

000 BEYOND LOG LIKELIHOOD: PROBABILITY-BASED 001 OBJECTIVES FOR SUPERVISED FINE-TUNING ACROSS 002 THE MODEL CAPABILITY CONTINUUM 003

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Supervised fine-tuning (SFT) is the standard approach for post-training large lan-
014 guage models (LLMs), yet it often shows limited generalization. We trace this
015 limitation to its default training objective: negative log likelihood (NLL). While
016 NLL is classically optimal when training from scratch, post-training operates in
017 a different paradigm and could violate its optimality assumptions, where models
018 already encode task-relevant priors and supervision can be long and noisy. To
019 this end, we study a general family of probability-based objectives and character-
020 ize their effectiveness under different conditions. Through comprehensive exper-
021 iments and extensive ablation studies across 8 model backbones, 27 benchmarks,
022 and 7 domains, we uncover a critical dimension that governs objective behavior:
023 the *model-capability continuum*. Near the *model-strong* end, prior-leaning objec-
024 tives that downweight low-probability tokens (e.g., $-p$, $-p^{10}$, thresholded vari-
025 ants) consistently outperform NLL; toward the *model-weak* end, NLL dominates;
026 in between, no single objective prevails. Our theoretical analysis further eluci-
027 dates how objectives trade places across the continuum, providing a principled
028 foundation for adapting objectives to model capability.¹

030 1 INTRODUCTION

032 Supervised fine-tuning (SFT) has become a standard approach for post-training large language mod-
033 els (LLMs), widely used to elicit and strengthen their capabilities (Zhang et al., 2023; Chung et al.,
034 2024). Despite its popularity, many existing studies find that SFT often exhibits limited generaliza-
035 tion (Ouyang et al., 2022; Chu et al., 2025). Nevertheless, this limitation may not arise from the
036 SFT paradigm itself. Instead, we find that it may stem from its default training objective: negative
037 log likelihood (NLL, $-\log p$). As a motivating case study, we generalize NLL into a parametrized
038 family of learning objectives of the form $f_\alpha(p) := -\frac{p^\alpha - 1}{\alpha}$, which includes NLL as a special case
039 ($f_\alpha(p) \rightarrow -\log p$ as $\alpha \rightarrow 0$). We surprisingly find that other objectives significantly outperform
040 NLL on some tasks, as shown in Tab. 1.

041 This unexpected observation motivates us to fundamentally revisit the train-
042 ing objective of SFT. While NLL has been shown to be optimal in classi-
043 cal learning theory when training from scratch on small-scale classification
044 tasks (Cox, 1958; Zhang, 2004; Bartlett et al., 2006), LLM post-training
045 operates in a fundamentally different paradigm and essentially degrades
046 the optimality of NLL. Post-training begins with a pretrained model (called
047 the *base model*) that already encodes task-relevant priors, and typically in-
048 volves long chain-of-thought supervision spanning thousands of tokens that
049 may be noisy. Requiring the pretrained model to replicate every token ver-
050 batim can hinder generalization.

051 To this end, we conduct a comprehensive study to demystify which scenarios suit NLL and which
052 suit other objectives. Our study uncovers a critical dimension that governs the behavior of different
053 objectives: the **model-capability continuum**. This continuum reflects the strength of prior signals

054 Table 1: Other objec-
055 tives can significantly
056 outperform NLL.

α	Objective	Accuracy
0	$-\log p$	17.00
1	$1 - p$	32.75
10	$(1 - p^{10})/10$	31.50

057 ¹Anonymized code is provided at <https://anonymous.4open.science/r/beyondLog-AD61>.

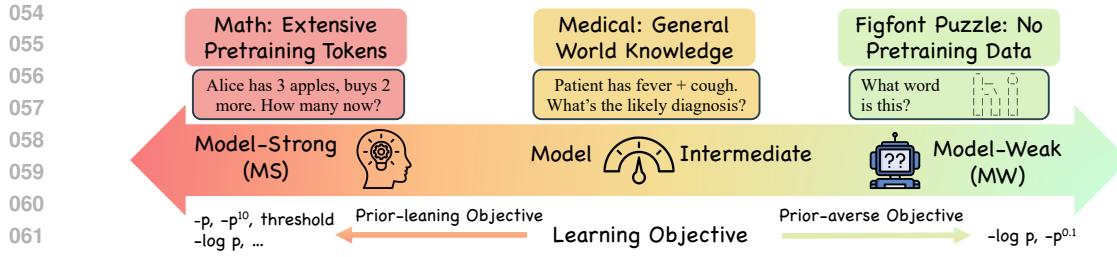


Figure 1: **The model capability continuum of SFT objectives in Post-Training.** At the model-strong (MS) end, where base models already encode extensive priors (e.g., Llama 3 reports 25% math pretraining tokens (Grattafiori et al., 2024)), prior-leaning objectives that downweight low-probability tokens (e.g., $-p$, $-p^{10}$, or thresholded variants) consistently outperform NLL by up to 16%. At the model-weak (MW) end, where no useful priors exist (e.g., no figfont puzzles in pretraining data), the standard NLL dominates. In the model-intermediate (MI) region (e.g., medical reasoning, where models rely on partial world knowledge), the gap between objectives narrows and no single choice consistently prevails. This continuum highlights how the effectiveness of an SFT objective depends critically on the capability of the base model.

inherited from pretraining: some domains (e.g., math with abundant pretraining tokens) align well with the model’s priors, while others (e.g., novel puzzles with no pretraining exposure) do not, as illustrated in Fig. 1. Accordingly, the effectiveness of a learning objective depends on prior strength: prior-leaning objectives excel when priors are reliable, whereas prior-averse ones remain necessary when priors are weak.

We validate this perspective through extensive experiments spanning seven model backbones, fourteen benchmarks, and three domains. Our results reveal a clear continuum in how objectives behave: at the *model-strong* end, where base models already provide reliable priors, probability-based objectives that downweight low-probability tokens (e.g., $-p$, $-p^{10}$, or thresholded variants) consistently outperform NLL. At the *model-weak* end, where priors are misaligned with the data, NLL remains dominant by forcing the model to learn broadly from all tokens. In the intermediate region, the gap narrows and no single objective prevails. Further empirical analyses show that convexity and concavity of the learning objective, as a proxy for the degree to which model priors are respected, has opposite effects across the continuum. Likelihood estimation on the training set, as a proxy for empirical risk minimization, exhibits the same inversion.

To elucidate these findings, we provide theoretical underpinnings that characterize when and why different objectives outperform others. We characterize a sufficient condition showing that a more prior-leaning (e.g., $-p$) achieve greater loss reduction than NLL in the model-strong end in gradient flow. The opposite holds in the model-weak end, where NLL achieves larger reductions. This theoretical characterization mirrors our empirical results and provides a principled explanation of how objective form and model capability interact.

2 A UNIFIED CATEGORIZATION OF SFT TRAINING OBJECTIVES

Language Model Post-Training. We focus on the post-training stage of large language models (LLMs). Let p_θ denote a pretrained base model that has already undergone large-scale pretraining and accumulated extensive world knowledge. Such models typically produce predictions that are reasonably well-calibrated (Zhu et al., 2023; Xie et al., 2024), and their outputs encode task-relevant priors derived from pretraining corpora.

Standard Supervised Fine-Tuning. We consider supervised fine-tuning (SFT) on a dataset T of input-output pairs (x, \tilde{y}) , where $\tilde{y} = (y_1, \dots, y_N)$ denotes the target sequence. The model defines token-level conditionals $p_\theta(y_t | y_{<t}, x)$. At decoding step t , let $z_t \in \mathbb{R}^V$ denote the logits over the vocabulary, $p_t = \text{softmax}(z_t)$, and $p_{t,i} = \text{softmax}(z_t)_i$. For brevity, write $y = y_t$, and denote by $\delta_{i,y}$ the Kronecker delta. In standard SFT, the training objective is to minimize the negative log likelihood, equivalently the cross-entropy loss, over the dataset:

108

$$\mathcal{L}_{\log(p)}(\theta) = \mathbb{E}_{(x, \tilde{y}) \sim T} [-\log p_\theta(\tilde{y} | x)] = \mathbb{E}_{(x, \tilde{y}) \sim T} \left[\sum_{t=1}^N -\log p_\theta(y_t | y_{<t}, x) \right]. \quad (1)$$

112 **A General Family of Probability-Based Objectives.** We now extend beyond log likelihood by
 113 considering a broader family of objectives. For any differentiable and nonincreasing function $f :
 114 [0, 1] \rightarrow \mathbb{R}$, we define

$$\mathcal{L}_{f(p)}(\theta) = \mathbb{E}_{(x, \tilde{y}) \sim T} [f(p_\theta(\tilde{y} | x))] = \mathbb{E}_{(x, \tilde{y}) \sim T} \left[\sum_{t=1}^N f(p_\theta(y_t | y_{<t}, x)) \right]. \quad (2)$$

118 One useful general instance of f is given by

$$f^\alpha(p) = \frac{1 - p^\alpha}{\alpha}. \quad (3)$$

123 As $\alpha \rightarrow 0$, it reduces to $f^\alpha(p) \rightarrow -\log(p)$ (NLL). When $\alpha = 1$, it yields the plain- p objective
 124 $f^\alpha(p) = 1 - p$, which corresponds to *maximizing the expected average prediction accuracy*. More
 125 generally, the function is concave when $\alpha \geq 1$ and convex when $0 \leq \alpha \leq 1$.

126 **Prior-learning versus Prior-averse Objectives.** The key distinction among these objectives lies
 127 in the form of their gradients with respect to the *correct logit class*, which governs the resulting
 128 learning dynamics.

129 **Lemma 1** (Gradient Shape). *Let $f : [0, 1] \rightarrow \mathbb{R}$ be differentiable and nonincreasing. Then the
 130 gradient of Eq. 2 with respect to the logits at step t is*

$$\frac{\partial(\mathcal{L}_f)}{\partial z_{t,i}} = s_f(p_{t,y}) (\delta_{i,y} - p_{t,i}), \quad \text{where } s_f(p) \triangleq -f'(p)p \geq 0, \quad \delta_{iy} = \mathbf{1}\{i = y\}.$$

134 In particular, for the correct class $i = y$,

$$\frac{\partial(\mathcal{L}_f)}{\partial z_{t,y}} = s_f(p_{t,y}) (1 - p_{t,y}) = W_f(p_{t,y}), \quad W_f(p) \triangleq -f'(p)p(1 - p).$$

139 **Proposition 1** (Convex versus Concave Objectives). *Let $f \in C^2[0, 1]$ with $f'(p) < 0$ for all $p \in
 140 (0, 1)$. Define $W_f(p) = -f'(p)p(1 - p)$. Then if f is concave, any maximizer of W_f lies in the
 141 interval $[\frac{1}{2}, 1]$; if f is convex, any maximizer of W_f lies in the interval $[0, \frac{1}{2}]$.*

142 In other words, convex objectives emphasize gradient contributions from low-probability tokens,
 143 while concave objectives shift the gradient mass toward high-probability tokens.

145 The weighting term $W_f(p)$ determines how much learning
 146 signal each token contributes relative to the model’s
 147 prior belief. For the parametric family in Eq. 3, we have
 148 $W_f(p) = p^\alpha(1 - p)$. As $\alpha \rightarrow 0$ (NLL), this reduces
 149 to $W_f(p) \rightarrow (1 - p)$, which strongly emphasizes low-
 150 probability tokens. When $\alpha \geq 1$ ($f(p) = 1 - p$), the
 151 gradient signal from low-probability tokens quickly
 152 diminishes. For a special case $f(p) = -\log(1 - p)$, we
 153 obtain $W_f(p) = p$, which exhibits the opposite trend of
 154 $-\log(p)$ by emphasizing high-probability tokens. Fig. 2
 155 visualizes these gradient shapes $W_f(p)$ for different ob-
 156 jectives: the dot marks the maximizer of each function,
 157 and the dashed line at $p = 0.5$ serves as a reference point separating objectives that favor low- versus
 158 high-probability tokens. More formally, Prop. 2 shows that convex objectives (e.g., $-\log p$) achieve
 159 their maximum within $[0, 0.5]$, thus prioritizing low-probability tokens (*prior-averse*); whereas con-
 160 cave objectives (e.g., $-p^2$) peak within $[0.5, 1]$, thereby reinforcing already confident predictions
 161 (*prior-leaning*). This distinction illustrates how convexity modulates the degree to which an ob-
 162 jective respects model priors. In particular, the family in Eq. 3 can be seen as providing a smooth
 163 transition between prior-averse and prior-leaning behavior. This leads to the following definition.

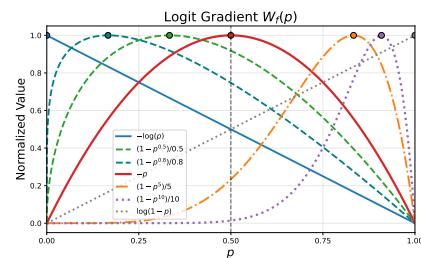


Figure 2: The logit gradients $W_f(p)$ of different functions.

162 **Definition 1** (Prior-leaning versus Prior-adverse Objectives). *We classify objectives according to*
 163 *how W_f distributes its mass over p . We say the objective is:*

- 165 • Prior-leaning *if the majority of gradient weight is concentrated on medium- to high-*
 166 *probability tokens (i.e., p above a threshold τ), thereby leveraging the model’s prior to*
 167 *refine already plausible predictions.*
- 168 • Prior-averse *if the majority of gradient weight is concentrated on low-probability tokens (p*
 169 *below τ), thereby pushing the model to learn from unlikely predictions.*

171 This definition emphasizes that different objectives exploit the model’s prior in opposite ways. While
 172 the precise boundary between prior-leaning and prior-averse (e.g., the choice of threshold τ) is not
 173 unique and may depend on the task, some objectives exhibit clear contrasts (e.g., $-\log p$ versus
 174 $-p$), which form the primary focus of our study. To further probe their behavior, we also consider a
 175 hard-thresholding variant:

$$\mathcal{L}_{\text{HT}(I), f(p)}(\theta) = \mathbb{E}_{(x, \tilde{y}) \sim T} [f(p(\tilde{y} | x)) \mathbf{1}\{p(\tilde{y} | x) \in I\}], \quad (4)$$

178 where $\text{HT}(I)$ denotes restricting updates to tokens whose predicted probabilities fall within an in-
 179 terval $I \subseteq [0, 1]$. This formulation is particularly useful for ablation, as it isolates the contribution
 180 of tokens in specific probability ranges.

182 **The model capability continuum.** Unlike traditional classification tasks, language model post-
 183 training spans a wide variety of domains that differ substantially in how well they are supported by
 184 pretraining. Consequently, not all tasks should be treated uniformly. We categorize tasks along a
 185 *model-capability continuum*, defined by the strength of the base model prior. A general categoriza-
 186 tion is shown in Fig. 1. Our classification relies on two complementary perspectives: (1) From the
 187 pretraining data side, tasks differ in the portion of relevant data contained in the corpus. For ex-
 188 ample, the LLaMA-3 report indicates that $\sim 25\%$ of its pretraining tokens are math-related, suggesting
 189 strong priors for mathematical reasoning (*model-strong*). By contrast, figfont puzzles fall entirely
 190 outside the pretraining corpus and thus represent *model-weak* tasks, while domains with partial
 191 coverage, such as medical reasoning, are considered *intermediate*. (2) From the model side, we
 192 measure the mean predicted probability on the training set as a quantitative proxy of prior strength.
 193 This measure aligns well with intuition: math tasks achieve high predicted likelihood of the training
 194 even before SFT (e.g., Qwen2.5-Math-7B: 0.81, LLaMA-3.1-8B: 0.76), whereas medical reasoning
 195 lies in the middle (~ 0.50), and figfont puzzles remain extremely low (~ 0.01). Together, these per-
 196 spectives motivate our continuum view and ground it in both qualitative and quantitative evidence.
 197 The details and the rationales about our classification are included in Appen. C.1.

198 At the model strong (MS) end, prior-leaning objectives can be leveraged to refine a small number of
 199 critical tokens by concentrating learning on mid- to high-probability tokens that are more likely to be
 200 correct. At the model weak (MW) end, prior-averse objectives are more suitable, as they encourage
 201 the model to improve predictions across all tokens. For models of intermediate capability (MI), both
 202 objectives may provide benefits, depending on the characteristics of the task and the base model.

203 3 MAIN EXPERIMENTS

205 In this section, we empirically validate the proposed continuum view of SFT post-training and eval-
 206 uate the performance of different probability-based objective functions.

208 3.1 EXPERIMENTAL SETUP

210 To empirically validate the continuum view, we conduct experiments across three representative
 211 domains: mathematical reasoning, medical reasoning, and textual puzzles. As motivated in Sec. 2,
 212 these domains occupy different positions along the model-capability continuum. For the *model-*
 213 *strong* (MS) end, we use NuminaMath (LI et al., 2024) as training data. For the *model-weak* (MW)
 214 end, we generate synthetic figfont puzzles from Reasoning Gym (Stojanovski et al., 2025). For the
 215 *intermediate* (MI) region, we adopt m23k (Huang et al., 2025), a high-quality medical reasoning
 216 dataset. Additional statistics supporting this classification are provided in Appen. C.1.

216 Our experiments cover a diverse set of advanced backbones, including LLaMA-3.2B, LLaMA-3.1-
 217 8B, DeepSeekMath-7B, Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, Qwen2.5-1.5B, and Qwen2.5-
 218 7B. We primarily compare the $-p$ and $-\log p$ objectives, with one exception: on the MS end,
 219 we also evaluate a thresholded variant of $-\log p$ that excludes low-probability tokens. All mod-
 220 els are trained with AdamW, and evaluation datasets, optimization details, and further experimental
 221 configurations are provided in Appen. C.

223 3.2 MAIN RESULTS

226 Table 2: Main results in the Model Strong (MS) end. Both $-p$ and thresholded $-\log(p)$ consistently
 227 outperform the standard $-\log(p)$ objective across models and datasets. Best results are in bold.

229 Models	230 Math500	231 Minerva Math	232 Olympiad Bench	233 AIME24	234 AMC23	235 Avg.
LLaMA-3.1-8B						
231 Base	232 1.76	233 0.68	234 0.86	235 0.00	236 1.25	237 0.91
231 -log(p)	232 17.59	233 5.84	234 3.04	235 0.21	236 5.78	237 6.49
231 -log(p)1{p ≥ 0.2}	232 24.39	233 10.49	234 5.10	235 0.41	236 11.25	237 10.33
231 -p	232 25.29	233 10.09	234 6.37	235 0.41	236 10.62	237 10.56
DeepSeekMath-7B						
231 Base	232 5.70	233 2.89	234 1.51	235 0.00	236 2.34	237 2.49
231 -log(p)	232 28.79	233 9.29	234 6.57	235 0.21	236 10.62	237 11.10
231 -log(p)1{p ≥ 0.2}	232 40.38	233 19.38	234 13.98	235 0.62	236 18.91	237 18.65
231 -p	232 39.55	233 20.14	234 13.99	235 1.24	236 20.62	237 19.11
Qwen2.5-Math-1.5B						
241 Base	242 30.71	243 8.81	244 14.88	245 2.49	246 17.97	247 14.97
241 -log(p)	242 42.52	243 12.71	244 12.09	245 0.62	246 17.03	247 17.00
241 -log(p)1{p ≥ 0.2}	242 63.95	243 24.79	244 26.08	245 7.09	246 38.28	247 32.04
241 -p	242 65.27	243 26.18	244 26.66	245 6.88	246 38.13	247 32.75
Qwen2.5-Math-7B						
246 Base	247 40.38	248 13.66	249 16.36	250 6.04	251 24.69	252 20.23
246 -log(p)	247 51.90	248 18.88	249 17.37	250 2.70	251 22.50	252 22.67
246 -log(p)1{p ≥ 0.2}	247 67.85	248 32.47	249 33.90	250 8.76	251 47.81	252 38.16
246 -p	247 68.47	248 31.99	249 32.26	250 8.75	251 41.09	252 36.51

250 **Model-Strong Results Interpretation.** Tab. 2 reports results in the model-strong (MS) end, where
 251 base models already exhibit strong priors aligned with the ground truth. In this setting, the $-p$
 252 objective consistently outperforms standard negative log-likelihood ($-\log p$). This trend suggests
 253 that when model predictions are already reliable, a prior-leaning objective like $-p$ better capitalizes
 254 on high-confidence tokens by suppressing the influence of low-probability ones. To further dissect
 255 this effect, we evaluate a thresholded variant of $-\log p$ that excludes tokens with $p < 0.2$. This
 256 adjustment directly mitigates the effect of low-confidence tokens and leads to consistent improve-
 257 ments over standard $-\log p$. In many cases, it performs on par with, or even surpasses, $-p$ applied
 258 to full tokens. Such evidence highlights that the weakness of standard NLL in this setting lies in
 259 its excessive emphasis on low-probability tokens. Prior-leaning objectives that explicitly reduce
 260 the contribution of low-confidence tokens consistently provide the most benefit at the MS end. We
 261 provide further empirical analysis in Sec. 4 with a more careful study of the pattern.

262 **Model-Intermediate Results Interpretation.** In Tab. 3, results on medical reasoning reveal a strik-
 263 ingly different pattern: the performance of $-p$ and $-\log p$ is nearly indistinguishable, with differ-
 264 ences well within statistical variation. This neutrality arises from the nature of intermediate priors.
 265 On one hand, the priors are not strong enough for the prior-leaning objective $-p$ to yield consistent
 266 refinements; on the other, they are not weak enough for the prior-averse objective $-\log p$ to offer a
 267 decisive corrective advantage. This observation is important because it indicates that the existence
 268 of a region where gains are unlikely to come from altering the learning objective itself. Instead,
 269 improvements may rely on alternative directions, such as better data curation, targeted domain su-
 pervision, or hybrid strategies that combine training data with external resources.

270
 271 Table 3: Main results in the Model Intermediate (MI) region. Both $-p$ and $-\log(p)$ result in similar
 272 performance. Best results are in bold.

Model	MedMC	MedQA	PubMed	MMLU-P	GPQA	Lancet	MedB (4)	MedB (5)	MedX	NEJM	Avg.
LLaMA-3.1-3B											
Base	21.30	21.92	22.60	11.40	23.08	25.00	23.05	15.26	10.35	23.22	19.48
$-\log(p)$	42.60	45.56	67.40	38.63	24.36	46.84	46.10	34.42	11.59	43.28	37.99
$-p$	39.42	41.95	62.70	33.88	38.46	44.17	35.71	28.57	12.63	40.80	36.29
LLaMA-3.1-8B											
Base	23.57	29.14	21.00	20.00	29.49	22.57	30.52	20.45	10.01	20.73	21.89
$-\log(p)$	55.08	59.47	74.00	53.62	32.05	57.28	52.27	46.10	15.87	59.20	47.23
$-p$	54.10	58.44	76.50	52.70	44.87	54.13	42.21	42.53	13.80	54.73	45.89
Qwen2.5-1.5B											
Base	22.21	21.84	18.50	11.21	24.36	22.57	24.03	17.53	10.84	18.74	18.59
$-\log(p)$	39.64	39.59	66.70	34.92	33.33	38.83	38.31	27.60	10.56	34.16	35.13
$-p$	38.58	36.68	68.00	38.37	35.90	35.68	36.69	28.90	11.94	39.97	35.02
Qwen2.5-Math-7B											
Base	35.84	27.26	49.30	30.23	35.90	30.34	24.03	18.18	10.21	24.71	27.55
$-\log(p)$	36.48	33.78	72.60	35.50	38.46	40.05	29.87	26.95	10.42	26.70	33.56
$-p$	35.62	33.78	69.90	38.83	42.31	35.44	33.12	27.60	10.49	26.70	33.83

288
 289 Table 4: Main results in the Model Weak (MW) end. $-\log(p)$ consistently outperforms $-p$ across
 290 different models and metrics substantially. Best results are in bold.

Metric	LLaMA-3.2-3B			LLaMA-3.1-8B			Qwen2.5-1.5B			Qwen2.5-7B		
	Base	$-\log(p)$	$-p$	Base	$-\log(p)$	$-p$	Base	$-\log(p)$	$-p$	Base	$-\log(p)$	$-p$
Exact Match	0.00	1.08	0.00	0.00	1.34	0.00	0.00	0.60	0.0	0.00	35.20	0.00
Jaro-Winkler Similarity	41.89	44.39	2.43	30.17	43.59	10.15	35.32	32.98	8.36	44.92	82.48	10.15

297 **Model-Weak Results Interpretation.** Tab. 4 reveals the opposite trend at the MW end: here $-\log p$
 298 consistently outperforms $-p$, often by substantial margins. When priors are poorly aligned with the
 299 ground truth, the concavity of $-p$ becomes detrimental, as it allocates disproportionate weight to
 300 unreliable high-probability tokens, thereby reinforcing errors. By contrast, the convexity of $-\log p$
 301 ensures that low-probability tokens, which often correspond to mistakes, receive stronger gradient
 302 signals, forcing the model to correct its errors and spread learning more broadly across the output
 303 distribution. This explains why NLL, despite its shortcomings elsewhere, remains the most effective
 304 objective in weak-prior settings. Consequently, progress on MW tasks is more likely to come from
 305 stronger or more targeted supervision, improved data augmentation, or other methods of injecting
 306 knowledge, rather than from modifying the training objective. We provide further empirical analysis
 307 in Sec. 4 with a more careful study of the pattern.

308 4 EMPIRICAL ANALYSIS

310 In this section, we provide a deeper empirical analysis of the findings in Sec. 3, with a particular
 311 emphasis on the MS and MW ends where the choice of training objective has the largest effect. Our
 312 goal is to move beyond merely reporting performance numbers and to analyze the mechanisms that
 313 drive the observed differences. To this end, we structure the analysis around three guiding questions:

- 315 1. In the MS end, what mechanisms explain the underperformance of NLL?
- 316 2. How do objectives with different emphasis on model priors behave across the two ends?
- 317 3. To what extent are these objectives consistent with likelihood estimation on the training
 318 set?

320 Answering these questions provides a deeper understanding of how different objectives interact with
 321 model capability from complementary perspectives.

322 **Model Setup.** For ablation studies in the MS end, we focus on Qwen-2.5-Math-1.5B, which shows
 323 the clearest gap between objectives. For the MW end, we use Qwen-2.5-7B. All training details and

324 evaluation protocols remain identical to those in Sec. 3, ensuring that differences arise solely from
 325 the choice of objective.
 326

327 4.1 ABLATION ON QUANTILE THRESHOLDING WITH DIFFERENT OBJECTIVES 328

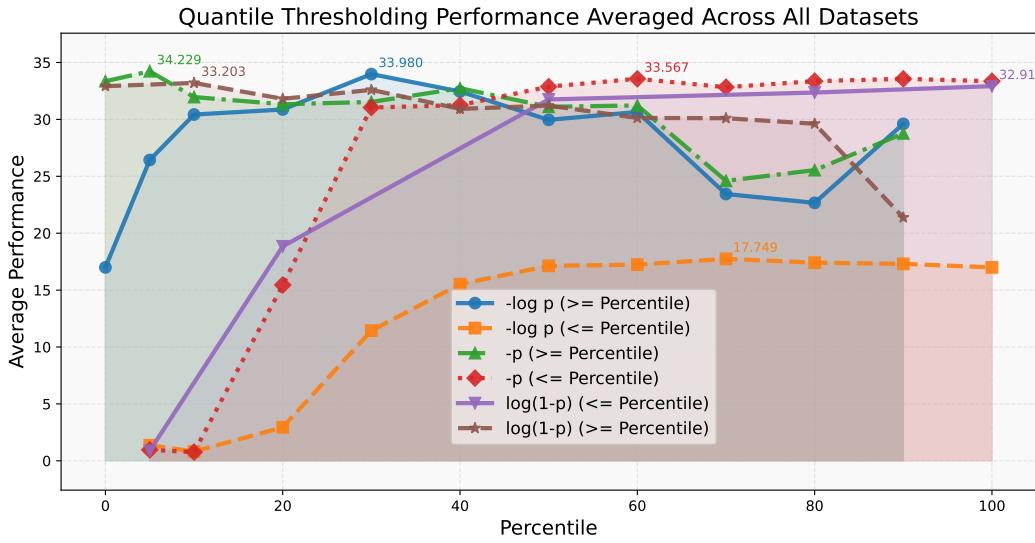


Figure 3: **Performance under quantile thresholding** for $-\log(p)$, $-p$, and $\log(1-p)$. Let $Q_{\text{percentile}}$ denote the predicted probability at the specified percentile of the training set. (\geq Percentile) corresponds to $I = [Q_{\text{percentile}}, 1]$ in Eq. 4, while (\leq Percentile) corresponds to $I = [0, Q_{\text{percentile}}]$. Key findings: (1) low-probability tokens consistently harm performance across all objectives; (2) when training on all tokens, objectives that de-emphasize low-probability tokens ($-p$ and $\log(1-p)$) outperform $-\log(p)$; (3) restricting training to only the top 10% of tokens yields the strongest improvements across all objectives, surpassing standard SFT.

Detailed Setup. This ablation examines how restricting training to different quantiles of tokens affects the relative performance of objectives. We compare three instances of $f(p)$ in Eq. 2: $-\log(p)$, $-p$, and $\log(1-p)$, which emphasize low-, mid-, and high-probability tokens, respectively (shown in Fig. 2). All experiments are identical except for the subset of tokens selected by the quantile thresholding rule in Eq. 4. Quantile thresholds are computed from the base model’s predicted token probabilities prior to training. We apply both bottom thresholding and top thresholding, denoted by (\geq Percentile) and (\leq Percentile), respectively. Bottom thresholds vary from 5% to 100%, and top thresholds vary from 0% to 90%.

Results Interpretation. The results in Fig. 3 reveal several consistent patterns that align with our main experiments in Sec. 3. First, all objectives achieve strong performance when restricted to only the top 10% tokens, significantly exceeding standard NLL on all tokens. Second, performance drops sharply when training on low-probability tokens, confirming that they contribute adversarially to learning. Third, when applying bottom-thresholding, $-p$ and $\log(1-p)$ consistently outperform $-\log(p)$, illustrating the benefits of objectives that de-emphasize unreliable tokens. Finally, the degradation of $\log(p)$ performance when trained on all tokens (blue curve) can be largely attributed to the bottom 10% quantile. Overall, these results reinforce the main conclusion from Sec. 3: in the MS end, *low-probability tokens act primarily as noise to the strong model*.

4.2 OBJECTIVE CONVEXITY AND PERFORMANCE DIFFERENCE

Detailed Setup. To systematically examine the effect of objective on downstream performance, we study the parametric family in Eq. 3. This objective is concave when $\alpha \geq 1$ and convex when $\alpha \leq 1$. A “more concave” objective is more prior-leaning and vice versa, as shown in Fig. 2. We leverage the convexity of this objective as a proxy for assessing prior-leaning versus prior-averse objectives. We vary α from 0.1 to 1.0 in increments of 0.1, and from 1.0 to 10.0 in increments of 1.0.

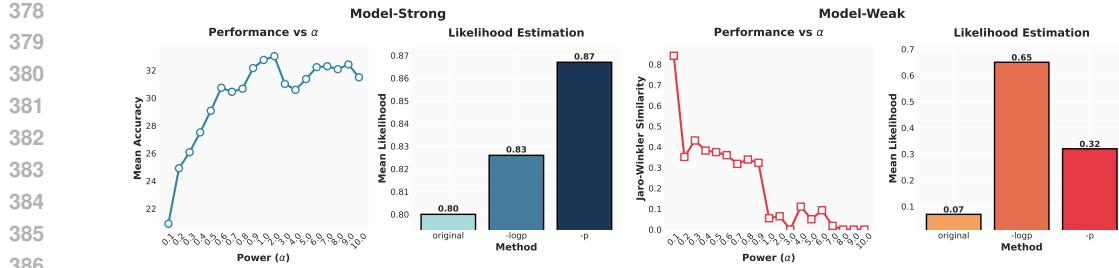


Figure 4: Analysis of MS and MW ends in terms of objective convexity (with Eq. 3) and likelihood estimation. In MS, more concave (prior-leaning) objectives yield better downstream accuracy, while in MW, more convex (prior-averse) objectives dominate. The likelihood estimation results align with these trends, suggesting that objective shape directly interacts with model prior strength.

Results Interpretation. As shown in Fig. 4, convexity affects performance in opposite directions across the SFT continuum. In the MS end, accuracy improves as α increases, peaking near $\alpha = 1$ and remaining stable for larger values. In the MW end, performance is maximized at $\alpha = 0.1$ and deteriorates rapidly as α approaches 1 and exceeds the convexity boundary. This dichotomy highlights the importance of aligning objective shape with model prior strength: concave objectives (that emphasize model priors) are more effective when priors are strong, while convex objectives (that de-emphasize model priors) are preferable when priors are weak.

4.3 LIKELIHOOD ESTIMATION ON THE TRAINING SET

Detailed Setup. In this ablation, we evaluate the empirical training performance of different objectives by computing the average predicted likelihood on the training set before and after fine-tuning:

$$\text{Likelihood Estimation} := \frac{1}{N} \sum_{i=1}^n \sum_{j=1}^{|\tilde{y}_i|} [p_\theta(\tilde{y}_{i,j})] \quad (5)$$

where i denotes the i -th sample and j denotes the j -th token, and $N = \sum_{i=1}^n |\tilde{y}_i|$, the total number of training tokens. We focus on comparing $-p$ and $-\log(p)$ in both the MS and MW ends.

Results Interpretation. The likelihood estimation results, shown in Fig. 4, closely parallel the downstream accuracy trends. In the MS end, $-p$ achieves higher mean predicted probabilities, confirming that they better align with strong model priors and effectively capture the training distribution. In contrast, in the MW end, $-\log(p)$ yield higher training performance, reflecting their ability to correct misaligned priors by emphasizing low-probability tokens. These findings indicate that the interaction between objective shape and regime governs not only generalization performance but also the model’s fit to the training data.

5 THEORETICAL ANALYSIS

5.1 SETUP

Data. Let the input prompt be $x \in \mathcal{X}$. The *true* conditional distribution over tokens $y \in [V]$ is denoted by $r(y \mid x)$, with $y^* \sim r(\cdot \mid x)$. We write \mathcal{D} for the marginal distribution over pairs $(x, r(\cdot \mid x))$, and let $T(\cdot \mid x)$ denote the empirical training distribution over contexts x , which we abuse the notation for writing $(x, \tilde{y}) \sim T$. We use subscript $p(\cdot)$ to denote model predictions $p(\cdot)$.

Model and objectives. Let $p_\theta(\cdot \mid x) = \text{softmax}(z_\theta(x))$ be the next-token distribution of an autoregressive LM with parameters θ , and write $p_0(\cdot \mid x) = p_{\theta_0}(\cdot \mid x)$ for the base model. We define the *population risk* to be

$$\mathcal{R}(\theta) = \mathbb{E}_{(x, y^*) \sim \mathcal{D}, y^p \sim p_\theta(\cdot \mid x)} \left[-\mathbb{1}\{y^* = y^p\} \right],$$

432 During SFT we minimize the empirical objective
 433

$$434 \quad \mathcal{L}_f(\theta) = \mathbb{E}_{(x, \tilde{y}) \sim T} [f(p_\theta(\tilde{y} | x))]$$

435 where $f : [0, 1] \rightarrow \mathbb{R}$ is differentiable and decreasing in p . Our theoretical analysis mainly relies on
 436 the following assumption about the two ends of the continuum:

437 **Assumption 1** (Model-Capability Assumption). *We make the following assumptions about model
 438 capability in the Model-Strong and Model-Weak ends:*

- 440 • **Model-Weak.** *In the MW end, we assume that model predictions are uniform over the vocabu-
 441 lary V .*
- 442 • **Model-Strong.** *In the MS end, we assume that for any given x , $\Pr_{y^*, \tilde{y}} [(p_{y^*} + p_{\tilde{y}}) \geq 0.55] \geq
 443 K$ with $K \geq 0.70$.*

445 **Assumption 2** (Trainable Base Model). *We assume that the base model is still not perfect: for any
 446 given x , $\Pr [0.55 \leq (p_{y^*} + p_{\tilde{y}}) \leq 0.95] \geq 1 - K$ in the MS end.*

447 **Remark 1.** *The MW assumption captures the essential condition of weakness by modeling the base
 448 as uninformative. The MS assumption is grounded in practice: in Appen. D.1, we empirically val-
 449 idate this. Assumption 2 is mild and simply guarantees that optimization is nontrivial. We choose
 450 $1 - K$ for simplicity of proof.*

451 5.2 MAIN RESULTS

453 We analyze the optimization dynamics of different objectives under gradient flow. For an objective
 454 f_i , let $\dot{\theta}_t^{(i)} = -\nabla \mathcal{L}_{f_i}(\theta)$ denote the corresponding gradient flow, and let $\mathcal{R}(\theta_t^{(i)})$ be the population
 455 risk at time t . Our goal is to maximize the reduction in risk, as captured by $\dot{\mathcal{R}}(\theta_t^{(i)})$.

457 **Theorem 1** (Characterization via Gradient Flow, Informal). *Suppose that $f_2'(p) - f_1'(p) < 0$ for all
 458 \tilde{p} , and Assumptions 1–2 hold. Then, in a simplified setup, we have the following conclusions:*

- 460 • $\dot{\mathcal{R}}(\theta_t^{(1)})|_{t=0} \geq \dot{\mathcal{R}}(\theta_t^{(2)})|_{t=0}$ in Model Strong End.
- 462 • $\dot{\mathcal{R}}(\theta_t^{(1)})|_{t=0} \leq \dot{\mathcal{R}}(\theta_t^{(2)})|_{t=0}$ in Model Weak End.

463 **Remark 2.** *This theorem characterizes a sufficient condition for which the relative advantage of
 464 two objectives reverses across the MS and MW ends. For example, setting $f_1(p) = 1 - p$ and
 465 $f_2(q) = -\log p$, we conclude that in the model-strong end, the prior-leaning $-p$ objective achieves
 466 larger risk reduction than NLL, whereas in the model-weak end, NLL is superior. This reversal
 467 mirrors our empirical observations and highlights the central theme of this work: the effectiveness
 468 of an SFT objective depends critically on model capability. The full analysis is provided in Appen. G.*

470 6 CONCLUSION AND FUTURE WORK

472 In this work, we revisited the objective of supervised fine-tuning (SFT) for large language model
 473 post-training and showed that negative log likelihood (NLL), while classically optimal from scratch,
 474 is not universally effective once models already encode priors and supervision is long and noisy.
 475 Our central contribution is the *model-capability continuum*, instantiated with a general family of
 476 probability-based objectives, which reveals that the effectiveness of different objectives depends
 477 critically on the prior strength of the base model. Through extensive analyses from different angles,
 478 we found consistent evidence that objectives reverse their relative advantage across different regions,
 479 yielding a unified explanation of how objective form interacts with model capability.

480 Looking ahead, our results highlight the need for *adaptive* objectives that adjust to model capabili-
 481 ty rather than relying on a fixed choice. Promising directions include practical implementations of
 482 adaptive SFT objectives, integration with domain-specific supervision and data curation, and exten-
 483 sions to broader post-training frameworks. Another avenue is to explore dynamic or curriculum-
 484 style adaptation, where the objective evolves with model improvement during training. Advancing
 485 along these lines may unlock the full potential of SFT as a lightweight yet powerful approach for
 aligning large language models. We discuss potential limitations in Appen. E.

486 REPRODUCIBILITY STATEMENT
487488 We have taken concrete steps to facilitate independent reproduction of our results. The full exper-
489 imental setup, including datasets, training and evaluation protocols, and baseline configurations, is
490 provided in Appen. C. All datasets used are either publicly available or synthetically generated, and
491 we specify preprocessing details where applicable. Model backbones, optimization hyperparam-
492 eters, and evaluation metrics are described in detail to ensure clarity and replicability. In addition, we
493 provide anonymized code and scripts for data preparation, training, and evaluation at the following
494 link: <https://anonymous.4open.science/r/beyondLog-AD61>.495
496 ETHICS STATEMENT
497498 This work focuses on improving the objectives used in supervised fine-tuning for large language
499 models, with the goal of better aligning models to data and priors. Our experiments are conducted
500 on publicly available or synthetic datasets in mathematics, medical reasoning, and puzzles, without
501 involving private or sensitive user information. The methods proposed are general-purpose and do
502 not introduce new modalities for data collection or deployment. Nevertheless, as with all research
503 on language models, potential downstream risks include misuse in generating misleading content or
504 reinforcing biases present in pretraining data. We encourage responsible application of our findings
505 and emphasize that careful consideration of safety, fairness, and domain-specific impacts should
506 accompany any real-world deployment.507
508 REFERENCES

- 509
-
- 510 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
-
- 511 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
-
- 512 report.
- arXiv preprint arXiv:2303.08774*
- , 2023.
-
- 513
-
- 514 AI Mathematical Olympiad Prize. Ai mathematical olympiad prize.
- <https://www.kaggle.com/competitions/ai-mathematical-olympiad-prize>
- , 2024. Accessed: 2025-
-
- 515 09-24.
-
- 516
-
- 517 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
-
- 518 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
-
- 519 assistant with reinforcement learning from human feedback.
- arXiv preprint arXiv:2204.05862*
- ,
-
- 520 2022.
-
- 521
-
- 522 Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk bounds.
-
- 523
- Journal of the American Statistical Association*
- , 101(473):138–156, 2006.
-
- 524
-
- 525 George Casella and Roger Berger.
- Statistical inference*
- . Chapman and Hall/CRC, 2024.
-
- 526
-
- 527 Hanjie Chen, Zhouxiang Fang, Yash Singla, and Mark Dredze. Benchmarking large language mod-
-
- 528 els on answering and explaining challenging medical questions. In
- Proceedings of the 2025 Con-
529 ference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
530 Language Technologies (Volume 1: Long Papers)*
- , pp. 3563–3599, 2025.
-
- 531
-
- 532 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
-
- 533 Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of founda-
-
- 534 tion model post-training. In
- Forty-second International Conference on Machine Learning*
- , 2025.
-
- 535 URL
- <https://openreview.net/forum?id=dYur3yabMj>
- .
-
- 536
-
- 537 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
-
- 538 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
-
- 539 guage models.
- Journal of Machine Learning Research*
- , 25(70):1–53, 2024.
-
- 540
-
- 541 Thomas M Cover.
- Elements of information theory*
- . John Wiley & Sons, 1999.
-
- 542
-
- 543 David R Cox. The regression analysis of binary sequences.
- Journal of the Royal Statistical Society
544 Series B: Statistical Methodology*
- , 20(2):215–232, 1958.

- 540 Damek Davis and Benjamin Recht. What is the objective of reasoning with reinforcement learning?
 541 *ArXiv*, abs/2510.13651, 2025. URL <https://api.semanticscholar.org/CorpusID:282102854>.
- 543 Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
 544 Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
 545 *arXiv preprint arXiv:2002.06305*, 2020.
- 546 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
 547 pacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.
- 549 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
 550 *Journal of the American statistical Association*, 102(477):359–378, 2007.
- 551 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 552 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 553 of models. *arXiv preprint arXiv:2407.21783*, 2024.
- 555 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 556 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 557 preprint arXiv:2103.03874*, 2021.
- 558 Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
 559 In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
 560 (Volume 1: Long Papers)*, pp. 328–339, 2018.
- 562 Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, and Yuyin Zhou. m1: Unleash the po-
 563 tential of test-time scaling for medical reasoning with large language models. *arXiv preprint
 564 arXiv:2504.00869*, 2025.
- 565 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
 566 ease does this patient have? a large-scale open domain question answering dataset from medical
 567 exams. *Applied Sciences*, 11(14):6421, 2021.
- 569 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
 570 dataset for biomedical research question answering. *arXiv preprint arXiv:1909.06146*, 2019.
- 571 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 572 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 573 diversity. In *The Twelfth International Conference on Learning Representations*.
- 575 Abdullatif Köksal, Marion Thaler, Ayyoob Imani, Ahmet Üstün, Anna Korhonen, and Hinrich
 576 Schütze. Muri: High-quality instruction tuning datasets for low-resource languages via reverse
 577 instructions. *Transactions of the Association for Computational Linguistics*, 13:1032–1055, 2025.
- 578 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 579 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 580 reasoning problems with language models. *Advances in neural information processing systems*,
 581 35:3843–3857, 2022.
- 582 Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
 583 Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
 584 Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [<https://huggingface.co/AI-MO/NuminaMath-CoT>] (https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.
- 587 Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Ruoyu Sun, and Zhi-Quan Luo.
 588 Entropic distribution matching for supervised fine-tuning of llms: Less overfitting and better di-
 589 versity. In *NeurIPS 2024 Workshop on Fine-Tuning in Modern Machine Learning: Principles
 590 and Scalability*, 2024.
- 592 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 593 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth
 International Conference on Learning Representations*, 2023.

- 594 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 595 object detection. In *Proceedings of the IEEE international conference on computer vision*, pp.
 596 2980–2988, 2017.
- 597
- 598 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
 599 gpt really correct? rigorous evaluation of large language models for code generation. *Advances
 600 in Neural Information Processing Systems*, 36:21558–21572, 2023.
- 601 Mingyang Liu, Gabriele Farina, and Asuman Ozdaglar. Uft: Unifying supervised and reinforcement
 602 fine-tuning. *arXiv preprint arXiv:2505.16984*, 2025.
- 603
- 604 Mathematical Association of America. Math competitions. [https://maa.org/
 605 math-competitions](https://maa.org/math-competitions), 2023. Accessed: 2025-09-24.
- 606
- 607 Mathematical Association of America. Aime thresholds are available. [https://maa.org/
 608 aime-thresholds-are-available/](https://maa.org/aime-thresholds-are-available/), 2024. Accessed: 2025-09-24.
- 609 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 610 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 611 2018.
- 612
- 613 Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural net-
 614 works for volumetric medical image segmentation. In *2016 fourth international conference on
 615 3D vision (3DV)*, pp. 565–571. Ieee, 2016.
- 616
- 617 Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
 618 via natural language crowdsourcing instructions. In *Proceedings of the 60th Annual Meeting of
 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3470–3487, 2022.
- 619
- 620 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 621 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 622 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 623 27730–27744, 2022.
- 624
- 625 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
 626 multi-subject multi-choice dataset for medical domain question answering. In *Conference on
 627 health, inference, and learning*, pp. 248–260. PMLR, 2022.
- 628
- 629 Chongli Qin and Jost Tobias Springenberg. Supervised fine tuning on curated data is reinforcement
 630 learning (and can be improved). *arXiv preprint arXiv:2507.12856*, 2025.
- 631
- 632 Daniele Rege Cambrin, Giuseppe Gallipoli, Irene Benedetto, Luca Cagliero, and Paolo Garza. Be-
 633 yond accuracy optimization: Computer vision losses for large language model fine-tuning. In
 634 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for
 635 Computational Linguistics: EMNLP 2024*, pp. 12060–12079, Miami, Florida, USA, November
 636 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.704.
 637 URL <https://aclanthology.org/2024.findings-emnlp.704/>.
- 638
- 639 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 640 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 641 mark. In *First Conference on Language Modeling*, 2024.
- 642
- 643 Leonard J Savage. Elicitation of personal probabilities and expectations. *Journal of the American
 644 Statistical Association*, 66(336):783–801, 1971.
- 645
- 646 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 647 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 648 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- 649
- 650 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 651 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
 652 arXiv: 2409.19256*, 2024.

- 648 Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kad-
 649 dour, and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning
 650 with verifiable rewards, 2025. URL <https://arxiv.org/abs/2505.24760>.
- 651 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
 652 Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-
 653 following model. *Stanford Center for Research on Foundation Models*. <https://crfm.stanford.edu/2023/03/13/alpaca.html>, 3(6):7, 2023.
- 654 Bo Wang, Qinyuan Cheng, Runyu Peng, Rong Bao, Peiji Li, Qipeng Guo, Linyang Li, Zhiyuan
 655 Zeng, Yunhua Zhou, and Xipeng Qiu. Implicit reward as the bridge: A unified view of sft and
 656 dpo connections. *arXiv preprint arXiv:2507.00018*, 2025.
- 657 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 658 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 659 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 660 37:95266–95290, 2024.
- 661 Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
 662 code generation with oss-instruct. *arXiv preprint arXiv:2312.02120*, 2023.
- 663 Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
 664 Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
 665 perspective with reward rectification. *arXiv preprint arXiv:2508.05629*, 2025.
- 666 Johnathan Xie, Annie S Chen, Yoonho Lee, Eric Mitchell, and Chelsea Finn. Calibrating language
 667 models with adaptive temperature scaling. *arXiv preprint arXiv:2409.19817*, 2024.
- 668 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
 669 Lin, and Dixin Jiang. Wizardlm: Empowering large pre-trained language models to follow com-
 670 plex instructions. In *The Twelfth International Conference on Learning Representations*, 2024a.
- 671 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
 672 Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
 673 nothing. *arXiv preprint arXiv:2406.08464*, 2024b.
- 674 Weihao Xuan, Rui Yang, Heli Qi, Qingcheng Zeng, Yunze Xiao, Aosong Feng, Dairui Liu, Yun
 675 Xing, Junjue Wang, Fan Gao, et al. Mmlu-prox: A multilingual benchmark for advanced large
 676 language model evaluation. *arXiv preprint arXiv:2503.10497*, 2025.
- 677 Dylan Zhang, Qirun Dai, and Hao Peng. The best instruction-tuning data are those that fit. *arXiv
 678 preprint arXiv:2502.04194*, 2025.
- 679 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 680 Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv
 681 preprint arXiv:2308.10792*, 2023.
- 682 Tong Zhang. Statistical analysis of some multi-category large margin classification methods. *Journal
 683 of Machine Learning Research*, 5(Oct):1225–1251, 2004.
- 684 Tianyang Zhong, Zhenyuan Yang, Zhengliang Liu, Ruidong Zhang, Yiheng Liu, Haiyang Sun,
 685 Yi Pan, Yiwei Li, Yifan Zhou, Hanqi Jiang, et al. Opportunities and challenges of large language
 686 models for low-resource languages in humanities research. *arXiv preprint arXiv:2412.04497*,
 687 2024.
- 688 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
 689 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information
 690 Processing Systems*, 36:55006–55021, 2023.
- 691 Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On the calibration of
 692 large language models and alignment. *arXiv preprint arXiv:2311.13240*, 2023.
- 693 Wenhong Zhu, Ruobing Xie, Rui Wang, Xingwu Sun, Di Wang, and Pengfei Liu. Proximal super-
 694 vised fine-tuning. *arXiv preprint arXiv:2508.17784*, 2025.

702 Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding,
703 and Bowen Zhou. Medxpertqa: Benchmarking expert-level medical reasoning and understanding.
704 *arXiv preprint arXiv:2501.18362*, 2025.

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	CONTENTS	
757		
758	A The Use of Large Language Models	16
759		
760	B Related Works	16
761		
762	C Detailed Experimental Setup	16
763		
764	C.1 Continuum Selection	17
765		
766	C.2 Training and Evaluation Details	17
767		
768	D Additional Experiment Results	18
769		
770	D.1 Justification for Assumptions	18
771		
772	E Limitation	18
773		
774	F Proofs for Sec. 2	18
775		
776	G Main Theoretical Results	19
777		
778	G.1 Setup and Notations	19
779		
780	G.2 Assumptions	20
781		
782	G.3 Main Proofs	21
783	H Rebuttal Materials	26
784		
785	H.1 Additional General Domain Experiments (Reviewer FZpg, ozBm)	26
786		
787	H.2 Additional Model Strong Experiments (Reviewer FZpg, ozBm)	26
788		
789	H.3 Additional Model Weak Experiments (Reviewer Fva5)	27
790		
791	H.4 Additional Knowledge Memorization Task (Reviewer Fva5)	28
792		
793	H.5 Additional Forgetting Experiments (Reviewer FZpg, nHnp)	28
794		
795	H.6 Discussion with Existing Literature (Reviewers FZpg, Fva5)	29
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A THE USE OF LARGE LANGUAGE MODELS
811

812 LLMs did not play significant roles in this paper’s research ideation and/or writing to the extent
813 that they could be regarded as a contributor. In the experiments, LLMs are treated as the main
814 experimental object. During the preparation of this paper, we made controlled use of LLMs, specifi-
815 cally ChatGPT, as an auxiliary writing tool. The LLM was employed solely for stylistic refinement,
816 namely to improve the fluency, grammar, and readability of paragraphs that were originally drafted
817 by the authors.

818
819 B RELATED WORKS
820

821 **Language Model Post-training.** Supervised Fine-Tuning (SFT) has emerged as the dominant
822 paradigm for post-training, adapting pretrained models to tasks or domains by directly fitting la-
823 beled data (Zhang et al., 2023; Chung et al., 2024). The availability of high-quality instruction
824 datasets (Mishra et al., 2022; Zhou et al., 2023; Taori et al., 2023; Lightman et al., 2023) has further
825 boosted SFT’s effectiveness. Nevertheless, abundant studies highlight that SFT alone often over-
826 fits, generalizes poorly, and yields sub-optimal models (Howard & Ruder, 2018; Dodge et al., 2020;
827 Ouyang et al., 2022). To address these limitations while retaining SFT’s efficiency, the prevailing
828 recipe is to combine SFT with RL, forming the de facto post-training paradigm (Bai et al., 2022;
829 Achiam et al., 2023; Kirk et al.; Chu et al., 2025; Liu et al., 2025). Yet, existing SFT post-training
830 consistently minimizes the negative log-likelihood objective, $-\log(p)$, whose suitability has rarely
831 been questioned. In this work, we show that it is not universally optimal and argue for revisiting
832 objectives that better exploit pretrained priors in SFT.

833 **Improving SFT (from an RL perspective).** Motivated by the success of reinforcement learning in
834 reasoning tasks, a growing body of work seeks to reinterpret and improve SFT through an RL lens.
835 Wang et al. (2025) cast both SFT and DPO as instances of implicit reward learning, showing that
836 smaller learning rates and alternative divergence-based objectives can enhance performance. Qin &
837 Springenberg (2025) integrates importance sampling into SFT, while Zhu et al. (2025) introduces a
838 PPO-style clipped surrogate objective to constrain policy drift. Most closely related to our work, Wu
839 et al. (2025) proposes reweighting gradient coefficients uniformly, essentially equivalent to our $-\rho$
840 objective, for which we provide a deeper characterization and analysis. Overall, these approaches
841 can be regarded as special cases of our proposed “prior-leaning” objectives, implemented through
842 RL techniques to downweight low-probability tokens. In contrast, we show that the same effect
843 can be achieved far more simply by applying a threshold. Moreover, these RL-inspired methods
844 are only validated in a single domain, whereas we demonstrate the potential limitations of prior-
845 leaning objectives in the model-weak end. Other than RL-inspired approaches, Zhang et al. (2025)
846 further explore data selection by favoring high-probability instances, a weaker form of our token-
847 wise thresholding objective.

848 **Classical views on SFT learning objectives.** In the conventional view of classification, the nNLL
849 has long been regarded as the optimal training objective: it is the maximum likelihood estima-
850 tor (statistical consistency) (Cox, 1958; Casella & Berger, 2024), equivalent to minimizing cross-
851 entropy/KL-divergence (information-theoretic) (Cover, 1999), the unique strictly proper local scor-
852 ing rule ensuring calibrated probabilities (decision-theoretic) (Savage, 1971; Gneiting & Raftery,
853 2007), and a convex surrogate to 0-1 loss guaranteeing Bayes consistency and tractable optimiza-
854 tion (learning-theoretic) (Bartlett et al., 2006; Zhang, 2004). These arguments, however, assume
855 training from scratch on simple classification tasks, whereas SFT in language model post-training
856 starts from powerful pretrained models with long chain-of-thought supervision where only final
857 answers are evaluated and intermediate tokens may be noisy. Under these conditions, the premises for
858 $-\log(p)$ might no longer hold, and in this work, we provide the first systematic characterization of
859 such settings.

860 C DETAILED EXPERIMENTAL SETUP
861

862 We now provide details of our experimental setup, including the rationale for the choice of datasets
863 across the continuum, the corresponding training and evaluation benchmarks, and specific training
864 protocols. An overview is summarized in Tab. 5.

864
865
866
867
868
869
870
871
872
873

Table 5: General experimental setup across different regions of the model-capability continuum.

Continuum	Domain	Signals	Training Data	Evaluation Data	Objectives to Compare
MS	math-reasoning	sparse	NuminaMath CoT	Math500, Minerva Math, Olympiad Bench, AIME24, AMC23 MedMC, MedQA, PubMed, MMLU-P, GPQA, Lancet, MedB(4), MedB(5), MedX, NEJM	-p, -log(p), threshold(-log(p))
MI	medical-reasoning	sparse	m23k		-p, -log(p)
MW	text games	dense	synthetic	synthetic	-p, -log(p)

C.1 CONTINUUM SELECTION

Table 6: Continuum selection based on mean predicted probability (Eq. 5). In the MS end, base models already achieve high likelihood on the training set before fine-tuning; in the MI region, predictions are around 0.5; in the MW end, predictions are near zero.

Model Strong (Math)				
Mean Predicted Probability	0.80	0.76	0.80	0.81
Model Name	LLaMA-3.1-8B	DeepSeekMath-7B	Qwen2.5-Math-1.5B	Qwen2.5-Math-7B
Model Intermediate (Med)				
Mean Predicted Probability	0.50	0.53	0.56	0.59
Model Name	LLaMA-3.2-3B	LLaMA-3.1-8B	Qwen2.5-1.5B	Qwen2.5-Math-7B
Model Weak (Puzzles)				
Mean Predicted Probability	0.01	0.01	0.01	0.07
Model Name	LLaMA-3.2-3B	LLaMA-3.1-8B	Qwen2.5-1.5B	Qwen2.5-7B

We assign math tasks to the MS end, medical tasks to the MI region, and figfont puzzles to the MW end. For the MS end, we use LLaMA-3.1-8B, DeepSeekMath-7B, Qwen2.5-Math-1.5B, and Qwen2.5-Math-7B. For the MI region, we use LLaMA-3.2-3B, LLaMA-3.1-8B, Qwen2.5-1.5B, and Qwen2.5-Math-7B. For the MW end, we use LLaMA-3.2-3B, LLaMA-3.1-8B, Qwen2.5-1.5B, and Qwen2.5-7B. We rely on base models in all cases.

Our rationale for this selection is twofold.

First, evidence from pretraining corpora. Fig. 1 illustrates that some domains are strongly represented in pretraining while others are not. For example, open-sourced documentation of LLaMA-3 reports that $\sim 25\%$ of pretraining tokens are math-related (Grattafiori et al., 2024), indicating strong priors for math reasoning. Similarly, DeepSeekMath and Qwen2.5-Math were explicitly pretrained on math corpora. By contrast, medical corpora are only partially present in pretraining, yielding moderate priors, and figfont puzzles are completely absent, making them a natural MW task.

Second, quantitative evidence from model predictions. Tab. 6 shows mean predicted probabilities (Eq. 5) on the training set, which we use as a proxy for prior strength given that base LLMs are generally well-calibrated and their predictions more faithfully reflect inherent model capability (Zhu et al., 2023; Xie et al., 2024). In the MS end, models already achieve very high likelihoods (around 0.8) before fine-tuning. In the MW end, predictions are close to zero, reflecting a lack of relevant prior knowledge. In between, predictions cluster around 0.5, reflecting an intermediate level of task familiarity. Together, these observations justify our continuum classification and ground it in both qualitative and quantitative evidence.

C.2 TRAINING AND EVALUATION DETAILS

General framework. All SFT experiments are conducted using `ver1` (Sheng et al., 2024). We fix the optimizer to AdamW, with a base learning rate of 5×10^{-5} for all models except LLaMA-3.1-8B, where we use 2×10^{-5} . We employ cosine decay scheduling with a warm-up ratio of 0.1, and train for a single epoch. All training runs are performed on 2 H200 GPUs with a single node.

Model-Strong (Math). Our setup for mathematical reasoning largely follows Wu et al. (2025). We train on NuminaMath-CoT (LI et al., 2024), which contains 859k chain-of-thought problems collected from multiple sources. For efficiency, we sample a 67k subset, which we find to achieve equivalent performance to larger subsets (100k+ or more). We set the maximum training length to 3072 tokens and use a micro-batch size of 4. Evaluation covers five representative math benchmarks:

918 Math500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz et al., 2022), Olympiad Bench (AI
 919 Mathematical Olympiad Prize, 2024), AIME24 (Mathematical Association of America, 2024), and
 920 AMC23 (Mathematical Association of America, 2023). Each evaluation uses temperature 1.0, with
 921 results reported as the average of 16 generations per example and a maximum generation length of
 922 4096 tokens.

923 **Model-Intermediate (Medical).** We train on m23k (Huang et al., 2025), a 23k-instance medical
 924 reasoning dataset. We experimented with two variants: (i) including long-form reasoning traces
 925 (maximum length 8192, micro-batch size 1) and (ii) using only standard chain-of-thought (max-
 926 imum length 1024, micro-batch size 16). Since performance was similar, we report results from
 927 the standard CoT variant. Evaluation strictly follows the protocol in Huang et al. (2025), using
 928 temperature 0 and random seed 42. Benchmarks include MedMCQA (Pal et al., 2022), MedQA-
 929 USMLE (Jin et al., 2021), PubMedQA (Jin et al., 2019), MMLU-Pro (Wang et al., 2024), GPQA
 930 (Medical) (Rein et al., 2024), Lancet & NEJM (Huang et al., 2025), MedBullets (Chen et al., 2025),
 931 and MedXpertQA (Zuo et al., 2025). A detailed overview of these datasets is provided in Huang
 932 et al. (2025).

933 **Model-Weak (Figfont).** We generate synthetic figfont puzzles from ReasoningGym (Stojanovski
 934 et al., 2025). We generate synthetic figfont puzzle data from ReasoningGym (Stojanovski et al.,
 935 2025), creating 40k instances for training and 20k for evaluation. An example puzzle is shown in
 936 Fig. 1. Training mirrors the MI setup, with a maximum sequence length of 800 and a micro-batch
 937 size of 16. Inference uses temperature 0 and random seed 42. We evaluate with two metrics: (i)
 938 exact match and (ii) Jaro–Winkler similarity, a string-based similarity score that is more tolerant to
 939 small variations and complements the strictness of exact match.

941 D ADDITIONAL EXPERIMENT RESULTS

942 D.1 JUSTIFICATION FOR ASSUMPTIONS

943
 944 Table 7: The percentage of tokens with initial predicted probability larger than 0.55 prior to training
 945 in the MS end. We find that the pretrained base models have high predicted probabilities of the
 946 training set prior to training. This justifies Assump. 1.

	LLaMA-3.1-8B	DeepSeekMath-7B	Qwen2.5-Math-1.5B	Qwen2.5-Math-7B
950 Percentage of tokens with initial 951 predicted probability larger than 0.55	72.8%	76.7%	80.6%	81.2%

952 E LIMITATION

953
 954 While our study provides a comprehensive characterization of probability-based objectives across
 955 the model-capability continuum, several limitations remain. First, we did not extend our experiments
 956 to excessively large models (e.g., 30B–70B parameters) due to computational resource constraints.
 957 Second, our framework for assessing initial model capability, via mean predicted probability and
 958 domain priors, serves as a first attempt, and future work may design more principled or fine-grained
 959 measures of capability, specifically tailored for SFT. Third, although our analysis spans the model-
 960 strong and model-weak ends extensively, our exploration of the intermediate region remains rel-
 961 atively limited. While our work serves as the pioneering study and we identify its neutrality in
 962 objective comparisons, a more careful study of this middle ground could yield deeper insights and
 963 potentially inspire adaptive or hybrid strategies that bridge the two extremes.

964 F PROOFS FOR SEC. 2

965
 966 **Lemma 2** (Gradient Shape). *Let $f : [0, 1] \rightarrow \mathbb{R}$ be differentiable and nonincreasing. Consider
 967 the objective in Eq. 2, whose step- t contribution depends on the correct-class probability $p_{t,y} =$
 968 $\text{softmax}(z_t)_y$ only through $f(p_{t,y})$. Then the gradient of \mathcal{L}_f with respect to the logits at step t*

972 satisfies

973
$$\frac{\partial \mathcal{L}_f}{\partial z_{t,i}} = s_f(p_{t,y}) (\delta_{i,y} - p_{t,i}), \quad \text{where } s_f(p) \triangleq -f'(p)p \geq 0.$$
 974

975 In particular, for the correct class $i = y$,

976
$$\frac{\partial \mathcal{L}_f}{\partial z_{t,y}} = s_f(p_{t,y}) (1 - p_{t,y}) = W_f(p_{t,y}), \quad W_f(p) \triangleq -f'(p)p(1 - p).$$
 977

980 *Proof.* Write $p_t = \text{softmax}(z_t)$, so $p_{t,i} = \exp(z_{t,i}) / \sum_j \exp(z_{t,j})$. The softmax Jacobian gives, 981 for all i ,

982
$$\frac{\partial p_{t,y}}{\partial z_{t,i}} = p_{t,y} (\delta_{i,y} - p_{t,i}).$$
 983

984 Since the step- t loss is $f(p_{t,y})$, the chain rule yields

985
$$\frac{\partial \mathcal{L}_f}{\partial z_{t,i}} = f'(p_{t,y}) \frac{\partial p_{t,y}}{\partial z_{t,i}} = f'(p_{t,y}) p_{t,y} (\delta_{i,y} - p_{t,i}) = (-f'(p_{t,y}) p_{t,y}) (\delta_{i,y} - p_{t,i}).$$
 986

988 Define $s_f(p) = -f'(p)p$. Because f is nonincreasing, $f'(p) \leq 0$ on $(0, 1)$, hence $s_f(p) \geq 0$. 989990 The displayed formula then follows, and for $i = y$ we obtain $\frac{\partial \mathcal{L}_f}{\partial z_{t,y}} = s_f(p_{t,y})(1 - p_{t,y}) = -f'(p_{t,y}) p_{t,y}(1 - p_{t,y}) = W_f(p_{t,y})$. \square 991992 **Proposition 2** (Convex versus Concave Objectives). *Let $f \in C^2[0, 1]$ with $f'(p) < 0$ for all $p \in (0, 1)$, and define $W_f(p) = -f'(p)p(1 - p)$. If f is concave ($f'' \leq 0$), then any maximizer of W_f 993 lies in $[\frac{1}{2}, 1]$. If f is convex ($f'' \geq 0$), then any maximizer of W_f lies in $[0, \frac{1}{2}]$.* 994

995

996 *Proof.* Set $s(p) := -f'(p)$. Then $s(p) > 0$ on $(0, 1)$ by the hypothesis $f'(p) < 0$, and

997
$$W_f(p) = s(p)p(1 - p).$$
 998

999 Differentiate:

1000
$$W'_f(p) = s'(p)p(1 - p) + s(p)(1 - 2p).$$

1001 *Concave case.* If $f'' \leq 0$ on $[0, 1]$, then $s'(p) = -f''(p) \geq 0$. For $p \in (0, \frac{1}{2})$ we have $1 - 2p > 0$, 1002 hence both terms in $W'_f(p)$ are nonnegative; since $s(p) > 0$, in fact $W'_f(p) > 0$ on $(0, \frac{1}{2})$. Therefore 1003 W_f is strictly increasing on $(0, \frac{1}{2})$, so no maximizer can lie in $(0, \frac{1}{2})$; any global maximizer must 1004 belong to $[\frac{1}{2}, 1]$. 10051006 *Convex case.* If $f'' \geq 0$ on $[0, 1]$, then $s'(p) = -f''(p) \leq 0$. For $p \in (\frac{1}{2}, 1)$ we have $1 - 2p < 0$; 1007 with $s(p) > 0$ the two terms in $W'_f(p)$ are nonpositive, hence $W'_f(p) < 0$ on $(\frac{1}{2}, 1)$. Thus W_f is 1008 strictly decreasing on $(\frac{1}{2}, 1)$, so no maximizer can lie in $(\frac{1}{2}, 1)$; any global maximizer must belong 1009 to $[0, \frac{1}{2}]$. 10101011 Combining the two cases establishes the claim. \square 1012

G MAIN THEORETICAL RESULTS

1013

G.1 SETUP AND NOTATIONS

1014 **Data model.** Let the input prompt $x \in \mathcal{X}$. The *true* conditional distribution over tokens $y \in [V]$ 1015 is $r(y | x)$. We let \mathcal{D} denote the (marginal) distribution over pairs $(x, r(\cdot | x))$. We use $T(\cdot | x)$ to 1016 denote the empirical training distribution over contexts x . 10171018 **Model and objectives.** Let $q_\theta(\cdot | x) = \text{softmax}(z_\theta(x))$ be the next-token distribution of an 1019 autoregressive LM with parameters θ , and write $q_0(\cdot | x) = q_{\theta_0}(\cdot | x)$ for the base model. We note 1020 that we use different notations q (instead of p) to denote the model predictions in the appendix. 10211022 The *population risk* is 1023

1024
$$\mathcal{R}(\theta) = \mathbb{E}_{(x, y^*) \sim \mathcal{D}, q \sim q_\theta(\cdot | x)} \left[-\mathbb{1}\{y^* = y^q\} \right]$$
 1025

1026 During SFT we minimize the empirical objective
 1027

$$\mathcal{L}_f(\theta) = \mathbb{E}_{(x, \tilde{y}) \sim T} [f(q_\theta(\tilde{y} | x))]$$

1029 where $f : [0, 1] \rightarrow \mathbb{R}$ is differentiable and decreasing.
 1030

1032 **Notation.** Let $z_\theta(x) \in \mathbb{R}^V$ denote the pre-softmax logits and $q_\theta(\cdot | x) = \text{softmax}(z_\theta(x))$ the
 1033 next-token distribution. Fix x and suppress its dependence when clear. Define the logit feature map
 1034

$$\Phi(x, y) := \nabla_\theta z_\theta(x, y) \in \mathbb{R}^d, \quad \Phi(x) := [\Phi(x, 1), \dots, \Phi(x, V)] \in \mathbb{R}^{d \times V},$$

1036 and its Gram matrix over logits
 1037

$$G(x) := \Phi(x)^\top \Phi(x) \in \mathbb{R}^{V \times V}, \quad G_{y, y'}(x) = \langle \Phi(x, y), \Phi(x, y') \rangle.$$

1040 Write $q := q_{\theta_0}(\cdot | x)$, $r := r(\cdot | x)$, and $T := T(\cdot | x)$. For a differentiable, increasing $f_i : [0, 1] \rightarrow$
 1041 \mathbb{R} , set

$$(\beta_i)_y := T_y q_y f'_i(q_y), \quad \beta_i \in \mathbb{R}^V, \quad S_{f_i} := \langle \beta_i, \mathbf{1} \rangle = \sum_{y=1}^V T_y q_y f'_i(q_y).$$

1045 Define the discrepancy vectors
 1046

$$v_* := (r^\top q) q - r \odot q, \quad v_i := \beta_i - S_{f_i} q, \quad \beta_{12} := \beta_1 - \beta_2, \quad S_{12} := S_{f_1} - S_{f_2}, \quad v_{12} := v_1 - v_2 = \beta_{12} - S_{12} q.$$

1048 Finally, let $g_i := \nabla \mathcal{L}_{f_i}(\theta_0)$, $k_i := \langle \nabla \mathcal{R}(\theta_0), g_i \rangle$ and
 1049

$$H_i := \int_0^1 \nabla^2 \mathcal{R}(\theta_0 - t \eta g_i) dt$$

1053 for a stepsize $\eta > 0$ (used later in second-order expansions).
 1054

1055 G.2 ASSUMPTIONS

1058 G.2.1 MAIN ASSUMPTIONS

1059 **Assumption 3** (Model-Capability Assumption). *We make the following assumptions about data
 1060 capability in the Model-Strong and Model-Weak ends:*

- 1062 • **Model-Weak.** *In the MW end, we assume that model predictions are uniform over the vocabulary V .*
- 1064 • **Model-Strong.** *In the MS end, we assume that for any given x , $\Pr_{y^*, \tilde{y}} [(q_{y^*} + q_{\tilde{y}}) \geq 0.55] \geq K$
 1065 with $K \geq 0.70$.*

1067 **Assumption 4** (Trainable Base Model). *We assume that the base model is still not perfect: for any
 1068 given x , $\Pr [(0.55 \leq q_{y^*} + q_{\tilde{y}}) \leq 0.95] \geq \alpha \Pr_{y^*, \tilde{y}} [(q_{y^*} + q_{\tilde{y}}) \leq 0.50]$ in the MS end.*

1069 These assumptions are mentioned in the main paper with justifications. The coefficient α could
 1070 depend on the task itself, and this value ≥ 1 in practice. Assumption 4 is a more general re-statement
 1071 of Assumption 2.
 1072

1073 G.2.2 ADDITIONAL SIMPLIFICATION ASSUMPTIONS

1075 **Assumption 5** (Model and Data Simplifications). *We assume that the feature matrix Φ is precondi-
 1076 tioned such that all of its singular values are equal to one, and that both the training distribution T
 1077 and the true distribution r are one-hot.*

1078 This assumption is made purely for analytical convenience: it removes irrelevant conditioning fac-
 1079 tors in the proof and allows us to focus on the essential differences between objectives.

1080

G.3 MAIN PROOFS

1081

Lemma 3 (Gradient identities). *We have the following identities:*

1082

1083

$$\nabla \mathcal{R}(\theta_0) = \mathbb{E}_x [\Phi(x) v_*(x)], \quad \nabla \mathcal{L}_{f_i}(\theta_0) = \mathbb{E}_x [\Phi(x) v_i(x)],$$

1084

1085

Proof. Population risk. With $\mathcal{R}(\theta) = \mathbb{E}_x [-r(x)^\top q_\theta(\cdot | x)]$, for fixed x we have $\partial \mathcal{R} / \partial q = -r$. By the chain rule through softmax,

1086

1087

$$\frac{\partial \mathcal{R}}{\partial z} = J(q) (-r) = (q^\top r) q - q \odot r,$$

1088

1089

so $\nabla_\theta \mathcal{R}(\theta_0) = \Phi(x) \frac{\partial \mathcal{R}}{\partial z} = \Phi(x) v_*(x)$. Taking expectation over x yields the first identity.

1090

1091

General f_i -objective. For $\mathcal{L}_{f_i}(\theta) = \mathbb{E}_x [\sum_y T_y(x) f_i(q_y)]$, $\partial \mathcal{L}_{f_i} / \partial q = m_i$ with $m_i = (T_y f'_i(q_y))_y$. Again, $\partial \mathcal{L}_{f_i} / \partial z = J(q) m_i = v_i$, whence $\nabla_\theta \mathcal{L}_{f_i}(\theta_0) = \Phi(x) v_i(x)$ and the claim follows after taking expectation over x . \square

1092

1093

Lemma 4 (Functional derivative). *Define*

1094

1095

1096

$$J(f_i) := \mathbb{E}_x \left[v_*^\top \Phi^\top \Phi v_i - \frac{\eta}{2} v_i^\top \Phi^\top H_i \Phi v_i \right], \quad H_i := \int_0^1 \nabla^2 \mathcal{R}(\theta_0 - t \eta g_i) dt,$$

1097

1098

with $g_i := \nabla \mathcal{L}_{f_i}(\theta_0) = \mathbb{E}_x [\Phi v_i]$, $v_* := (r^\top q) q - r \odot q$, $v_i := \beta_i - S_{f_i} q$, $(\beta_i)_y := T_y q_y f'_i(q_y)$,

1099

1100

 $S_{f_i} = \sum_y T_y q_y f'_i(q_y)$. For a perturbation h of f_i (so that $f_i \mapsto f_i + \epsilon h$), the first variation is

1101

1102

1103

$$\delta J(f_i; h) = \mathbb{E}_x \left[(v_*^\top \Phi^\top \Phi - \eta v_i^\top \Phi^\top H_i \Phi) \delta v_i \right] + \frac{\eta^2}{2} \int_0^1 t \langle \nabla^3 \mathcal{R}(\theta_0 - t \eta g_i) [\delta g_i], g_i \otimes g_i \rangle dt,$$

1104

1105

where $\delta g_i = \mathbb{E}_x [\Phi \delta v_i]$ and

1106

1107

1108

$$\delta v_i = \delta \beta_i - (\delta S_{f_i}) q = \left(\text{Diag}(T \odot q) - q (T \odot q)^\top \right) h'(q).$$

1109

1110

Proof. Write $A := \Phi(x)$ for brevity. Then

1111

1112

$$J = \mathbb{E}_x \left[v_*^\top A^\top A v_i - \frac{\eta}{2} v_i^\top A^\top H_i A v_i \right].$$

1113

1114

Vary $f_i \mapsto f_i + \epsilon h$. Since v_* is fixed, $\delta(v_*^\top A^\top A v_i) = v_*^\top A^\top A \delta v_i$. For the second term, use the product rule:

1115

$$\delta(v_i^\top A^\top H_i A v_i) = 2 v_i^\top A^\top H_i A \delta v_i + v_i^\top A^\top (\delta H_i) A v_i.$$

1116

Hence

1117

1118

$$\delta J = \mathbb{E}_x \left[v_*^\top A^\top A \delta v_i - \eta v_i^\top A^\top H_i A \delta v_i - \frac{\eta}{2} v_i^\top A^\top (\delta H_i) A v_i \right].$$

1119

1120

Now $H_i = \int_0^1 \nabla^2 \mathcal{R}(\theta_0 - t \eta g_i) dt$. Since $\delta \nabla^2 \mathcal{R}(\theta) = \nabla^3 \mathcal{R}(\theta)[\cdot]$ and the evaluation point depends on g_i , the chain rule yields

1121

1122

1123

$$\delta H_i = \int_0^1 (-t \eta) \nabla^3 \mathcal{R}(\theta_0 - t \eta g_i) [\delta g_i] dt, \quad \text{with } \delta g_i = \mathbb{E}_x [A \delta v_i].$$

1124

Therefore

1125

1126

1127

$$-\frac{\eta}{2} v_i^\top A^\top (\delta H_i) A v_i = \frac{\eta^2}{2} \int_0^1 t \langle \nabla^3 \mathcal{R}(\theta_0 - t \eta g_i) [\delta g_i], A v_i \otimes A v_i \rangle dt.$$

1128

1129

Taking \mathbb{E}_x and using trilinearity in the last two slots, $\mathbb{E}_x \langle \mathcal{T}[\delta g_i], A v_i \otimes A v_i \rangle = \langle \mathcal{T}[\delta g_i], (\mathbb{E}_x A v_i) \otimes (\mathbb{E}_x A v_i) \rangle = \langle \mathcal{T}[\delta g_i], g_i \otimes g_i \rangle$, with $\mathcal{T} := \nabla^3 \mathcal{R}(\cdot)$, gives the stated third-order term.

1130

1131

Finally, the variation of v_i with respect to f_i via h is

1132

1133

$$\delta \beta_i = T \odot q \odot h'(q), \quad \delta S_{f_i} = \langle T \odot q, h'(q) \rangle, \quad \delta v_i = \delta \beta_i - (\delta S_{f_i}) q = \left(\text{Diag}(T \odot q) - q (T \odot q)^\top \right) h'(q).$$

Collecting terms yields the claimed formula. \square

1134 **Corollary 1.** Define the gradient flow of the following term:
 1135

$$1136 \quad 1137 \quad \dot{\mathcal{R}}(\theta_t^{(i)})|_{t=0} := \lim_{\eta \searrow 0} \frac{\mathcal{R}(\theta_0) - \mathcal{R}(\theta_1^{(i)})}{\eta} \quad (6)$$

1138 *Then we have*

$$1139 \quad 1140 \quad \dot{\mathcal{R}}(\theta_t^{(i)})|_{t=0} = \mathbb{E}_x [v_*^\top \Phi^\top \Phi v_i] \quad (7)$$

1141 *Proof.* By Taylor Expansion, we have

$$1142 \quad 1143 \quad \mathcal{R}(\theta_0) - \mathcal{R}(\theta_1^{(i)}) = \eta \langle \nabla \mathcal{R}(\theta_0), \nabla \mathcal{L}_{f_i}(\theta_0) \rangle - \frac{\eta^2}{2} \nabla \mathcal{L}_{f_i}(\theta_0)^\top \left(\int_0^1 \nabla^2 \mathcal{R}(\theta_0 - t\eta \nabla \mathcal{L}_{f_i}(\theta_0)) dt \right) \nabla \mathcal{L}_{f_i}(\theta_0) \quad (8)$$

1144 Then this corollary follows immediately from Lem. 4. \square

1145 **Lemma 5** (Useful Inequalities). *Let $q \in \Delta^{V-1}$ be a probability vector and fix an index j .*

1146 1. *For all q ,*

$$1147 \quad 1148 \quad q_j^2 \|e_j - q\|^2 \leq 2q_j^2(1 - q_j)^2, \quad (9)$$

1149 and the bound is tight (equality holds) when all mass $\sum_{i \neq j} q_i = 1 - q_j$ is concentrated on
 1150 a single coordinate.

1151 2. *For fixed distinct $i \neq j$, consider*

$$1152 \quad 1153 \quad F(q) := q_i q_j (-q_i - q_j + \|q\|^2).$$

1154 *Then*

$$1155 \quad 1156 \quad \max_{q \in \Delta^{V-1}} F(q) = \frac{11\sqrt{33} - 59}{768} \leq 0.00546,$$

1157 and the maximizer is attained by a vector with

$$1158 \quad 1159 \quad q_i = q_j = \frac{9 - \sqrt{33}}{24}, \quad \text{all remaining mass } 1 - 2q_i \text{ placed on one coordinate.}$$

1160 3. *If we know $-q_i - q_j + \|q\|^2 \leq 0$, then*

$$1161 \quad 1162 \quad -q_i - q_j + \|q\|^2 \leq 1 + 2(q_i + q_j)^2 - 3(q_i + q_j)$$

1163 *Proof.* (1) Since q is a probability vector with nonnegative coordinates,

$$1164 \quad 1165 \quad \|e_j - q\|^2 = (1 - q_j)^2 + \sum_{k \neq j} q_k^2 \leq (1 - q_j)^2 + \left(\sum_{k \neq j} q_k \right)^2 = 2(1 - q_j)^2,$$

1166 because $\sum_{k \neq j} q_k^2 \leq (\sum_{k \neq j} q_k)^2$ for nonnegative terms. Multiplying by q_j^2 yields Eq. 9. Equality holds when the entire mass $1 - q_j$ lies on a single coordinate distinct from j , in which case $\sum_{k \neq j} q_k^2 = (\sum_{k \neq j} q_k)^2 = (1 - q_j)^2$.

1167 (2) Set $a = q_i$, $b = q_j$, and $s = 1 - a - b \geq 0$. Write $\|q\|^2 = a^2 + b^2 + t$ with $t := \sum_{k \neq i, j} q_k^2$. For
 1168 fixed a, b , the objective

$$1169 \quad 1170 \quad F(q) = ab(-a - b + a^2 + b^2 + t)$$

1171 is increasing in t whenever $ab > 0$. Since $t \leq s^2$ with equality iff all the mass s is concentrated on
 1172 a single coordinate, any maximizer (with $ab > 0$) must satisfy $t = s^2 = (1 - a - b)^2$. Thus we may
 1173 reduce to the two-variable problem

$$1174 \quad 1175 \quad G(a, b) := ab(-a - b + a^2 + b^2 + (1 - a - b)^2), \quad a \geq 0, b \geq 0, a + b \leq 1.$$

1176 It is convenient to reparametrize by

$$1177 \quad 1178 \quad u := a + b \in [0, 1], \quad z := (a - b)^2 \in [0, u^2].$$

1188 Then

$$1189 \quad ab = \frac{u^2 - z}{4}, \quad a^2 + b^2 = \frac{u^2 + z}{2}, \quad (1 - a - b)^2 = (1 - u)^2,$$

1190 and a short calculation gives

$$1193 \quad G(u, z) = \frac{1}{4} (u^2 - z) \left(1 - 3u + \frac{3}{2}u^2 + \frac{z}{2}\right) = \frac{1}{4} (u^2 - z) (K(u) + \frac{z}{2}),$$

1195 where $K(u) := 1 - 3u + \frac{3}{2}u^2$.

1196 For each fixed u , $G(u, z)$ is a concave quadratic in z (its z^2 -coefficient is $-\frac{1}{8}$). Hence the z -
1197 maximizer is

$$1199 \quad z^*(u) = \min \left\{ \max \{0, u^2 - 2K(u)\}, u^2 \right\} = \min \left\{ \max \{0, -\alpha(u)\}, u^2 \right\},$$

1201 where $\alpha(u) := u^2 - 3u + 1$. Equivalently,

$$1202 \quad z^*(u) = \begin{cases} 0, & \alpha(u) \geq 0 \text{ (i.e. } u \in [0, \frac{3-\sqrt{5}}{2}]), \\ -\alpha(u), & \alpha(u) \leq 0 \text{ and } u \leq \frac{1}{2} \text{ (i.e. } u \in [\frac{3-\sqrt{5}}{2}, \frac{1}{2}]), \\ u^2, & u \geq \frac{1}{2}. \end{cases}$$

1206 Thus:

- 1208 • If $u \in [0, \frac{3-\sqrt{5}}{2}]$, then $z^*(u) = 0$, so the maximizer over z occurs at $a = b = \frac{u}{2}$ (the
1209 symmetric point), and

$$1211 \quad G(u, 0) = \frac{u^2}{4} K(u) = \frac{u^2}{4} \left(1 - 3u + \frac{3}{2}u^2\right).$$

- 1214 • If $u \in [\frac{3-\sqrt{5}}{2}, \frac{1}{2}]$, then $z^*(u) = -\alpha(u)$, and a simplification yields

$$1216 \quad \max_z G(u, z) = G(u, z^*(u)) = \frac{(u-1)^2(2u-1)^2}{8}.$$

1218 Since $\frac{d}{du} [(u-1)^2(2u-1)^2/8] = \frac{1}{4}(u-1)(2u-1)(4u-3) < 0$ on this interval, the
1219 maximum over u here is attained at the left endpoint $u = \frac{3-\sqrt{5}}{2}$.

- 1221 • If $u \in [\frac{1}{2}, 1]$, then $z^*(u) = u^2$, which gives $ab = 0$ and hence $G = 0$.

1223 Therefore the global maximizer must lie in the symmetric regime $z = 0$, i.e., $a = b = x$, with
1224 $u = 2x \in [0, \frac{3-\sqrt{5}}{2}]$. In this case

$$1226 \quad G(x) = x^2(6x^2 - 6x + 1), \quad x \in \left[0, \frac{1}{2}\right].$$

1228 Differentiating,

$$1229 \quad G'(x) = 2x(12x^2 - 9x + 1),$$

1230 so the critical point in $(0, \frac{1}{2})$ satisfies $12x^2 - 9x + 1 = 0$, i.e.

$$1232 \quad x_* = \frac{9 - \sqrt{33}}{24} \in \left(0, \frac{1}{2}\right).$$

1234 Since $G(0) = 0$, $G(\frac{1}{2}) = -\frac{1}{8} < 0$, and G achieves a positive value at x_* , the global maximum is
1235 attained at x_* . Substituting and simplifying,

$$1237 \quad \max_{q \in \Delta^{V-1}} F(q) = G(x_*) = \frac{11\sqrt{33} - 59}{768} \leq 0.00546.$$

1239 This value is realized by

$$1240 \quad q_i = q_j = x_*, \quad q_\ell = 1 - 2x_* \text{ for some } \ell \notin \{i, j\}, \quad q_k = 0 \text{ (} k \notin \{i, j, \ell\} \text{)},$$

1241 i.e., the remaining mass is concentrated on a single coordinate, as established at the start.

1242 (3) We have that
 1243

$$\begin{aligned}
 -q_i - q_j + \|q\|^2 &\leq -q_i - q_j + q_i^2 + q_j^2 + (1 - q_i - q_j)^2 \\
 &= 1 + 2q_i^2 + 2q_j^2 + 2q_i q_j - 3q_i \\
 &\leq 1 + 2(q_i + q_j)^2 - 3(q_i + q_j)
 \end{aligned}$$

□

1251 **Theorem 2** (Characterization via Gradient Flow, Restatement of Thm. 1). *Under Assumptions 3- 5,
 1252 suppose that $f'_2 - f'_1(\tilde{q})$ is negative for all \tilde{q} and that $q_{\tilde{y}}(f'_2 - f'_1)(q_{\tilde{y}}) > -c$ for some small positive
 1253 constant $c > 0$ when $q(\tilde{y}) \in [0, 0.55]$ and $q_{\tilde{y}}(f'_2 - f'_1)(q_{\tilde{y}}) < -d$ for some small positive constant
 1254 d when $q(\tilde{y}) \in [0.55, 0.95]$ and that $c < 10d$, with an appropriate choice of label noise (e.g., when
 1255 $y^* \neq \tilde{y}$) rate \mathcal{E} , then we have the following conclusions:*

- $\dot{\mathcal{R}}(\theta_t^{(1)})|_{t=0} \geq \dot{\mathcal{R}}(\theta_t^{(2)})|_{t=0}$ in Model Strong End.
- $\dot{\mathcal{R}}(\theta_t^{(1)})|_{t=0} \leq \dot{\mathcal{R}}(\theta_t^{(2)})|_{t=0}$ in Model Weak End.

1260 *Proof.* By Assumption. 5, we first expand the following term:
 1261

$$\dot{\mathcal{R}}(\theta_t^{(1)})|_{t=0} - \dot{\mathcal{R}}(\theta_t^{(2)})|_{t=0} = \mathbb{E}_x [v_*^\top (v_1 - v_2)] \quad (10)$$

$$= \mathbb{E}_x \left[((r^\top q) q - r \odot q)^\top (v_{12}) \right] \quad (11)$$

1262 Note that
 1263

$$v_{12} = \sum_y [T_y q_y (f'_1 - f'_2)(q_y)] e_y - \left[\sum_y (T_y q_y) (f'_1 - f'_2)(q_y) \right] q \quad (12)$$

$$= q_{\tilde{y}} (f'_1 - f'_2)(q_{\tilde{y}}) e_{\tilde{y}} - q_{\tilde{y}} (f'_1 - f'_2)(q_{\tilde{y}}) q \quad (\text{Only consider } T \text{ one-hot})$$

$$= q_{\tilde{y}} (f'_1 - f'_2)(e_{\tilde{y}} - q) \quad (13)$$

1275 We can then proceed as follows:
 1276

$$\dot{\mathcal{R}}(\theta_t^{(1)})|_{t=0} - \dot{\mathcal{R}}(\theta_t^{(2)})|_{t=0} = \mathbb{E}_x [q_{\tilde{y}} (f'_2 - f'_1)(q_{\tilde{y}}) \langle r \odot q - (r^\top q) q, e_{\tilde{y}} - q \rangle] \quad (14)$$

$$= \mathbb{E}_x [q_{\tilde{y}} (f'_2 - f'_1)(q_{\tilde{y}}) \langle q_{y^*} - q_{y^*} q, e_{\tilde{y}} - q \rangle] \quad (r \text{ is also one-hot})$$

$$= \mathbb{E}_x [q_{\tilde{y}} q_{y^*} (f'_2 - f'_1)(q_{\tilde{y}}) \langle e_{y^*} - q, e_{\tilde{y}} - q \rangle] \quad (15)$$

$$= \mathbb{E}_x \left[q_{\tilde{y}} q_{y^*} (f'_2 - f'_1)(q_{\tilde{y}}) \|e_{y^*} - q\|^2 : \tilde{y} = y^* \right] \quad (16)$$

$$+ \mathbb{E}_x \left[q_{\tilde{y}} q_{y^*} (f'_2 - f'_1)(q_{\tilde{y}}) \left(-q_{y^*} - q_{\tilde{y}} + \|q\|^2 \right) : \tilde{y} \neq y^* \right] \quad (17)$$

1286 Then we first examine the weak model end, now the model is assumed to output uniform distribution
 1287 over V . Denote the label noise rate to be \mathcal{E} . Then we have that
 1288

$$\dot{\mathcal{R}}(\theta_t^{(1)})|_{t=0} - \dot{\mathcal{R}}(\theta_t^{(2)})|_{t=0} = \frac{V-1}{V^3} (f'_2 - f'_1) \left(\frac{1}{V} \right) (1 - \mathcal{E}) \quad (18)$$

$$- \frac{1}{V^3} (f'_2 - f'_1) \left(\frac{1}{V} \right) \mathcal{E} \quad (19)$$

$$= (f'_2 - f'_1) \left(\frac{1}{V} \right) \frac{1}{V^3} ((V-1)(1 - \mathcal{E}) - \mathcal{E}) < 0 \quad (20)$$

1296 As long as $\mathcal{E} < \frac{V-1}{V}$ and $(f'_2 - f'_1) \left(\frac{1}{V} \right) < 0$. Then we have the desired condition.
 1297

1298 Then we examine strong model end, applying Lemma 5, we have
 1299

$$1300 \quad \mathbb{E}_x \left[q_{\tilde{y}} q_{y^*} (f'_2 - f'_1) (q_{\tilde{y}}) \|e_{y^*} - q\|^2 : \tilde{y} = y^* \right] \geq 2 (1 - \mathcal{E}) \mathbb{E} \left[(f'_2 - f'_1) (q_{y^*}) q_{y^*}^2 (1 - q_{y^*})^2 \right] \quad (21)$$

1304 and define $R = q_{\tilde{y}} (f'_2 - f'_1) (q_{\tilde{y}})$ and $Q = q_{\tilde{y}} q_{y^*} \left(-q_{y^*} - q_{\tilde{y}} + \|q\|^2 \right)$, then first we show the other
 1305 term is positive.
 1306

$$1308 \quad \frac{1}{\mathcal{E}} \mathbb{E}_x \left[q_{\tilde{y}} q_{y^*} (f'_2 - f'_1) (q_{\tilde{y}}) \left(-q_{y^*} - q_{\tilde{y}} + \|q\|^2 \right) : \tilde{y} \neq y^* \right] \quad (22)$$

$$1309 \quad = \mathbb{E}_x [QR] \quad (23)$$

$$1310 \quad = \mathbb{E}_x [QR: Q \geq 0] + \mathbb{E}_x [QR: Q < 0] \quad (24)$$

$$1311 \quad \geq -c \mathbb{E}_x [Q: Q \geq 0] + \mathbb{E}_x [QR: Q < 0] \quad (25)$$

$$1312 \quad \geq -c \Pr [Q \geq 0] * 0.00546 + \mathbb{E}_x [QR: Q < 0] \quad (26)$$

$$1313 \quad > 0 \quad (27)$$

1317 For the last inequality, we can proceed as follows:
 1318

$$1320 \quad \mathbb{E}_x [QR: Q < 0] - c \Pr [Q \geq 0] * 0.00546$$

$$1321 \quad \geq d * \Pr_{\tilde{y}, y^*} [0.95 \geq q_{\tilde{y}} + q_{y^*} \geq 0.55] * \min_{0.95 \geq q_{\tilde{y}} + q_{y^*} \geq 0.55} |Q| - c \Pr [q_{\tilde{y}} + q_{y^*} \leq 0.50] * 0.00546$$

$$1322 \quad = d * \Pr_{\tilde{y}, y^*} [0.95 \geq q_{\tilde{y}} + q_{y^*} \geq 0.55] * 0.045 - c \Pr [q_{\tilde{y}} + q_{y^*} \leq 0.50] * 0.00546$$

$$1323 \quad > 0$$

1326 where the first inequality comes from the sufficient condition for guaranteeing $Q > 0$ is
 1327 $\Pr_{\tilde{y}, y^*} [q_{\tilde{y}} + q_{y^*} > 0.50]$, and by (3) in Lem. 5, we have that given $Q < 0$,
 1328

$$1329 \quad \min_{0.95 \geq q_{\tilde{y}} + q_{y^*} \geq 0.55} |Q| \leq - \max_{0.95 \geq q_{\tilde{y}} + q_{y^*} \geq 0.55} 1 + 2(q_{\tilde{y}} + q_{y^*})^2 - 3(q_{\tilde{y}} + q_{y^*}) \leq 0.045$$

1332 Also by Assumption 1 and 2, we have $\Pr_{\tilde{y}, y^*} [0.95 \geq q_{\tilde{y}} + q_{y^*} \geq 0.55] \geq \alpha \Pr [q_{\tilde{y}} + q_{y^*} \leq 0.50]$.
 1333 Therefore, we have finished the claim.

1334 Therefore, with an appropriate scale of \mathcal{E} , specifically with $\mathcal{E} > \frac{|A|}{B-A}$ where
 1335 $B = \mathbb{E}_x \left[q_{\tilde{y}} q_{y^*} (f'_2 - f'_1) (q_{\tilde{y}}) \left(-q_{y^*} - q_{\tilde{y}} + \|q\|^2 \right) : \tilde{y} \neq y^* \right] > 0$ and $A =$
 1336 $\mathbb{E}_x \left[q_{\tilde{y}} q_{y^*} (f'_2 - f'_1) (q_{\tilde{y}}) \|e_{y^*} - q\|^2 : \tilde{y} = y^* \right] < 0$, then we could achieve the desired result. \square
 1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350 H REBUTTAL MATERIALS

1352 H.1 ADDITIONAL GENERAL DOMAIN EXPERIMENTS (REVIEWER FZPG, OZBM)

1354 **General Alignment Tasks.** To demonstrate that our continuum extends beyond specialized domains
 1355 (e.g., math or medical QA), we additionally consider general conversational alignment, where the
 1356 goal is to match subtle human preferences and stylistic behaviors. We construct a mixed SFT corpus
 1357 from two well-known, high-quality public datasets: Magpie-Prob-300K-Filtered (Xu et al., 2024b)
 1358 and EvoInstruct (Xu et al., 2024a), which together target complex instruction following abilities. For
 1359 efficiency, we subsample 70k instances from the Magpie-Prob-300K-Filtered dataset and we retain
 1360 only instances whose total sequence length is at most 2048 tokens. This yields a combined training
 1361 set of approximately 140K examples.

1362 We consider three backbones, Qwen2.5-3B, Qwen2.5-7B, and Qwen2.5-14B, and fine-tune each for
 1363 one epoch with batch sizes of 8, 4, and 2 and learning rates of 5e-5, 2e-6, and 1e-6, respectively.
 1364 We then compare models trained with the standard NLL objective $-\log p$ versus the prior-leaning
 1365 objective $-p$ to probe the model-capability continuum in this more general alignment setting. For
 1366 evaluation, due to limited API budget, we use AlpacaEval2 (Dubois et al., 2024) and directly com-
 1367 pare responses from the $-p$ model versus the $-\log p$ model. In the table below, we report the win
 1368 rate of the prior-leaning model against the NLL baseline.

1369 Table 8: Win rates (%) of the prior-leaning objective $-p$ against the NLL baseline $-\log p$ on Al-
 1370 pacaEval2. We report both length-controlled win rate (LC WR) and standard win rate (WR), mea-
 1371 suring the fraction of pairwise comparisons where the $-p$ model is preferred over the $-\log p$ model.
 1372 As the backbone scales from 3B to 14B parameters, the prior-leaning objective transitions from un-
 1373 derperforming to outperforming NLL, consistent with our model-capability continuum.

	Qwen2.5-3B	Qwen2.5-7B	Qwen2.5-14B
LC WR	41.0	49.6	57.5
WR	42.0	49.0	57.1

1378 In Table 8, we observe a clear continuum-style pattern as the model becomes stronger. For the
 1379 smaller Qwen2.5-3B backbone, the prior-leaning objective $-p$ underperforms NLL, achieving only
 1380 about 41–42% win rate, indicating that aggressively trusting the model’s prior is detrimental when
 1381 the backbone is relatively weak. For the intermediate Qwen2.5-7B model, the win rates are close
 1382 to 50%, suggesting that the two objectives behave similarly in this regime. In contrast, for the
 1383 larger Qwen2.5-14B backbone, the same prior-leaning objective attains around 57–58% win rate
 1384 over NLL on AlpacaEval2, suggesting that once the model’s prior is sufficiently strong, emphasizing
 1385 the model’s prior beliefs becomes beneficial even on broad alignment tasks.

1387 H.2 ADDITIONAL MODEL STRONG EXPERIMENTS (REVIEWER FZPG, OZBM)

1389 **Additional Model-Strong: Coding Task.** To further illustrate the generality of the model-strong
 1390 end of our continuum, we examine the coding domain using the Qwen2.5-Coder-7B backbone,
 1391 which is known to contain substantial coding-related knowledge. For evaluation, we adopt the
 1392 EvalPlus suite (Liu et al., 2023) and consider four standard benchmarks: HumanEval, HumanEval+,
 1393 MBPP, and MBPP+ (all reported as pass@1 following Liu et al. (2023)). For training, we use
 1394 Magicoder-OSS-Instruct-75K (Wei et al., 2023), a high-quality instruction-tuning corpus tailored
 1395 specifically for coding tasks, and fine-tune the model for one epoch.

1396 Tab. 9 shows that, in this coding-heavy, model-strong setting, the prior-leaning objective $-p$ cons-
 1397 stently outperforms NLL across all four benchmarks. Relative to the base model, $-p$ delivers large
 1398 absolute gains (e.g., from 63.6 to 77.8 average pass@1). On MBPP and MBPP+, the $-p$ model
 1399 nearly matches the performance of Qwen2.5-Coder-7B-Instruct (83.5 and 71.7, respectively), de-
 1400 spite using only 75K training examples. This provides additional evidence that in domains where
 1401 the backbone already encodes rich task-relevant knowledge, moving toward the model-strong end
 1402 with a prior-leaning objective can yield substantial gains.

1403 **Performance versus Model Scale in the Model-Strong End.** We also study how the benefit of
 1404 the prior-leaning objective $-p$ evolves with model scale in the model-strong end. Concretely, we

1404
1405
1406
1407
1408
1409

Table 9: Model-strong experiments on coding tasks with Qwen2.5-Coder-7B on the EvalPlus benchmarks (pass@1). The prior-leaning objective $-p$ improves over the NLL objective $-\log p$ and substantially boosts performance over the base model. On MBPP and MBPP+, the $-p$ model approaches the performance of the much more heavily tuned Qwen2.5-Coder-7B-Instruct variant, despite using only 75K instruction-tuning examples.

1410
1411
1412
1413
1414
1415
1416

Case	HumanEval		MBPP		Avg.
	HE	HE+	MBPP	MBPP+	
Qwen2.5-Coder-7B					
Base	61.6	53.0	76.9	62.9	63.6
$-\log(p)$	80.4	71.3	78.8	68.3	74.7
$-p$	83.5	75.6	83.1	69.0	77.8

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428

evaluate Qwen2.5 models at four sizes (3B, 7B, 14B, and 32B parameters), training and evaluating them on the same mathematical tasks and configurations as in the main paper. For the larger models (14B and 32B), we use slightly smaller learning rates of 2×10^{-5} and 10^{-5} , respectively, to ensure stable optimization.

Fig. 5 plots the performance of $-p$ versus NLL with both axes in log scale. As model size increases, the performance gap in favor of the prior-leaning objective widens monotonically: the gains are modest at 3B, more pronounced at 7B, and largest at 14B and 32B. This trend is consistent with our continuum view: as models become more capable and their pretrained priors more informative, they can exploit prior-leaning objectives more effectively, leading to larger improvements in the model-strong end.

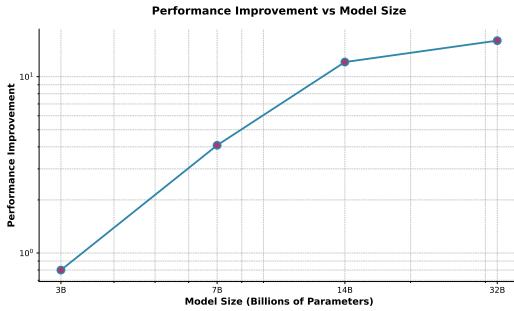
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
14391440
1441
1442
1443

Figure 5: Performance improvement from the objective $-p$ across model scales. Both axes use log scale. Larger models exhibit larger gains, showing that the prior leaning objective is increasingly effective as the underlying model becomes stronger.

1444
1445

H.3 ADDITIONAL MODEL WEAK EXPERIMENTS (REVIEWER FVA5)

1446
1447
1448
1449
1450
1451
1452

Low-resource Language Instruction Tuning. We study instruction tuning in low-resource language settings, which provide natural domains where existing language models remain very weak (Zhong et al., 2024). For evaluation, we use MMLU-ProX (Xuan et al., 2025), a challenging question answering benchmark adapted from MMLU-Pro that covers a wide range of languages and assesses general knowledge and reasoning abilities. Among these, we identify seven low-resource languages for which corresponding instruction-tuning data exist: Marathi (MR), Telugu (TE), Nepali (NE), Swahili (SW), Wolof (WO), Yoruba (YO), and Zulu (ZU).

1453
1454
1455
1456
1457

For training, we use the *muri-it* dataset (Köksal et al., 2025), a 2M-example instruction-tuning corpus that spans nearly all languages. We extract the subset corresponding to the seven evaluation languages, resulting in a total of 95K training instances. We evaluate two backbones, LLaMA-3.1-8B and Qwen2.5-7B, both of which exhibit very limited pretraining exposure to these languages and have extremely low zero-shot performance. Each model is trained for one epoch using the same configuration described earlier in the paper.

In terms of our continuum, these settings are *model-weak*. Tab. 10 presents the results and indeed confirms this. In every low-resource evaluation language and for both backbones, the standard NLL objective substantially outperforms the prior-leaning objective $-p$. This demonstrates that the model-weak end extends far beyond the puzzle cases discussed in the main paper and highlights low-resource multilingual instruction tuning as a natural and practically important instance of this end.

Table 10: Additional benchmark results for the model weak end. Low-resource languages provide a natural setting where pretrained models perform poorly. Best results are in bold.

Case	Marathi (MR)	Telugu (TE)	Nepali (NE)	Swahili (SW)	Wolof (WO)	Yoruba (YO)	Zulu (ZU)	Avg.
LLaMA-3.1-8B								
Base	11.1	5.0	12.3	4.1	3.7	7.4	6.0	7.1
$-p$	15.2	2.5	15.5	14.0	11.5	10.0	11.5	11.5
$-\log(p)$	18.7	13.3	18.7	18.4	13.9	13.6	15.9	16.1
Qwen2.5-7B								
Base	8.7	2.4	9.4	8.3	9.9	7.9	7.2	7.7
$-p$	20.6	7.7	19.5	14.9	12.9	10.5	6.9	13.3
$-\log(p)$	24.8	9.1	24.4	19.9	13.1	12.6	9.6	16.2

H.4 ADDITIONAL KNOLWEDGE MEMORIZATION TASK (REVIEWER FVA5)

In this subsection, we demonstrate that our continuum view also applies to a classical knowledge memorization task. We use OpenBookQA (Mihaylov et al., 2018) to study commonsense and factual question answering. The dataset contains 5K training samples and 500 test samples. We fine-tune Qwen2.5-14B and Qwen2.5-7B, both of which achieve over 80% zero-shot accuracy on this benchmark, for one epoch using the same configurations described earlier in the paper.

Importantly, the labels in this setting are few, unambiguous, and essentially noise-free. This places the task in the regime where classical supervised classification applies and where NLL is expected to excel. In contrast, our motivation for prior-leaning objectives comes from the observation that typical reasoning SFT datasets contain imperfect and potentially noisy demonstrations (Line 17 in the abstract). To emulate the model strong end under such conditions, we perturb the training set with small amounts of label noise and train under the same protocol. This serves as a proxy for **pretraining style noise**, where incorrect or ambiguous labels are common.

Tab. 11 reports the results. In the clean, conventional-classification-like setting, NLL indeed performs best, fully consistent with our framework. However, once noise is introduced, analogous to imperfections in pretraining corpora and reasoning SFT datasets, the prior-leaning objective $-p$ remains robust while NLL collapses. Moreover, as the model scale increases (14B compared to 7B), the performance gap between prior-leaning and prior-averse objectives in the clean setting becomes smaller. These findings illustrate that the continuum we identify extends beyond long-form reasoning and also governs knowledge memorization under varying supervision quality.

H.5 ADDITIONAL FORGETTING EXPERIMENTS (REVIEWER FZPG, NHNP)

We also conduct experiments to assess potential forgetting induced by different objectives. Concretely, we take the two math-finetuned Qwen2.5-7B models (trained with $-\log p$ and $-p$) and evaluate them, together with the base model, on a set of standard general-purpose benchmarks: MMLU, ARC-C, Winogrande, and TruthfulQA. The results are reported in Table 12. Across all datasets, the fine-tuned models remain close to the base model, and the differences between $-\log p$ and $-p$ are within a small margin (typically ≤ 1 –2 points on average), suggesting that in this setting neither objective induces severe catastrophic forgetting. A more thorough, large-scale study of forgetting effects across domains and model sizes is an interesting direction for future work.

1512
1513
1514
1515
1516
1517

Table 11: Additional benchmark results on knowledge memorization (OpenBookQA). The *clean* setting uses the original labels and reflects standard classification with noise-free supervision. The *noisy* setting adds small label perturbations to emulate pretraining-style noise. In the clean setting, NLL performs best, whereas under noisy supervision, the prior-leaning objective $-p$ is substantially more robust, illustrating our continuum beyond reasoning tasks.

1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

Cases	OpenBookQA	
	Clean (MW)	Noisy (MS)
Qwen2.5-14B		
Base	82.2	
-log(p)	95.0	27.0
-p	93.4	91.6
Qwen2.5-7B		
Base	81.0	
-log(p)	91.0	27.2
-p	86.2	85.0

1531
1532

Table 12: Additional experiments on forgetting. We observe no notable forgetting in the settings we considered.

1533
1534
1535
1536

Datasets	MMLU	ARC-C	Winograde	TruthfulQA	Avg
Base	74.2	63.7	75.9	56.4	67.5
-log(p)	74.3	61.3	73.7	54.0	65.8
-p	73.8	62.5	75.5	55.8	66.9

1537

H.6 DISCUSSION WITH EXISTING LITERATURE (REVIEWERS FZPG, FVA5)

1539

H.6.1 CONNECTIONS WITH RL (REVIEWER FZPG, FVA5)

1541
1542
1543

Our analysis is formulated entirely in the supervised SFT setting, where we study probability-based token-level objectives of the form

1544

$$L_f(\theta) = \mathbb{E}_{(x, \tilde{y}) \sim \mathcal{D}} [f(p_\theta(\tilde{y} | x))], \quad (28)$$

1545
1546
1547

on a fixed *offline* dataset \mathcal{D} . Here, the training distribution is independent of the current model π_θ , and coverage is entirely determined by \mathcal{D} .

1548

By contrast, RL methods optimize a sequence-level objective

1549
1550

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)} [r(x, y)], \quad (29)$$

1551
1552

where $r(x, y)$ is a scalar reward and π_θ is updated using *online* trajectories sampled from itself. Gradient estimates typically take the form

1553
1554

$$\nabla_\theta J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)} [A(x, y), \nabla_\theta \log \pi_\theta(y | x)], \quad (30)$$

1555
1556
1557

for some advantage term $A(x, y)$. Because y is drawn from π_θ , most gradient mass comes from sequences and tokens that are already high probability under the current policy. This online nature naturally biases updates toward existing high-probability behaviors.

1558
1559
1560
1561

Recent work on RL for LLM reasoning (Davis & Recht, 2025) shows that, for binary correctness rewards, several popular RL-style post-training algorithms can be interpreted as stochastic gradient ascent on a monotone transform of the probability of producing a correct answer given a prompt. If we denote

1562
1563

$$p_\theta^{\text{corr}}(x) := \sum_{y \in \mathcal{Y}^{\text{corr}}(x)} \pi_\theta(y | x), \quad (31)$$

1564
1565

then these algorithms optimize an objective of the form

$$J_h(\theta) := \mathbb{E}_{x \sim \mathcal{D}} [h(p_\theta^{\text{corr}}(x))], \quad (32)$$

1566 for some monotonically increasing function $h(\cdot)$ determined by the algorithm design. From our
 1567 perspective, Eq. 32 is another instance of the probability-based family in Eq. 28, but applied at the
 1568 sequence level and coupled to an on-policy sampling scheme.

1569 Practically, RLHF/RLVR pipelines start from a strong base model—typically after extensive pre-
 1570 training and sometimes a specialized midtraining phase—and include a KL penalty that keeps π_θ
 1571 close to this base policy (Ouyang et al., 2022; Shao et al., 2024). Combined with the on-policy
 1572 gradient, this means that updates are dominated by already high-probability sequences, while low-
 1573 probability ones receive very little gradient signal. This behavior is closely aligned with our *prior-
 1574 leaning* objectives in the model-strong regime: both favor trusting the pretrained prior when it is
 1575 reliable. At the same time, RL-based methods come with their own challenges (e.g., exploration
 1576 versus exploitation, reward misspecification) that are largely orthogonal to the off-policy SFT set-
 1577 ting we focus on. A full theoretical unification of RLHF/RLVR with our capability-based continuum
 1578 is beyond the scope of this work, but Eq. 29–32 highlight that many RL objectives can be naturally
 1579 interpreted within the same probability-based lens developed here, and extending our framework to
 1580 fully encompass on-policy RL settings is an exciting direction for future work.

1581 1582 H.6.2 CONNECTIONS WITH OTHER LOSS FUNCTIONS (REVIEWER FVA5)

1583 Existing work on alternative SFT losses can be broadly divided into two categories. *Distribution-
 1584 based* and *Non-Distribution-based* losses. Distribution-based operate directly on the (scalar) prob-
 1585 ability assigned to the correct label (or a set of correct sequences), and thus fit exactly into our
 1586 probability-based family $L_f(p)$, while the latter ones are typically composite objectives (e.g., sums
 1587 of multiple terms, or set/sequence-level surrogates) that depend on the joint behavior of many tokens
 1588 and do not reduce to a clean function of $p_\theta(\hat{y} | x)$.

1589 1590 Distribution-based Losses.

1591 We first discuss *distribution-based* losses, which are the most fundamental and admit a clean char-
 1592 acterization through the logit-gradient weight

$$1594 1595 W_f(p) := -f'(p), p(1-p), \quad (33)$$

1596 as we established in Lemma 2. As illustrative examples, we analyze the Focal loss by Rege Cambrin
 1597 et al. (2024) and a Huber-style loss on probabilities, and interpret both within our $W_f(p)$ view.

1599 1600 **Focal loss: a prior-averse example.** Focal loss (Lin et al., 2017; Rege Cambrin et al., 2024) was
 1601 introduced to address class imbalance by downweighting easy examples and emphasizing hard ones.
 1602 For a single correct token with probability $p \in (0, 1)$, the (binary) Focal loss can be written as

$$1603 1604 f_{\text{FL}}(p) = -(1-p)^\gamma \log p, \quad \gamma > 0. \quad (34)$$

1605 A direct calculation yields

$$1607 1608 f'_{\text{FL}}(p) = \frac{(1-p)^{\gamma-1}}{p} (\gamma p \log p - (1-p)), \quad (35)$$

1609 and therefore

$$1611 1612 W_{f_{\text{FL}}}(p) = -f'_{\text{FL}}(p)p(1-p) = (1-p)^\gamma ((1-p) - \gamma p \log p). \quad (36)$$

1613 Compared to NLL, whose weight is $W_{\text{NLL}}(p) = 1 - p$, Focal loss multiplies this factor by $(1-p)^\gamma$
 1614 and introduces the additional term $-\gamma p \log p$. For small p (hard, low-probability tokens), $(1-p)^\gamma$
 1615 is close to one and the $-\gamma p \log p$ term is positive and large, so $W_{f_{\text{FL}}}(p)$ can substantially exceed
 1616 $W_{\text{NLL}}(p)$. For p near one (easy, high-probability tokens), both $(1-p)^\gamma$ and $-\gamma p \log p$ are small, and
 1617 the weight decays quickly. In our terminology, Focal loss is therefore *more prior-averse* than NLL:
 1618 it further shifts gradient mass toward low-probability tokens and away from high-probability ones.
 1619 This behavior aligns with its original motivation of focusing learning on rare or difficult examples,
 and fits naturally into the model-weak end of our continuum.

1620 **Huber-style loss: a prior-leaning example.** To illustrate a contrasting, more prior-leaning
 1621 distribution-based objective, we consider a Huber-style loss applied to the probability of the
 1622 correct token. Let $e = 1 - p$ denote the error in the correct-class probability and $\delta \in (0, 1]$ be a
 1623 threshold. The Huber loss on e is

$$1624 \quad \phi_\delta(e) = \begin{cases} \frac{1}{2}e^2, & e \leq \delta \\ \delta(e - \frac{1}{2}\delta), & e > \delta, \end{cases} \quad (37)$$

1627 and we define the probability-based loss

$$1629 \quad f_{\text{Huber}}(p) := \phi_\delta(1 - p). \quad (38)$$

1630 For $e = 1 - p \leq \delta$ (i.e., p close to 1), we have $\phi'_\delta(e) = e$ and thus

$$1632 \quad f'_{\text{Huber}}(p) = -(1 - p), \quad W_{f_{\text{Huber}}}(p) = -f'_{\text{Huber}}(p)p(1 - p) = p(1 - p)^2. \quad (39)$$

1633 For $e = 1 - p > \delta$ (i.e., low-probability, high-error region), $\phi'_\delta(e) = \delta$ is constant and

$$1635 \quad f'_{\text{Huber}}(p) = -\delta, \quad W_{f_{\text{Huber}}}(p) = \delta p(1 - p). \quad (40)$$

1636 Compared to NLL, this Huber-style loss strongly *downweights* both very low- and very high-
 1637 probability tokens: in the high-confidence region, the weight decays as $p(1 - p)^2$, which is smaller
 1638 than $1 - p$ for p close to 1; in the low-confidence region, the weight is capped at $\delta p(1 - p)$, which
 1639 can be much smaller than $1 - p$ when p is small. As a result, gradients are concentrated on moderately
 1640 confident tokens rather than on extremely low-probability ones. In our framework, this makes
 1641 the Huber-style loss a *prior-leaning* objective, more conservative than NLL in correcting tokens the
 1642 model currently deems very unlikely, which aligns with regimes where the pretrained prior is already
 1643 informative but supervision may be noisy.

1644 Non-Distribution-based Losses.

1645 Beyond purely distribution-based objectives, several recent works have proposed losses that depend
 1646 on *sets of tokens* or on *both* the data and model-generated distributions. These are not of the simple
 1647 form $f(p_\theta(\hat{y} \mid x))$ and therefore fall outside the characterization by our paper, but they are still
 1648 informative for our continuum view.

1649 **Dice and region-based losses.** Rege Cambrin et al. (2024) transfer semantic-segmentation losses
 1650 (Dice, Generalized Dice, Lovász, Self-Adjusting Dice) to LLM fine-tuning and combine them with
 1651 cross-entropy via

$$1653 \quad L_{\text{tot}} = \lambda L_{\text{CE}} + (1 - \lambda)L_{\text{seg}}, \quad \lambda \in [0, 1],$$

1654 where L_{CE} is applied to all instruction and answer tokens and L_{seg} is applied only to answer tokens.² For binary Dice, given predicted probabilities $p_i \in [0, 1]$ and labels $y_i \in \{0, 1\}$, the Dice
 1655 score and loss are

$$1657 \quad \text{DS} = \frac{2 \sum_i p_i y_i}{\sum_i p_i^2 + \sum_i y_i^2}, \quad L_{\text{Dice}} = 1 - \text{DS}. \quad (41)$$

1659 As noted by both Milletari et al. (2016) and Rege Cambrin et al. (2024), Dice-type losses depend on
 1660 global set-level quantities (e.g., intersection and union over all tokens). Consequently, the gradient
 1661 with respect to a single token logit couples all tokens through the numerator and denominator of the
 1662 Dice score. As a result, isolated misclassified tokens can receive relatively small updates when the
 1663 overall overlap between predicted and gold token sets is already high. These region-based objectives
 1664 therefore fall outside our token-wise probability-based characterization via $W_f(p)$: the effective
 1665 weight on each token cannot be written as a function of its own probability alone, and it is not
 1666 meaningful to classify them as globally “prior-leaning” or “prior-averse” in our sense.

1667 **Entropic distribution matching (GEM).** Li et al. (2024) propose GEM, an SFT method based on
 1668 *entropic distribution matching*. Conceptually, they formulate a reverse-KL objective with entropy
 1669 regularization

$$1671 \quad \max_f \mathbb{E}_x \left[\mathbb{E}_{y \sim f(\cdot \mid x)} \log p(y \mid x) - \mathbb{E}_{y \sim f(\cdot \mid x)} \log f(y \mid x) + \gamma \mathbb{E}_{y \sim f(\cdot \mid x)} \log f(y \mid x) \right], \quad (42)$$

1673 ²See their Sec. 3.4 and Fig. 2 for the combined loss design.

1674 which is equivalent to minimizing a reverse KL divergence $D_{\text{KL}}(f\|p)$ minus an entropy regularizer
 1675 (i.e., maximizing entropy). Here p denotes the (unknown) data distribution on sequences and f is
 1676 the model’s generative distribution. Li et al. show that, at the population level, the optimal solution
 1677 to equation 42 satisfies

$$1678 \quad f^*(y | x) \propto p(y | x)^{1/(\gamma+1)}, \quad (43)$$

1679 i.e., a strictly concave power transform of p that flattens peaked distributions and increases entropy.
 1680 Thus, at the sequence level, GEM behaves as a *strongly prior-leaning* objective: it preserves the
 1681 modes of p while explicitly avoiding over-concentrating probability mass on any single sequence,
 1682 which leads to less overfitting and higher output diversity in practice.

1683 Algorithmically, GEM is implemented via a composite generative loss that contrasts log-
 1684 probabilities of supervised “real” sequences and model-generated “fake” sequences, with the fake
 1685 distribution q defined as a softened version of f (via a temperature β). This composite objective
 1686 cannot be written as a simple $f(p_\theta(\tilde{y} | x))$ on ground-truth tokens, so it lies outside the $W_f(p)$ char-
 1687 acterization we develop. Nevertheless, Eq. 43 shows that GEM effectively implements a concave,
 1688 entropy-increasing transform of the underlying sequence-level probabilities and hence sits naturally
 1689 on the prior-leaning, model-strong side of our continuum, complementary to the token-level objec-
 1690 tives we focus on in this paper.

1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727