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ABSTRACT

Reinforcement learning (RL) has proven effective for fine-tuning large language
models (LLMs), significantly enhancing their reasoning abilities in domains such as
mathematics and code generation. A crucial factor influencing RL fine-tuning suc-
cess is the training curriculum: the order in which training problems are presented.
While random curricula serve as common baselines, they remain suboptimal; manu-
ally designed curricula often rely heavily on heuristics, and online filtering methods
can be computationally prohibitive. To address these limitations, we propose Self-
Evolving Curriculum (SEC), an automatic curriculum learning method that learns
a curriculum policy concurrently with the RL fine-tuning process. Our approach
formulates curriculum selection as a non-stationary Multi-Armed Bandit problem,
treating each problem category (e.g., difficulty level or problem type) as an indi-
vidual arm. We leverage the absolute advantage from policy gradient methods as
a proxy measure for immediate learning gain. At each training step, the curricu-
lum policy selects categories to maximize this reward signal and is updated using
the TD(0) method. Across three distinct reasoning domains: planning, inductive
reasoning, and mathematics, our experiments demonstrate that SEC significantly
improves models’ reasoning capabilities, enabling better generalization to harder,
out-of-distribution test problems. Additionally, our approach achieves better skill
balance when fine-tuning simultaneously on multiple reasoning domains. These
findings highlight SEC as a promising strategy for RL fine-tuning of LLMs. 1

1 INTRODUCTION
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Figure 1: Curriculum matters. A deliber-
ately poor (reverse) curriculum severely limits
RL fine-tuning performance. Our proposed
Self-Evolving Curriculum (SEC) significantly
outperforms the standard random curriculum.
See Sec. 3.1 for details.

Reinforcement learning (RL) has emerged as a cen-
tral technique for fine-tuning large language models
(LLMs) (Lightman et al., 2023; OpenAI; DeepSeek-
AI, 2025), significantly improving their reasoning
capabilities. Recent advances demonstrate notable
success, particularly in domains where verifying gen-
eration correctness is straightforward (Lambert et al.,
2024), such as mathematics and code generation. By
optimizing LLMs with rewards solely defined by veri-
fiable outcomes, RL fine-tuning encourages the emer-
gence of complex reasoning behaviors, including self-
correction and back-tracking strategies (Kumar et al.,
2024; Yeo et al., 2025; Gandhi et al., 2025), that
substantially enhance reasoning performance.

A critical factor influencing the effectiveness of RL
fine-tuning is the training curriculum (Bengio et al.,
2009), i.e., the order in which training data is presented. Since online RL inherently depends on
the policy model itself to produce high-quality training trajectories, aligning the curriculum with
the model’s current learning progress is critical. Ideally, such an alignment enables the model to
continually encounter problems that yield maximal learning outcomes (Schaul et al., 2015; Loshchilov
and Hutter, 2015; Katharopoulos and Fleuret, 2018). To illustrate this point concretely, we conduct a

1Our code will be open-sourced upon publication.
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Figure 2: Overview of Self-Evolving Curriculum (SEC). SEC dynamically adjusts the training
curriculum according to the model’s current capabilities. During preprocessing, training data is
partitioned into distinct categories (indicated by colors), e.g., by difficulty level or problem type. At
each RL fine-tuning step: (1) The curriculum policy samples a training batch based on categories’
expected learning gains; (2) The LLM policy is updated using the sampled batch and the chosen RL
algorithm; (3) Rewards for curriculum categories are computed using advantage values estimated by
the RL algorithm; (4) The curriculum policy is updated accordingly, refining future data selection.

controlled experiment using the Countdown game,2 deliberately employing a suboptimal (reverse)
curriculum, in which problems are arranged from hard to easy. As shown in Figure 1, the resulting
model performs poorly on the test set and exhibits minimal generalization to more challenging out-
of-distribution (OOD) problems. In contrast, when trained with a baseline random curriculum, where
problems of varying difficulty are drawn uniformly at random, the model demonstrates significantly
improved generalization and overall task performance.

Although random curriculum serves as a reasonable baseline, it naturally raises the question: Can
we design more effective curriculum strategies? Curriculum learning (Bengio et al., 2009) addresses
precisely this challenge by seeking to optimize the sequencing of training tasks, thereby enhancing
learning efficiency and efficacy. Recent approaches to curriculum learning for RL fine-tuning
typically involve either manually crafted curricula designed upfront (Kimi Team et al., 2025; Song
et al., 2025; Wen et al., 2025) or dynamic online filtering based on on-policy samples (Yu et al.,
2025; Bae et al., 2025). However, manually designed curricula rely heavily on heuristics, demanding
human intervention for new models or tasks; conversely, online filtering methods incur substantial
computational overhead due to the continuous generation of additional on-policy samples.

In this paper, we propose Self-Evolving Curriculum (SEC) (Figure 2), an automatic curriculum
learning (Portelas et al., 2020) approach for RL fine-tuning of LLMs. Our method adaptively learns a
curriculum policy concurrently with the RL fine-tuning process, formulating curriculum selection as
a non-stationary Multi-Armed Bandit (MAB) problem (Thompson, 1933; Sutton and Barto, 2018;
Matiisen et al., 2020). Each curriculum category (e.g., difficulty level or problem type) is treated
as an individual arm, and the curriculum policy aims to select the arm that maximizes the learning
outcomes. Specifically, we operationalize the concept of learning outcomes using the gradient norm,
noting that, in policy gradient methods, the gradient norm is weighted by the absolute value of the
advantage function. Leveraging this observation, we define the absolute advantage as the reward for
each arm. At each RL training step, the curriculum is sampled according to the current MAB policy,
which is subsequently updated on-the-fly using the reward obtained from the current training step via
the TD(0) method (Sutton, 1988).

2A puzzle game where players combine a given set of numbers using basic arithmetic operations to reach a
target number.
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Our experiments demonstrate that SEC significantly improves model reasoning capabilities across
three distinct domains: planning, inductive reasoning, and mathematics, particularly improving gener-
alization to challenging out-of-distribution problems. Compared to the standard random curriculum,
SEC achieves substantial relative improvements, such as 13% on Countdown, 21% on Zebra puzzles,
22% on ARC-1D, and up to 33% on the AIME24 dataset. When fine-tuned simultaneously across
multiple reasoning domains, SEC effectively balances performance across tasks, underscoring its
strength as an automatic curriculum learning strategy for RL fine-tuning of LLMs.

2 METHOD

In the context of RL fine-tuning, at each training step t, the curriculum policy selects a subset Dt ⊆ D
from the training problem set D to be provided to the LLM. In our work, we consider scenarios
where the training problems can be categorized into N distinct categories. This assumption simplifies
the curriculum optimization problem into learning an expected return Qt(c) that maps category c
to a real-valued score (Sec. 2.1). The training batch is then constructed by first sampling categories
according to the curriculum policy, followed by sampling problems uniformly within the categories.

The goal of the curriculum policy is to maximize the LLM’s final task performance. However, directly
evaluating such performance would require completing the entire RL fine-tuning process, while the
curriculum policy is better to be updated along with the training steps. To resolve this, we introduce a
locally measurable reward as a proxy objective for guiding the curriculum policy (Sec. 2.2).

2.1 CURRICULUM SELECTION AS MULTI-ARMED BANDIT

Training datasets used for reasoning tasks can often be naturally decomposed into distinct categories.
For example, if the dataset spans various reasoning domains, such as mathematics, coding, and
planning, these domains naturally form distinct categories. When the dataset is homogeneous in task
type or domain, a curriculum can still be constructed by categorizing examples based on in-domain
levels, such as difficulty. For instance, the MATH dataset (Hendrycks et al., 2021) categorizes
problems into five distinct difficulty levels based on the guidelines provided by Art of Problem
Solving (AoPS). Furthermore, in the absence of explicit difficulty annotations, problem difficulty can
be estimated by either using the empirical accuracy of the training LLM or prompting an expert LLM
in an additional preprocessing step, as demonstrated by Shi et al. (2025).

Motivated by these considerations, we assume that, particularly for reasoning-focused datasets,
training problems can be partitioned into N distinct categories C = {c1, c2, . . . , cN}. Conceptually,
the curriculum policy optimization problem can then be viewed as a partially observable Markov
decision process (POMDP): the state corresponds to the current LLM policy, actions correspond
to curriculum selection, and rewards are defined by observable performance metrics, such as the
on-policy performance associated with the selected curriculum.

This POMDP formulation naturally resembles a non-stationary MAB problem, a connection also
highlighted by Matiisen et al. (2020), where each arm represents a problem category ci, and the
objective is to learn the expected return Qt(c) associated with selecting category c at training step t.
Importantly, the MAB in this context is non-stationary: the expected reward distribution for each
arm shifts as the LLM policy is updated over the course of training. To address this well-studied
non-stationary bandit problem (Thompson, 1933; Sutton and Barto, 2018), we leverage the classic
TD(0) method (Sutton, 1988) to iteratively update Qt(c):

Qt+1(c) = αrt(c) + (1− α)Qt(c), (1)

where α is the learning rate, Q0(c) = 0 initializes the scores to zero, and rt(c) denotes the reward
defined in the next section. Note that this is also known as the Exponential Moving Average. The
curriculum policy can then be simply defined over Qt(c), as elaborated in Sec. 2.3.

2.2 MEASURING LEARNING OUTCOMES WITH ABSOLUTE ADVANTAGE

An ideal curriculum should maximize the LLM’s final performance on the test data after an entire
training episode. However, directly measuring this objective requires completing a full RL fine-
tuning cycle. Although evaluating intermediate checkpoints can partially mitigate this issue, frequent

3
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evaluations are computationally expensive. To overcome this challenge, we introduce a proxy
objective that can be efficiently computed locally at each training step.

An intuitive choice for such a proxy objective is to prioritize training data that maximizes the model’s
immediate learning outcomes (Schaul et al., 2015; Loshchilov and Hutter, 2015; Katharopoulos and
Fleuret, 2018), i.e., data that induces large parameter updates. Practically, this can be quantified by
measuring the gradient norm of the loss function with respect to the selected training data. Specifically,
consider a policy gradient algorithm that optimizes the LLM policy by minimizing the following loss
function:

LPG(θ) = −E(st,at)∼πθ

[
log πθ(at | st) Ât

]
(2)

where πθ denotes the LLM policy and Ât denotes the advantage value. Then, the per-step (st, at)
gradient norm is:

∥∇θLPG(θ, st, at)∥2 =
∥∥∥E(st,at)∼πθ

[
∇θ log πθ(at | st) Ât

]∥∥∥
2
≈ |Ât|∥∇θ log πθ(at | st) ∥2

We observe that the gradient magnitude is weighted by the absolute value of the advantage |Ât|. We
therefore approximate the learning gain of a curriculum c by the batch-wise expectation of |Ât|:

r(c) = E(st,at)∼πθ(xi),xi∼c |Ât| (3)

In other words, the reward for curriculum c at each training step is computed as the average absolute
advantage across all rollouts associated with the problems drawn from curriculum category c.

2.3 SELF-EVOLVING CURRICULUM FOR RL FINE-TUNING

At each RL training step, a batch of problems is generated as follows. First, categories are sampled
according to a Boltzmann distribution defined by the current values of Qt(c): p(c) = eQt(c)/τ∑N

i=1 eQt(ci)/τ
,

where τ is the temperature parameter controlling the exploration-exploitation trade-off. Next, prob-
lems are uniformly sampled from the selected categories. This process is repeated until the desired
batch size is reached. Sampling from the Boltzmann distribution naturally balances exploration and
exploitation in curriculum selection.

The resulting batch is then used to update the LLM policy. After the policy update at each step, we
compute the reward r(c) for each sampled category c and update the corresponding Qt(c) values
using Eq. 1. The complete procedure of SEC is summarized in Algorithm 1.

3 EXPERIMENTS

This section presents experiments evaluating SEC across three reasoning domains: planning, induc-
tive reasoning, and mathematics. We additionally investigate SEC’s effectiveness with different
curriculum categories and alternative RL algorithms.

3.1 EXPERIMENTAL SETUP

We conduct our experiments using the open-weight Qwen2.5 models (Yang et al., 2024): Qwen2.5-
3B and Qwen2.5-7B. For RL fine-tuning on reasoning tasks, we employ the widely-used GRPO
algorithm (Shao et al., 2024; DeepSeek-AI, 2025). We report average pass@1 accuracy from the
best checkpoint, calculated over 8 independent generations per problem. Additional training and
evaluation details are provided in Appendix B. Prompts and data examples for all tasks are provided
in Appendix C.

Our experiments cover three reasoning domains that require different abilities: (i) Planning, which
requires look-ahead search and backtracking; (ii) Inductive reasoning, which involves learning
general rules from observations and applying them to unseen scenarios; and (iii) Mathematics, which
demands multi-step logical deduction and systematic problem solving.
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Algorithm 1 SEC: RL Fine-tuning with Self-evolving Curriculum

Require: Training set D partitioned into categories C = {c1, . . . , cN}; LLM policy πθ with param-
eters θ; Learning rate α (for Q updates); Temperature τ ; Batch size B; Total training steps T ;
Reward functionR; RL algorithm A

1: Initialize Q0(c)← 0 ∀ c ∈ C
2: for t← 0 to T − 1 do
3: Bt ← ∅
4: while |Bt| < B do
5: Sample category c ∼ Softmax

(
Qt(c)/τ

)
6: Sample problem x uniformly from category c
7: Bt ← Bt ∪ {x}
8: end while
9: Run πθ on each x ∈ Bt to generate rollouts T and compute rewards r withR

10: Estimate advantages Â and update πθ with A(πθ, T , r)
11: for all c ∈ C do
12: Bc ← {x ∈ Bt | x belongs to category c }
13: rt(c)←

1

|Bc|
∑

j:xj∈Bc

1

Tj

∑Tj

t

∣∣Ât,j

∣∣
14: Qt+1(c)← α rt(c) + (1− α)Qt(c)
15: end for
16: end for
17: return Fine-tuned LLM πθ

Planning. For planning tasks, we consider two popular puzzle problems: (i) Countdown, where the
goal is to use basic arithmetic operations to reach a target number from a given set of 3–6 integers.
In this puzzle, we control the task difficulty by increasing the number of given integers. (ii) Zebra
Puzzles, a classic logic puzzle involving 3–6 entities (e.g., houses) each with 3-6 properties (e.g.,
color). Given a set of textual clues (constraints), the goal is to correctly assign each property to each
entity. Here, we control the task difficulty by increasing the number of entities and properties.

Inductive reasoning. We adopt the 1D variant of the Abstraction and Reasoning Corpus
(ARC) (Chollet, 2019; Xu et al., 2023) for inductive reasoning. Each puzzle instance consists
of strings of lengths 10, 20, 30, or 40 (with greater length corresponding to increased difficulty),
which are defined over integers. Three input-output examples illustrating an underlying rule are
provided, and the LLM is tested on an unseen case requiring generalization.

For the above three reasoning tasks (Countdown, Zebra, and ARC), we generate problems using
the framework provided by Open-Thought (2025). Specifically, our training data consists of the
three easiest difficulty levels, and the most difficult level is reserved as an out-of-distribution (OOD)
evaluation set. For each difficulty level, we sample 10,000 problems for training and 200 held-out
samples for evaluation. During RL fine-tuning, we assign rewards of 1 for correct problems, 0.1 for
incorrect answers but with correct formatting, and 0 otherwise.

Mathematics. We train LLMs on the training split of the MATH dataset (Hendrycks et al., 2021),
which comprises problems categorized into five difficulty levels, from 1 (easiest) to 5 (hardest), as
specified in the dataset annotations. Unlike the previous three tasks, the training data for mathematics
is imbalanced across these difficulty levels (Figure S1). For this task, we use a binary reward (1 for
correct and 0 otherwise), without assigning a partial reward for a correct format. The models are
subsequently evaluated on the MATH500, AMC22-23, and AIME24 datasets.

3.2 MAIN RESULTS

First, we evaluate the effectiveness of SEC using problem difficulty as the curriculum category, i.e.,
each difficulty level corresponds to an arm in the MAB framework. We compare SEC against two
commonly used curriculum strategies: (1) Random/No Curriculum, where training samples are drawn
uniformly across all difficulty levels following the original data distribution, corresponding to the
conventional ”no-curriculum” approach, and (2) Difficulty-Ordered Curriculum, where problems are
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Table 1: Evaluation across reasoning tasks and curriculum methods. Accuracy is measured by
averaging pass@1 over 8 independent generations per problem. In-distribution (ID) results are
averaged over test problems sampled from the same three difficulty levels used in training. The
best-performing curriculum strategy for each dataset and model size is shown in bold, and the
second-best is underlined. SEC consistently achieves strong performance across tasks, particularly
improving generalization on challenging OOD test problems.

Random Ordered SEC (Ours) Random Ordered SEC (Ours)

ID 0.859 0.551 0.866 0.858 0.820 0.872
OOD 0.479 0.321 0.542 0.566 0.442 0.555

ID 0.517 0.534 0.547 0.573 0.572 0.587
OOD 0.285 0.329 0.345 0.321 0.311 0.355

ID 0.501 0.476 0.500 0.512 0.526 0.514
OOD 0.313 0.363 0.381 0.436 0.428 0.418

MATH500 0.668 0.672 0.672 0.774 0.759 0.761
AMC22-23 0.345 0.352 0.351 0.486 0.477 0.511

AIME24 0.075 0.054 0.100 0.138 0.150 0.175

Task Split
Qwen2.5 3B Qwen2.5 7B

Countdown

Zebra

ARC-1D

Math

sequentially presented from easiest to hardest. Hyperparameters for SEC across all experimental
settings are detailed in Appendix B.

Our results, summarized in Table 1, demonstrate clear advantages of SEC across tasks and mod-
els. For the smaller Qwen2.5-3B model, SEC consistently achieves substantial improvements on
harder, out-of-distribution (OOD) test sets. Specifically, on Countdown, SEC significantly improves
OOD accuracy by approximately 13% relative (0.48 → 0.54) compared to the random baseline, and
by approximately 69% relative (0.32 → 0.54) compared to the difficulty-ordered baseline. Simi-
larly, on Zebra, SEC attains a relative improvement of approximately 21% over random (0.29 →
0.35). In mathematics, SEC markedly improves performance on the challenging AIME dataset by
approximately 33% relative compared to the random baseline (0.075 → 0.10).

For the larger Qwen2.5-7B model, SEC performance is competitive but more similar to the random
curriculum on tasks like Countdown and ARC. This outcome aligns with expectations, as stronger
base models may already possess sufficient reasoning capabilities to tackle harder problems, thus
rendering explicit curriculum guidance less critical. Nevertheless, on more challenging tasks such as
Zebra and mathematics, SEC continues to show clear improvements. Specifically, the OOD accuracy
on Zebra improves by approximately 11% relative (0.32 → 0.36) over the random baseline. On
the challenging AIME problmes, SEC achieves a 27% relative gain (0.14 → 0.18). The consistent
improvements observed in these more challenging domains, together with the robust gains in the 3B
model, highlight SEC’s effectiveness in improving the model generalization.

For the larger Qwen2.5-7B model, SEC performance is competitive but closer to the random cur-
riculum on tasks like Countdown and ARC. This outcome aligns with expectations: stronger base
models often possess sufficient reasoning competence to tackle a broad range of problems, reducing
the marginal benefit of an explicit curriculum. Nevertheless, on more challenging domains such
as Zebra and mathematics, SEC continues to provide clear gains—e.g., a relative improvement of
approximately 11% on Zebra OOD (0.32→ 0.36) and 27% on AIME (0.14→ 0.18).

To test whether curriculum benefits re-emerge as task difficulty increases, we evaluate Qwen2.5-7B on
a harder Countdown variant (training on problem sizes 4–6 and evaluating OOD at size 7; previously
3–5 train and 6 OOD). As shown in Table 2, SEC again outperforms random on both ID and OOD,
confirming that curriculum benefits persist for larger models when the task becomes more challenging.

Finally, the difficulty-ordered curriculum often yields suboptimal performance, likely due to its fixed
difficulty schedule, which does not dynamically adapt to the model’s current performance. As a
result, models may spend excessive training time on easy problems, limiting exposure to harder ones
from which models could potentially learn more. These results further underscore the necessity of
adaptive, online curriculum strategies like SEC, which continuously align problem selection with the
model’s current learning state.
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Figure 3: Average sample difficulty over training steps. SEC adaptively adjusts task difficulty
during RL fine-tuning. Blue curves represent the sampled difficulty, smoothed using a moving average,
while the green dashed line indicates the mean difficulty of the dataset. Across all benchmarks
(columns) and model sizes (top: Qwen2.5-3B, bottom, Qwen2.5-7B), SEC initially selects easier
problems and progressively introduces more challenging ones as training proceeds, effectively
aligning difficulty with model improvement.

Table 2: Qwen2.5-7B on a
harder Countdown variant.
SEC recovers clear gains over
random when the task be-
comes more challenging.

Method ID OOD

Random 0.654 0.373
SEC 0.686 0.439

Curriculum analysis. Figure 3 illustrates how SEC adaptively
adjusts training difficulty across tasks and models. For each task
and model, the sampled difficulty (blue curves) initially starts below
or around the dataset mean difficulty (green dashed line), indicat-
ing SEC’s initial emphasis on easier problems to facilitate early-
stage learning. As training progresses, SEC gradually increases
the difficulty of selected problems, aligning the training complexity
with the improving capabilities of the model. Notably, SEC selects
harder problems for the stronger Qwen2.5-7B model compared to
the smaller 3B model, further confirming SEC’s ability to effectively
adapt its curriculum to the model’s learning capacity. This adaptive
pattern across tasks and models highlights SEC’s strength in dynamically adjusting problem difficulty
to maximize learning outcomes.

3.3 SEC WITH MULTIPLE CURRICULUM CATEGORIES

In this section, we demonstrate that SEC seamlessly supports drawing from multiple and diverse
curriculum categories at the same time. A common scenario in RL fine-tuning involves optimizing a
model’s performance across multiple reasoning domains. To evaluate SEC in such a multi-task setting,
we combine the training datasets from Countdown, Zebra, and ARC to create a mixed training set
comprising multiple types of reasoning problems, and conduct RL fine-tuning using the Qwen2.5-3B
model. The goal here is to achieve a strong overall performance across all reasoning tasks.

Our MAB-based curriculum framework is agnostic to the semantic meaning of the curriculum
categories, thus allowing categories to be defined arbitrarily. In this experiment, we define one arm
for each unique combination of 3 problem types and 3 difficulty levels, resulting in a total of 9 distinct
arms. We denote this variant as SEC-2D. Table 3: SEC with alternative RL algo-

rithms on Countdown. SEC improves
RL fine-tuning performance with differ-
ent RL algorithms (PPO, RLOO), com-
pared to a random curriculum.

RL Method Split Random SEC

PPO ID 0.621 0.750
OOD 0.159 0.224

RLOO ID 0.821 0.859
OOD 0.465 0.494

Figure 4 presents results evaluating SEC-2D when train-
ing simultaneously on multiple reasoning tasks. The table
(left) demonstrates that SEC-2D consistently outperforms
the random curriculum across all three reasoning tasks.
The learning curve (right) provides a detailed view of
OOD accuracy on Countdown as training progresses. Ini-
tially, both curricula show rapid improvement; however,
the random curriculum exhibits a significant performance
collapse midway through training, highlighting its inabil-
ity to effectively balance multi-task learning. In contrast,
SEC-2D maintains stable, robust performance, underscor-
ing its strength in adaptively balancing multiple learning objectives.
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Task Split Random SEC-2D

Countdown ID 0.837 0.839
OOD 0.418 0.428

Zebra ID 0.513 0.539
OOD 0.254 0.312

ARC ID 0.380 0.418
OOD 0.251 0.327
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Figure 4: Performance comparison when training on multiple tasks. Left: Test accuracy of
Qwen2.5-3B on ID and OOD splits. SEC-2D is implemented by defining an arm for each combination
of problem type and difficulty level. SEC-2D consistently achieves higher accuracy, showing
improved generalization compared to a random curriculum across tasks. Right: Countdown OOD
accuracy vs. training steps, smoothed by a moving average. The random curriculum’s performance
collapses mid-training, highlighting its inability to effectively balance multiple tasks. In contrast,
SEC-2D maintains stable performance throughout training.

3.4 SEC WITH ALTERNATIVE RL ALGORITHMS

While our main experiments employ the GRPO algorithm, we additionally evaluate SEC with other
widely used RL methods, specifically Proximal Policy Optimization (PPO) (Schulman et al., 2017)
and REINFORCE Leave-One-Out (RLOO) (Kool et al., 2019). Table 3 presents results on the
Countdown task with Qwen2.5-3B, comparing SEC to the random curriculum under these two
algorithms. Across both PPO and RLOO, SEC consistently improves performance on ID and OOD
evaluation splits, demonstrating that it is effective beyond a single RL algorithm.

3.5 SEC WITH AUTOMATICALLY INFERRED CURRICULUM CATEGORIES

While our main experiments use curriculum categories predefined by metadata, SEC does not always
require manual curation. To demonstrate this, we use the mathematics problem dataset released by Shi
et al. (2025), which provides empirical success rates for each problem, estimated by sampling from
Qwen2.5-MATH-7B. We discretize these success rates into k equal-width bins to create curriculum
categories (reporting results for k=3 and k=5), while keeping the RL setup, curriculum reward, and
sampling policy unchanged.

Table 4: Mathematics with automatically inferred cur-
riculum categories. SEC remains effective when curriculum
categories are derived from empirical success rates rather
than manual labels.

Method MATH500 AMC22–23 AIME24

Random 0.654 0.312 0.080
SEC (k=3) 0.664 0.389 0.088
SEC (k=5) 0.671 0.358 0.083

Table 4 shows results on MATH500,
AMC22–23, and AIME24. Both SEC
variants outperform the random base-
line on the three math benchmarks.
These findings indicate that SEC can
leverage automatically inferred cur-
riculum categories derived from con-
tinuous difficulty signals, reducing re-
liance on manual labels.

4 RELATED WORKS

RL fine-tuning for language models. Language models (LMs) can be naturally viewed as se-
quential decision-making policies, generating tokens conditioned on partial text states until reaching
terminal outputs. Typically, reward signals are sparse and episodic, assigned only after the full
generation, an approach termed Outcome Reward Models (ORM) (Cobbe et al., 2021). Some recent
studies introduce Process Reward Models (PRM), assigning intermediate rewards during generation
to facilitate local credit assignment (Lightman et al., 2023; Uesato et al., 2022). Leveraging this
Markov Decision Process (MDP) framing, RL fine-tuning has demonstrated success across mul-
tiple domains, including aligning LMs with human preferences (RLHF) (Christiano et al., 2017;
Ziegler et al., 2019; Bai et al., 2022; Ouyang et al., 2022), enhancing mathematical reasoning via
exact-match rewards (Shao et al., 2024), and self-training with internal LM distributions (e.g., Self-
taught Reasoner, STaR) (Zelikman et al., 2022). Recently, Reinforcement Learning with Verifiable
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Rewards (RLVR) (DeepSeek-AI, 2025; Lambert et al., 2024) has emerged as a promising paradigm
for improving the reasoning abilities of LMs.

RL methods tailored to these MDP formulations have also played a central role. Policy-gradient
methods, including REINFORCE variants (e.g., RLOO) (Williams, 1992; Kool et al., 2019; Ahmadian
et al., 2024) and Proximal Policy Optimization (PPO) approaches (Schulman et al., 2017; Shao et al.,
2024), are widely adopted due to their relative stability. Alternatively, off-policy and value-based
algorithms such as Directed Preference Optimization (DPO) (Rafailov et al., 2023; Meng et al.,
2024) and Generative Flow Networks (GFlowNets) (Bengio et al., 2021; Hu et al., 2024; Ho et al.,
2024) provide advantages in sample efficiency, diversity, and asynchronous training (Noukhovitch
et al., 2024; Bartoldson et al., 2025), although they may not always match the task-specific reward
maximization capabilities of on-policy methods, instead prioritizing improved diversity.

Curriculum learning. Curriculum learning was introduced by Bengio et al. (2009) and later refined
as self-paced learning (Kumar et al., 2010), showing that organizing examples from easy to hard
smooths non-convex optimization and improves generalization. In RL, curricula mitigate sparse
rewards and exploration hurdles: reverse-curriculum generation grows start states outward from the
goal (Florensa et al., 2017), Teacher-Student Curriculum Learning (TSCL) (Matiisen et al., 2020)
also used a non-stationary MAB framework to maximize measured learning progress, defined as
improvements in task performance, methods such as POET, ACCEL, and PAIRED co-evolve tasks
with agents (Wang et al., 2019; Parker-Holder et al., 2022; Dennis et al., 2020), and Kim et al. (2025)
proposed an adaptive teacher that dynamically adjusts curricula for multi-modal amortized sampling.

Only recently have similar curriculum learning ideas begun influencing RL fine-tuning of language
models. R3 applies reverse curricula specifically to chain-of-thought reasoning, progressively reveal-
ing longer reasoning sequences conditioned on gold demonstrations (Xi et al., 2024). Qi et al. (2024)
proposed WEBRL, a self-evolving online curriculum RL framework designed to train LM-based web
agents by prompting another LLM to autonomously generate new tasks based on previous failures.

Concurrently, several studies have explored automatic curriculum learning for RL fine-tuning. Bae
et al. (2025) propose online filtering of training problems by repeatedly generating solutions to
estimate their difficulty. AdaRFT (Shi et al., 2025) adaptively adjusts curriculum difficulty based
on the model’s recent reward signals but relies on explicit difficulty-level ordering. In contrast,
SEC leverages a general MAB formulation to dynamically adjust the curriculum. DUMP (Wang
et al., 2025b), in parallel to us, also leverages absolute advantage as the curriculum reward with
an MAB framework, focusing on the Knights and Knaves logical reasoning puzzle with GRPO.
In contrast, our study covers multiple reasoning domains, examines a multi-task RL setting, and
validates performance across various RL algorithms.

5 CONCLUSION

In this paper, we introduced Self-Evolving Curriculum (SEC), an automatic curriculum learning
framework tailored for RL fine-tuning of LLMs. SEC formulates adaptive curriculum selection as a
non-stationary Multi-Armed Bandit problem, dynamically adjusting problem difficulty according
to the model’s evolving capability. Extensive experiments across diverse reasoning tasks, includ-
ing planning, inductive reasoning, and mathematics, demonstrate that SEC consistently improves
generalization and effectively balances learning across multiple reasoning domains simultaneously.

Our framework consists of three major components: curriculum rewards, sampling methods, and
update rules. In this paper, SEC employs absolute advantage as the curriculum reward, a Boltzmann
distribution for sampling, and a TD(0) update method. The generalization of these components
can be explored for future work. For instance, one might incorporate uncertainty measures into the
curriculum selection by leveraging approaches such as Upper Confidence Bound (UCB) (Auer, 2002)
or Thompson sampling (Thompson, 1933).

Limitations. While SEC demonstrates consistent effectiveness across diverse reasoning tasks, it
has some limitations. SEC introduces extra hyperparameters (e.g., temperature, learning rate) that
require tuning. Future work may explore more flexible curriculum definitions, such as clustering
problems based on embeddings or using lightweight models (e.g., linear regression) to directly
estimate curriculum rewards.

9
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A SEC ACROSS BASE MODEL FAMILIES

To examine whether SEC generalizes beyond the Qwen2.5 family, we fine-tune a Llama-3.2-1B
variant released by Wang et al. (2025a), with speacial mid-training to improve RL fine-tuning
performance. As shown in Table S1, one the Countdown task, SEC improves over the random
curriculum on both splits, indicating that our method generalizes across model families and scales.

Table S1: Llama-3.2-1B on Countdown. SEC improves over random on both ID and OOD,
suggesting generalization beyond a single model family.

Method Countdown ID Countdown OOD

Random 0.758 0.192
SEC 0.776 0.265

B IMPLEMENTATION DETAILS

Training. All models are fine-tuned with the GRPO algorithms (Shao et al., 2024) as implemented
in the Volcano Engine Reinforcement Learning (verl) library (Sheng et al., 2024). We train separate
3B and 7B parameters variants of Qwen2.5 (Yang et al., 2024). The fine-tuning processes last in
total 240 gradient steps for Qwen2.5-3B and 120 steps for Qwen2.5-7B with a batch size of 256 on
each of the three puzzle tasks. Advantages are estimated by 8 rollouts. Both models are trained for
240 steps on the math task. We do not apply the Kullback-Leibler (KL) divergence loss by setting
the corresponding loss weight to be 0 across our study. We limit the max prompt length to be 1,024
tokens and the max response length to be 4,096 tokens. The model parameters are optimized using
Adam (Kingma and Ba, 2014) with a learning rate of 1e-6 and beta (0.9, 0.99) without warm-up steps.
All of the training experiments are conducted on 4-8 NVIDIA H100 80GB GPUs. Hyperparameters
for SEC used in each experiment is summarized in Table S2.

Model Countdown Zebra ARC Math

Qwen2.5 3B α = 0.5, τ = 1.0 α = 0.5, τ = 1.0 α = 0.5, τ = 1.0 α = 0.2, τ = 1.0
Qwen2.5 7B α = 0.5, τ = 0.2 α = 0.5, τ = 0.4 α = 0.5, τ = 1.0 α = 0.5, τ = 0.4

Table S2: Hyperparameter settings (learning rate α and temperature τ ) used in each experiment.

For the multi-task experiment in Sec. 3.3, we fine-tune the Qwen2.5-3B model for 3× 240 = 720
steps on the mixed dataset. We use α = 0.5 and τ = 0.2.

In Sec. 3.4, we train Qwen2.5-3B for 120 steps in all the experiments. For RLOO, we similarly use 8
rollouts for advantage estimation and α = 0.5, τ = 0.25 for SEC. For PPO, we use α = 0.5, τ = 1
for SEC, and λ = 1, γ = 1 for the GAE parameters. Consistent with our main experiments, we do
not apply the KL divergence loss.

Models. Below we list the models used in our experiments:

• Qwen2.5-3B: https://huggingface.co/Qwen/Qwen2.5-3B

• Qwen2.5-7B: https://huggingface.co/Qwen/Qwen2.5-7B

Math Datasets. Below we list the data sources used in our experiments:

• MATH500: https://huggingface.co/datasets/HuggingFaceH4/
MATH-500

• AMC22-23: https://huggingface.co/datasets/AI-MO/
aimo-validation-amc

• AIME: https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
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C DATA EXAMPLES

Figure S1: Distribution of difficulty levels in the MATH training set.

Below we list the prompts and data examples for each task in our study. The prompt template is
adopted from Pan et al. (2025).

Prompt for Countdown:
A conversation between User and Assistant. The user asks a question,
and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the
answer.
User: Using the numbers [5, 17, 91], create an equation that equals
113. You can only use basic arithmetic operations (+, -, *, /) and
each number should be used exactly once. Return the final answer in
\boxed{}, for example \boxed{(1 + 2) / 3}. Assistant: Let me solve
this step by step.

Prompt for Zebra Puzzle:
A conversation between User and Assistant. The user asks a question,
and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the
answer.
User: This is a logic puzzle. There are 3 houses (numbered 1 on the
left, 3 on the right), from the perspective of someone standing across
the street from them. Each has a different person in them. They have
different characteristics:
- Each person has a unique name: arnold, bob, alice
- Everyone has a different favorite cigar: dunhill, prince, pall mall
- The people keep different animals: cat, dog, bird

1. The bird keeper is directly left of the Dunhill smoker.
2. Alice is the dog owner.
3. Arnold is in the second house.
4. Alice is the Prince smoker.
5. Arnold is the cat lover.

What is Name of the person who lives in House 1? Provide only the
name of the person as your final answer and put in in \boxed{}, for
example: \boxed{Alice}. Assistant: Let me solve this step by step.
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Prompt for ARC-1D:
A conversation between User and Assistant. The user asks a question,
and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the
answer.
User: Find the common rule that maps an input grid to an output grid,
given the examples below.

Example 1:
Input: 1 2 1 2 1 0 0 1 2 0
Output: 0 0 0 1 1 1 1 2 2 2

Example 2:
Input: 1 2 0 0 0 0 2 0 1 2
Output: 0 0 0 0 0 1 1 2 2 2

Example 3:
Input: 0 0 2 0 0 0 0 1 1 0
Output: 0 0 0 0 0 0 0 1 1 2

Below is a test input grid. Predict the corresponding output grid
by applying the rule you found. Describe how you derived the rule
and your overall reasoning process in detail before you submit your
answer. Your final answer must be placed in \boxed{} and should be
just the test output grid itself.

Input: 0 0 2 0 0 1 1 0 0 1 Assistant: Let me solve this step by
step.

Prompt for math:
A conversation between User and Assistant. The user asks a question,
and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the
answer.
User: Find the remainder when

338182 + 338192 + 338202 + 338212 + 338222

is divided by 17. Put your final answer within \boxed{}. Assistant:
Let me solve this step by step.
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