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ABSTRACT

Supervised fine-tuning (SFT) is the standard approach for post-training large lan-
guage models (LLMs), yet it often shows limited generalization. We trace this
limitation to its default training objective: negative log likelihood (NLL). While
NLL is classically optimal when training from scratch, post-training operates in
a different paradigm and could violate its optimality assumptions, where models
already encode task-relevant priors and supervision can be long and noisy. To
this end, we study a general family of probability-based objectives and character-
ize their effectiveness under different conditions. Through comprehensive exper-
iments and extensive ablation studies across 7 model backbones, 14 benchmarks,
and 3 domains, we uncover a critical dimension that governs objective behavior:
the model-capability continuum. Near the model-strong end, prior-leaning objec-
tives that downweight low-probability tokens (e.g., —p, fplo, thresholded vari-
ants) consistently outperform NLL; toward the model-weak end, NLL dominates;
in between, no single objective prevails. Our theoretical analysis further eluci-
dates how objectives trade places across the continuum, providing a principled
foundation for adapting objectives to model capabilityp_-]

1 INTRODUCTION

Supervised fine-tuning (SFT) has become a standard approach for post-training large language mod-
els (LLMs), widely used to elicit and strengthen their capabilities (Zhang et al., 2023} [Chung et al.,
2024). Despite its popularity, many existing studies find that SFT often exhibits limited generaliza-
tion (Ouyang et al.| [2022; |Chu et al.| [2025). Nevertheless, this limitation may not arise from the
SFT paradigm itself. Instead, we find that it may stem from its default training objective: negative
log likelihood (NLL, — log p). As a motivating case study, we generalize NLL into a parametrized
family of learning objectives of the form fo(p) == —E~—L, which includes NLL as a special case
(fa(p) — —logp as a — 0). We surprisingly find that other objectives significantly outperform
NLL on some tasks, as shown in Tab. [T}

This unexpected observation motivates us to fundamentally revisit the train-  Table 1: Other objec-
ing objective of SFT. While NLL has been shown to be optimal in classi- tives can significantly
cal learning theory when training from scratch on small-scale classification  outperform NLL.
tasks (Coxl [1958; Zhang) 2004} Bartlett et al., 2006), LLM post-training

operates in a fundamentally different paradigm and essentially degrades o  Objective  Accuracy

the optimality of NLL. Post-training begins with a pretrained model (called 0 —logp 17.00
the base model) that already encodes task-relevant priors, and typically in- 110 R jp_w]; /10 2%;(5)

volves long chain-of-thought supervision spanning thousands of tokens that
may be noisy. Requiring the pretrained model to replicate every token ver-
batim can hinder generalization.

To this end, we conduct a comprehensive study to demystify which scenarios suit NLL and which
suit other objectives. Our study uncovers a critical dimension that governs the behavior of different
objectives: the model-capability continuum. This continuum reflects the strength of prior signals

1Anonyrnized code is provided at https://anonymous.4open.science/r/beyondLog-AD61,
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Figure 1: The model capability continuum of SFT objectives in Post-Training. At the model-
strong (MS) end, where base models already encode extensive priors (e.g., Llama 3 reports 25%
math pretraining tokens (Grattafiori et al., [2024)), prior-leaning objectives that downweight low-
probability tokens (e.g., —p, —p'Y, or thresholded variants) consistently outperform NLL by up
to 16%. At the model-weak (MW) end, where no useful priors exist (e.g., no figfont puzzles in
pretraining data), the standard NLL dominates. In the model-intermediate (MI) region (e.g., medical
reasoning, where models rely on partial world knowledge), the gap between objectives narrows and
no single choice consistently prevails. This continuum highlights how the effectiveness of an SFT
objective depends critically on the capability of the base model.

inherited from pretraining: some domains (e.g., math with abundant pretraining tokens) align well
with the model’s priors, while others (e.g., novel puzzles with no pretraining exposure) do not, as
illustrated in Fig.[I] Accordingly, the effectiveness of a learning objective depends on prior strength:
prior-leaning objectives excel when priors are reliable, whereas prior-averse ones remain necessary
when priors are weak.

We validate this perspective through extensive experiments spanning seven model backbones, four-
teen benchmarks, and three domains. Our results reveal a clear continuum in how objectives behave:
at the model-strong end, where base models already provide reliable priors, probability-based objec-
tives that downweight low-probability tokens (e.g., —p, —p', or thresholded variants) consistently
outperform NLL. At the model-weak end, where priors are misaligned with the data, NLL remains
dominant by forcing the model to learn broadly from all tokens. In the intermediate region, the
gap narrows and no single objective prevails. Further empirical analyses show that convexity and
concavity of the learning objective, as a proxy for the degree to which model priors are respected,
has opposite effects across the continum. Likelihood estimation on the training set, as a proxy for
empirical risk minimization, exhibits the same inversion.

To elucidate these findings, we provide theoretical underpinnings that characterize when and why
different objectives outperform others. We characterize a sufficient condition showing that a more
prior-leaning (e.g., —p) achieve greater loss reduction than NLL in the model-strong end in gradient
flow. The opposite holds in the model-weak end, where NLL achieves larger reductions. This
theoretical characterization mirrors our empirical results and provides a principled explanation of
how objective form and model capability interact.

2 A UNIFIED CATEGORIZATION OF SFT TRAINING OBJECTIVES

Language Model Post-Training. We focus on the post-training stage of large language models
(LLMs). Let py denote a pretrained base model that has already undergone large-scale pretraining
and accumulated extensive world knowledge. Such models typically produce predictions that are
reasonably well-calibrated (Zhu et al., |2023}; |Xie et al.,|2024), and their outputs encode task-relevant
priors derived from pretraining corpora.

Standard Supervised Fine-Tuning. We consider supervised fine-tuning (SFT) on a dataset 1" of
input-output pairs (z, 3), where § = (y1,...,yn) denotes the target sequence. The model defines
token-level conditionals pg(y; | y<¢,x). At decoding step ¢, let z; € RY denote the logits over the
vocabulary, p, = softmax(z;), and p;; = softmax(z;);. For brevity, write y = y;, and denote
by d;,, the Kronecker delta. In standard SFT, the training objective is to minimize the negative log
likelihood, equivalently the cross-entropy loss, over the dataset:
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N
Liog(p)(0) = E(zgyor | —logpo(¥ | 2)] = E@ gynr lz —log po(ys | y<t, CU)] . (D

t=1

A General Family of Probability-Based Objectives. We now extend beyond log likelihood by
considering a broader family of objectives. For any differentiable and nonincreasing function f :
[0,1] = R, we define

N
Lip)(0) =E@g~r[f(po(F | 7))] = E@ gy [Z f(po(y: | y<t7x))] : 2)

t=1

One useful general instance of f is given by

fp) = . (3)

As a — 0, it reduces to f*(p) — —log(p) (NLL). When o = 1, it yields the plain-p objective
f*(p) = 1 — p, which corresponds to maximizing the expected average prediction accuracy. More
generally, the function is concave when o > 1 and convex when 0 < o < 1.

Prior-learning versus Prior-averse Objectives. The key distinction among these objectives lies
in the form of their gradients with respect to the correct logit class, which governs the resulting
learning dynamics.

Lemma 1 (Gradient Shape). Ler f : [0,1] — R be differentiable and nonincreasing. Then the
gradient of Eq. 2| with respect to the logits at step t is

9(Ly)
Bzm

= s¢(pry) (Giy —pri),  wheresg(p) = —f'(p)p >0, 6y = 1{i = y}.

In particular, for the correct class i = v,

9(Ly)

0zt y =8 (Pty) (1 = pry) = Wi(pry), Wy (p) £ —f'(p)p(1-p).

Proposition 1 (Convex versus Concave Objectives). Let f € C?[0,1] with f'(p) < 0 forall p €
(0,1). Define Wr(p) = —f'(p) p(1 — p). Then if f is concave, any maximizer of Wy lies in the
interval [5,1]; if f is convex, any maximizer of Wy lies in the interval [0, 5.

In other words, convex objectives emphasize gradient contributions from low-probability tokens,
while concave objectives shift the gradient mass toward high-probability tokens.

The weighting term W;(p) determines how much learn-
ing signal each token contributes relative to the model’s
prior belief. For the parametric family in Eq. [3| we have
Wi(p) = p*(1 — p). As o — 0 (NLL), this reduces
to Ws(p) — (1 — p), which strongly emphasizes low-
probability tokens. When o > 1 (f(p) = 1 — p), the
gradient signal from low-probability tokens quickly di-
minishes. For a special case f(p) = —log(l — p), we  =of==
obtain Wy (p) = p, which exhibits the opposite trend of p
—log(p) by emphasizing high-probability tokens. Fig.
visualizes these gradient shapes Wy (p) for different ob-
jectives: the dot marks the maximizer of each function,
and the dashed line at p = 0.5 serves as a reference point separating objectives that favor low- versus
high-probability tokens. More formally, Prop. [2|shows that convex objectives (e.g., — log p) achieve
their maximum within [0, 0.5], thus prioritizing low-probability tokens (prior-averse); whereas con-
cave objectives (e.g., —p?) peak within [0.5, 1], thereby reinforcing already confident predictions
(prior-leaning). This distinction illustrates how convexity modulates the degree to which an ob-
jective respects model priors. In particular, the family in Eq. [3] can be seen as providing a smooth
transition between prior-averse and prior-leaning behavior. This leads to the following definition.

Normalized Value

Figure 2: The logit gradients Wy (p) of
different functions.
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Definition 1 (Prior-leaning versus Prior-adverse Objectives). We classify objectives according to
how Wy distributes its mass over p. We say the objective is:

* Prior-leaning if the majority of gradient weight is concentrated on medium- to high-
probability tokens (i.e., p above a threshold T), thereby leveraging the model’s prior to
refine already plausible predictions.

* Prior-averse if the majority of gradient weight is concentrated on low-probability tokens (p
below T), thereby pushing the model to learn from unlikely predictions.

This definition emphasizes that different objectives exploit the model’s prior in opposite ways. While
the precise boundary between prior-leaning and prior-averse (e.g., the choice of threshold 7) is not
unique and may depend on the task, some objectives exhibit clear contrasts (e.g., — logp versus
—p), which form the primary focus of our study. To further probe their behavior, we also consider a
hard-thresholding variant:

Lyrr),1(p)(0) = E@ gyt [f(pF | 2)) {p@ | z) € I}], €]

where HT () denotes restricting updates to tokens whose predicted probabilities fall within an in-
terval I C [0, 1]. This formulation is particularly useful for ablation, as it isolates the contribution
of tokens in specific probability ranges.

The model capability continuum. Unlike traditional classification tasks, language model post-
training spans a wide variety of domains that differ substantially in how well they are supported by
pretraining. Consequently, not all tasks should be treated uniformly. We categorize tasks along a
model-capability continuum, defined by the strength of the base model prior. A general categoriza-
tion is shown in Fig. [I] Our classification relies on two complementary perspectives: (1) From the
pretraining data side, tasks differ in the portion of relevant data contained in the corpus. For exam-
ple, the LLaMA-3 report indicates that ~25% of its pretraining tokens are math-related, suggesting
strong priors for mathematical reasoning (model-strong). By contrast, figfont puzzles fall entirely
outside the pretraining corpus and thus represent model-weak tasks, while domains with partial
coverage, such as medical reasoning, are considered intermediate. (2) From the model side, we
measure the mean predicted probability on the training set as a quantitative proxy of prior strength.
This measure aligns well with intuition: math tasks achieve high predicted likelihood of the training
even before SFT (e.g., Qwen2.5-Math-7B: 0.81, LLaMA-3.1-8B: 0.76), whereas medical reasoning
lies in the middle (~0.50), and figfont puzzles remain extremely low (~0.01). Together, these per-
spectives motivate our continuum view and ground it in both qualitative and quantitative evidence.
The details and the rationales about our classification are included in Appen.

At the model strong (MS) end, prior-leaning objectives can be leveraged to refine a small number of
critical tokens by concentrating learning on mid- to high-probability tokens that are more likely to be
correct. At the model weak (MW) end, prior-averse objectives are more suitable, as they encourage
the model to improve predictions across all tokens. For models of intermediate capability (MI), both
objectives may provide benefits, depending on the characteristics of the task and the base model.

3  MAIN EXPERIMENTS

In this section, we empirically validate the proposed continuum view of SFT post-training and eval-
uate the performance of different probability-based objective functions.

3.1 EXPERIMENTAL SETUP

To empirically validate the continuum view, we conduct experiments across three representative
domains: mathematical reasoning, medical reasoning, and textual puzzles. As motivated in Sec. 2}
these domains occupy different positions along the model-capability continuum. For the model-
strong (MS) end, we use NuminaMath (LI et al.| 2024) as training data. For the model-weak (MW)
end, we generate synthetic figfont puzzles from Reasoning Gym (Stojanovski et al., [2025). For the
intermediate (MI) region, we adopt m23k (Huang et al., [2025), a high-quality medical reasoning
dataset. Additional statistics supporting this classification are provided in Appen.
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Our experiments cover a diverse set of advanced backbones, including LLaMA-3.2B, LLaMA-3.1-
8B, DeepSeekMath-7B, Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, Qwen2.5-1.5B, and Qwen2.5-
7B. We primarily compare the —p and — logp objectives, with one exception: on the MS end,
we also evaluate a thresholded variant of — logp that excludes low-probability tokens. All mod-
els are trained with AdamW, and evaluation datasets, optimization details, and further experimental
configurations are provided in Appen.[C|

3.2 MAIN RESULTS

Table 2: Main results in the Model Strong (MS) end. Both —p and thresholded — log(p) consistently
outperform the standard — log(p) objective across models and datasets. Best results are in bold.

Models Math500 Minerva Math Olympiad Bench AIME24 AMC23 Avg.
LLaMA-3.1-8B
Base 1.76 0.68 0.86 0.00 1.25 0.91
-log(p) 17.59 5.84 3.04 0.21 5.78 6.49
slog(p)1{p > 0.2}  24.39 10.49 5.10 0.41 1125 1033
-p 25.29 10.09 6.37 0.41 1062 10.56
DeepSeekMath-7B
Base 5.70 2.89 1.51 0.00 2.34 2.49
-log(p) 28.79 9.29 6.57 0.21 1062 11.10
-log(p)1{p>02}  40.38 19.38 13.98 0.62 18.91 18.65
-p 39.55 20.14 13.99 1.24 2062  19.11
Qwen2.5-Math-1.5B
Base 30.71 8.81 14.88 2.49 1797  14.97
-log(p) 42.52 12.71 12.09 0.62 17.03 17.00
-log(p)1{p > 0.2}  63.95 24.79 26.08 7.09 3828  32.04
-p 65.27 26.18 26.66 6.88 38.13 3275
Qwen2.5-Math-7B
Base 40.38 13.66 16.36 6.04 2469  20.23
-log(p) 51.90 18.88 17.37 2.70 2250  22.67
-log(p)1{p > 0.2} 67.85 32.47 33.90 8.76 47.81 38.16
-p 68.47 31.99 32.26 8.75 41.09  36.51

Model-Strong Results Interpretation. Tab. 2] reports results in the model-strong (MS) end, where
base models already exhibit strong priors aligned with the ground truth. In this setting, the —p
objective consistently outperforms standard negative log-likelihood (— log p), with the performance
gap becoming more pronounced for larger models such as 7B and 8B compared to 3B. This trend
suggests that when model predictions are already reliable, a prior-leaning objective like —p better
capitalizes on high-confidence tokens by suppressing the influence of low-probability ones. To
further dissect this effect, we evaluate a thresholded variant of — log p that excludes tokens with p <
0.2. This adjustment directly mitigates the effect of low-confidence tokens and leads to consistent
improvements over standard — log p. In many cases, it performs on par with, or even surpasses, —p
applied to full tokens. Such evidence highlights that the weakness of standard NLL in this setting lies
in its excessive emphasis on low-probability tokens. Prior-leaning objectives that explicitly reduce
the contribution of low-confidence tokens consistently provide the most benefit at the MS end. We
provide further empirical analysis in Sec. 4| with a more careful study of the pattern.

Model-Intermediate Results Interpretation. In Tab.[3] results on medical reasoning reveal a strik-
ingly different pattern: the performance of —p and — log p is nearly indistinguishable, with differ-
ences well within statistical variation. This neutrality arises from the nature of intermediate priors.
On one hand, the priors are not strong enough for the prior-leaning objective —p to yield consistent
refinements; on the other, they are not weak enough for the prior-averse objective — log p to offer a
decisive corrective advantage. This observation is important because it indicates that the existence
of a region where gains are unlikely to come from altering the learning objective itself. Instead,
improvements may rely on alternative directions, such as better data curation, targeted domain su-
pervision, or hybrid strategies that combine training data with external resources.
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Table 3: Main results in the Model Moderate (MM). Both —p and — log(p) result in similar perfor-
mance. Best results are in bold.

Model MedMC MedQA PubMed MMLU-P GPQA Lancet MedB (4) MedB (5) MedX NEJM Avg.

LLaMA-3.1-3B
Base 21.30 21.92 22.60 11.40 23.08 25.00 23.05 15.26 1035 23.22 19.48
-log(p)  42.60 45.56 67.40 38.63 24.36 46.84 46.10 34.42 11.59 4328  37.99
-p 39.42 41.95 62.70 33.88 3846  44.17 35.71 28.57 12.63 4080  36.29
LLaMA-3.1-8B
Base 23.57 29.14 21.00 20.00 29.49 22.57 30.52 20.45 10.01  20.73 21.89
-log(p)  55.08 59.47 74.00 53.62 32.05 57.28 52.27 46.10 1587 59.20 47.23
-p 54.10 58.44 76.50 52.70 44.87 54.13 42.21 42.53 13.80 54.73  45.89
Qwen2.5-1.5B
Base 22.21 21.84 18.50 11.21 24.36 22.57 24.03 17.53 10.84 18.74 18.59
-log(p)  39.64 39.59 66.70 34.92 33.33 38.83 38.31 27.60 10.56  34.16  35.13
-p 38.58 36.68 68.00 38.37 35.90 35.68 36.69 28.90 11.94 3997 3502
Qwen2.5-Math-7B
Base 35.84 27.26 49.30 30.23 35.90 30.34 24.03 18.18 1021 24.71 27.55
-log(p)  36.48 33.78 72.60 35.50 38.46 40.05 29.87 26.95 1042 26.70  33.56
-p 35.62 33.78 69.90 38.83 42.31 35.44 33.12 27.60 1049 26770  33.83

Table 4: Main results in the Model Weak (MW) regime. — log(p) consistently outperforms —p
across different models and metrics substantially. Best results are in bold.

LLaMA-3.2-3B LLaMA-3.1-8B Qwen2.5-1.5B Qwen2.5-7B
Metric Base -log(p) -p Base  -log(p) -p Base -log(p) -p Base -log(p) -p
Exact Match 0.00  1.08 0.00 0.00 1.34 0.00 0.00 0.60 00 000 3520 0.00

Jaro-Winkler Similarity 41.89 44.39 243 30.17 43.59 10.15 3532 3298 836 4492 8248 10.15

Model-Weak Results Interpretation. Tab.[dreveals the opposite trend at the MW end: here — log p
consistently outperforms —p, often by substantial margins. When priors are poorly aligned with the
ground truth, the concavity of —p becomes detrimental, as it allocates disproportionate weight to
unreliable high-probability tokens, thereby reinforcing errors. By contrast, the convexity of — log p
ensures that low-probability tokens, which often correspond to mistakes, receive stronger gradient
signals, forcing the model to correct its errors and spread learning more broadly across the output
distribution. This explains why NLL, despite its shortcomings elsewhere, remains the most effective
objective in weak-prior settings. Consequently, progress on MW tasks is more likely to come from
stronger or more targeted supervision, improved data augmentation, or other methods of injecting
knowledge, rather than from modifying the training objective. We provide further empirical analysis
in Sec. [ with a more careful study of the pattern.

4 EMPIRICAL ANALYSIS

In this section, we provide a deeper empirical analysis of the findings in Sec. [3] with a particular
emphasis on the MS and MW ends where the choice of training objective has the largest effect. Our
goal is to move beyond merely reporting performance numbers and to analyze the mechanisms that
drive the observed differences. To this end, we structure the analysis around three guiding questions:

1. In the MS end, what mechanisms explain the underperformance of NLL?
2. How do objectives with different emphasis on model priors behave across the two ends?

3. To what extent are these objectives consistent with likelihood estimation on the training
set?

Answering these questions provides a deeper understanding of how different objectives interact with
model capability from complementary perspectives.

Model Setup. For ablation studies in the MS end, we focus on Qwen-2.5-Math-1.5B, which shows
the clearest gap between objectives. For the MW end, we use Qwen-2.5-7B. All training details and
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evaluation protocols remain identical to those in Sec.[3] ensuring that differences arise solely from
the choice of objective.

4.1 ABLATION ON QUANTILE THRESHOLDING WITH DIFFERENT OBJECTIVES

Quantile Thresholding Performance Averaged Across All Datasets
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Figure 3: Performance under quantile thresholding for — log(p), —p, and log(l — p). Let
Qpercentile denote the predicted probability at the specified percentile of the training set. (> Per-
centile) corresponds to I = [meemﬂe7 1] in Eq. while (< Percentile) corresponds to I =
[0, Qpercemile]. Key findings: (1) low-probability tokens consistently harm performance across all
objectives; (2) when training on all tokens, objectives that de-emphasize low-probability tokens (—p
and log(1 — p)) outperform — log(p); (3) restricting training to only the top 10% of tokens yields
the strongest improvements across all objectives, surpassing standard SFT.

Detailed Setup. This ablation examines how restricting training to different quantiles of tokens af-
fects the relative performance of objectives. We compare three instances of f(p) in Eq.|2t — log(p),
—p, and log(1 — p), which emphasize low-, mid-, and high-probability tokens, respectively (shown
in Fig. 2). All experiments are identical except for the subset of tokens selected by the quantile
thresholding rule in Eq.[d} Quantile thresholds are computed from the base model’s predicted token
probabilities prior to training. We apply both bottom thresholding and top thresholding, denoted by
(> Percentile) and (< Percentile), respectively. Bottom thresholds vary from 5% to 100%, and top
thresholds vary from 0% to 90%.

Results Interpretation. The results in Fig. [3|reveal several consistent patterns that align with our
main experiments in Sec. [3] First, all objectives achieve strong performance when restricted to
only the top 10% tokens, significantly exceeding standard NLL on all tokens. Second, performance
drops sharply when training on low-probability tokens, confirming that they contribute adversarially
to learning. Third, when applying bottom-thresholding, —p and log(1 — p) consistently outperform
—log(p), illustrating the benefits of objectives that de-emphasize unreliable tokens. Finally, the
degradation of log(p) performance when trained on all tokens (blue curve) can be largely attributed
to the bottom 10% quantile. Overall, these results reinforce the main conclusion from Sec. E} in the
MS end, low-probability tokens act primarily as noise to the strong model.

4.2 OBIJECTIVE CONVEXITY AND PERFORMANCE DIFFERENCE

Detailed Setup. To systematically examine the effect of objective on downstream performance, we
study the parametric family in Eq.[3| This objective is concave when o > 1 and convex when @ < 1.
A “more concave” objective is more prior-leaning and vice versa, as shown in Fig.[2] We leverage
the convexity of this objective as a proxy for assessing prior-leaning versus prior-averse objectives.
We vary « from 0.1 to 1.0 in increments of 0.1, and from 1.0 to 10.0 in increments of 1.0.
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Figure 4: Analysis of MS and MW ends in terms of objective convexity (with Eq.[3) and likelihood
estimation. In MS, more concave (prior-leaning) objectives yield better downstream accuracy, while
in MW, more convex (prior-averse) objectives dominate. The likelihood estimation results align
with these trends, suggesting that objective shape directly interacts with model prior strength.

Results Interpretation. As shown in Fig.[4] convexity affects performance in opposite directions
across the SFT continuum. In the MS end, accuracy improves as « increases, peaking near o = 1
and remaining stable for larger values. In the MW end, performance is maximized at « = 0.1
and deteriorates rapidly as o approaches 1 and exceeds the convexity boundary. This dichotomy
highlights the importance of aligning objective shape with model prior strength: concave objectives
(that emphasize model priors) are more effective when priors are strong, while convex objectives
(that de-emphasize model priors) are preferable when priors are weak.

4.3 LIKELIHOOD ESTIMATION ON THE TRAINING SET

Detailed Setup. In this ablation, we evaluate the empirical training performance of different objec-
tives by computing the average predicted likelihood on the training set before and after fine-tuning:

n |Jil

- o] _
Likelihood Estimation := N 2 2:1 [po(3i,;)] Q)
=1 j=

where i denotes the i-th sample and j denotes the j-th token, and N = """, ||, the total number
of training tokens. We focus on comparing —p and — log(p) in both the MS and MW ends.

Results Interpretation. The likelihood estimation results, shown in Fig. 4 closely parallel the
downstream accuracy trends. In the MS end, —p achieves higher mean predicted probabilities,
confirming that they better align with strong model priors and effectively capture the training dis-
tribution. In contrast, in the MW end, — log(p) yield higher training performance, reflecting their
ability to correct misaligned priors by emphasizing low-probability tokens. These findings indicate
that the interaction between objective shape and regime governs not only generalization performance
but also the model’s fit to the training data.

5 THEORETICAL ANALYSIS

5.1 SETUP

Data. Let the input prompt be x € X. The true conditional distribution over tokens y € [V] is
denoted by r(y | x), with y* ~ r(- | ). We write D for the marginal distribution over pairs
(z,r(- | 2)), and let T(- | x) denote the empirical training distribution over contexts x, which we
abuse the notation for writing (z, §) ~ 7. We use subscript p.) to denote model predictions p(-).

Model and objectives. Let py(- | ) = softmax(z¢(z)) be the next-token distribution of an
autoregressive LM with parameters 6, and write po(- | ) = pg, (- | x) for the base model. We
define the population risk to be

R(0) = Eqey)~Dyrmpo(-lo) [7]1{31* B yp}}’
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During SFT we minimize the empirical objective
Li(0) = E@g~r[f(pe(7 ] x))]

where f : [0,1] — R is differentiable and decreasing in p. Our theoretical analysis mainly relies on
the following assumption about the two ends of the continuum:

Assumption 1 (Model-Capability Assumption). We make the following assumptions about data
capability in the Model-Strong and Model-Weak ends:

* Model-Weak. In the MW end, we assume that model predictions are uniform over the vocabu-
lary V.

* Model-Strong. In the MS end, we assume that for any given x, Pry- 5 [(py« + py) > 0.55] >
K with K > 0.70.

Assumption 2 (Trainable Base Model). We assume that the base model is still not perfect: for any
given x, Pr[0.55 < (p,- +py) < 0.95] > 1 — K in the MS end.

Remark 1. The MW assumption captures the essential condition of weakness by modeling the base
as uninformative. The MS assumption is grounded in practice: in Appen. we empirically val-
idate this. Assumption [2|is mild and simply guarantees that optimization is nontrivial. We choose
1 — K for simplicity of proof.

5.2 MAIN RESULTS

We analyze the optimization dynamics of different objectives under gradient flow. For an objective
fi» let 9,52) = —VLy, () denote the corresponding gradient flow, and let R(ng)) be the population
risk at time ¢. Our goal is to maximize the reduction in risk, as captured by 7'2(91%1)).

Theorem 1 (Characterization via Gradient Flow, Informal). Suppose that f5(p) — f1(p) < 0 for all
P, and Assumptions[IH2 hold. Then, in a simplified setup, we have the following conclusions:

. R 9(1) ’t 0> 7'3(9752))|t:0 in Model Strong End.

« R(O)|

t= | t=

0 S R o in Model Weak End.

Remark 2. This theorem characterizes a sufficient condition for which the relative advantage of
two objectives reverses across the MS and MW ends. For example, setting f1(p) = 1 — p and
fa(q) = —log p, we conclude that in the model-strong end, the prior-leaning —p objective achieves
larger risk reduction than NLL, whereas in the model-weak end, NLL is superior. This reversal
mirrors our empirical observations and highlights the central theme of this work: the effectiveness
of an SFT objective depends critically on model capability. The full analysis is provided in Appen.|G]

6 CONCLUSION AND FUTURE WORK

In this work, we revisited the objective of supervised fine-tuning (SFT) for large language model
post-training and showed that negative log likelihood (NLL), while classically optimal from scratch,
is not universally effective once models already encode priors and supervision is long and noisy.
Our central contribution is the model-capability continuum, instantiated with a general family of
probability-based objectives, which reveals that the effectiveness of different objectives depends
critically on the prior strength of the base model. Through extensive analyses from different angles,
we found consistent evidence that objectives reverse their relative advantage across different regions,
yielding a unified explanation of how objective form interacts with model capability.

Looking ahead, our results highlight the need for adaptive objectives that adjust to model capabil-
ity rather than relying on a fixed choice. Promising directions include practical implementations of
adaptive SFT objectives, integration with domain-specific supervision and data curation, and exten-
sions to broader post-training frameworks. Another avenue is to explore dynamic or curriculum-
style adaptation, where the objective evolves with model improvement during training. Advancing
along these lines may unlock the full potential of SFT as a lightweight yet powerful approach for
aligning large language models. We discuss potential limitations in Appen. [E]
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REPRODUCIBILITY STATEMENT

We have taken concrete steps to facilitate independent reproduction of our results. The full exper-
imental setup, including datasets, training and evaluation protocols, and baseline configurations, is
provided in Appen.|Cl All datasets used are either publicly available or synthetically generated, and
we specify preprocessing details where applicable. Model backbones, optimization hyperparame-
ters, and evaluation metrics are described in detail to ensure clarity and replicability. In addition, we
provide anonymized code and scripts for data preparation, training, and evaluation at the following
link: https://anonymous.4open.science/r/beyondLog-AD61l

ETHICS STATEMENT

This work focuses on improving the objectives used in supervised fine-tuning for large language
models, with the goal of better aligning models to data and priors. Our experiments are conducted
on publicly available or synthetic datasets in mathematics, medical reasoning, and puzzles, without
involving private or sensitive user information. The methods proposed are general-purpose and do
not introduce new modalities for data collection or deployment. Nevertheless, as with all research
on language models, potential downstream risks include misuse in generating misleading content or
reinforcing biases present in pretraining data. We encourage responsible application of our findings
and emphasize that careful consideration of safety, fairness, and domain-specific impacts should
accompany any real-world deployment.
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A THE USE OF LARGE LANGUAGE MODELS

LLMs did not play significant roles in this paper’s research ideation and/or writing to the extent
that they could be regarded as a contributor. In the experiments, LLMs are treated as the main
experimental object. During the preparation of this paper, we made controlled use of LLMs, specifi-
cally ChatGPT, as an auxiliary writing tool. The LLM was employed solely for stylistic refinement,
namely to improve the fluency, grammar, and readability of paragraphs that were originally drafted
by the authors.

B RELATED WORKS

Language Model Post-training. Supervised Fine-Tuning (SFT) has emerged as the dominant
paradigm for post-training, adapting pretrained models to tasks or domains by directly fitting la-
beled data (Zhang et al.| 2023} |Chung et al., 2024). The availability of high-quality instruction
datasets (Mishra et al.|[2022}; |Zhou et al., [2023} Taori et al., 2023} [Lightman et al.,|2023)) has further
boosted SFT’s effectiveness. Nevertheless, abundament studies highlight that SFT alone often over-
fits, generalizes poorly, and yields sub-optimal models (Howard & Ruder;, 2018};|Dodge et al., 2020;
Ouyang et al [2022). To address these limitations while retaining SFT’s efficiency, the prevailing
recipe is to combine SFT with RL, forming the de facto post-training paradigm (Bai et al., |2022;
Achiam et al.| 2023} [Kirk et al.; |Chu et al., 2025} |Liu et al., 2025)). Yet, existing SFT post-training
consistently minimizes the negative log-likelihood objective, — log(p), whose suitability has rarely
been questioned. In this work, we show that it is not universally optimal and argue for revisiting
objectives that better exploit pretrained priors in SFT.

Improving SFT (from an RL perspective). Motivated by the success of reinforcement learning in
reasoning tasks, a growing body of work seeks to reinterpret and improve SFT through an RL lens.
Wang et al.| (2025) cast both SFT and DPO as instances of implicit reward learning, showing that
smaller learning rates and alternative divergence-based objectives can enhance performance. (Qin &
Springenberg (2025) integrates importance sampling into SFT, while [Zhu et al.| (2025) introduces a
PPO-style clipped surrogate objective to constrain policy drift. Most closely related to our work, [Wu
et al.| (2025) proposes reweighting gradient coefficients uniformly, essentially equivalent to our —p
objective, for which we provide a deeper characterization and analysis. Overall, these approaches
can be regarded as special cases of our proposed “prior-leaning” objectives, implemented through
RL techniques to downweight low-probability tokens. In contrast, we show that the same effect
can be achieved far more simply by applying a threshold. Moreover, these RL-inspired methods
are only validated in a single domain, whereas we demonstrate the potential limitations of prior-
leaning objectives in the model-weak end. Other than RL-inspired approaches, |[Zhang et al.| (2025)
further explore data selection by favoring high-probability instances, a weaker form of our token-
wise thresholding objective.

Classical views on SFT learning objectives. In the conventional view of classification, the nNLL
has long been regarded as the optimal training objective: it is the maximum likelihood estima-
tor (statistical consistency) (Cox 1958} |Casella & Berger, 2024)), equivalent to minimizing cross-
entropy/KL-divergence (information-theoretic) (Cover, |1999)), the unique strictly proper local scor-
ing rule ensuring calibrated probabilities (decision-theoretic) (Savagel |1971} |Gneiting & Raftery,
2007), and a convex surrogate to 0-1 loss guaranteeing Bayes consistency and tractable optimiza-
tion (learning-theoretic) (Bartlett et al., 2006} [Zhang|, [2004)). These arguments, however, assume
training from scratch on simple classification tasks, whereas SFT in language model post-training
starts from powerful pretrained models with long chain-of-thought supervision where only final an-
swers are evaluated and intermediate tokens may be noisy. Under these conditions, the premises for
— log(p) might no longer hold, and in this work, we provide the first systematic characterization of
such settings.

C DETAILED EXPERIMENTAL SETUP

We now provide details of our experimental setup, including the rationale for the choice of datasets
across the continuum, the corresponding training and evaluation benchmarks, and specific training
protocols. An overview is summarized in Tab. [3]
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Table 5: General experimental setup across different regions of the model-capability continuum.

Continuum Domain Signals Training Data Evaluation Data Objectives to Compare
MS math-reasoning sparse  NuminaMath CoT  Math500, Minerva Math, Olympiad Bench, AIME24, AMC23  -p, -log(p), threshold(-log(p))
MI dical-reasoni o 23k MedMC, MedQA, PubMed, MMLU-P, GPQA, Jog(p)

medical-reasoning - sparse m2- Lancet, MedB(4), MedB(5), MedX, NEIM P -loglp
MW text games dense synthetic synthetic -p, -log(p)

C.1 CONTINUUM SELECTION

Table 6: Continuum selection based on mean predicted probability (Eq.[3). In the MS end, base
models already achieve high likelihood on the training set before fine-tuning; in the MI region,
predictions are around 0.5; in the MW end, predictions are near zero.

Model Strong (Math)

Mean Predicted Probability 0.80 0.76 0.80 0.81
Model Name LLaMA-3.1-8B  DeepSeekMath-7B  Qwen2.5-Math-1.5B  Qwen2.5-Math-7B
Model Intermediate (Med)

Mean Predicted Probability 0.50 0.53 0.56 0.59
Model Name LLaMA-3.2-3B LLaMA-3.1-8B Qwen2.5-1.5B Qwen2.5-Math-7B
Model Weak (Puzzles)

Mean Predicted Probability 0.01 0.01 0.01 0.07
Model Name LLaMA-3.2-3B LLaMA-3.1-8B Qwen2.5-1.5B Qwen2.5-7B

We assign math tasks to the MS end, medical tasks to the MI region, and figfont puzzles to the
MW end. For the MS end, we use LLaMA-3.1-8B, DeepSeekMath-7B, Qwen2.5-Math-1.5B, and
Qwen2.5-Math-7B. For the MI region, we use LLaMA-3.2-3B, LLaMA-3.1-8B, Qwen2.5-1.5B, and
Qwen2.5-Math-7B. For the MW end, we use LLaMA-3.2-3B, LLaMA-3.1-8B, Qwen2.5-1.5B, and
Qwen2.5-7B. We rely on base models in all cases.

Our rationale for this selection is twofold.

First, evidence from pretraining corpora. Fig.|l|illustrates that some domains are strongly repre-
sented in pretraining while others are not. For example, open-sourced documentation of LLaMA-3
reports that ~25% of pretraining tokens are math-related (Grattafiori et al.} 2024)), indicating strong
priors for math reasoning. Similarly, DeepSeekMath and Qwen2.5-Math were explicitly pretrained
on math corpora. By contrast, medical corpora are only partially present in pretraining, yielding
moderate priors, and figfont puzzles are completely absent, making them a natural MW task.

Second, quantitative evidence from model predictions. Tab.[6|shows mean predicted probabilities
on the training set, which we use as a proxy for prior strength given that base LLMs are generally
well-calibrated and their predictions more faithfully reflect inherent model capability (Zhu et al.,
2023} Xie et al., |2024) . In the MS end, models already achieve very high likelihoods (around
0.8) before fine-tuning. In the MW end, predictions are close to zero, reflecting a lack of relevant
prior knowledge. In between, predictions cluster around 0.5, reflecting an intermediate level of task
familiarity. Together, these observations justify our continuum classification and ground it in both
qualitative and quantitative evidence.

C.2 TRAINING AND EVALUATION DETAILS

General framework. All SFT experiments are conducted using verl (Sheng et al.|[2024). We fix
the optimizer to AdamW, with a base learning rate of 5 x 10~° for all models except LLaMA-3.1-
8B, where we use 2 x 107°. We employ cosine decay scheduling with a warm-up ratio of 0.1, and
train for a single epoch. All training runs are performed on 2 H200 GPUs with a single node.

Model-Strong (Math). Our setup for mathematical reasoning largely follows |Wu et al. (2025).
We train on NuminaMath-CoT (LI et al., 2024), which contains 859k chain-of-thought problems
collected from multiple sources. For efficiency, we sample a 67k subset, which we find to achieve
equivalent performance to larger subsets (100k+ or more). We set the maximum training length to
3072 tokens and use a micro-batch size of 4. Evaluation covers five representative math benchmarks:
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Math500 (Hendrycks et al., [2021), Minerva Math (Lewkowycz et al.| [2022), Olympiad Bench (Al
Mathematical Olympiad Prizel 2024), AIME24 (Mathematical Association of America, [2024), and
AMC23 (Mathematical Association of America, 2023). Each evaluation uses temperature 1.0, with
results reported as the average of 16 generations per example and a maximum generation length of
4096 tokens.

Model-Intermediate (Medical). We train on m23k (Huang et al.| [2025), a 23k-instance medical
reasoning dataset. We experimented with two variants: (i) including long-form reasoning traces
(maximum length 8192, micro-batch size 1) and (ii) using only standard chain-of-thought (max-
imum length 1024, micro-batch size 16). Since performance was similar, we report results from
the standard CoT variant. Evaluation strictly follows the protocol in Huang et al.| (2025)), using
temperature 0 and random seed 42. Benchmarks include MedMCQA (Pal et al., 2022), MedQA-
USMLE (Jin et al.|, 2021)), PubMedQA (Jin et al.l 2019), MMLU-Pro (Wang et al., 2024), GPQA
(Medical) (Rein et al.,2024)), Lancet & NEJM (Huang et al., [2025]), MedBullets (Chen et al., [2025)),
and MedXpertQA (Zuo et al., |2025). A detailed overview of these datasets is provided in |Huang
et al.|(2025)).

Model-Weak (Figfont). We generate synthetic figfont puzzles from ReasoningGym (Stojanovski
et all 2025). We generate synthetic figfont puzzle data from ReasoningGym (Stojanovski et al.,
2025)), creating 40k instances for training and 20k for evaluation. An example puzzle is shown in
Fig.[l] Training mirrors the MI setup, with a maximum sequence length of 800 and a micro-batch
size of 16. Inference uses temperature 0 and random seed 42. We evaluate with two metrics: (i)
exact match and (ii) Jaro~Winkler similarity, a string-based similarity score that is more tolerant to
small variations and complements the strictness of exact match.

D ADDITIONAL EXPERIMENT RESULTS

D.1 JUSTIFICATION FOR ASSUMPTIONS

Table 7: The percentage of tokens with initial predicted probability larger than 0.55 prior to training
in the MS end. We find that the pretrained base models have high predicted probabilities of the
training set prior to training. This justifies Assump. [1]

LLaMA-3.1-8B DeepSeekMath-7B  Qwen2.5-Math-1.5B  Qwen2.5-Math-7B

Percentage of tokens with initial

predicted probability larger than 0.55 72.8% 76.7% 80.6% 81.2%

E LIMITATION

While our study provides a comprehensive characterization of probability-based objectives across
the model-capability continuum, several limitations remain. First, we did not extend our experiments
to excessively large models (e.g., 30B—70B parameters) due to computational resource constraints.
Second, our framework for assessing initial model capability, via mean predicted probability and
domain priors, serves as a first attempt, and future work may design more principled or fine-grained
measures of capability, specifically tailored for SFT. Third, although our analysis spans the model-
strong and model-weak ends extensively, our exploration of the intermediate region remains rel-
atively limited. While our work serves as the pioneering study and we identify its neutrality in
objective comparisons, a more careful study of this middle ground could yield deeper insights and
potentially inspire adaptive or hybrid strategies that bridge the two extremes.

F PROOFS FOR SEC.

Lemma 2 (Gradient Shape). Let [ : [0,1] — R be differentiable and nonincreasing. Consider
the objective in Eq. E] whose step-t contribution depends on the correct-class probability p; , =
softmax(z;), only through f(p;.,). Then the gradient of L; with respect to the logits at step t
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satisfies
oL
3th, = 5¢(Pry) (Oiy = Pei), where  s;(p)

(1>

—f'(pp >0.

In particular, for the correct class i1 =y,
0Ly

Ozty

=s7(Pey) M —pry) = Wilpey),  Wilp) £ —f'(p)p(1—p).

Proof. Write p, = softmax(z;), so p; = exp(zi,:)/ > i exp(z,;). The softmax Jacobian gives,
for all 7,

apt,
82’757?; = pt,y (52,@/ - pt,i)~

Since the step-t loss is f(py,,), the chain rule yields

oL 0
L f/(pt,y) Py _ f/(ptyy)pt,y (0iy — Pri) = (_f/(pt,y)pt,y) (i — Pri)-
0zt 0z

t,1
Define sf(p) = —f’(p)p. Because f is nonincreasing, f’'(p) < 0 on (0,1), hence s¢(p) > 0.
The displayed formula then follows, and for i = y we obtain gif = s(pry)(1 — pry)
' (Pry) Pry(1 = pry) = Wi (py)- H

Proposition 2 (Convex versus Concave Objectives). Let f € C?[0,1] with f'(p) < 0 forall p €
(0,1), and define Wy (p) = —f'(p) p(1 — p). If f is concave (" < 0), then any maximizer of Wy
lies in [5,1]. If f is convex (" > 0), then any maximizer of W lies in [0, £].

Proof. Set s(p) = —f'(p). Then s(p) > 0 on (0, 1) by the hypothesis f'(p) < 0, and

Wi (p) = s(p) p(1 = p).
Differentiate:
Wi(p) = s'(p) p(1 = p) + s(p) (1 — 2p).
Concave case. If f” < 0 on [0,1], then s'(p) = —f"'(p) = 0. For p € (0, 3) we have 1 — 2p > 0,
hence both terms in W} (p) are nonnegative; since s(p) > 0, in fact Wi(p) > 0 on (0, 1). Therefore
W is strictly increasing on (0, 1), so no maximizer can lie in (0, §); any global maximizer must
belong to [$,1].

Convex case. If f"” > 0 on [0,1], then s'(p) = —f”(p) < 0. Forp € (3,1) we have 1 — 2p < 0;
with s(p) > 0 the two terms in W (p) are nonpositive, hence W} (p) < 0 on ( 3,1). Thus Wy is
strictly decreasing on (
to [0, 3].

1,1), so no maximizer can lie in (3, 1); any global maximizer must belong
Combining the two cases establishes the claim. O

G MAIN THEORETICAL RESULTS

G.1 SETUP AND NOTATIONS

Data model. Let the input prompt = € X. The frue conditional distribution over tokens y € [V]
is 7(y | z). We let D denote the (marginal) distribution over pairs (z,7(- | z)). We use T'(- | z) to
denote the empirical training distribution over contexts z.

Model and objectives. Let go(- | z) = softmax(z¢(z)) be the next-token distribution of an
autoregressive LM with parameters 6, and write go(- | ) = gy, (- | =) for the base model. We note
that we use different notations ¢ (instead of p) to denote the model predictions in the appendix.

The population risk is

R(0) = E(uy*)~D.grao(-|2) {*l{y* = yq}]

18
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During SFT we minimize the empirical objective
L;(0) = Eg~r[f(a(@]| )]
where f : [0,1] — R is differentiable and decreasing.

Notation. Let zg(z) € RY denote the pre-softmax logits and gg(- | ) = softmax(zg(z)) the
next-token distribution. Fix x and suppress its dependence when clear. Define the logit feature map

®(z,y) := Vozp, (,y) € RY, ®(z) = [®(z,1),...,0(x, V)] € RV,
and its Gram matrix over logits
G(2) = 8(z) () eRY, Gy () = (B(x,y), (,y)).

Write ¢ := qg, (- | ), 7 :=7(- | ), and T := T(- | z). For a differentiable, increasing f; : [0,1] —
R, set

v
(Bi)y =Ty ay fi(ay), Bi€ RY, Sy, = (Bi,1) = ZTy ay fi(ay)-
y=1

Define the discrepancy vectors

Vy 1= (TTQ) q—r0ogq, v = B;—=Sy, q, Bi2 = B1—PB2, S12 := Sy, —5),, vi2 1= vi—v2 = B12—512¢q.
Finally, let g; :== VL, (600), k; == (VR(6y), g;) and
1
Hi = V2R(00 — tngi) dt
0

for a stepsize n > 0 (used later in second-order expansions).

G.2 ASSUMPTIONS

G.2.1 MAIN ASSUMPTIONS

Assumption 3 (Model-Capability Assumption). We make the following assumptions about data
capability in the Model-Strong and Model-Weak ends:

e Model-Weak. In the MW end, we assume that model predictions are uniform over the vocabu-
lary V.

* Model-Strong. In the MS end, we assume that for any given x, Pry« 5 [(g,~ + q5) > 0.55] > K
with K > 0.70.

Assumption 4 (Trainable Base Model). We assume that the base model is still not perfect: for any
given x, Pr{(0.55 < gy + q5) < 0.95] > aPry« 5 [(gy~ + ¢5) < 0.50] in the MS end.

These assumptions are mentioned in the main paper with justifications. The coefficient o could
depend on the task itself, and this value > 1 in practice. Assumptionfd]is a more general re-statement
of Assumption 2]

G.2.2 ADDITIONAL SIMPLIFICATION ASSUMPTIONS
Assumption 5 (Model and Data Simplifications). We assume that the feature matrix ® is precondi-

tioned such that all of its singular values are equal to one, and that both the training distribution T
and the true distribution r are one-hot.

This assumption is made purely for analytical convenience: it removes irrelevant conditioning fac-
tors in the proof and allows us to focus on the essential differences between objectives.
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G.3 MAIN PROOFS

Lemma 3 (Gradient identities). We have the following identities:
VR(00) = Eo[®(x) v.(2)], VL (00) = Eo[0(x) vs(x)],
Proof. Population risk. With R(0) = E, [ — r(x) " qe(- | z)], for fixed z we have IR /9q = —r.
By the chain rule through softmax,
T —J) (- =@a—qor
so VoR(0y) = @(z) %—5 = ®(x) v, (x). Taking expectation over x yields the first identity.
General f;-objective.  For Ly, (0) = E, [Ey Ty(z) fi(ay)], 0Ls,/0q = m; with m; =

(Tyf(qy))y- Again, 0Ly, /0z = J(q) m; = v;, whence VoL, (0g) = ®(z)v;(x) and the claim
follows after taking expectation over z. O

Lemma 4 (Functional derivative). Define
1
J(f)) = E, [v*chTcI)ui — gvinbTHiq)vl}, H; = / VPR (00 — tng;) dt,
0
with g; := VLy,(60) = Ex[Pvil, va := q =7, vi := i = S0, (Bi)y = Tyayfi(ay) Sy =
Zy Tyqy fi(qy). For a perturbation h of f; (so that f; — f; + €h), the first variation is
2

1
8J(fizh) = Ex[(UI‘I’T‘I’ - ﬂ’UiT‘I’THi@) sv;| + % /0 t (V*R(00—tng:) [0g:], 9: ®g;) dt,

where §g; = E[® dv;] and
ovi = 38;— (6S1,)a = (Diag(T©q) — (T © )" ) W(a).

Proof. Write A := ®(x) for brevity. Then
J=E, [UIATA’Ui — gU:ATHiAvi] .

Vary f; — f; + €h. Since v, is fixed, 6(v;] AT Av;) = v] AT Adv;. For the second term, use the
product rule:
5(vi ATH;Av)) =20 ATH;Adv; + v AT(6H;)Av;.
Hence
5] =E, [vj AT Adv; — o] ATH,Adv; — g UTAT(aHi)AUi] .

3

Now H; = fol V2R (0 — tng;) dt. Since SVZR(0) = V>R(0)| -] and the evaluation point depends
on g;, the chain rule yields

1
0H; = / (—tn) V3’R(90 — tngq;) [0g:]dt, with dg; = E.[Adv].
0
Therefore

2 1
—g viTAT((SHi)Avi = %/ t <V3R(90 — tngi) [0gi], Av; ® Avi> dt.
0

Taking E,. and using trilinearity in the last two slots, E.. (T [0g;], Av; ® Av;) = (T [0g:], (EzAv;) ®
(E.Av;)) = (T[8g:], g: ® gi), with T := V3R(-), gives the stated third-order term.

Finally, the variation of v; with respect to f; via h is
6B =ToqoN (¢), 88y = (Tog, h'(q)),  dvi =3B;—(8Ss,)q = (Diag(TGQ)*q (TQQ)T>h'(Q)-

Collecting terms yields the claimed formula. [
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Corollary 1. Define the gradient flow of the following term:

R(00) — R(6)")

509 — 1
R(6;")] =g = lim ; (©)
Then we have @)
R(0:")|,—g = Ex [v. @ Pvy] (7)

Proof. By Taylor Expansion, we have

R(60)—R(61") = n(VR(6), VL, (eo>>—”2fwfi<eof ( / V2R (0 — tnV Ly, (09)) dt) YLy, (0)

®)
Then this corollary follows immediately from Lem. O
Lemma 5 (Useful Inequalities). Let g € AV~ be a probability vector and fix an index j.
1. Forall q,
¢ llej—all* < 2¢(1-q)?, ©)

and the bound is tight (equality holds) when all mass ), £l =1—qjis concentrated on
a single coordinate.

2. For fixed distinct i # j, consider

Flo) = qig;(~a: —a; + ).

Then
1133 — 59
F = ————— < 0.00546
Jhax, Fla) 68 < ;
and the maximizer is attained by a vector with
9—+33
g = qj = o1 all remaining mass 1 — 2q; placed on one coordinate.

3. Ifwe know —q; — q; + lqll®> < 0, then
—qi — q; + llal” < 1+2(q: +45)° = 3(q: + 45)
Proof. (1) Since q is a probability vector with nonnegative coordinates,
lej—al? = (1)’ + X a < (g7 + (Xa) = 20-g)"
k#j k#j

because -5 gy < (D4 qx)” for nonnegative terms. Multiplying by ¢7 yields Eq. E} Equal-
ity holds when the entire mass 1 — ¢; lies on a single coordinate distinct from j, in which case
Zk;ﬁj QI% = (Zk;ﬁj ar)® = (1 - %’)2-

(2)Seta =g, b=gj,and s =1 —a —b > 0. Write [|q||* = a® +b* +t with t := 3", , . g;. For
fixed a, b, the objective
F(q) =ab(—a—b+a®+b* +1)

is increasing in t whenever ab > 0. Since t < s? with equality iff all the mass s is concentrated on
a single coordinate, any maximizer (with ab > 0) must satisfy ¢ = s> = (1 — a — b)%. Thus we may
reduce to the two-variable problem

G(a,b) = ab(—afb+a2+b2+(lfa—b)2), a>0,06>0,a+b<1.

It is convenient to reparametrize by

u=a+be[0,1], z = (a—b)? € [0,u?].
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Then ) ,
ab=u4_z, a2+b2="T+Z, (1—a—b)?=(1-u?
and a short calculation gives
1 1
G(u,z) = 1 (u? — z)(l —3u+ 3u? + g) =1 (u? = 2) (K (u) + 2),

— 3
where K (u) =1 — 3u + 3u?.

For each fixed u, G(u, z) is a concave quadratic in z (its z2-coefficient is —%). Hence the z-
maximizer is

2*(u) = min{ max{0, u® — 2K (u)}, u2} = min{ max{0, —a(u)}, uz},

where a(u) == u? — 3u + 1. Equivalently,

0, a(u) >0 (e u e [0,355]),
2(u) = —a(u), ao(u) <0andu < lieue [372\/57 1),
u?, u> 3.

Thus:

« Ifu € [0, 3’2‘/5}, then z*(u) = 0, so the maximizer over z occurs at @ = b = % (the

symmetric point), and

2 2

G(u,0) = UZ K(u) = “I(l —3u+ ;u2).

o Ifue [35/5, 1], then 2*(u) = —(u), and a simplification yields
(u—1)2(2u —1)2

max G(u,z) = G(u, 2" (uv)) =

8
Since L [(u — 1)%(2u — 1)2/8] = +(u — 1)(2u — 1)(4u — 3) < 0 on this interval, the
maximum over u here is attained at the left endpoint u = %

* If u € [§,1], then 2*(u) = u?, which gives ab = 0 and hence G = 0.

Therefore the global maximizer must lie in the symmetric regime z = 0, i.e., a = b = x, with

u =2z € [0, 25%2]. In this case

G(z) = x2(6x2 — 6z + 1), x € [O, %}

Differentiating,
G'(z) = 2x (1222 — 9z + 1),
so the critical point in (0, 1) satisfies 1222 — 9z + 1 =0, i.e.

9—-+v33
N ' TN
24
Since G(0) = 0, G(%) = —% < 0, and G achieves a positive value at x,, the global maximum is
attained at .. Substituting and simplifying,
11v/33 — 59
qen&z%/x_l F(q) = G(zy) = g < 0.00546.

This value is realized by

qi = 45 = Tx, QZ:].—2.’E*fOI'SOH1€£¢{Z.,j}, quO(k¢{’L,],£}),

i.e., the remaining mass is concentrated on a single coordinate, as established at the start.
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(3) We have that

—gi—qj+d* < —a -+ E+E+ 1 -q—q)?
=1+2¢7 +2¢; + 29iq; — 3q;
<142(qi+ ) = 3(qi + q5)

O

Theorem 2 (Characterization via Gradient Flow, Restatement of Thm.[T). Under Assumptions3}
suppose that f5— f1(§) is negative for all § and that q5 (f5 — f1) (qz) > —c for some small positive
constant ¢ > 0 when q(g) € [0,0.55] and q3 (f5 — f1) (q3) < —d for some small positive constant
d when q(g) € [0.55,0.95] and that ¢ < 10d, with an appropriate choice of label noise ( e.g., when
y* # g) rate &, then we have the following conclusions:

. R

0= R 9(2 | o in Model Strong End.

| t= t=

. R 0 < R (2) ft 0 in Model Weak End.

),

Proof. By Assumption. [5] we first expand the following term:

RO,y = RO _y = Ba [o] (01 = v2)] (10)
—E, [((r—rq)q—r@q)—r(vu)} (11)
Note that
V12 = Z (Tyay (fi = f3) (ay)] ey Z (Tyay) (f1 = f2) (Qy)] q (12)
Yy Yy

=qy (f1 — f2) (q5) eg — a5 (f1 — f2) (a3) q (Only consider 7" one-hot)
=qy (fi — f2) (e —q) (13)

We can then proceeed as follows:
RO ,—g = RO o = Bz [a (f3 = £1) (a5) (r @ 4 = (r0) a ¢5 — q)] (14)
=E. (g5 (f5 — f1) (¢5) (@y» — @y~ €5 — q)]  (ris also one-hot)
= Ex [g54y ( ) (g5) (ey~ —a,¢5 — q)] (15)
=E, [q D (@) lley —all*: 5= v'] (16)
+Es |a50, (5= F) (a9) (~ap — g+ llal®) ;5 #97] D)

Then we first examine the weak model end, now the model is assumed to output uniform distribution
over V. Denote the label noise rate to be £. Then we have that

RO g = ROy = (5= 1) () =€) 1s)
- ()¢ 19)
~3-1 () s -va-o-e) <0 o
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Aslongas & < Y2 and (f5 — f{) (&) < 0. Then we have the desired condition.

Then we examine strong model end, applying Lemma X, we have

E. [agay (o= 11) (ag) ey —all* 5= y*] 2200 = E)E (5~ 1) (ay) @3- (1 — a)?
2D

and define R = ¢ (f5 — f1) (¢y) and Q = gqy- (—qy* — g5+ ||q||2),then first we show the other
term is positive.

S [0 (5= 1) 09) (~a — a5+ lal) 5% 7] 22)
=E, [QR] (23)
=E;[QR: Q > 0|+ E, [QR: Q < 0] (24)
> —cE, [Q: Q> 0] +E; [QR: Q < 0] (25)
> —cPr[Q > 0] % 0.00546 + E,. [QR: Q < 0] (26)
>0 27

For the last inequality, we can proceed as follows:

E, [QR: Q < 0] — ¢Pr[Q > 0] * 0.00546

>dx Pr [0.95 > g3 « >0.55 i
= 0-95 2 4y + 4, = 0-55] x 0.952 g5 +aye 20.55

=d= Pr [0.95 > g5 + q,+ > 0.55] % 0.045 — ¢ Pr [g5 + gy+ < 0.50] * 0.00546
9y* ’ ’ ’

|Q] — ¢Pr gz + gy~ < 0.50] % 0.00546

>0

where the first inequality comes from the sufficient condition for guaranteeing @ > 0 is
Prj - [q5 + qy= > 0.50], and by (3) in Lem.[5] we have that given Q < 0,

i < - 1+ 2(qg )2 = 3(qz <) <0.045
O.952q;§l—lqri*20.55|Q‘ - 0.952%&%?@0.55 +2(ay + ay) (g5 + ) <

Also by Assumpion. [[and [} we have Pry - [0.95 > g5 + g+ > 0.55] > aPr[gg + q,- < 0.50].
Therefore, we have finished the claim.

Therefore, with an appropriate scale of &, specifically with & > % where

B = E [qﬂqy*(fé—f{)(qg) (—qy*—qg+|\QIl2):ﬂ#y*} > 0 and A =

E, {QﬂQy* (f = 1) (gg) lley —qll” - 7 = y*} < 0, then we could achieve the desired result. [
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