
Equation-free mechanistic ecosystem forecasting using
empirical dynamic modeling
Hao Yea,1, Richard J. Beamishb, Sarah M. Glaserc, Sue C. H. Grantd, Chih-hao Hsiehe, Laura J. Richardsb, Jon T. Schnuteb,
and George Sugiharaa,1

aScripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093; bPacific Biological Station, Fisheries and Oceans Canada,
Nanaimo, BC V9T 6N7, Canada; cJoseph S. Korbel School of International Studies, University of Denver, Denver, CO 80210; dFisheries and Oceans Canada,
Delta, BC V3M 6A2, Canada; and eInstitute of Oceanography and Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei,
Taiwan 10617

Edited by Stephen R. Carpenter, University of Wisconsin–Madison, Madison, WI, and approved January 28, 2015 (received for review September 17, 2014)

It is well known that current equilibrium-based models fall short as
predictive descriptions of natural ecosystems, and particularly of
fisheries systems that exhibit nonlinear dynamics. For example,
model parameters assumed to be fixed constants may actually vary in
time, models may fit well to existing data but lack out-of-sample
predictive skill, and key driving variables may be misidentified due to
transient (mirage) correlations that are common in nonlinear systems.
With these frailties, it is somewhat surprising that static equilibrium
models continue to be widely used. Here, we examine empirical
dynamic modeling (EDM) as an alternative to imposed model
equations and that accommodates both nonequilibrium dynamics
and nonlinearity. Using time series from nine stocks of sockeye
salmon (Oncorhynchus nerka) from the Fraser River system in British
Columbia, Canada, we perform, for the the first time to our knowl-
edge, real-data comparison of contemporary fisheries models with
equivalent EDM formulations that explicitly use spawning stock
and environmental variables to forecast recruitment. We find that
EDMmodels produce more accurate and precise forecasts, and unlike
extensions of the classic Ricker spawner–recruit equation, they show
significant improvements when environmental factors are included.
Our analysis demonstrates the strategic utility of EDM for incorporat-
ing environmental influences into fisheries forecasts and, more gen-
erally, for providing insight into how environmental factors can
operate in forecast models, thus paving the way for equation-free
mechanistic forecasting to be applied in management contexts.

ecosystem forecasting | fisheries ecology | physical–biological interactions |
empirical dynamic modeling | nonlinear dynamics

One of the fundamental challenges of environmental science
is to understand and predict the behavior of complex nat-

ural ecosystems. This task can be especially difficult when mul-
tiple drivers (e.g., species interactions, environmental influences)
interact in a nonlinear state-dependent way to produce dynamics
that appear to be erratic and nonstationary (1). In the standard
parametric approach, which implicitly assumes that the selected
model and its equations are essentially correct, the equations
(really just mechanistic hypotheses) can lack the flexibility to de-
scribe the nonlinear dynamics that occur in nature. Consequently,
these parametric models tend to perform poorly as descriptions of
reality, with little explanatory or predictive power (2, 3), and
limited usefulness for prediction and management.

Parametric Models as Hypotheses
A common problem when applying the parametric approach to
nonlinear systems is that of ephemeral fitting. That is, although
population models may assume that demographic parameters
such as growth rate or carrying capacity are fixed constants, these
quantities are often observed to vary in time or in relation to other
variables (e.g., resource availability, changing climate regimes)
when tested on actual data (4). This principle is illustrated in Fig.
1A, where the Ricker spawner–recruit relationship is fit to the
early (1948–1976) and late (1977–2005) halves of the time series

from the Seymour stock. Very different relationships emerge in
these two time periods, conflicting with the assumption of a fixed
equilibrium and constant parameter values. Indeed, Beamish et al.
(5) found that the Ricker model fit better when constrained by
climate regimes, suggesting that the spawner–recruit relationship
does vary in time, a fact consistent with the general notion of
nonlinear state dependence (6, 7).
At its core, nonlinear dynamics [which are known to be

ubiquitous in marine species (8, 9)] occur when variables have in-
terdependent effects; this can be problematic when applying a re-
ductionist approach to understand nonlinear systems. For example,
in laboratory experiments, guppies (Poecilia reticulatus) preferen-
tially eat Drosophila or tubificid worms depending on which prey
is more abundant (10). Thus, the strength of predation on, say,
Drosophila, will change depending on the abundance of tubificid
worms. This prey-switching behavior typifies nonlinear state de-
pendence, whereby different components cannot be treated in-
dependently, as would be the case in a linear system or even a
nonlinear system approximated at equilibrium. Consequently, ap-
plying a model that assumes separability of effects [e.g., vector
autoregression (11)] to a system that is actually nonlinear can give
the appearance of nonstationarity or stochasticity even when the
underlying mechanisms are unchanged and deterministic.
Nonlinearity is also known to affect the correct identification of

causal drivers—a key prerequisite for understanding and predicting
system behavior. In nonlinear systems, because interacting variables
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can exhibit transient (mirage) correlations that change in magnitude
or sign (6, 7), the use of correlation to identify causal environmental
variables can be misleading, producing both false positives (i.e.,
correlation does not imply causation) and false negatives (i.e., lack
of correlation does not imply a lack of causation). Given the
prevalence of nonlinear interactions in ecology, mirage correlations
can be misleading. Indeed, a metaanalysis examining the robustness
of correlations between recruitment and the environment (12)
found that only 28 out of 74 initially significant correlations were
upheld when subsequent data were included.
Even when causal variables are known, their inclusion into

improperly formulated models can produce conflicting results.
For example, with sockeye salmon in the Fraser River, although
anomalous oceanic conditions experienced by juveniles are thought
to be responsible for the low abundance of returning adults in 2009
(13–15), extensions of the standard Ricker model that explicitly
include environmental factors surprisingly show no significant im-
provements in the actual forecasts (16–18). A simple explanation
for this apparent contradiction is that the extended Ricker model
does not accurately portray the relevant interaction between the
oceanic environment and sockeye salmon. Indeed, the model na-
ively assumes that the environment acts on recruitment dynamics
independently with a constant multiplicative effect (e.g., a 1 °C
decrease in temperature always doubles recruitment regardless of
other factors important to the state of the system). Although tem-
perature, in all likelihood, does affect recruitment, it probably does
not follow this arbitrary form. We demonstrate this by fitting the
model to Pine Island sea surface temperature (SST) and Seymour
spawner–recruit data (Fig. 1B), finding that the model predicts
unrealistically high recruitment (much higher than the historically
observed maximum) for hypothetical (but plausible) conditions of
high spawner abundance and low temperature. Thus, although the
equation may appear reasonable as a hypothesis, it apparently does
not incorporate the environment realistically.

Empirical Dynamic Modeling
In contrast to fitting an assumed set of equations, empirical
dynamic modeling (EDM) instead relies on time series data to
reveal the dynamic relationships among variables as they occur
(1, 6, 19–21). By extracting these relationships empirically, EDM
accommodates potentially complex and changing interactions

that cannot be described in a simple set of equations. Thus, pre-
diction accuracy with EDM is constrained by the quantity and
quality of data rather than by the hypotheses represented in a set
of equations [which may be subject to process error due to false
or incomplete specification (22)].
Fundamental to EDM is the concept of a time series as an

observation on a dynamic system. Broadly speaking, a dynamic
system can be viewed as a set of “states” (d-dimensional vectors
where each coordinate is a system variable) and deterministic
rules (governing dynamics) for how the states evolve over time.
Collectively, the set of states and their trajectories forms an
“attractor manifold,” and projecting the motion on this manifold
to a coordinate axis produces a time series of the corresponding
variable (SI Appendix, Fig. S1A). For example, in a simple predator–
prey system where the system evolves as a function of the two
abundances, the system state could be represented as the ordered
pair of predator and prey abundances. This system state can be
projected onto the prey coordinate axis to produce a time series of
prey abundance, although many other observation functions are
also possible (e.g., predator abundance, average number of prey
for each predator).
In theory, with time series for all of the system variables, it

would be possible to reconstruct the original attractor manifold
by plotting each time series as a separate coordinate. In practice,
however, we typically do not have these data or know the identity
of all relevant variables. Fortunately, a fundamental mathemat-
ical result proves that information about the entire system is con-
tained in any one variable (23, 24), meaning that a shadow version
of the original attractor can be constructed from just a single time
series. This is accomplished by substituting lags of that time series
for the unknown or unobserved variables (SI Appendix, Fig. S1B).
These essential mechanics of EDM are detailed in ref. 6 and crisply
summarized in a short animation (Movie S1).
Although a single time series is usually sufficient to recon-

struct a system’s dynamics, there are exceptions (e.g., it is not a
closed system). In the case of sockeye salmon, abundance alone
may not skillfully predict future returns because they are influ-
enced by external environmental factors. Here, the environment
may be thought to act as stochastic external forcing, necessitating
its inclusion as an additional coordinate in a multivariate re-
construction (1, 7, 24). We demonstrate this by using spawners and
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Fig. 1. Model output for the Ricker, extended Ricker, and multivariate EDM models. (A) Ricker curves for the Seymour stock of Fraser River sockeye salmon
are quite different for the early (blue; 1948–1976 brood years) vs. later (red; 1977–2005) time segments (triangles are observed data). Even fit to the whole
time series (gray line), large errors remain. (B and C) Model output (surfaces; points are observed data) from the extended Ricker model (B) and EDM (C) using
spawner abundance and Pine Island April SST to forecast recruitment of Seymour sockeye salmon. Although the Ricker model varies smoothly, it can forecast
recruitment to be many times higher than the historical maximum. In the EDM model, however, the relationship between temperature and spawners is
defined empirically by the data and, thus, more realistically depicted.
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SST to predict recruitment (Fig. 1C). Unlike a parametric model
in which a hypothesized interaction must be specified in advance
(the extended Ricker model; Fig. 1B), the empirical surface in Fig.
1C makes no assumptions about the relationship between varia-
bles, but instead captures the interaction between density de-
pendence and environmental conditions as revealed by the data:
ocean temperatures have a stronger effect on recruitment when
spawner abundance is low.

Fraser River Sockeye Salmon
In this work, we perform a real-world test comparing EDM and
the standard parametric paradigm, by forecasting returns for the
nine most historically abundant stocks of sockeye salmon from
the Fraser River system in British Columbia, Canada (Fig. 2), of
significance to Canada’s iconic fisheries. Total returns in this
system are highly variable and can span over an order of magni-
tude: a record low of 1.6 million in 2009 was followed by a re-
cord high of 28.3 million in 2010 (Fig. 3). Although some of this
variability occurs because of cyclic dominance (25, 26), large in-
terannual fluctuations in mortality and productivity (recruits-per-
spawner) are difficult to predict, leading to considerable uncertain-
ties in current parametric forecast models (27). This is suggestive
of nonlinear dynamics in this fishery, and indeed, a Canadian
federal inquiry (13, 14) concluded that recent declines in pro-
ductivity could not be attributed to any single mechanism but were
likely caused by the interaction of multiple stressors (e.g., preda-
tors, food availability, environment). Applying a simple S-map test
(P = 0.002) (SI Appendix, Fig. S2), we confirm the presence of
nonlinear dynamics among returns of Fraser River sockeye salmon.
Thus, we apply EDM methods to unravel the mechanisms by

which the environment may affect sockeye salmon recruitment.
First, we compare the classical Ricker spawner–recruit model
with equivalent EDM spawner–recruit models. With nearly all
adults returning as age 4 or age 5 fish, we can consider the total
returns in a single calendar year to be composed of age 4 and age
5 recruits from different spawning broods. Following ref. 16, we
predict annual returns by first estimating total recruitment for
each spawning brood year. This recruitment is then partitioned
by age, and the age 4 and age 5 estimates from separate brood
years combined appropriately to forecast returns (Materials and
Methods). Note that the time series of spawning abundance and
recruitment already account for the effects of the fishery (this
information is contained within the time series; Materials and

Methods), which enables us to focus on just the natural population
dynamics.
Second, to investigate the causal influence of the oceanic en-

vironment, we consider forecasts produced by the extended
Ricker model and equivalent multivariate EDM formulations. In
both cases, if the inclusion of environmental variables signifi-
cantly improves forecasts (Materials and Methods), those varia-
bles are taken to have a causal influence on salmon recruitment.
Last, to avoid arbitrary fitting and to obtain a robust measure

of forecast skill, we apply a fourfold cross-validation scheme for
each model: the model is fit to three-fourths of the data to predict
the remaining one-fourth out-of-sample, and the procedure is
repeated for each one-fourth segment of the time series.

Results
Comparison of Spawner–Recruit Forecast Models. As a fair com-
parison with the standard Ricker model where spawner abun-
dance is used to predict recruitment, we examine an equivalent
EDM spawner–recruit model, but which actually has fewer fitted
parameters (Materials and Methods). Fig. 4 shows that this simple
EDM model has significantly higher accuracy (ρ, correlation
between observations and predictions) than the Ricker model,
with more accurate forecasts in eight of nine cases and signifi-
cantly lower error overall [mean absolute error (MAE); SI Ap-
pendix, Fig. S3]. Nonetheless, predictions for several stocks
(Birkenhead, Chilko, Stellako, and Weaver) are not very skillful
(ρ < 0.3), suggesting that in these cases, there is no simple
spawner–recruit relationship (parametric or otherwise). Instead,
environmental factors (e.g., SST, food availability) may domi-
nate, and better performance can be obtained by accounting for
these external drivers.
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Fig. 2. Combined returns of Fraser River sockeye salmon. Total returns
(Dataset S1) for Fraser River sockeye salmon combined across stocks (1954
cycle line in black). Although not all stocks exhibit cyclic dominance, and those
that do are not synchronized, cycles are still visible in the aggregated returns.

Chilko

Stellako

Early Stuart
  Late Stuart

Quesnel

Birkenhead

Weaver

Late Shuswap

Seymour

Vancouver Island

Queen Charlotte Strait

Strait of Georgia

Queen Charlotte Sound

Fraser River mouth

Entrance Island Lighthouse

Pine Island Lighthouse

0          50        100

kilometers

Fraser R
iver

Canada
U.S.A.

Fig. 3. Early ocean environment for Fraser River sockeye salmon. Upon
exiting the Fraser River, juvenile sockeye salmon migrate north through the
Strait of Georgia, spending up to a month moving through this ecosystem
(31), before continuing through Queen Charlotte Strait and into Queen
Charlotte Sound. Red labels for the nine stocks studied in this work are lo-
cated at the approximate spawning sites. Blue triangles denote the locations
of the two lighthouses where SST is recorded. Image courtesy of DFO.
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Incorporating Environmental Influences. As in the actual forecast
models (16), we further consider three environmental variables
[the Pacific Decadal Oscillation (PDO), SST, and Fraser River
discharge] observed at different times and locations (12 time
series in total). Each of these factors is believed to have a po-
tential effect on recruitment, although significance has yet to be
demonstrated in practice. For each stock, we compare the
relative performance of the extended Ricker and corresponding
multivariate EDM models that incorporate these environmental
variables (Table 1; Materials and Methods). Fig. 4 shows that mul-
tivariate EDM is consistently and significantly better at forecasting
than the extended Ricker model for all nine stocks, and is true for
both accuracy and precision metrics (SI Appendix, Fig. S3). Here,
the relevant causal influence of these environmental variables is
verified by the fact that multivariate EDM models that include
them perform significantly better than their simple EDM spawner–
recruit counterparts.
By contrast, the extended Ricker models show no significant

improvement over the simple Ricker models in any of the stocks.
The difference between EDM and Ricker is especially visible for
Late Stuart, Quesnel, Stellako, and Weaver, indicating that these
particular environmental factors (currently considered in assess-
ments) can explain much of the variability in these stocks, provided
they are incorporated reasonably (i.e., with the minimal assump-
tions of EDM). For Birkenhead and Chilko, however, multivariate
EDM models performed no better than the simplified stock–
recruit versions, hinting that variables other than these are required
to understand the dynamics of those stocks.

Discussion
Nonlinearity of Fraser River Sockeye Salmon. Similar to many ma-
rine species (8, 9), Fraser River sockeye salmon show strong evi-
dence for nonlinear dynamics (SI Appendix, Fig. S2 and Table S1).

Thus, it should not be surprising that a simple EDM model,
which accommodates nonlinearity, would outperform the as-
sumed spawner–recruit equation of the Ricker model. Further-
more, because sockeye salmon are exposed to different sources
of environmentally driven mortality and because it is likely that
they integrate these effects in a nonlinear fashion, it should not
be surprising that multivariate EDM models that explicitly ac-
commodate relevant environmental factors would show dramati-
cally improved performance. In contrast, the extended Ricker
model cannot resolve the nonlinear effect of the environment and
shows only nonsignificant improvements (that might be expected
from having additional degrees of freedom).

Identifying Environmental Drivers. It is believed that growth during
the early marine stage for Pacific salmon is a critical period that
determines subsequent mortality and recruitment (28, 29). Thus,
it is reasonable to expect that including related environmental
variables into models should improve predictions. However, the
extended Ricker model did not improve when river discharge,
SST, or the PDO (Fig. 4 and SI Appendix, Fig. S3) were included.
Rather than suggesting that these variables have no effect, it is
more likely that the extended Ricker model is incorrectly spec-
ified. This is borne out by the fact that these factors produce
improved forecasts for many stocks when included nonpara-
metrically in EDM (Fig. 4 and SI Appendix, Fig. S3). Thus, our
analysis suggests that the tested variables are indeed informative
about the relevant environmental conditions experienced by ju-
venile sockeye salmon. For example, river discharge and SST
may indicate primary productivity in the Strait of Georgia and
other areas through which juveniles migrate (Fig. 2) (15, 30, 31),
and the associations between large-scale oceanic climate indi-
cators such as the PDO and Pacific salmon productivity are well
known from other studies (32, 33). Although these variables do
not reflect direct causal mechanisms, they may be useful as simple
indicators of processes that influence salmon survival, thereby
improving forecasts when included in the EDM approach.
Although individual stocks appear to be sensitive to different

environmental factors (Table 1), we did observe some general pat-
terns: for example, two of the nine stocks (Stellako and Quesnel)
identified the PDO as an informative variable (the first-ranked
EDM models for these stocks include the PDO as a coordinate),
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Fig. 4. Comparison of forecast accuracy. Comparisons between equivalent
EDM and Ricker models show better forecast accuracy for the EDM models
[simple EDM vs. Ricker, t(492) = 1.77, P = 0.039; multivariate EDM vs. extended
Ricker, t(492) = 2.20, P = 0.014]. Additionally, including environmental data
significantly improves accuracy for EDM [t(492) = 2.83, P = 0.0024], but not for
the Ricker models [t(492) = 1.26, P = 0.10].

Table 1. Forecast skill of models incorporating the environment

Stock Model Predictors
No.

predictions ρ MAE

Birkenhead Ricker S, ETjun 57 −0.111 0.251
EDM S 57 0.156 0.259

Chilko Ricker S, ETmay 57 0.268 0.825
EDM S 57 0.264 0.839

Early Stuart Ricker S, ETapr 57 0.737 0.172
EDM S, Dapr, Djun 57 0.878 0.140

Late Shuswap Ricker S, ETjun 57 0.875 0.842
EDM S, Dmay, PTjul 57 0.923 0.821

Late Stuart Ricker S, Djun 56 0.552 0.423
EDM S, Djun, ETapr 56 0.783 0.250

Quesnel Ricker S, ETjun 57 0.387 2.057
EDM S, PTmay, PDO 57 0.861 0.729

Seymour Ricker S, PTapr 57 0.571 0.076
EDM S, PTjul 57 0.734 0.065

Stellako Ricker S, ETmay 57 0.191 0.250
EDM S, PTapr, PDO 57 0.531 0.217

Weaver Ricker S, PDO 39 −0.094 0.215
EDM S, Dapr, Dmay 39 0.573 0.176

D, Fraser River discharge; ET, Entrance Island SST; PDO, Pacific Decadal
Oscillation; PT, Pine Island SST.
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yet the predictability for these stocks is further improved when
other variables (river discharge or SST) are included in addition to
the PDO. This suggests that the PDO is an incomplete observation
on the relevant environment for sockeye, and that local-scale
measures of the environment can enhance the information in the
PDO index (an ocean basin-scale indicator) (see SI Appendix
for details).
Although our models confirm a general influence of the en-

vironment on sockeye salmon recruitment, some stocks appear
to be skillfully predicted using only spawner abundance. One
explanation for this is that the stocks experience unique envi-
ronments: they are exposed to different freshwater conditions in
their respective nursery lakes, and they exhibit different timings
and migration routes as they travel through the Fraser River, the
Strait of Georgia (34), and along the west coast of North America
(35). Even with shared environmental influences (e.g., food
availability in the Strait of Georgia), nonlinear state dependence
can produce dynamics unique to each stock. Consequently, if these
myriad effects are strongly density dependent, recruitment could
be successfully predicted using just spawner abundance. However,
if these effects are stochastic (i.e., environmentally driven), then
it will be necessary to include informative indicator variables to
improve forecasts.
Apart from multivariate models, an alternative approach to

determine causal environmental variables would be to apply the
method of convergent cross-mapping (CCM) (6). However, due
to data limitations (in particular, the absence of annual moni-
toring of each cycle line including the oceanic phase), CCM may
not be sufficiently sensitive to resolve causality here (see SI
Appendix for details).

Nonuniqueness of Models. We note that, for a given stock, dif-
ferent EDM models can show similar performance (SI Appendix,
Table S4). Although somewhat counterintuitive, this phenome-
non is expected, because the tested variables (river discharge,
SST, the PDO) are proxy indicators of the environment. Thus,
they may contain redundant information such that different var-
iable combinations are equally informative even as they repre-
sent alternative perspectives on the system. This reflects a fun-
damental property of EDM in that forecast performance depends
solely on the information content of the data rather than on how
well assumed equations match reality.
To clarify the concept of nonuniqueness, consider the ca-

nonical Lorenz attractor (SI Appendix, Fig. S1A). The behavior
of this system is governed by three differential equations (SI
Appendix, Eq. S1). However, the axes can be rotated to produce
three new coordinates, x′, y′, and z′, and the equations rewritten
in terms of these new coordinates, allowing the system to be
described using either representation (x, y, and z or x′, y′, and z′)
as well as mixed combinations (e.g., x, y, and z′). Thus, with an
infinite number of ways to rotate the system, there are an un-
limited number of “true variables” and “true models.” In the
case of sockeye salmon, the similar performance of different
models (SI Appendix, Table S4) does not mean that one or the
other model is incorrect; instead, it reflects the fact that the en-
vironmental variables are indicators of the same general mecha-
nism, and so different variable combinations can be equally
informative for forecasting recruitment.
Again, we emphasize that including a variable does not imply

a direct causal link—variables in an EDM model improve fore-
casts because they are informative; it does not mean that the
included variables are proximate causes. Importantly, the con-
verse does not hold either: a variable could be causal and yet not
appear in the multivariate EDM; this might occur when multiple
stochastic drivers affect recruitment in an interdependent way,
necessitating that a model include measurements of all of the
drivers to account for their combined effect. For example, al-
though none of the tested variables seem to improve forecasts for

the Birkenhead stock (SI Appendix, Table S4), this does not mean
that these sockeye salmon are insensitive to SST, river discharge,
and the PDO. Rather, it suggests that the effect of these variables
may be modulated by other factors not considered here.

Data Requirements of EDM. Using EDM is fundamentally a data-
driven approach: thus, it is important to ensure that time series
are of sufficient length to recover dynamics. For example, Sugihara
et al. (6) suggest that at least 35–40 points might be necessary as
a rough minimum, although methods exist for using dynamically
similar replicates in cases where time series are shorter (36). For
many systems, however, the data requirements of EDM mean that
increased budgets and additional sampling effort will be important
to support long-term continuous observations and generate suf-
ficient time series. We note, although, that it is not necessary to
sample all putatively relevant drivers, because different measure-
ments are often substitutable as proxies for true proximal causes.
When data requirements are met, however, we note that col-

lecting additional data can further improve accuracy and pre-
cision of EDM models. Consider the simplex projection method,
which uses nearest-neighbor analogs to approximate system be-
havior. With each new data point, more analogs are available (the
reconstructed manifold becomes denser), and so these approx-
imations become more precise. Thus, EDM models will improve
with longer time series. In contrast, a parametric model will
benefit from more data only when the assumed equations are
essentially correct. In the case of the classic Ricker model in Fig.
1A, it is clear that similar levels of spawner abundance yield very
different levels of recruitment, and so any simple function relating
the two cannot fully explain the scattered observations. Adding
more data may result in more “precise” parameter estimates, but
individual errors will remain large when the underlying process is
more complex than the assumed model can portray.

Alternative Parametric Models. In this work, we use the classical
and extended Ricker models as examples of the parametric ap-
proach, but acknowledge that there are alternative models con-
sidered by Fisheries and Oceans Canada (DFO) for Fraser River
sockeye salmon (37–40). Although some of these models may fit
the data better, this does not always reflect a model’s true per-
formance in out-of-sample forecasting. For example, a modified
Ricker model that allows parameters to randomly drift over time
(37) will explain variations in the data better than the static al-
ternative, because doing so can indirectly track nonlinear state
dependence. However, instead of a mechanism for why parame-
ters change, such models based on the Kalman filter (41) typically
use forward information (i.e., observations at time t + 1 help to
estimate the growth rate at time t) and thus do not actually
“predict.” Consequently, the actual forecast performance of such
models will be overestimated by their fit to historical data. A more
fundamental concern with the parametric approach is that it
requires explicit equations to model the effects of included vari-
ables. Such equations may be overly simplified (e.g., linear cor-
relations) and unable to accommodate the state-dependent effects
that occur in nonlinear systems.

Final Remarks. EDM addresses two important challenges for
modeling natural systems. First, EDM identifies relevant varia-
bles and interactions empirically and dynamically (6); this is in
contrast to the conventional approach where the use of para-
metric equations poses the dual risks of model misspecification
(22) as well as variable misidentification (6, 7, 12). Importantly,
EDM allows proxy variables to be used, which can be a boon
when observations on key processes (e.g., mortality) are lacking
but indirect measurements (e.g., SST) are available. Second, the
equation-free approach of EDM produces more accurate fore-
casts than equivalent parametric models using the same data. As
Perretti et al. (2) have shown, even when a correct parametric
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model is known, fitting parametric models can be problematic and
is an important concern with many systems exhibiting nonlinear
behavior (8, 9). In contrast, EDM models can capture dynamic
information and explain behavior that may be misclassified as
random by parametric fitting procedures.
Consequently, the dynamic perspective of EDM has much

to offer for modeling nonlinear systems, representing a viable
framework (with minimal assumptions) for system identification
and robust forecasting. When parametric models are required,
EDM can also be used in a complementary role to identify causal
links, recover variable relationships, and even guide the con-
struction of reliable equation-based models (42). This represents
a practical way to perform data-driven modeling instead of starting
with complex parametric models [end-to-end ecosystem models,
such as Ecopath with Ecosim (43)], which often make strong
assumptions and require large amounts of data to parameterize.
Moreover, EDMmodels can also serve as direct substitutes for

their parametric equivalents. Here, our simple and multivariate
EDM models are formulated similarly to their Ricker-based
counterparts: using spawner abundance (and the environment)
to forecast returns. Some simple extensions to the methods, such
as the development of uncertainty estimates (SI Appendix, Fig.
S5), will enable these models to be integrated into the current
management framework that uses parametric models. Thus, we
believe that EDM has great potential as a tool for understanding
and forecasting nonlinear ecosystems: by operating without as-
sumed equations, it can be beneficial when exact mathematical
descriptions are not available.

Materials and Methods
Data.Weanalyze yearly time series data for thenine historicallymost abundant
stocks (Birkenhead, Chilko, Early Stuart, Late Shuswap, Late Stuart, Quesnel,
Seymour, Stellako, andWeaver) of sockeye salmon from the Fraser River system
(Dataset S2). Data span brood years 1948–2005, except for Late Stuart and
Weaver, where data begin in 1949 and 1966, respectively. We consider only
single-stock models, so notation and equations are given as for a single stock.

St is the number of effective female spawners in brood year t, and Rt is the
corresponding recruitment (returning adults). Recruitment is partitioned by
age: Ra,t is the number spawned in year t and returning at age a in year t + a.
Following ref. 16, total recruitment is the sum of age 4 and age 5 recruits:
Rt = R4,t + R5,t. In contrast, total returns, Ny, are the adults that return to
spawn in calendar year y, and computed as Ny = R4,y-4 + R5,y-5. As explained
below, recruitment is forecast from spawner abundance, and age 4 and
age 5 recruits (from different brood years) are summed to estimate total
returns in a given calendar year. Note that both recruitment and returns
are computed as catch plus escapement plus en route loss, whereas spawner
abundance is based on observations of escapement and egg production (27).
Thus, both spawner abundance and recruitment account for the effects of
catch, and the models we consider here focus just on the population dynamics
of this system.

We investigate three environmental variables: the PDO, SST, and Fraser
River discharge (Dataset S3). For the PDO, one annual time series is con-
structed as the average of monthly values from November to March (32). SST
measures are monthly averages from two lighthouse stations (Entrance
Island: April to June; Pine Island: April to July). River discharge is measured at
Hope; we include peak daily flow and monthly averages (April to June).
Fraser River sockeye salmon enter the ocean at age 2, so the environmental
data are lagged 2 years to line up with ocean entry time.

Attractor Reconstruction. The goal of attractor reconstruction is to approxi-
mate the originating dynamic system using time series data. The simplest
construction uses successive lags of a single time series (23, 44): given time
series {xt}, E-dimensional vectors xt are composed of E lags of x, each sepa-
rated by a time step τ: xt = Æxt , xt−τ , . . . , xt−ðE−1Þτæ.

Generalizations of Takens’ theorem (24, 45) permit attractor reconstructions
using multiple time series. For example, with {xt} and {yt} observed from the
same system, one possible reconstruction forms vectors as Æxt , yt , yt−τæ. To ac-
count for different scaling between variables, each time series is first linearly
transformed to have mean = 0 and variance = 1.

Simplex Projection and S-Map. Simplex projection estimates the trajectory
(i.e., forecasts) of a novel system state by computing a weighted average of

the trajectories of that state’s nearest neighbors (19). Given an attractor
reconstruction, and a novel state xs, we first find the b nearest neighbors
(typically setting b = E + 1) that are closest to xs: these neighbors are the
vectors xn(s,i ), where n(s,i ) designates the time index of the ith closest
neighbor to xs. So, xn(s,1) is the closest neighbor to xs, xn(s,2) is the second
closest neighbor, etc. We then evolve the neighbors forward, and compute
a weighted average of the forward evolutions (h time steps into the future)
to estimate xs+h:

x̂s+h =

 Xb
i=1

wiðsÞxnðs,iÞ+h

! Xb
i=1

wiðsÞ:
,

[1]

The weights, wi(s), are based on the distance between xs and its ith
neighbor, xn(s,i), scaled to the distance to the nearest neighbor: wiðsÞ=
expð−dðxs,xnðs,iÞÞ=dðxs,xnðs,1ÞÞÞ, and d(xs, xt) is the Euclidean distance between
the vectors xs and xt.

In most cases, we desire forecasts of a scalar value rather than of the full
system state. This is possible when the variable to be forecast, y, is an ob-
servation on the same dynamic system. As such, there will be a correspon-
dence between xt and the scalar value of yt, and we can adjust Eq. 1 to
compute a weighted average of the corresponding values of y:

ŷs+h =

 Xb
i=1

wiðsÞynðs,iÞ+h
! Xb

i=1

wiðsÞ:
,

[2]

The S-map procedure computes a local linear map between lagged-
coordinate vectors and a target variable and is often used to test for
nonlinear state dependence (22). It includes a tuning parameter, θ, that
controls the weights associated with individual vectors: θ = 0 reduces the
S-map to a linear autoregressive model of order E, whereas θ > 0 gives more
weight to nearby states when computing the local linear map, thus allowing
for nonlinear behavior. Following refs. 9 and 46, we test for nonlinearity by
computing the decrease in forecast error (MAE) as θ is tuned to be greater
than 0 (see SI Appendix for details).

Model Descriptions. We formulate EDM models to forecast recruitment
from spawner abundance, combining age 4 and age 5 recruits (from
different brood years) to estimate total returns in a given calendar year.
Acknowledging the persistent 4-year quasicycle, the time series of recruits
and spawners are scaled so that each cycle line has mean 0 and variance 1:
S′t = ðSt − μkðSÞÞ=σkðSÞ and R′a,t = ðRa,t − μkðRaÞÞ=σkðRaÞ, where k = 1, 2, 3, or 4,
depending on cycle line and can be computed as k = 1 + ((t − 1) mod 4). σk
and μk are the mean and SD, respectively, for the kth cycle line.

The simple EDM model approximates the system state with 1 lag of the
transformed spawner abundance:

xt = ÆS′tæ: [3]

Forecasts of the age 4 and age 5 recruits, R′4,t and R′5,t , are made using simplex
projection. Here, the two nearest neighbors of S′t are identified, and the
corresponding values of R′4,t (or R′5,t) are combined in a weighted average to
produce a forecast. These forecasts are transformed back into raw values,
R̂a:t = R̂a,t′ · σkðRaÞ+ μkðRaÞ, and age 4 and age 5 recruits are combined to
produce a forecast of total returns, N̂y = R̂4,y−4 + R̂5,y−5.

The multivariate models combine spawner data with up to two envi-
ronmental indicators:

xt = ÆS′t ,U′t+2æ
xt = ÆS′t ,U′t+2,U″t+2æ,

[4]

where U′t+2 (or U″t+2) is one of the environmental time series described
previously, normalized to have mean = 0 and variance = 1. Just as in the
simple EDM model, forecasts of the age 4 and age 5 recruits are made using
simplex projection and combined to produce a forecast of total returns.
However, because including environmental variables increases the embed-
ding dimension, three nearest neighbors are used for models that include
one environmental coordinate, and four nearest neighbors for models that
include two environmental coordinates.

Following ref. 16, we use the standard Ricker model to estimate total
recruitment and then partition it into age 4 and age 5 fish. Age 4 and age
5 fish from separate brood years are combined to forecast the number
of returns:
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R̂t = St expðα− βStÞ,
N̂y = R̂y−4 ·p4 + R̂y−5 · ð1−p4Þ,

[5]

where p4 is the average fraction of recruits that return as age 4 fish. The
extended Ricker model is similar but includes an additional term in the ex-
ponent for an environmental covariate:

R̂t = Stexpðα− βSt + γUt+2Þ: [6]

Fitting Procedure and Performance Measures. To avoid testing all combina-
tions of (and overfitting) the environmental variables in the EDM model, we
sequentially add the environmental variable that most improves forecast ac-
curacy (ρ, the correlation between observed and predicted values). If none of
the variables improves forecasts when added, then no further environmental
variables are included. Thus, the best EDM model for some stocks may have
only 0 or 1 environmental variable (Table 1). Similarly, for the extended Ricker
model, we choose the environmental variable that gives the highest ρ.

The Ricker models were fit using R 3.0.2 (www.r-project.org/), the Rjags
package (cran.r-project.org/web/packages/rjags/index.html), and JAGS 3.2.0
(Just Another Gibbs Sampler; mcmc-jags.sourceforge.net/) following the pro-
cedure outlined in ref. 16. Medians of the posterior distribution are used to
obtain point estimates suitable for comparison. The EDM models were con-
structed using R 3.0.2 and the rEDM package (https://github.com/ha0ye/rEDM).
The package can be installed with the following lines of R code:

> library(devtools)

> install_github(“ha0ye/rEDM”)

R scripts for the models can be found in Dataset S4. Data files can be found
in Datasets S1–S3.

All forecasts are made using a fourfold cross-validation procedure. To
quantify model performance, we use Pearson’s correlation coefficient (ρ)
between observed and predicted returns as a measure of accuracy and MAE
as a measure of error. Comparisons of ρ between models uses a one-sided t
test with SE calculated using the HC4 estimator from (47) and with adjusted
degrees of freedom as suggested by ref. 48. Improvement in MAE is com-
puted using a one-sided paired t test for the difference, treating each forecast
as an independent sample. To compute an aggregate statistic combining all
nine stocks, we first scale the observations and predictions for each stock
so that the observed returns have mean = 0, variance = 1, and then com-
bine the normalized values across stocks. The comparisons of ρ and MAE
are done using this combined set of observations and predictions (Fig. 4
and SI Appendix, Fig. S3).
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