 0.31 0.29 0.35 0.46
At least 1 Compliant (↑) 0.41 0.53 0.47 0.57

All Compliant (↑) 0.2 0.19 0.24 0.38
Fleiss Kappa 0.66 0.65 0.67 0.73

Table 1: Human Annotation Metrics & Inter-annotator
Agreement (full table in Appendix)
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Figure 3: Left: Sample Simulated Interaction between Agent Models and User Simulator. Right: Evaluation results
with human annotators and LLM. We report the average score received for each model.

Human evaluation: Next, we evaluate compli-510

ance using human evaluation. In the middle plot in511

Figure 3, we show the average compliance score512

across all annotators for each approach. Results513

show that COMPLIANCEOPT models are more514

compliant than their ACTIONPLAN counterparts, in515

both PREDICTED and ORACLE variants. Addition-516

ally, we observe similar trends for both human and517

LLM compliance judgments, with ground truth re-518

sponses receiving the highest scores, trailed by the519

ORACLE models, then by the PREDICTED models.520

Table 1 shows further breakdown of the human-521

annotated scores. We compute the percentage of ex-522

amples that received at least 1 compliant score and523

the percentage that received all compliant scores.524

In this analysis, we observe a similar trend, with525

ground truth performing best, followed by COM-526

PLIANCEOPT, which outperforms ACTIONPLAN527

on “all compliant” and “at least 1 non-compliant”.528

We used Fleiss’ Kappa for assessing annotator529

agreement. We find that the annotators are in “sub-530

stantial agreement”, showing that human compli-531

ance judgment is a reliable metric for compliance532

evaluation (Landis and Koch, 1977).533

ComplianceReward While LLM and human534

evaluation are the most reliable way to evaluate535

compliance, we also report ComplianceReward,536

our training reward signal, on the test dataset. We537

compute the reward values across different ap-538

proaches (Table 5). We find the compliance reward539

to be positively correlated with both human (Ta-540

ble 6) and LLM evaluation (Table 7). More details541

are included in Appendix A.2.542

6.3 Coherence543

In addition to compliance, we also evaluated544

whether generated responses were coherent. As545

shown in the rightmost plot in Figure 3, ground 546

truth responses have the highest coherence scores, 547

followed closely by both variants of COMPLI- 548

ANCEOPT. This indicates that COMPLIANCEOPT 549

is able to achieve higher compliance scores while 550

also maintaining high fluency and coherence. 551

6.4 Semantic Similarity and Diversity 552

Model Block
BertScore

Block
BLEURT

Block
METEOR

Block
BLEU dist-3 Workflow

Accuracy
Baselines & Ablations

NOACTION 0.8577 0.2286 0.0549 0.4481 0.7738 N/A
GUIDELINE

ORACLE
0.8679 0.2763 0.0679 0.4928 0.7536 N/A

LLM-PROMPTING
ORACLE

0.8676 0.3933 0.0609 0.5493 0.7013 N/A

ACTIONPLAN
ALL FUTURE

ORACLE
0.8560 0.2498 0.0535 0.4606 0.7479 N/A

Proposed Methods
ACTIONAWARE 0.8642 0.2703 0.0726 0.4745 0.7661 N/A
ACTIONPLAN
PREDICTED

0.8685 0.2959 0.0808 0.4951 0.7707 0.7011

COMPLIANCEOPT
PREDICTED

0.8740 0.2964 0.0924 0.5075 0.6553 0.6821

ACTIONPLAN
ORACLE

0.8683 0.3081 0.0881 0.5021 0.7683 N/A

COMPLIANCEOPT
ORACLE

0.8745 0.3312 0.1156 0.5287 0.6591 N/A

Ground Truth N/A N/A N/A N/A 0.7738 N/A

Table 2: Semantic Similarity and Diversity Results

ACTIONPLAN and COMPLIANCEOPT achieve 553

the highest semantic similarity scores when com- 554

pared with ground truth-compliant responses (Ta- 555

ble 2). This result indicates that adding future 556

planned actions can lead to more contextually rel- 557

evant and compliant system responses. Moreover, 558

ACTIONPLAN and COMPLIANCEOPT ORACLE 559

models outperform their PREDICTED counterparts, 560

which suggests that using the true next workflow 561

action results in responses more aligned with the 562

human-annotated compliant behavior. 563

In addition, the lower dist-3 scores obtained 564

by the COMPLIANCEOPT models, regardless of 565

whether they are in the PREDICTED or ORACLE 566
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configuration, suggest that these models produce567

less diverse responses. One explanation is that the568

COMPLIANCEOPT models, as a result of the RL-569

based optimization, learn to focus on generating570

a narrower range of utterances that are compliant571

given the context. Since the ground truth responses572

achieve both higher dist-3 and compliance rewards,573

this effect seems unique to the RL optimization.574

6.5 Ablations575

Effect of including all future actions. Since in-576

cluding future workflow actions results in more577

compliant responses, we explore if adding all fu-578

ture workflow actions would result in even more579

compliant behavior (ACTIONPLAN ALL FUTURE580

ORACLE vs. ACTIONPLAN ORACLE). Table 5581

shows that including all future actions can hurt per-582

formance, likely because too much future informa-583

tion leads to noise and model confusion. In contrast,584

simply focusing on the next workflow action leads585

to compliant localized interactions (“blocks”).586

Training a model with standardized workflows.587

We consider the effect of conditioning on standard-588

ized workflows, without dynamically including the589

next workflow actions in the context. As shown in590

Table 5, the GUIDELINE ORACLE model performs591

better than the baseline but worse than workflow-592

aware models because it does not dynamically gen-593

erate contextually relevant workflow actions and594

responses. This reinforces the importance of dy-595

namic workflow prediction, which captures the in-596

herent uncertainty in dialogues.597

Few-shot LLM prompting with workflow guide-598

lines. The final model variant we considered599

was directly using an LLM to predict the next600

workflow action, instead of fine-tuning a separate601

model. The LLM-PROMPTING ORACLE model602

achieves the second-highest compliance reward af-603

ter the COMPLIANCEOPT ORACLE. We see that604

the COMPLIANCEOPT model, explicitly trained605

to optimize compliance can outperform or match606

the LLM with orders of magnitude more param-607

eters (gpt-3.5-turbo). The high text similarity608

scores achieved by the LLM-PROMPTING ORA-609

CLE, often outperforming even the best-performing610

ACTIONPLAN and COMPLIANCEOPT models in611

terms of metrics like BLEURT and BLEU, vali-612

date the value of using guided prompts to improve613

response compliance. We note that RL optimiza-614

tion of LLMs requires much larger computational615

resources and remains an interesting future work.616

Model Compliance
Score BertScore BLEURT METEOR BLEU dist-3

Baseline
NOACTION 0.7446 0.4711 0.2476 0.0959 0.0108 0.4366

Proposed Methods
ACTIONAWARE 0.8451 0.8575 0.4001 0.1959 0.0252 0.8086
ACTIONPLAN
PREDICTED

0.8463 0.8496 0.3928 0.1936 0.0249 0.8027

COMPLIANCEOPT
PREDICTED

0.8853 0.8616 0.4310 0.1917 0.0265 0.8267

ACTIONPLAN
ORACLE

0.8573 0.8506 0.3897 0.1900 0.0242 0.7962

COMPLIANCEOPT
ORACLE

0.9153 0.8622 0.4271 0.1951 0.0278 0.8137

Ground Truth 0.8946 N/A N/A N/A N/A 0.8237

Table 3: Automated Evaluation Results on MultiWOZ
2.2. PREDICTED variants of ACTIONPLAN and COM-
PLIANCEOPT achieved 69% and 75% workflow accu-
racy respectively.

6.6 MultiWOZ Experiment Results 617

In our MultiWOZ experiments, we find consistent 618

support for our approach. Workflow-aware models, 619

particularly ACTIONPLAN and COMPLIANCEOPT, 620

outperform NOACTION and ACTIONAWARE in 621

both PREDICTED and ORACLE settings, showcas- 622

ing their capacity to generate compliant and con- 623

textually relevant responses. 624

However, there are several differences when 625

compared to the ABCD experiments. MultiWOZ 626

introduces increased response diversity, especially 627

noticeable in the COMPLIANCEOPT models, a de- 628

parture from the ABCD dataset’s behavior. More- 629

over, workflow-aware models benefit significantly 630

from action annotation, as seen in the NOACTION 631

versus ACTIONAWARE comparison. We conjecture 632

that these disparities may be attributed to differ- 633

ences in action annotation and the nature of actions, 634

which are typically resolved in a single interac- 635

tion in MultiWOZ, in contrast to the more intricate 636

workflows in the ABCD dataset. 637

7 Conclusion 638

In this paper, we propose the problem of workflow- 639

guided response generation and introduce a novel 640

RL-based framework to train workflow-compliant 641

models for task-oriented dialogue. By integrating 642

workflow information during training and directly 643

optimizing for compliance, our approach improves 644

upon baseline models and generates responses that 645

are both workflow-compliant and linguistically nat- 646

ural. We evaluate our models on both ABCD and 647

MultiWoz datasets and show empirical improve- 648

ments in automated and human evaluation metrics. 649
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8 Limitation650

This paper introduced a novel RL-based framework651

that generates workflow-guided responses for task-652

oriented dialogue. While this is promising, sev-653

eral limitations warrant discussion. Higher fidelity654

user simulator models: Fully simulating real-655

world customer service interactions would provide656

a more comprehensive evaluation. For instance,657

our user model was intentionally kept simple to658

facilitate the development and testing. Using more659

sophisticated models that incorporate diverse user660

behaviors can potentially help with better general-661

ization. Using the same models for users and agents662

can also increase efficiency. Workflow require-663

ments: We consider dialogue settings where work-664

flow information is available, e.g. policy guide-665

lines in customer-service interactions, and indeed666

more useful to follow compared to slot-value ob-667

jectives. However, for datasets that do not have668

explicit workflows, one would have to proxy work-669

flows, e.g. in MultiWoz we had to create workflows670

from from user intent and system act annotations.671

This can limit the applicability of our method.672
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madan, and Milica Gašić. 2018. MultiWOZ - a large-691
scale multi-domain Wizard-of-Oz dataset for task-692
oriented dialogue modelling. In Proceedings of the693
2018 Conference on Empirical Methods in Natural694
Language Processing, pages 5016–5026, Brussels,695
Belgium. Association for Computational Linguistics.696

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai697
Sankar, Arvind Neelakantan, Ben Goodrich, Daniel698
Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young699
Kim, and Andy Cedilnik. 2019. Taskmaster-1: To-700
ward a realistic and diverse dialog dataset. In Pro-701
ceedings of the 2019 Conference on Empirical Meth-702

ods in Natural Language Processing and the 9th In- 703
ternational Joint Conference on Natural Language 704
Processing (EMNLP-IJCNLP), pages 4516–4525, 705
Hong Kong, China. Association for Computational 706
Linguistics. 707

Derek Chen, Howard Chen, Yi Yang, Alex Lin, and 708
Zhou Yu. 2021a. Action-based conversations dataset: 709
A corpus for building more in-depth task-oriented 710
dialogue systems. In Proceedings of the 2021 Con- 711
ference of the North American Chapter of the As- 712
sociation for Computational Linguistics: Human 713
Language Technologies, NAACL-HLT 2021, pages 714
3002–3017, Online. Association for Computational 715
Linguistics. 716

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, 717
Aditya Grover, Michael Laskin, Pieter Abbeel, Ar- 718
avind Srinivas, and Igor Mordatch. 2021b. Decision 719
transformer: Reinforcement learning via sequence 720
modeling. CoRR, abs/2106.01345. 721

Mehdi Fatemi, Layla El Asri, Hannes Schulz, Jing He, 722
and Kaheer Suleman. 2016. Policy networks with 723
two-stage training for dialogue systems. In Proceed- 724
ings of the 17th Annual Meeting of the Special In- 725
terest Group on Discourse and Dialogue, pages 101– 726
110, Los Angeles. Association for Computational 727
Linguistics. 728
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A Appendix 933

A.1 Human Annotation Metrics & 934

Inter-annotator Agreement 935

We include the complete human annotation metrics 936

and inter-annotator agreement in Table 4.

ACTIONAWARE
ACTIONPLAN
PREDICTED

COMPLIANCEOPT
PREDICTED

Ground Truth

Avg Compliance 0.31 0.29 0.35 0.46
At least 1 Compliant (↑) 0.41 0.53 0.47 0.57

All Compliant (↑) 0.2 0.19 0.24 0.38
At least 1

Non-Compliant (↓) 0.79 0.8 0.75 0.62

All
Non-Compliant (↓) 0.58 0.47 0.53 0.42

Fleiss Kappa 0.66 0.65 0.67 0.73

Table 4: Complete Human Annotation Metrics & Inter-
annotator Agreement

937

A.2 ComplianceReward Analysis 938

Model Compliance Reward

Baselines & Ablations

NOACTION 0.4963
GUIDELINE ORACLE 0.5713

LLM-PROMPTING PREDICTED 0.6421
LLM-PROMPTING ORACLE 0.8410

ACTIONPLAN ALL FUTURE ORACLE 0.6043

Proposed Methods

ACTIONAWARE 0.6012
ACTIONPLAN PREDICTED 0.6762

COMPLIANCEOPT PREDICTED 0.6742
ACTIONPLAN ORACLE 0.7925

COMPLIANCEOPT ORACLE 0.8670

Ground Truth 0.8676

Table 5: ComplianceReward Results

Table 5 shows that our proposed framework, as 939

expected, outperforms other methods on this metric. 940

We also computed the correlation between Com- 941

plianceReward scores and human evaluation (Ta- 942

ble 6) on the human-annotated subset of our model- 943

generated responses and found that there is a posi- 944

tive correlation. There is a similar positive correla- 945

tion between ComplianceReward and LLM compli- 946

ance (Table 7). This validates that ComplianceRe- 947

ward as a training signal is indeed well correlated 948

with human measures of compliance. Moreover, 949

the model performances across human and LLM 950

scores are generally similar to that of the Com- 951

plianceReward rankings, with GroundTruth and 952

COMPLIANCEOPT receiving the highest scores. 953
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Annotator
Avg Score

Model
Avg Score Pearson Spearman

Ground Truth 0.4631 0.6290 0.2414 0.2437
ACTIONAWARE 0.3100 0.4349 0.4075 0.4146
ACTIONPLAN
PREDICTED

0.2867 0.5416 0.2114 0.1645

COMPLIANCEOPT
PREDICTED

0.3533 0.6394 0.2819 0.2702

Table 6: Comparison of the ComplianceReward with
human judgment. All correlations are significant with
p < 0.05.

LLM Score Model
Avg Score Pearson Spearman

Ground Truth 0.4552 0.6290 0.3526 0.5030
ACTIONAWARE 0.2553 0.4349 0.3012 0.3549
ACTIONPLAN
PREDICTED

0.2254 0.5416 0.4362 0.5502

COMPLIANCEOPT
PREDICTED

0.2802 0.6394 0.3252 0.4256

Table 7: Comparison of the ComplianceReward with
LLM compliance. All correlations are significant with
p < 0.05.

A.2.1 Action State Tracking Evaluation954

While our framework focuses on response gener-955

ation and does not directly predict slot values, we956

extract these values from the generated responses957

and compute model performances on Action State958

Tracking (AST) metrics, which is a set of perfor-959

mance benchmark metrics proposed for the ABCD960

dataset (Chen et al., 2021a). Specifically, we adopt961

the approach of Lee et al. (2021) that has compet-962

itive performance in extracting slot values from963

generated responses and train a t5-base model964

to extract slot values from generated system re-965

sponses.966

We additionally report the workflow accuracy967

performances of the PREDICTED versions of AC-968

TIONPLAN and COMPLIANCEOPT models for969

comparisons. The PREDICTED models first predict970

the next planned workflow action and condition the971

next response generation on the predicted action.972

From Table 8, we find that ground truth and973

our models perform similarly on both b-slot and974

value predictions. We note that our framework975

does not optimize these metrics, and this evalu-976

ation shows that our optimization does not lead977

to a strong degradation of the standard dialogue978

metrics.979

A.3 User Simulator980

We instantiate the user simulator with the NOAC-981

TION model.982

Workflow
Accuracy B-Slot Value Action

(Joint)

Ground
Truth 1 0.5737 0.5789 0.4895

COMPLIANCEOPT
PREDICTED

0.7011 0.5632 0.6000 0.5105

COMPLIANCEOPT
ORACLE

N/A 0.5526 0.6211 0.4895

ACTIONPLAN
PREDICTED

0.6821 0.5526 0.5632 0.4684

ACTIONPLAN
ORACLE

N/A 0.5632 0.5474 0.4579

ACTIONAWARE N/A 0.5632 0.5789 0.4789

Table 8: Action State Tracking Metrics Results on the
ABCD dataset.

A.4 Experiment Details 983

A.4.1 Block Processing 984

To generate workflow blocks described in Sec- 985

tion 3.1 for training the ComplianceReward model, 986

we use the following simple approach: 987

• For each conversation in the dataset, we tra- 988

verse the utterances in reverse order, starting 989

from the final turn. 990

• At each moment of the traversal, we main- 991

tain an index of the latest completed workflow 992

action. We begin by initializing the latest com- 993

pleted action as "Send-off/Goodbye", which is 994

a placeholder to account for the final moments 995

of the dialogue where no action is completed. 996

• When a new completed action is seen, the in- 997

dex is updated. Moreover, agent utterances 998

between the old index and the new action in- 999

dex are marked with the old workflow action, 1000

and the marked utterances are considered as 1001

making up a “block“ of exchanges, which then 1002

can be used for training the ComplianceRe- 1003

ward model. 1004

A.4.2 Input Formatting 1005

For both training and inference, ACTIONPLAN 1006

and COMPLIANCEOPT models use a simple input 1007

format (Figure 4) which interleaves dialogue his- 1008

tory, planned action, and completed actions, similar 1009

to that of SimpleTOD (Hosseini-Asl et al., 2020). 1010

NOACTION and ACTIONAWARE models use vari- 1011

ants of the format, each without planned and com- 1012

pleted action, and completed actions, respectively. 1013

A.4.3 Training Procedure 1014

Our method comprises two stages: teacher-forcing 1015

training and RL training with direct compliance 1016
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Figure 4: Our framework uses an autoregressive LM
with interleaved utterances, actions, and workflow ac-
tions as the input.

optimization. ACTIONAWARE, ACTIONPLAN use1017

teacher-forcing training with different workflow1018

action inputs while the third (COMPLIANCEOPT)1019

uses RL training with direct compliance optimiza-1020

tion. ACTIONAWARE conditions only on com-1021

pleted actions {at}, while ACTIONPLAN addi-1022

tionally conditions on predicted future actions.1023

In teacher-forcing training (ACTIONAWARE, AC-1024

TIONPLAN), the LM is trained with the standard1025

negative log-likelihood loss, while in RL training,1026

it is trained based on a reward signal generated by1027

the ComplianceReward model.1028

ACTIONAWARE. A simple way to include work-1029

flow action information is to include the history of1030

past workflow actions in the dialogue context Ct.1031

In this way, an action execution at is treated as an1032

utterance, and indicates that the system completed1033

a workflow action at time t. Thus, an example con-1034

text might be Ct = [u0, s1, u2, s3, a4, · · · ]. Condi-1035

tioned on Ct, the LM can then generate the system1036

utterance st+1. This implicitly models the relation-1037

ship between workflow policy and agent utterances,1038

since the LM may learn to use patterns between1039

completed actions and the next system response.1040

ACTIONPLAN. Including only the previously1041

completed actions does not directly model future1042

compliance with policy guidelines. To explicitly1043

model this, we introduce a future workflow action,1044

as the next workflow action that must be completed.1045

Given a completed ground truth dialogue, we con-1046

struct this input sequence by backpropagating the1047

action execution at to all previous utterances {sk},1048

k < t, before another action occurs. We define1049

this action assignment as a planned workflow ac-1050

tion pt associated with every system utterance st.1051

We also include past actions in the context to help1052

model workflow dynamics. An example context 1053

is Ct = [u0, (p1, s1), u2, (p3, s3), a4, · · · ], where 1054

p1 = p3 = a4. 1055

COMPLIANCEOPT. Next, we apply reinforce- 1056

ment learning to directly optimize workflow com- 1057

pliance. Specifically, a teacher-forcing trained AC- 1058

TIONPLAN model is used as an initial model for 1059

this step and uses the same input formatting. To 1060

apply the interactive sampling model to generate 1061

a block of utterance, we use a frozen copy of a 1062

teacher-forcing trained response generator. 1063

At each training step, the agent and user models 1064

simulate a “block“ session by generating one turn at 1065

a time. A turn is defined as a consecutive sequence 1066

of utterances made by the same party. A block 1067

session is terminated either when the agent com- 1068

pletes the planned action, or the turn count reaches 1069

a predefined limit. When a session is terminated, 1070

the dialogue history and the simulated exchange 1071

are then scored by the ComplianceReward model, 1072

which are then quantized and trained according to 1073

the modified Quark algorithm (Algorithm 1). 1074

A.4.4 Inference 1075

The inference procedure for generating a block of 1076

interaction between the user and agent models is 1077

identical to the interactive sampling step used for 1078

optimizing the COMPLIANCEOPT model. 1079

A.4.5 Parameters & Hyperparmeters 1080

We list the parameters and hyperparameters we 1081

used for our experiments in Table 9. We tune our 1082

learning rate, interactive sampling temperature, and 1083

the number of quantiles K using grid search. 1084

Teacher-Forcing Setting

Agent model distilgpt2
LLM prompting model gpt-3.5-turbo
Scoring model detail roberta-base
Training epochs 10 (ABCD) / 1 (MultiWOZ)
Learning Rate 2e-5
Special tokens START_USER, START_WORKFLOW,

END_WORKFLOW, START_AGENT,
END_AGENT, START_ACTION,

END_ACTION, START_DIALOG,
END_DIALOGUE

Compliance Optimization RL Setting

Agent model distilgpt2 (Warm-start ACTIONPLAN)
Client model distilgpt2
Learning Rate 2e-5
Sampling Temperature 0.5
Number of Interactions 3
Number of Quantiles K 5
KL weight β 0.05
Training Steps 80k (ABCD) / 160k (MultiWOZ)

Table 9: Experiment Models & Parameters
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A.5 LLM Prompts1085

1086
generation_prompt = f"You are a1087

cusotmer agent helping a customer1088

with a issue. Read the dialogue1089

context, provided policy1090

guideline, and generate an agent1091

utterance to help the customer in1092

a way that is compliant to the1093

guideline. The generated agent1094

turn should be at most 21095

utterances, and should be similar1096

in length to the agent utterances1097

shown in the examples that1098

demonsrtate compliant agent1099

behavior.\n\Custome Situation:1100

{s}\n\Policy Action Name:1101

{w}\n\Policy Name Guideline:1102

{g}\n\n\{example_str}dialogue1103

Context: {i}\n\n\Agent: "11041105

1106
evaluation_prompt = f"Read the provide1107

guideline and assess the extent to1108

which the agent's behavior in the1109

input interaction aligns with the1110

specified workflow action,1111

considering the name and a concise1112

description of the workflow1113

provided. 1 = Compliant\n0 =1114

Non-compliant\n\nSubflow:1115

{s}\nWorkflow: {w}\nDescription:1116

{g}\n\n\Dialogue1117

History:\n{i}\n\nInput1118

Interaction:\n{r}\n\nAnswer:"11191120

A.6 Human Evaluation Guidelines (Abridged)1121

Compliance: Assess if the agent’s behavior aligns with1122
the specified workflow action, taking into account the action’s1123
name and policy guideline. If the agent has already completed1124
certain steps or the entire policy guideline behavior in the1125
dialogue history, they should not be penalized for not repeating1126
those corresponding steps.1127

Coherence: Rate the coherence of the agent’s interac-1128

tion on a binary scale (0=not coherent, 1=coherent). In this1129

evaluation, please do not consider repetitive agents as coher-1130

ent. Additionally, do not include incoherent or disfluent client1131

behavior in the evaluation (only evaluate agent behavior).1132

A.7 Human Evaluation Guidelines (Full)1133

1134
Agent Quality Annotation Task1135

Task1136

Evaluate the agent's performance in an 1137

interaction with a customer based 1138

on a set of categories to gain 1139

insights into various aspects of 1140

agent behavior. The primary 1141

category to consider is workflow 1142

compliance, which determines if 1143

the agent has successfully 1144

achieved the objectives outlined 1145

in the provided workflow action 1146

during their interaction with the 1147

client. The other category is 1148

coherence. 1149

1150

Relevant Documents 1151

ABCD Guideline: This document consists 1152

of comprehensive descriptions for 1153

each customer assistance subflow, 1154

including specific action steps 1155

within each subflow. 1156

1157

To locate a particular workflow 1158

action, begin by referring to the 1159

relevant subflow section (e.g., 1160

Initiate Refund), and then 1161

identify the corresponding 1162

workflow action enclosed within 1163

brackets (e.g., [Pull Up Account]). 1164

1165

In the annotation sheet, we will also 1166

provide brief policy guidelines 1167

alongside examples to aid in the 1168

annotation process. Ideally, 1169

policy guidelines should be 1170

sufficient for the annotations. 1171

1172

Categories 1173

1. Compliance 1174

Assess the degree to which the agent's 1175

behavior aligns with the specified 1176

workflow action, taking into 1177

account the action's name and 1178

policy guideline. Please refer to 1179

the provided document for more 1180

detailed information. If the agent 1181

has already completed certain 1182

steps or the entire policy 1183

guideline behavior in the dialogue 1184

history, they should not be 1185

penalized for not repeating those 1186

corresponding steps. 1187

1188
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1 = Compliant: The agent successfully1189

executes all the steps outlined in1190

the policy guideline.1191

0 = Non-compliant: The agent fails to1192

execute any of the steps mentioned1193

in the policy guideline.1194

1195

1196

Examples:1197

0 = Non-compliant1198

Subflow: out_of_stock_general1199

Workflow Action: notify-team1200

Policy Guideline: Let the customer1201

know that you will write up a1202

report and let the Purchasing1203

Department know about this, so1204

they can do a better job.1205

1206

Enter 'purchasing department' into the1207

input box and [Notify Internal1208

Team]1209

Dialog History: Omitted Here1210

Target Generation1211

Agent: i m sorry for your1212

inconvenience1213

Client: ok1214

Agent: i can offer you a promo code1215

1216

1=Compliant:1217

Subflow: out_of_stock_general1218

Workflow Action: notify-team1219

Policy History: Let the customer know1220

that you will write up a report1221

and let the Purchasing Department1222

know about this, so they can do a1223

better job.1224

1225

Enter 'purchasing department' into the1226

input box and [Notify Internal1227

Team]1228

Dialog Context: Omitted Here1229

Target Generation1230

Agent: okay, i'm sorry for this1231

situation, what item is out of1232

stock?1233

Client: product: jacket brand:1234

michael_kors amount: $491235

Agent: the most i can do for you is1236

write up a report to the1237

purchasing department about this.1238

would that be alright?1239

1240

Subflow: shipping status 1241

Workflow Action: update-order 1242

Description: If the Oracle says No, 1243

then the customer will not be 1244

happy. To resolve, enter how you 1245

will fix the problem 1246

1247

Options include: 'change date', 1248

'change address', 'change item', 1249

or 'change price' 1250

Enter into [Update Order] 1251

Dialog Context: Omitted Here 1252

Target Generation 1253

Agent: it seems the email was 1254

incorrect. when were you expecting 1255

it to arrive? 1256

Client: tomorrow pm. 1257

Client: i'm just trying to verify if 1258

it is still coming or something 1259

weird happened. 1260

Agent: okay, i can change the date to 1261

be sure you receive by tomorrow. 1262

Client: ok, that's fine, thanks. 1263

1264

1265

1266

2. Coherence 1267

Please rate the coherence of the 1268

agent's interaction on a binary 1269

scale (0=not coherent, 1270

1=coherent). In this evaluation, 1271

please do not consider repetitive 1272

agents as coherent. Additionally, 1273

do not include incoherent or 1274

disfluent client behavior in the 1275

evaluation (only evaluate agent 1276

behavior). 1277

1278

Coherence Standard: Are all of the 1279

system responses in the 1280

conversation coherent with respect 1281

to each other? 1282

1283

1284

Examples: 1285

0=not coherent (agent repeats oneself, 1286

contradicts oneself, or says 1287

illogical things): 1288

Agent: thank you albert. may i also 1289

have your order id? 1290

Client: it was 9940404040 1291
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Agent: thank you albert. may i also1292

have your order id?1293

Client: sure, it's 99404040401294

Agent: thank you albert. may i also1295

have your account id and order id?1296

1297

Agent: how much was the service?1298

Client: it was $40.1299

Agent: how much was the extra price?1300

Client: i was charged $401301

Agent: how much was the price you were1302

charged?1303

1304

Agent: unfortunately, since the order1305

has already been shipped i can not1306

cancel the order. since it has1307

already been shipped i can only1308

cancel the order.1309

Client: ok, thank you1310

Agent: i apologize for the1311

inconvenience1312

Agent: since the order has already1313

been sent i can not cancel the1314

shipment.1315

Client: ok, i understand1316

Client: that is all i needed1317

Agent: great. have a nice day!1318

1319

1320

1=coherent:1321

Agent: ok, i see your refund is in1322

progress and it looks like it1323

should be going through to1324

completion later today or by1325

tomorrow at the latest1326

Client: okay, thank you1327

Agent: you're welcome1328

Agent: can i help with anything else?1329

Client: that will be all1330

Agent: ok, have a good day1331

1332

Agent: thanks for your information.1333

Agent: the system said that your1334

shipping address is the same as1335

the one you stated above. the1336

email was incorrect. you can1337

ignore it.1338

Client: thank you that's all i needed1339

to know1340

Agent: great, is there anything else1341

that i can help you with?1342

Client: no, that is all.1343

Agent: have a nice day! 13441345
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