
Published as a conference paper at ICLR 2024

MCM: MASKED CELL MODELING FOR ANOMALY DE-
TECTION IN TABULAR DATA

Jiaxin Yin†, Yuanyuan Qiao†∗, Zitang Zhou†, Xiangchao Wang‡, Jie Yang†
†Beijing University of Posts and Telecommunications, Beijing, China, ‡Hangzhou Dianzi University
{yinjx, yyqiao, zhouzitang, janeyang}@bupt.edu.cn, 20041926@hdu.edu.cn

ABSTRACT

This paper addresses the problem of anomaly detection in tabular data, which
is usually implemented in an one-class classification setting where the train-
ing set only contains normal samples. Inspired by the success of masked im-
age/language modeling in vision and natural language domains, we extend masked
modeling methods to address this problem by capturing intrinsic correlations
between features in training set. Thus, a sample deviate from such correla-
tions is related to a high possibility of anomaly. To obtain multiple and di-
verse correlations, we propose a novel masking strategy which generates mul-
tiple masks by learning, and design a diversity loss to reduce the similarity of
different masks. Extensive experiments show our method achieves state-of-the-
art performance. We also discuss the interpretability from the perspective of
each individual feature and correlations between features. Code is released at
https://github.com/JXYin24/MCM.

1 INTRODUCTION

Tabular data is the most widespread data type in anomaly detection (AD), which is crucial for var-
ious scientific and industrial processes, such as medical disease detection (Fernando et al., 2021),
financial fraud detection (Al-Hashedi & Magalingam, 2021), network intrusion detection (Ahmad
et al., 2021), etc. In most real-world applications, it’s usually impractical or prohibitive to obtain
labeled anomalies. Therefore, AD in tabular data is usually implemented in an one-class classi-
fication setting where only normal samples are accessible in training set. The key of AD under
this setting is to extract characteristic patterns of training data, such that anomalies can be detected
due to a deviation from these patterns (Ruff et al., 2021). However, because the features of tabu-
lar data are heterogeneous, complex, and have no fixed structure (Chang et al., 2023), finding such
“characteristic patterns” is quite challenging.

Self-supervised learning (SSL) methods can address this challenge by creating pretext tasks to train
neural networks (NN) to learn characteristic patterns within training data. In particular, GOAD
(Bergman & Hoshen, 2020) uses a distance based pretext task, and leverages a NN to map data to
a latent space, in which the distances of a training sample to the cluster center after applying each
transformation are minimized. The characteristic patterns are modeled by such distances in GOAD.
NeuTral AD (Qiu et al., 2021) and ICL (Shenkar & Wolf, 2022) both employ contrastive learning
based loss functions to create pretext tasks. NeuTral AD first designs a set of learnable transfor-
mations, then pulls the representation of each transformed sample close to the original sample, and
pushes representations of different transformed samples away from each other. ICL divides a sam-
ple into several pairs, each pair contains a subset of consecutive features and a subset of the rest
features. Then, ICL maximizes the mutual information between subsets from the same pairs and
minimizes that from different pairs. Characteristic patterns in above two methods are just modeled
by their contrastive losses, so a sample with a high loss value indicates a high possibility of anomaly.
However, no work has adapted masked image/language modeling (MIM/MLM), the most popular
and effective task in SSL (Schiappa et al., 2023), to address the problem of tabular AD.

In this paper, we mitigate this gap by MCM: masked cell modeling for AD in tabular data. Inspired
by MIM (Bao et al., 2021; He et al., 2022) and MLM (Devlin et al., 2018; Radford et al., 2018) which
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reconstruct masked patches and tokens by capturing their correlations between unmasked patches
for images and contexts for texts, we train MCM to capture intrinsic correlations between features
existing in training tabular data, and model the “characteristic patterns” by such correlations. For
masked modeling tasks, we try to capture the correlations by finding optimal masks, under which
the masked features of training data can be restored well with access to only unmasked features. In
this way, data deviating from a correlation can be detected by a large reconstruction error under cor-
responding mask. Since finding such “masks” manually is quite challenging, we propose a learnable
masking strategy and leverage NN to find such “masks”.

Concretely, we design a mask generator, which takes original data as input and outputs multiple
masking matrices. The masking matrices will perform element-wise product with the input to pro-
duce multiple masked data. Due to the constraint of reconstruction loss, the network will search
for masking matrices under which the masked features can be restored well with unmasked fea-
tures. Furthermore, we design a diversity loss, which constrains the similarity of different masking
matrices, preventing generating redundant masks and rendering different masks to capture diverse
correlations existing in normal data. Overall, the main contributions can be summarized as follows:

• We propose MCM, a masked cell modeling framework for AD in tabular data. We design
a learnable masking strategy for MCM, which can determine how to mask for each input
through training. To our best known, it’s the first time to extend the success of masked
image/language modeling to the domain of tabular AD.

• We leverage ensemble learning and design a diversity loss to make MCM capture multiple
and diverse correlations in training data, providing more information to characterize nor-
mal data and distinguish anomalies. We also provide interpretability of MCM from two
perspectives: correlations between features and abnormality of each independent feature.

• Experimental results on various AD datasets demonstrate that MCM achieves state-of-the-
art performance. We also investigate the effect of different masking strategies for MCM
and provide an extensive experimental analysis with ablation studies.

2 RELATED WORK

Classic AD Methods A number of classic methods are proposed for AD over past several decades.
Probability based methods first leverage a parametric or nonparametric distribution to fit the nor-
mal data, then detect anomalies based on the probability that the data appears in this distribution.
Representative works are using kernel based density estimator (Pavlidou & Zioutas, 2014), gaussian
mixture models (Yang et al., 2009), and empirical cumulative distribution (Li et al., 2022). Distance
based methods evaluate test points with respect to their distance with other instances. For example,
KNN (Ramaswamy et al., 2000) calculates the average euclidean distance of a test point with its
nearest points as anomaly score while LOF (Breunig et al., 2000) uses the ratio of local reacha-
bility density of a sample and its nearest neighbors. Classification based methods aim to directly
learn a decision boundary with access to data only from normal class. OCSVM (Schölkopf et al.,
2001) generates this boundary by achieving the maximum separation between the input data and the
coordinate origin. Tax & Duin (2004) try to learn a smallest hypersphere that can surround most
samples, so data out of the hypersphere can be judges as anomalies. Unfortunately, classic methods
suffer from curse of dimensionality and a relatively low detection accuracy.

Self-Supervised Learning for AD Several recent studies have revealed that SSL methods can ad-
dress the issue of curse of dimensionality and improve detection accuracy in AD. For instance, Golan
& El-Yaniv (2018) and Wang et al. (2019) train a classifier to discriminate different geometric trans-
formations applied on given images, at test time, softmax activations predicted by the classifier on
transformed images are utilized for detecting anomalies. Bergman & Hoshen (2020) extend the ap-
plicability of transformation-based methods to tabular data by changing geometric transformations
to random affine transformations. Some works (Tack et al., 2020; Sehwag et al., 2021; Sohn et al.,
2021) try to first learn representations by a contrastive learning objective (Chen et al., 2020) and
then judge anomalies based on the representations. Differently, Tack et al. (2020) introduce an ad-
ditional classifier when training and combine the information from representations and the classifier
for prediction. Sehwag et al. (2021) use Mahalanobis distance based detection in the representation
space while Sohn et al. (2021) directly apply an one-class classifier on the representations. Further
efforts focus on generalizing contrastive learning to AD in tabular data. Qiu et al. (2021) achieve
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this by designing learnable transformations and a novel deterministic contrastive loss, which pulls
the representation of each transformed sample close to the original sample, and pushes them away
from different transformed samples. Shenkar & Wolf (2022) employ an internal contrastive loss,
consider one sample at a time and match a subset of its features with the rest. However, no work has
extended the success of MIM/MLM to tabular AD. We propose MCM to mitigate the gap.

Masked Image/Language Modeling The advent of BERT (Devlin et al., 2018) and GPT (Radford
et al., 2018; 2019; Brown et al., 2020) significantly advance performance across various NLP tasks.
These methods utilize a MLM objective where a portion of the tokens of input sequence are held
out and models are trained to learn representations by predicting the masked tokens. BEiT (Bao
et al., 2021) extends the success of MLM to CV domain, which first tokenizes the original image
into discrete tokens and then learns representations by BERT-style pretraining. Based on this, PeCo
(Dong et al., 2023) adopts a perceptual loss, enforcing the tokens to have rich perceptual information.
MAGE (Li et al., 2023) uses variable masking ratios to unify image generation and representation
learning. Another line of MIM approaches try to predict masked pixels instead of discrete tokens,
the most representative work is MAE (He et al., 2022). SimMIM (Xie et al., 2022) simplifies the
decoder with one-layer prediction head while CAE (Chen et al., 2023) employs a latent regressor to
decouple the role of representation learning and pretext task completion. However, above methods
heavily rely on the intrinsic structure of language and image data, and cannot generalize to tabular
data directly. In this paper, we propose a learnable masking strategy and design a loss function
suitable for tabular data, extending the success of MIM/MLM to tabular AD.

3 METHOD
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Figure 1: The proposed model. MCM consists of three modules, a mask generator, an encoder and
a decoder. The mask generator generates multiple mask matrices, which will perform element-wise
product with input data to obtain their masked versions. The encoder encodes the masked data to
latent representations, and the decoder reconstructs original data from the representations.

3.1 OVERVIEW

We show the overview of our proposed MCM in Fig.1. Given a set of input samples X , the mask
generator takes them as input, and outputs multiple mask matrices. Then, X will perform element-
wise product with every mask matrix to produce multiple masked inputs. Afterwards, an encoder
maps the masked inputs to latent representations while a decoder then remaps the representations
from latent space to original space for reconstruction. The whole framework is trained end-to-end
under the constraint of a reconstruction loss and a diversity loss. After training, average reconstruc-
tion error of a test sample with it’s all reconstructed versions is used as anomaly score.

3.2 MASKING STRATEGY

To capture intrinsic correlations existing in training data, we propose a learnable masking strat-
egy, producing masks under which the masked features can be restored well with access to only
unmasked features by learning.

Specifically, We employ a mask generator G, which consists of a feature extractor F attached by a
sigmoid function. G learns information from the input data X , and outputs a masking matrix M with
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the same dimension with X . Because of the sigmoid function, each value of M is ranging from 0-1.
Compared to regular binary mask with a mask value of either 0 or 1, this method provides a more
flexible degree of masking. Each row of M is the mask for one sample x across its different features,
and each column is the mask for one feature across different training data. It can be seen this masking
strategy is not only learnable, but also data-related, i.e. assigning different masks for different data,
which contributes to finding salient correlation for a specific normal sample. After training, when
inputs a test sample, MCM will first produce a mask that models a correlation training data should
match. Because all the training data are normal samples, this correlation tends to be specific for
normal data, anomalies are prone to deviate from this correlation and thus be detected by a larger
reconstruction error.

3.3 ENSEMBLE AND DIVERSITY

Considering correlation modeled by just one mask is not enough to distinguish normal data from
others, we propose to generate multiple masks to capture multiple correlations in training data. We
adopt ensemble learning method, assemble multiple feature extractors F1, F2, ..., FK to the mask
generator and make it produce multiple mask matrices M1,M2, ...,MK .

M1,M2, ...,MK = G(X) = sigmoid(F1(X), F2(X), ..., FK(X)) (1)

Then, multiple masked inputs X̃1, X̃1, ..., X̃K are obtained by the element-wise product of X and
M1,M2, ...,MK , which will be sent to the encoder E and the decoder D to obtain reconstructed
data X̂1, X̂1, ..., X̂K :

X̃k = X ⊙Mk, X̂k = D(E(X̃k)), k = 1, 2, ...,K. (2)

Through reconstruction task, multiple correlations in training data are captured by multiple masking
matrices.

Still, it raises another vital problem: how to prevent the mask generator generating same and re-
dundant masks. This determines whether MCM can extract different and diverse correlations. Our
solution is to constrain the similarity between different masking matrices. Because these matrices
are learnt by neural networks, their values can be guided by loss function through back-propagation.
We calculate the sum of the similarities between all the matrices and add this term to loss function,
successfully improving the diversity of different masks.
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Figure 2: Radar chart of one normal and two abnormal
samples of Breastw dataset, the points denote recon-
struction error under different masks.

We visualize the reconstruction error of
several samples under 15 different masks
in Fig.2. As is shown in this figure,
it’s possible some anomalies conform to
some kind of correlation captured in nor-
mal data, such as the correlation built by
10 mask for #5 anomaly (reflected in a
low reconstruction error). But when cap-
turing multiple and diverse characteristic
correlations, it’s almost impossible for an
anomaly to match all the correlations ex-
isting in normal data (reflected by a larger
reconstruction error on most masks for
anomalies). Thus, the ensemble of diverse correlations can improve the detection ability of MCM.

3.4 LOSS FUNCTION

We present the following overall loss to train our model:

L = Lrec + λLdiv (3)

where Lrec, Ldiv are reconstruction loss and diversity loss, respectively, λ is a predefined hyper-
parameter to balance them.
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Reconstruction Loss is extensively used in mask modeling tasks. In our setting, it minimizes
the l2-norm of all the reconstructed data from different masked versions with their corresponding
unmasked version. Averaging operation is used twice, the first is for different masks and the second
is for different samples:

Lrec =
1

K

K∑
k=1

∥X̂k −X∥2F =
1

NK

N∑
i=1

K∑
k=1

∥x̂(i)
k − x(i)∥22 (4)

where superscript i denotes the index of samples and subscript k denotes the index of different
masks. N, K represents the total number of training data and masks, respectively.

Diversity Loss is to encourage different masks to focus on diverse correlations existing in normal
data. We achieve this purpose by constraining the similarity of different masking matrices. The
similarity is calculated by inner product, which has a lower bound thus is conducive to optimization:

Ldiv =

K∑
i=1

ln ( K∑
j=1

(e<Mi,Mj>/τ · 1i̸=j)) · scale

 (5)

where τ is the temperature, < x, y > denotes the inner product operation, 1i ̸=j is the indicator func-
tion excludes the inner product of masking matrices with themselves, while scale = 1/|M ln 1/M |
adjusts the numerical range of the diversity loss.

4 EXPERIMENTS

Datasets In our study, we select 20 commonly used tabular datasets in AD, which span diverse
domains, including healthcare, finance, social sciences, etc. The datasets comprise 12 sourced from
ODDS (Rayana, 2016) and 8 from ADBench (Han et al., 2022). Detailed statistical information for
each dataset can be found in Table.18 of Appendix E.

Evaluation metrics We randomly partition the normal data of each dataset into two equal halves.
The training dataset consists of one-half of the normal data, while the testing dataset comprises the
other half of the normal data combined with all the abnormal instances. We employ Area Under the
Receiver Operating Characteristic Curve (AUC-ROC) and Area Under the Precision-Recall Curve
(AUC-PR) as our evaluation criteria.

Implementation details In our network architecture, the mask generator consists of a set of Mul-
tilayer Perceptron (MLP) attached by a sigmoid activation. The encoder and the decoder are sym-
metrical, both are three-layer MLP with LeakyReLU activation function. Our method is insensitive
to hyperparameters, and the majority of them are not tuned for different datasets. In detail, we set
epochs to 200, the batch size to 512, and fix the the number of masking matrices at 15. The tem-
perature τ in diversity loss is set to 0.1. The number of hidden states of most layers in AE is 256,
except for the bottleneck layer with the number of 128. A fixed set of hyperparameters is effective
across all datasets, with dataset dimensions ranging widely from 6 to 500. The only two parameters
tuned for different datasets are the learning rate and the weight λ which balances two parts of loss.
Adam optimizer is employed, bounded by an exponentially decaying learning rate controller.

Baseline methods We conduct a comparative analysis between MCM and nine other prominent
methods in the field of tabular AD. Specifically, IForest (Liu et al., 2008), LOF (Breunig et al., 2000),
OCSVM (Schölkopf et al., 1999), and ECOD (Li et al., 2022) represent classic AD approaches that
continue to maintain popularity. The remaining five methods are deep learning based methods. Deep
SVDD (Ruff et al., 2018) leverages NN to learn a hypersphere, and uses the distance between a sam-
ple and the center of hypersphere as anomaly score. DAGMM (Zong et al., 2018) combines an AE
and Gaussian mixture model, and proposes a sample energy to judge anomalies. GOAD (Bergman
& Hoshen, 2020), NeuTralAD (Qiu et al., 2021), and ICL (Shenkar & Wolf, 2022) are SSL based
methods, which have been introduced in previous section. It is noteworthy that the implementa-
tion of five methods, including IForest, LOF, OCSVM, ECOD, and DeepSVDD, are sourced from
the pyod (Zhao et al., 2019) library—a comprehensive Python library that integrates various AD
methods. The implementation of the other four methods is based on their official open-source code
releases. All the methods are implemented with identical dataset partitioning and preprocessing

5



Published as a conference paper at ICLR 2024

Table 1: Comparison of AUC-PR results between baseline methods and MCM.
Datset IForset LOF OCSVM ECOD DeepSVDD DAGMM GOAD NeuTralAD ICL Ours

Arrhythmia 0.5097 0.5277 0.5339 0.4461 0.6036 0.4668 0.4091 0.6237 0.6155 0.6107
Breastw 0.9449 0.9923 0.9934 0.9522 0.9924 0.7584 0.8335 0.9117 0.9656 0.9952
Cardio 0.7018 0.8360 0.8614 0.3636 0.7880 0.3089 0.6225 0.4535 0.8037 0.8489
Census 0.1357 0.2343 0.2279 0.1773 0.1514 0.1066 0.1445 0.1103 0.1949 0.2420
Campaign 0.4608 0.4459 0.4749 0.4705 0.2529 0.2472 0.2030 0.4033 0.4506 0.6040
Cardiotocography 0.6036 0.5732 0.6619 0.6968 0.4602 0.444 0.4647 0.6431 0.5955 0.6993
Fraud 0.6939 0.4046 0.3490 0.4062 0.3320 0.0099 0.1249 0.2312 0.5960 0.5141
Glass 0.0952 0.0923 0.0896 0.1113 0.0912 0.1019 0.0948 0.1491 0.2573 0.1905
Ionosphere 0.9768 0.9591 0.8969 0.9713 0.8670 0.7046 0.9280 0.9355 0.9777 0.9802
Mammography 0.3334 0.4063 0.4178 0.5380 0.4190 0.1141 0.2426 0.1326 0.1894 0.4755
NSL-KDD 0.7532 0.7450 0.7529 0.6355 0.7935 0.7504 0.7823 0.8385 0.5194 0.9085
Optdigits 0.157 0.4363 0.0692 0.0669 0.1159 0.0536 0.0633 0.1709 0.1696 0.8885
Pima 0.6662 0.6970 0.7008 0.5877 0.7165 0.5956 0.5027 0.6168 0.6965 0.7389
Pendigits 0.5133 0.7855 0.5178 0.4145 0.0616 0.0441 0.0259 0.693 0.4039 0.8258
Satellite 0.8583 0.8088 0.7778 0.8334 0.8217 0.6866 0.7786 0.8588 0.8799 0.8532
Satimage-2 0.8846 0.9692 0.9192 0.7775 0.9427 0.1142 0.9726 0.9684 0.8124 0.9850
Shuttle 0.9172 0.9601 0.9488 0.9815 0.9818 0.4875 0.9545 0.9971 0.9811 0.9479
Thyroid 0.6055 0.7892 0.8134 0.6807 0.7282 0.1095 0.6931 0.7435 0.6575 0.8417
Wbc 0.8573 0.8412 0.8391 0.7217 0.8340 0.2959 0.3362 0.6051 0.7218 0.8887
Wine 0.2458 0.1253 0.1424 0.3578 0.1476 0.4907 0.1619 0.9078 0.5659 0.9335
Average 0.5957 0.6315 0.5994 0.5595 0.5551 0.3445 0.4669 0.5997 0.6027 0.7486

procedures, following the latest works (Qiu et al., 2021; Shenkar & Wolf, 2022). Every experiment
runs three times and we report the mean results throughout this paper.

4.1 MAIN RESULTS

Table 1 depicts the performance of MCM in relation to other methods. Due to space constraints, we
exclusively show the AUC-PR results in the table. AUC-ROC performance can be found in Table.5
in Appendix A, which is generally consistent with the AUC-PR performance. As is shown in Table
1, MCM achieves the best performance on 13 out of the 20 datasets. Notably, MCM outperforms
other methods significantly on various datasets, such as NSL-KDD. Even on datasets where it falls
slightly short of the best-performing method, MCM’s performance remains commendable and the
performance gap remains within an acceptable range. As for average results, MCM obtains an
absolute gain of at least 11.7% compared to other methods. These evaluation results demonstrate
the effectiveness of MCM.

4.2 ABLATION STUDIES

In this subsection, we conduct ablation study to evaluate the effectiveness of individual components
of our network. We calculate the AUC-ROC and AUC-PR on all the datasets above, and show the
average results in Table 2. The detailed results for each dataset are provided in Table.6 and Table.7
of Appendix B.

• Task A: We use a vanilla AE without applying any masking as a baseline to be compared.
• Task B: Compared with our approach (Task E), Task B replaces learnable masking matri-

ces with random sampled masking matrices, which leads to significant decrease in perfor-
mance. Without a suitable masking strategy, the results are even worse than AE which is
without a masking operation, proving the important role of learnable masking strategy.

• Task C: We do not use the ensemble learning method and set the number of masks to one,
so diversity loss is also inapplicable. The performance gap between Task C and Task E in-
dicates that an ensemble of multiple and diverse masks can enhance detection capabilities.

• Task D: Compared to Task E, Task D lacks of diversity loss and leads to inferior results,
highlighting the importance of diversity loss. It is worth noting that the results of Task D
and Task C are similar. Compared to Task C, Task D uses ensemble learning but without
diversity loss. This suggests that simply increasing the number of masks doesn’t work, as
the model tends to learn redundant masks. The interaction between ensemble and diversity
is necessary to capture diverse correlations which can characterize normal data better.
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• Task E: Our method outperforms other variants by a considerable gap, validating the ef-
fectiveness of each component of MCM.

4.3 DIFFERENT MASKING STRATEGIES

As the first work to extend the success of MIM/MLM to tabular AD, we systematically study differ-
ent options for masking strategy.

• Matrix Masking: Generate a matrix M whose values are randomly drawn from a uniform
distribution, and then mask all the input by performing element-wise product with M .

• Zero Masking: Randomly sample some features with probability pm, and mask them with
zero value.

• Transformation Masking: Generate a matrix W whose values are randomly drawn from a
normal distribution, and then perform matrix multiplication with input and W , as proposed
in (Bergman & Hoshen, 2020).

• Shuffle Masking: Randomly sample some features with probability pm, and mask them
with a random draw from that feature’s empirical marginal distribution, as proposed in
(Bahri et al., 2022).

• Gumbel Masking: Adopt Gumbel-Softmax (Jang et al., 2017) instead of sigmoid function
in mask generator G for generating learnable binary masks.

Table 2: Ablation study of MCM and its variants.
Task Learnable Ensemble Ldiv AUCROC AUCPR

A - - - 0.8732 0.6849
B - ✓ - 0.8367 0.6178
C ✓ - - 0.8883 0.7034
D ✓ ✓ - 0.8898 0.7029
E ✓ ✓ ✓ 0.9044 0.7486

Table 3: Average AUC-ROC and AUC-PR results
of different masking strategies.

Metrics Matrix Zero Trans. Shuffle Gumbel Ours

AUCROC 0.8367 0.8497 0.8720 0.8490 0.8036 0.9044

AUCPR 0.6178 0.6611 0.6642 0.6149 0.6012 0.7486

In our experiments, the masking ratio pm of
zero and shuffle masking is set to 0.4. In Table
3, we present the average performance of differ-
ent masking strategies (see Appendix B for the
table of 20 datasets). The results show that our
learnable masking strategy remains the top per-
former on the majority of datasets. Our average
AUC-PR outperforms the second-ranked strat-
egy with an absolute value of 8.44%, which is
quite impressive. Above results further demon-
strate that masks produced randomly in other
strategies are not effective enough. For zero and
shuffle masking, the randomness is reflected in
the selection of features to be masked, while for
matrix and transformation masking, the randomness is introduced by the generation of M and W .
Such random strategies make it easy to produce meaningless masks for tabular AD. Different from
them, our masks are generated based on data and introduce no randomness, which can capture char-
acteristic correlations in normal data and contribute to detecting anomalies.

4.4 DIFFERENT TYPES OF ANOMALIES

Although the types of anomalies are infinite, existing works (Steinbuss & Böhm, 2021; Han et al.,
2022) have summarized four common types of anomalies and proposed methods for generating
them. Following the same setup, we conduct experiments to generate synthetic anomalies based on
a realistic Shuttle dataset and assess the performance of MCM on specific types of anomalies. The
generation process of four types of anomalies is described in Appendix C. A brief introduction of
four types of anomalies is as follows:

• Local anomalies refer to the anomalies that are deviant from their local neighborhoods.
• Global anomalies are samples scattering throughout the entire space, while being far from

the normal data distribution.
• Dependency anomalies represent samples that do not adhere to the correlation structure

among normal data.
• Clustered anomalies refer to groups of data with similar characteristics but significantly

different from normal data.

Table 4 displays the performance of MCM and competitive methods on specific types of anoma-
lies. MCM exhibits strong performance across all anomaly types. For cluster anomalies and global
anomalies, nearly all the methods achieve excellent results as these two types are relatively simple
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Table 4: Results of our method and baselines on different types of anomalies. We initially build
a distribution by fitting it to the training data of the Shuttle dataset. Normal samples generated
are directly sampled from this distribution, while abnormal samples generated are obtained from
distributions that are made specific alterations for certain anomaly types.

Metrics IForest LOF OCSVM ECOD DeepSVDD DAGMM GOAD NeuTralAD ICL Ours

AUC-ROC 0.8322 0.8701 0.8137 0.8391 0.6400 0.6895 0.2975 0.8276 0.6851 0.9226Local
AUC-PR 0.3494 0.5256 0.3847 0.4324 0.2932 0.1461 0.0822 0.4247 0.3284 0.5103

AUC-ROC 0.9995 0.9996 0.9996 0.9955 0.9996 0.9138 0.9999 1.0000 1.0000 1.0000Cluster
AUC-PR 0.9888 0.9772 0.9909 0.9272 0.9772 0.3087 0.9885 0.9995 1.0000 1.0000

AUC-ROC 0.7821 0.8929 0.8464 0.8929 0.8750 0.8750 0.3929 0.6071 0.8036 0.9107Dependency
AUC-PR 0.6333 0.3250 0.5000 0.6250 0.3095 0.2222 0.0913 0.1213 0.3333 0.6429

AUC-ROC 0.9999 0.9976 0.9994 1.0000 0.9999 0.9074 0.9994 0.9999 0.9998 1.0000Global
AUC-PR 0.9992 0.9453 0.9847 0.9996 0.9990 0.2936 0.9956 0.9990 0.9992 1.0000
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Figure 3: AUC-ROC and AUC-PR performance
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of masking matrices.
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Figure 4: AUC-ROC and AUC-PR performance
on Cardiotocography dataset with different ratio
of anomaly contamination.

to detect. In the case of local anomalies, our method performs just behind LOF, which is specifically
designed and tailored to detect local anomalies. For dependency anomalies, our method shows a
leading performance, because MCM can extract correlations in normal data and is thus skilled in
detecting anomalies that lack correlations between features.

4.5 FURTHER ANALYSIS

Robustness to Anomaly Contamination Our method is implemented in a one-class classification
setting where all the samples in training set are normal data. In some real-world applications, the
training set may also contain a small percentage of anomalies, i.e., anomaly contamination. To
analyse the robustness of MCM w.r.t anomaly contamination, we conduct experiments in the case
of anomaly contamination ratio of 0%, 1%, 3%, and 5%. Here we only show the results of Car-
diotocography dataset, see Appendix D for results of several other datasets. From Figure.4, we can
observe that all methods suffer from a performance decline as the contamination rate increases. But
compared to the other three SSL based methods, MCM performs more stable and consistently shows
the best performance, demonstrating a superior robustness of MCM to anomaly contamination.

The Number of Masking Matrices Figure.3 shows the performance of MCM with a varying num-
ber of masking matrices. At the beginning, the performance on all the four datasets has an obvious
improvement as the number of masking matrices increases. Because more diverse masking matrices
can extract more characteristic correlations of normal data and provide more discriminative evidence
to judge anomalies. When the number of masking matrices comes to a relatively high value, the per-
formance becomes stable. In MCM, we fix this parameter to 15 and don’t adjust it for different
datasets. The sensitivity experiments of other hyperparameters are provided in Appendix B.

5 DISCUSSION

In this section, due to the space limitation, we mainly discuss the interpretability of MCM here,
see Appendix D for other discussions including lightweight decoder and pure masked prediction,
Appendix G for visualization of masks, and Appendix H for discussion about mask degeneration.
MCM can provide interpretability from two aspects: correlations between features and abnormality
of each individual feature. Note the calculation of anomaly score of each sample has two averaging
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Figure 5: Visualization of
masks on one anomaly.
The darker/lighter color
indicates a value near 0/1.
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Figure 6: KDE of 26th feature of Satimage-2. The left/right figure
shows the distribution of normal/abnormal testing data before and after
reconstruction, both are compared with the distribution of training data.

operations. The first is averaged on different features and the second is averaged on different masked
versions. We define average reconstruction error from one masked version across different features
as per-mask contribution, and define average reconstruction error of one feature across different
masked versions as per-feature contribution.

Correlations between features are represented by different masks in MCM. Per-mask contribution
can give interpretability by pointing out a sample deviates from which characteristic correlations
exist in normal data. Referred to (Shenkar & Wolf, 2022), we conduct a case study. Normal data
are vectors over R4 by sampling from a Gaussian distribution. The covariance matrix shows a high
covariance of 0.85 between the features of indices 1 and 4, while the covariance is zero elsewhere.
Anomalies are sampled from similar distributions with no correlation between any of the features.

For the convenience of display, we set the number of masks to four. We randomly sample one
anomaly and visualize its masks in Fig.5. Meanwhile, we calculate its corresponding per-mask
contribution: [39%, 14%, 7%, 40%]. In this case, the 1st and the 4th masks contribute the most.
Refer to Fig.5, these two masks mainly reserve the 4th/1st feature and mask the 1st/4th feature.
So a higher contribution of these two masks illustrates the correlation between the 1st and the 4th
dimensional features of this sample is distinct from that of normal data.

Each individual feature In Fig.6, We draw KDE of 26th feature of Satimage-2 dataset. The
left/right figure shows the distribution of normal/abnormal testing data before and after reconstruc-
tion, reconstructed data used are the average of all masked versions. As is shown, the distribution of
normal testing data before and after reconstruction are of little difference, both are basically identical
with that of training data. However, for abnormal testing data, the distribution after reconstruction
shifts significantly towards training data. Because MCM accesses to only normal data when training,
it will implicitly learn the empirical marginal distribution of each feature of normal data and prefers
to reconstruct masked features to this distribution, thus abnormal samples whose distribution is far
from training data will have larger reconstruction errors compared to normal samples.

Based on the above qualitative analysis, we conduct a quantitative study on Thyroid dataset, which
has six features: [TSH, T3, TT4, T4U, FT1, TBG]. We calculate average per-feature contribution
on all the anomalies and obtain the corresponding results: [16%, 43%, 1%, 9%, 11% , 9%]. The
two highest per-feature contributions are from “T3” (43%) and “TSH” (16%). These results hold
practical significance in medical disease detection since hyperthyroidism is characterized by elevated
“T3” levels and decreased “TSH” levels. Therefore, per-feature contribution can complement per-
mask contribution and provide interpretability from the view of individual features.

6 CONCLUSION

Inspired by the success of MIM/MLM in the CV and NLP domains, we present MCM framework
for anomaly detection in tabular data. We emphasize the significance of masking strategy for tabular
AD and propose to generate masks by learning. Moreover, we design a loss to enhance the diversity
of different masks, which contributes to extracting diverse characteristic correlations in normal data,
thus anomalies can be distinguished by a lack of such correlations. Our method achieves state-of-the-
art performance on extensive experiments and provides interpretability from the view of individual
feature and the correlations between different features.
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A ADDITIONAL RESULTS

In Table.5 we display the AUC-ROC performance of MCM and comparing methods.

B ABLATIONS AND PARAMETER SENSITIVITY

In Table.6 and Table.7, we present the detailed AUC-ROC and AUC-PR performance of ablation
study on all selected datasets.

Table.8 and Table.9 show the AUC-ROC and AUC-PR results on different masking strategies.

Table.10 and Table.11 show the AUC-ROC and AUC-PR results with different weight coefficient λ.
In the previous experiments, we fine-tuned λ for each dataset. Here, to explore the sensitivity to λ,
we conducted experiments using a fixed λ value across all datasets. The results indicate that λ =
20 achieves best performance. More importantly, in comparison to that λ is adjusted individually
for each dataset, the average AUCPR only decreased by 0.0231, which still surpasses all baseline
methods, proving that our method is not sensitive to λ.
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Table 5: Comparison of AUC-ROC results between baseline methods and MCM.
Dataset IForest LOF OCSVM ECOD DeepSVDD DAGMM GOAD NeuTralAD ICL Ours

Arrhythmia 0.7734 0.7688 0.7689 0.7199 0.7941 0.7283 0.5810 0.7900 0.8145 0.8114
Breastw 0.9719 0.9937 0.9938 0.9649 0.9925 0.7605 0.7327 0.9458 0.9725 0.9955
Cardio 0.9220 0.9562 0.9654 0.6370 0.9313 0.6951 0.6812 0.7349 0.9514 0.9603
Census 0.6015 0.7110 0.7158 0.5772 0.6327 0.4506 0.5615 0.4685 0.6831 0.7581
Campaign 0.7269 0.7061 0.7626 0.7555 0.5254 0.5785 0.453 0.6982 0.7241 0.8902
Cardiotocography 0.7249 0.6449 0.7522 0.7889 0.5149 0.6101 0.4428 0.7177 0.6478 0.8001
Fraud 0.9630 0.9573 0.9548 0.8535 0.9519 0.7271 0.4808 0.8807 0.9107 0.9357
Glass 0.5771 0.5620 0.5480 0.6235 0.5566 0.5982 0.5741 0.6312 0.8350 0.7225
Ionosphere 0.9683 0.9454 0.8765 0.9569 0.8552 0.7041 0.8993 0.9453 0.9710 0.9726
Mammography 0.8220 0.8922 0.9003 0.8251 0.8879 0.7412 0.7348 0.7449 0.6548 0.9053
NSL-KDD 0.7388 0.5496 0.5707 0.3810 0.7551 0.6136 0.6575 0.7701 0.1684 0.8780
Optdigits 0.8239 0.9665 0.6338 0.6145 0.7603 0.4706 0.5972 0.8471 0.787 0.9947
Pima 0.6737 0.6913 0.7133 0.5834 0.7348 0.6108 0.4338 0.6170 0.6727 0.7639
Pendigits 0.9666 0.9905 0.9636 0.9295 0.4563 0.3982 0.2141 0.9859 0.9142 0.9919
Satellite 0.8026 0.7391 0.6663 0.7884 0.7659 0.7259 0.7374 0.8080 0.8549 0.7962
Satimage-2 0.9938 0.9961 0.9817 0.9650 0.9881 0.8994 0.9929 0.9979 0.9792 0.9992
Shuttle 0.9961 0.9983 0.9969 0.9978 0.9952 0.9049 0.9897 0.9994 0.9935 0.9975
Thyroid 0.9271 0.9856 0.9855 0.8827 0.9887 0.7149 0.8523 0.9701 0.9518 0.9804
Wbc 0.9715 0.9670 0.9667 0.8747 0.9633 0.7999 0.4806 0.9133 0.9080 0.9814
Wine 0.6571 0.4083 0.485 0.7433 0.5067 0.8833 0.5366 0.9753 0.915 0.9538
Avergae 0.8301 0.8215 0.8101 0.7731 0.7778 0.6808 0.6317 0.8221 0.8155 0.9044

Table.12 and Table.13 show the AUC-ROC and AUC-PR results with different batch size.

Table.14 and Table.15 show the AUC-ROC and AUC-PR results with different diversity loss designs.
When running and testing on the same dataset, we ensure that the weight coefficient λ remains
constant.

Figure.7 shows the visualization of parameter sensitivity analysis on the weight coefficient λ, the
number of epochs, and the batch size. The result is consistent with section.4.5 that our model is
generally insensitive to parameters.

In Figure.8, we visualize the AUC-ROC and AUC-PR performance with different ratios of anomaly
contamination on four datasets: Breastw, Cardio, Cardiotocography, and Wbc. As is mentioned
in section4.5, our method presents strong robustness compared to the other three self-supervised
methods.

Table 6: AUC-ROC results for ablation study on five sets of tasks.
Dataset TASK A TASK B TASK C TASK D TASK E

Arrhythmia 0.7793 0.7697 0.7848 0.8036 0.8114
Breastw 0.9579 0.9904 0.9702 0.9488 0.9955
Campaign 0.8916 0.7312 0.8927 0.8907 0.8902
Cardio 0.9429 0.9697 0.9370 0.9361 0.9603
Cardiotocography 0.7686 0.7893 0.7860 0.7906 0.8001
Census 0.7443 0.6834 0.7360 0.7455 0.7581
Fraud 0.8977 0.9110 0.9361 0.9252 0.9357
Glass 0.7167 0.6029 0.7225 0.7000 0.7225
Ionosphere 0.9680 0.7689 0.9680 0.9731 0.9726
Mammography 0.7969 0.8492 0.8661 0.8801 0.9053
NSL-KDD 0.8748 0.8269 0.8695 0.8747 0.8780
Optdigits 0.9629 0.9509 0.9826 0.9761 0.9947
Pendigits 0.9885 0.9588 0.9841 0.9899 0.9919
Pima 0.6023 0.6802 0.6722 0.7131 0.7639
Satellite 0.7969 0.6267 0.7975 0.7960 0.7962
Satimage-2 0.9980 0.9960 0.9985 0.9987 0.9992
Shuttle 0.9990 0.9955 0.9986 0.9983 0.9975
Thyroid 0.9795 0.8125 0.9804 0.9826 0.9804
Wbc 0.8376 0.9017 0.9408 0.9408 0.9814
Wine 0.9599 0.9199 0.9414 0.9322 0.9538

Average 0.8732 0.8367 0.8883 0.8898 0.9044
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Table 7: AUC-PR results for Ablation study on five sets of tasks.
Dataset TASK A TASK B TASK C TASK D TASK E

Arrhythmia 0.5700 0.5596 0.5869 0.6024 0.6107
Breastw 0.9567 0.9868 0.9608 0.9373 0.9952
Campaign 0.6128 0.5022 0.6088 0.6003 0.6040
Cardio 0.7756 0.8569 0.6315 0.6209 0.8489
Cardiotocography 0.6685 0.6689 0.7006 0.6918 0.6993
Census 0.2184 0.1798 0.2151 0.2252 0.2420
Fraud 0.5294 0.3978 0.5346 0.5032 0.5141
Glass 0.1904 0.1605 0.3178 0.1566 0.1905
Ionosphere 0.9778 0.7819 0.9773 0.9806 0.9802
Mammography 0.2589 0.2970 0.3150 0.3310 0.4755
NSL-KDD 0.9051 0.8643 0.8975 0.9030 0.9085
Optdigits 0.5582 0.4794 0.6300 0.6281 0.8885
Pendigits 0.7805 0.4392 0.6959 0.7826 0.8258
Pima 0.6240 0.6962 0.6551 0.7013 0.7389
Satellite 0.8542 0.7183 0.8544 0.8532 0.8532
Satimage-2 0.9273 0.9663 0.9505 0.9798 0.9850
Shuttle 0.9856 0.9293 0.9683 0.9667 0.9479
Thyroid 0.8362 0.3332 0.8457 0.8355 0.8417
Wbc 0.5841 0.6132 0.8464 0.8464 0.8887
Wine 0.8834 0.9250 0.8758 0.9128 0.9335

Average 0.6849 0.6178 0.7034 0.7029 0.7486

Table 8: AUC-ROC results on different masking strategies.

Datset Matirx Zero Transformation Shuffle Gumbel Ours

Arrhythmia 0.7697 0.7895 0.7707 0.8146 0.7257 0.8114
Breastw 0.9904 0.9875 0.9891 0.9836 0.9918 0.9955
Campaign 0.7312 0.6751 0.8007 0.6999 0.4557 0.8902
Cardio 0.9697 0.9459 0.9298 0.9394 0.9531 0.9603
Cardiotocography 0.7893 0.7860 0.7924 0.8206 0.7012 0.8001
Census 0.6834 0.6470 0.6884 0.7173 0.8199 0.7581
Fraud 0.9110 0.9427 0.9417 0.9851 0.8998 0.9357
Glass 0.6029 0.4824 0.6441 0.5843 0.7151 0.7225
Ionosphere 0.7689 0.9639 0.9703 0.9709 0.7845 0.9726
Mammography 0.8492 0.8571 0.8361 0.8410 0.8802 0.9053
NSL-KDD 0.8269 0.7684 0.8638 0.6458 0.6575 0.8780
Optdigits 0.9509 0.9842 0.9840 0.9071 0.2493 0.9947
Pendigits 0.9588 0.9809 0.9769 0.9709 0.9318 0.9919
Pima 0.6802 0.6760 0.6819 0.5416 0.7187 0.7639
Satellite 0.6267 0.7762 0.7901 0.8559 0.6415 0.7962
Satimage-2 0.9960 0.9979 0.9992 0.9986 0.9908 0.9992
Shuttle 0.9955 0.9966 0.9971 0.9909 0.9926 0.9975
Thyroid 0.8125 0.8952 0.9580 0.8622 0.9679 0.9804
Wbc 0.9017 0.9285 0.9030 0.9413 0.8989 0.9814
Wine 0.9199 0.9137 0.9230 0.9091 0.9461 0.9538
Average 0.8367 0.8497 0.8720 0.8490 0.8036 0.9044
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Table 9: AUC-PR results on different masking strategies.

Dataset Matrix Zero Transformation Shuffle Gumbel Ours

Arrhythmia 0.5596 0.5891 0.5724 0.6113 0.5530 0.6107
Breastw 0.9868 0.9820 0.9865 0.9837 0.9919 0.9952
Campaign 0.5022 0.3760 0.5299 0.3623 0.1852 0.6040
Cardio 0.8569 0.8329 0.7718 0.7473 0.8380 0.8489
Cardiotocography 0.6689 0.7006 0.6901 0.7076 0.6106 0.6993
Census 0.1798 0.1633 0.1795 0.2103 0.3853 0.2420
Fraud 0.3978 0.4845 0.4886 0.5384 0.1810 0.5141
Glass 0.1605 0.1109 0.1326 0.1588 0.1900 0.1905
Ionosphere 0.7819 0.9758 0.9789 0.9806 0.8523 0.9802
Mammography 0.2970 0.3210 0.3085 0.2223 0.3082 0.4755
NSL-KDD 0.8643 0.8577 0.8971 0.8034 0.7823 0.9085
Optdigits 0.4794 0.7172 0.7434 0.2788 0.0342 0.8885
Pendigits 0.4392 0.6142 0.5039 0.4850 0.3628 0.8258
Pima 0.6962 0.6743 0.6730 0.5817 0.7131 0.7389
Satellite 0.7183 0.8308 0.8411 0.8661 0.7198 0.8532
Satimage-2 0.9663 0.9718 0.9833 0.9800 0.9633 0.9850
Shuttle 0.9293 0.9473 0.9442 0.8536 0.9201 0.9479
Thyroid 0.3332 0.5106 0.6772 0.3618 0.8167 0.8417
Wbc 0.6132 0.6764 0.4643 0.7753 0.6183 0.8887
Wine 0.9250 0.8861 0.9175 0.7895 0.9230 0.9335
Average 0.6178 0.6611 0.6642 0.6149 0.6012 0.7486

Table 10: AUC-ROC results with different weight coefficient λ.
DataSet λ=1 λ=5 λ=10 λ=20 λ=50 λ=100

Arrhythmia 0.8078 0.8114 0.8089 0.8103 0.8112 0.8101
Breastw 0.9832 0.9952 0.9955 0.9956 0.9956 0.9957
Campaign 0.8603 0.8603 0.8634 0.8617 0.8660 0.8759
Cardio 0.7767 0.8132 0.8751 0.9205 0.9468 0.9603
Cardiotocography 0.8001 0.8024 0.7947 0.7929 0.7966 0.8019
Census 0.7581 0.7516 0.6865 0.7375 0.7095 0.7322
Fraud 0.9357 0.9343 0.9322 0.9303 0.9268 0.9236
Glass 0.6382 0.7284 0.7118 0.6931 0.6951 0.7225
Ionosphere 0.9594 0.9622 0.9726 0.9629 0.9633 0.9636
Mammography 0.8636 0.8697 0.8758 0.8760 0.8947 0.9053
Nslkdd 0.8744 0.8675 0.8715 0.8780 0.8701 0.8788
Optdigits 0.9792 0.9937 0.9947 0.9945 0.9856 0.9856
Pendigits 0.9858 0.9900 0.9912 0.9930 0.9870 0.9860
Pima 0.7639 0.7289 0.7041 0.7243 0.7363 0.6866
Satellite 0.7950 0.7962 0.7945 0.7958 0.7944 0.7944
Satimage-2 0.9990 0.9992 0.9992 0.9989 0.9987 0.9986
Shuttle 0.9975 0.9973 0.9975 0.9975 0.9974 0.9973
Thyroid 0.9804 0.9639 0.9514 0.9472 0.9371 0.9323
Wbc 0.9791 0.9814 0.9724 0.9594 0.9244 0.9298
Wine 0.9492 0.9445 0.9414 0.9507 0.9538 0.9245

Average 0.8843 0.8896 0.8867 0.8910 0.8895 0.8903
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Table 11: AUC-PR results with different weight coefficient λ.
DataSet λ=1 λ=5 λ=10 λ=20 λ=50 λ=100

Arrhythmia 0.6064 0.6107 0.6050 0.6079 0.6152 0.6084
Breastw 0.9753 0.9947 0.9952 0.9954 0.9954 0.9955
Campaign 0.5547 0.5540 0.5570 0.5551 0.5600 0.5760
Cardio 0.3372 0.3986 0.5615 0.7831 0.8146 0.8489
Cardiotocography 0.6993 0.7006 0.6936 0.6907 0.6941 0.6976
Census 0.2420 0.2280 0.1807 0.2099 0.1907 0.2234
Fraud 0.5141 0.5065 0.4911 0.4688 0.4404 0.4208
Glass 0.1218 0.1798 0.2265 0.1865 0.1556 0.1905
Ionosphere 0.9724 0.9740 0.9802 0.9744 0.9747 0.9748
Mammography 0.3903 0.3623 0.3672 0.4619 0.4858 0.4755
Nslkdd 0.9029 0.8985 0.8975 0.9085 0.8988 0.9032
Optdigits 0.6443 0.8723 0.8885 0.8851 0.7523 0.7118
Pendigits 0.7326 0.8164 0.8065 0.8168 0.6938 0.6613
Pima 0.7389 0.7019 0.6800 0.6967 0.7075 0.6922
Satellite 0.8520 0.8532 0.8503 0.8528 0.8514 0.8496
Satimage-2 0.9836 0.9845 0.9850 0.9808 0.9788 0.9778
Shuttle 0.9479 0.9440 0.9456 0.9456 0.9446 0.9409
Thyroid 0.8417 0.8192 0.8004 0.7927 0.7521 0.7340
Wbc 0.8743 0.8887 0.8364 0.7731 0.7381 0.7233
Wine 0.9241 0.9226 0.9217 0.9246 0.9335 0.9178

Average 0.6928 0.7105 0.7135 0.7255 0.7089 0.7062

Table 12: AUC-ROC results with different batch size.
DataSet batch size=32 batch size=64 batch size=128 batch size=256 batch size=512
Arrhythmia 0.7819 0.7690 0.7789 0.8113 0.8114
Breastw 0.9901 0.9939 0.9966 0.9955 0.9955
Campaign 0.7801 0.7907 0.8133 0.8271 0.8902
Cardio 0.8689 0.8897 0.9011 0.9255 0.9603
Cardiotocography 0.6712 0.6353 0.6756 0.8030 0.8001
Census 0.7371 0.7479 0.7309 0.7247 0.7581
Fraud 0.8739 0.9206 0.9076 0.9006 0.9357
Glass 0.7029 0.6686 0.7206 0.7206 0.7225
Ionosphere 0.9525 0.9579 0.9626 0.9626 0.9726
Mammography 0.8846 0.7879 0.8558 0.8911 0.9053
Nslkdd 0.8603 0.8723 0.8547 0.8661 0.8780
Optdigits 0.9875 0.9865 0.9786 0.9666 0.9947
Pendigits 0.9929 0.9943 0.9956 0.9955 0.9919
Pima 0.7212 0.6944 0.6909 0.7362 0.7639
Satellite 0.7940 0.7996 0.8021 0.7953 0.7962
Satimage-2 0.9982 0.9973 0.9975 0.9965 0.9992
Shuttle 0.9984 0.9982 0.9977 0.9976 0.9975
Thyroid 0.9795 0.9809 0.9752 0.9817 0.9804
Wbc 0.9755 0.9630 0.9809 0.9808 0.9814
Wine 0.9384 0.9538 0.9538 0.9538 0.9538
Average 0.8745 0.8701 0.8785 0.8916 0.9044
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Table 13: AUC-PR results with different batch size.
DataSet batch size=32 batch size=64 batch size=128 batch size=256 batch size=512
Arrhythmia 0.5826 0.5745 0.5880 0.6100 0.6107
Breastw 0.9877 0.9934 0.9966 0.9952 0.9952
Campaign 0.4994 0.4679 0.4940 0.5176 0.6040
Cardio 0.7073 0.7473 0.7459 0.7960 0.8489
Cardiotocography 0.5962 0.5634 0.6089 0.7189 0.6993
Census 0.2233 0.2241 0.2153 0.1954 0.2420
Fraud 0.2692 0.6250 0.6121 0.5561 0.5141
Glass 0.1652 0.1357 0.1917 0.1917 0.1905
Ionosphere 0.9690 0.9717 0.9742 0.9742 0.9802
Mammography 0.3808 0.2395 0.3098 0.4108 0.4755
Nslkdd 0.8872 0.9046 0.8712 0.8821 0.9085
Optdigits 0.7590 0.7211 0.6543 0.5015 0.8885
Pendigits 0.8017 0.8628 0.8978 0.8906 0.8258
Pima 0.6966 0.6861 0.6838 0.7417 0.7389
Satellite 0.8486 0.8509 0.8518 0.8528 0.8532
Satimage-2 0.9524 0.9504 0.9115 0.8691 0.9850
Shuttle 0.9705 0.9627 0.9548 0.9500 0.9479
Thyroid 0.8296 0.8378 0.8367 0.8422 0.8417
Wbc 0.8720 0.8512 0.8850 0.8797 0.8887
Wine 0.9208 0.9335 0.9335 0.9335 0.9335
Average 0.6960 0.7052 0.7108 0.7155 0.7486

Table 14: AUC-ROC results with different designs of diversity loss.
DataSet Euclidean Distance Cosine Similarity Dot product Ours w/o Log Ours
Arrhythmia 0.7784 0.8114 0.7035 0.7462 0.8114
Breastw 0.9889 0.9952 0.9927 0.9943 0.9955
Campaign 0.8755 0.8191 0.6959 0.6768 0.8902
Cardio 0.8544 0.9391 0.9270 0.9293 0.9603
Cardiotocography 0.7969 0.7987 0.8454 0.8617 0.8001
Census 0.7269 0.7322 0.6070 0.7104 0.7581
Fraud 0.9270 0.9305 0.9212 0.9228 0.9357
Glass 0.5676 0.6657 0.7500 0.6902 0.7225
Ionosphere 0.9546 0.9592 0.8374 0.8680 0.9726
Mammography 0.8127 0.8682 0.8424 0.8751 0.9053
Nslkdd 0.8075 0.8657 0.7467 0.8557 0.8780
Optdigits 0.9951 0.9951 0.9929 0.9925 0.9947
Pendigits 0.9837 0.9701 0.8892 0.9550 0.9919
Pima 0.7270 0.6987 0.6963 0.6724 0.7639
Satellite 0.7976 0.7966 0.6816 0.6886 0.7962
Satimage-2 0.9994 0.9986 0.9976 0.9980 0.9992
Shuttle 0.9972 0.9974 0.9967 0.9970 0.9975
Thyroid 0.9353 0.9578 0.9430 0.9298 0.9804
Wbc 0.8784 0.9231 0.9127 0.9285 0.9814
Wine 0.9615 0.9461 0.9507 0.9260 0.9538
Average 0.8683 0.8834 0.8465 0.8609 0.9044
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Table 15: AUC-PR results with different designs of diversity loss.
DataSet Euclidean Distance Cosine Similarity Dot product Ours w/o Log Ours
Arrhythmia 0.5924 0.6073 0.4531 0.5629 0.6107
Breastw 0.9857 0.9946 0.9887 0.9944 0.9952
Campaign 0.5727 0.5153 0.3960 0.3766 0.6040
Cardio 0.7159 0.7969 0.7864 0.7828 0.8489
Cardiotocography 0.7038 0.6948 0.7371 0.7501 0.6993
Census 0.2077 0.2135 0.1568 0.1937 0.2420
Fraud 0.5080 0.4730 0.4052 0.4037 0.5141
Glass 0.1992 0.1350 0.1679 0.1671 0.1905
Ionosphere 0.9703 0.9725 0.8931 0.9016 0.9802
Mammography 0.1533 0.3454 0.2543 0.3700 0.4755
Nslkdd 0.8586 0.8888 0.8465 0.8971 0.9085
Optdigits 0.9025 0.9042 0.8501 0.8443 0.8885
Pendigits 0.6178 0.4949 0.3258 0.5061 0.8258
Pima 0.7268 0.7042 0.6859 0.6773 0.7389
Satellite 0.8544 0.8534 0.7568 0.7655 0.8532
Satimage-2 0.9807 0.9773 0.9725 0.9663 0.9850
Shuttle 0.9406 0.9456 0.9460 0.9345 0.9479
Thyroid 0.7436 0.8060 0.7100 0.7235 0.8417
Wbc 0.6026 0.6567 0.6611 0.6671 0.8887
Wine 0.9294 0.9230 0.9323 0.9181 0.9335
Average 0.6883 0.6951 0.6463 0.6701 0.7486
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Figure 7: AUC-ROC and AUC-PR performance of parameter sensitivity analysis on the weight
coefficient λ, number of epochs, and batch size.
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(a) Breastw

(b) Cardio

(c) Wbc

Figure 8: AUC-ROC and AUC-PR performance with different ratio of anomaly contamination.
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C GENERATION OF FOUR TYPES OF ANOMALIES

Here we present the generation process of four types of anomalies, following (Han et al., 2022).

• Local anomalies Using the classic GMM procedure (Milligan, 1985; Steinbuss & Böhm,
2021), we generate normal samples. Then, local anomalies are generated by scaling the
covariance matrix by a scaling parameter α = 5.

• Global anomalies Global anomalies are sampled from a uniform distribution Unif(α ·
min(Xk), α ·max(Xk)). As is seen from the formula, the boundaries are defined as the
min and max of an input feature, e.g., k-th feature Xk. The hyperparameter α is set to
1.1, which controls the degree of deviation of anomalies.

• Dependency anomalies In the generation of dependency anomalies, Vine Copula (Aas
et al., 2009) method is applied to model the dependency structure of normal data. The
probability density function of generated anomalies is set by removing the modeled de-
pendency, which completes independence(see (Martinez-Guerra & Mata-Machuca, 2016)).
Specifically, we use Kernel Density Estimation (KDE) (Hastie et al., 2009) to estimate the
probability density function of features and generate normal samples.

• Clustered anomalies We scale the mean feature vector of normal samples by α = 5, i.e.,
µ̂ = αµ̂. The hyperparameter α controls the distance between anomaly clusters and the
normal. Scaled GMM is employed to generate anomalies.

D OTHER DISCUSSIONS

Latency of training and inference Table.16 displays the training and inference times for a batch of
data of different dimensions, where we utilize generated data ranging from 10 to 10,000 dimensions,
batch size is fixed to 64. The experiments were conducted on a single Tesla V100 GPU.

Table 16: Latency of training/inference on different dimensions of data
data dimension 10 50 100 500 1000 5000 10000

Latency [ms] Training 8.49 8.91 9.55 17.69 29.21 224.12 785.98
Testing 3.58 4.06 4.44 12.94 26.96 211.43 755.69

Lightweight Decoder In the CV domain, it has been proven that utilizing a lightweight decoder can
boost the performance of MIM He et al. (2022); Xie et al. (2022). We also try changing MCM in
this aspect by replacing the decoder with a one-layer head,

In Table.17, we present the detailed results for MCM and the altered structures. As is displayed in
the table, this change produces negative effects on most datasets, leading to a drop in average AUC-
ROC and AUC-PR. The reasons for this discrepancy are as follows: For image tasks, the encoder
extracts high-level semantic information, making it easy to reconstruct lower-level information like
pixels, and using a lightweight decoder does not affect the performance. However, in tabular data,
cells typically contain various types of information (for example, each column in tabular data has its
own practical meaning). Therefore, to reconstruct these finer-grained tabular data, a more powerful
decoder is needed to ensure reconstruction capability.

Pure Masked Prediction Also, calculating reconstruction error only on masked parts, known as
pure masked prediction, is often utilized in classic methods. Following the same setting, we assign a
weight 1−mi

j to the reconstruction error of each feature, where mi
j is a value from 0 to 1, denoting

the degree of mask for jth feature of ith sample.

The results in Table.17 show that this change also results in poorer performance. Our explanation
for this phenomenon is as follows: The unmasked part is actually reconstruction task, while the
masked part is for prediction. In methods like MAE designed for images, reconstruction is relatively
simple, and adding it can even hinder performance. Focusing solely on the prediction part can indeed
compel the model to become stronger. However, tabular data has a more complex structure: there
may be relationships between columns, rows, and individual cells, and it’s also necessary to learn
semantics within each cell. Thus, even reconstructing the unmasked part is challenging because of
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these interdependencies. Therefore, improving the reconstruction of the unmasked part by capturing
these relationships is also crucial and can enhance the model’s performance.

Table 17: AUC-ROC and AUC-PR results on MCM compared to the other two altered structures.
Pure masked prediction Lightweight decoder Ours

Dataset AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

Arrhythmia 0.7865 0.5683 0.7765 0.5964 0.8114 0.6107
Breastw 0.9953 0.9952 0.9973 0.9973 0.9955 0.9952
Cardio 0.8665 0.6822 0.8968 0.7630 0.9603 0.8489
Census 0.7285 0.1955 0.7199 0.2073 0.7581 0.2420
Campaign 0.8717 0.5675 0.8010 0.5067 0.8902 0.6040
Cardiotocography 0.8388 0.7282 0.7608 0.6578 0.8001 0.6993
Fraud 0.9412 0.4434 0.8963 0.5363 0.9357 0.5141
Glass 0.5971 0.1100 0.6245 0.1199 0.7225 0.1905
Ionosphere 0.9681 0.9775 0.9523 0.9695 0.9726 0.9802
Mammography 0.8878 0.4203 0.8895 0.4484 0.9053 0.4755
Nslkdd 0.8276 0.8683 0.8699 0.8943 0.8780 0.9085
Optdigits 0.8776 0.1946 0.9569 0.4081 0.9947 0.8885
Pima 0.9890 0.7331 0.9934 0.8766 0.7639 0.7389
Pendigits 0.6687 0.6858 0.7029 0.6902 0.9919 0.8258
Satellite 0.7675 0.8371 0.7999 0.8528 0.7962 0.8532
Satimage-2 0.9980 0.9714 0.9968 0.9694 0.9992 0.9850
Shuttle 0.9971 0.9391 0.9972 0.9425 0.9975 0.9479
Thyroid 0.9770 0.8356 0.8945 0.5349 0.9804 0.8417
Wbc 0.9622 0.8157 0.9093 0.6679 0.9814 0.8887
Wine 0.9584 0.8827 0.9661 0.9394 0.9538 0.9335

Average 0.8812 0.6881 0.8701 0.6789 0.9044 0.7486

E DATASET STATISTICS

The Table.18 shows the numebr of samples, the dimension, and the number of anomalies of each
dataset used.

Table 18: Details of datasets used.
Dataset Samples Dims Anomaly
Arrhythmia 452 279 66
Breastw 683 9 239
Campaign 41188 62 4640
Cardio 1831 21 176
Cardiotocography 2114 21 466
Census 299285 500 18568
Fraud 284807 29 492
Glass 214 9 9
Ionosphere 351 33 126
Mammography 11183 6 260
NSL-KDD 148517 122 77054
Optdigits 5216 64 150
Pendigits 6870 16 156
Pima 768 8 268
Satellite 6435 36 2036
Satimage-2 5803 36 71
Shuttle 49097 9 3511
Thyroid 3772 6 93
Wbc 278 30 21
Wine 129 13 10
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F IMPLEMENTATION DETAILS

We train and test the network on two Tesla T4 GPUs on the Ubuntu18.04 system. Our code is imple-
mented based on PyTorch 1.10.2 framework with Python 3.6. Other critical package requirements
include torchvision 0.11.3, numpy 1.23.5, pandas 1.5.3, and scipy 1.10.1.

G VISUALIZATION OF MASKS GENERATED

Figure.9 shows masks of one normal sample as part of the case study presented in Section 5, corre-
lations between features section.

Figure.10 shows the comparison of masks with and without the inclusion of diversity loss. The
visual analysis reveals a notable increase in mask diversity when diversity loss is included. In
contrast, masks without diversity loss exhibit a concentration of values around 0.5, indicating lower
distinctiveness. Using diversity loss helps capture the diverse correlations present within normal
data, thereby contributing to the detection of anomalies.

Figure 9: Visualization of
masks on one normal sample.
The darker/lighter color indi-
cates a value near 0/1.

Figure 10: Multiple masks on one sample of Breastw dataset
when training with (left) and without (right) diversity loss. A
darker/lighter color means a value closer to 0/1, each row repre-
sents a different kind of mask.

H DISCUSSION OF DEGENERATION LEARNING

Firstly, we define the mask degeneration problem as follows: for a mask vector generated for a
sample, all the values are 1, then nothing is masked, indicating the occurrence of mask degeneration.
Furthermore, we can extend the degeneration problem to the cases where the values in a mask vector
are very close or even identical. This is because in such situations, the effect of the mask on the input
is more like a uniform scaling, rather than selectively masking some features and reconstructing
them with other features. Therefore, this phenomenon can also be considered as the occurrence of
mask degeneration.

We conduct both qualitative and quantitative experiments on this problem. See Figure.9 for quali-
tative results, it is observed that when diversity loss is not applied (i.e., the right figure), more than
half of the mask vectors show degeneration issues, where the all mask values are identical. When
training with diversity loss (left figure), none of the mask vectors exhibit this issue, and there is
significant diversity among the masks. For quantitative results, we use the KL divergence between
a mask vector and the uniform distribution to define the degree of degeneration:

DKL(u||m) = − 1

F

F∑
i=1

log(mi)−H(u) (6)

where u indicates the uniform distribution, m is a mask vector with length F.The intuitive interpre-
tation of this expression is that as the values of the mask vector become closer, their KL divergence
with the uniform distribution will be smaller, indicating more severe degeneration. Taking a sample
from the Breastw dataset as an example, when trained with and without diversity loss, the degen-
eration degree is 9.0724e-06 and 0.8730. This suggests that under the constraint of diversity loss,
MCM can effectively avoid mask degeneration problem.
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