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Abstract001

Automatic pronunciation assessment is typi-002
cally performed by acoustic models trained on003
audio-score pairs. Although effective, these004
systems provide only numerical scores, with-005
out the information needed to help learners un-006
derstand their errors. Meanwhile, large lan-007
guage models (LLMs) have proven effective008
in supporting language learning, but their po-009
tential for assessing pronunciation remains un-010
explored. In this work, we introduce TextPA,011
a zero-shot, Textual description-based Pronun-012
ciation Assessment approach. TextPA utilizes013
human-readable representations of speech sig-014
nals, which are fed into an LLM to assess pro-015
nunciation accuracy and fluency, while also016
providing reasoning behind the assigned scores.017
Finally, a phoneme sequence match scoring018
method is used to refine the accuracy scores.019
Our work highlights a previously overlooked020
direction for pronunciation assessment. Instead021
of relying on supervised training with audio-022
score examples, we exploit the rich pronun-023
ciation knowledge embedded in written text.024
Experimental results show that our approach025
is both cost-efficient and competitive in perfor-026
mance. Furthermore, TextPA significantly im-027
proves the performance of conventional audio-028
score-trained models on out-of-domain data by029
offering a complementary perspective.030

1 Introduction031

Automatic pronunciation assessment offers an alter-032

native to traditional language instruction by provid-033

ing learners with accessible, scalable, and timely034

feedback on their speaking abilities. Most prior035

work in this area relies on supervised learning: col-036

lecting speech recordings annotated with pronun-037

ciation scores from human instructors and training038

acoustic models to assess proficiency scores (Chen039

et al., 2024; Gong et al., 2022). Although effec-040

tive, models trained on audio-score pairs provide041

only numerical scores, offering little insight into042

why a particular score was assigned. Collecting 043

more informative and descriptive feedback, such 044

as detailed comments from human raters, can be 045

time-consuming and expensive. 046

Recently, Large Language Models (LLMs) have 047

gained popularity for their ability to generate nat- 048

ural, context-aware responses. We propose that 049

this generative capability can be leveraged to pro- 050

duce explainable feedback in pronunciation assess- 051

ment, going beyond simple scoring. LLMs have 052

also demonstrated the potential to provide valu- 053

able insights into language learning (C Meniado, 054

2023). Most studies focus on using LLMs in writ- 055

ing tasks (Lo et al., 2024). However, LLMs also 056

capture knowledge of language speaking, as hu- 057

mans have documented their knowledge about pro- 058

nunciation in written form to facilitate sharing and 059

teaching. Also, previous studies have shown that 060

LLMs, such as GPT, have the potential to interpret 061

textual descriptions of speech signals. In (Wang 062

et al., 2023), researchers wrote the pause durations 063

in a sentence – e.g., “it (<10 ms) is (<10 ms) noth- 064

ing (10 ms–50 ms) like (<10 ms) this,” – and put 065

the sentence into GPT to assess whether the pauses 066

are correct. However, this study focused only on 067

detecting inappropriate pauses using duration in- 068

formation, without exploring the ability of LLMs 069

to interpret other key dimensions of pronunciation, 070

such as articulation or intonation. 071

To bridge the gap between the textual under- 072

standing of LLMs and the physical acoustic signal, 073

audio-language models (ALMs) (Elizalde et al., 074

2023; Tang et al., 20234; Chu et al., 2023) have 075

emerged. ALMs integrate audio and text by en- 076

coding audio into audio tokens, which are then 077

processed by the LLM with text tokens. How- 078

ever, most open-source ALMs are pre-trained on 079

audio captioning or speech recognition datasets 080

and show limited ability to assess speech without 081

fine-tuning (Deshmukh et al., 2024; Wang et al., 082

2025b). Also, due to computational constraints, 083
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these studies use smaller LLMs (e.g., 7B or 13B084

Llama), limiting their ability to fully leverage LLM085

capabilities. Closed-source large ALMs such as086

GPT-audio and Gemini-audio have demonstrated087

the potential for pronunciation assessment in zero-088

shot settings (Wang et al., 2025a), but large ALMs089

are costly to operate with an audio input. Since090

audio tokens are much more expensive than text091

tokens1 and the number of audio tokens generated092

from a speech signal can be much greater than the093

number of text tokens in its corresponding tran-094

script, using a large ALM with audio inputs is con-095

siderably more expensive than using LLM with text096

inputs.097

We explore an alternative method to bridge the098

gap between LLM’s textual knowledge and phys-099

ical speech signals. Instead of relying on audio100

tokens, our method uses the existing capabilities101

of LLMs by selecting text-based acoustic descrip-102

tors common in written text. Pre-trained acoustic103

models are used to generate these, including tran-104

scripts, phoneme sequences (in both International105

Phonetic Alphabet (IPA) and CMU Pronouncing106

Dictionary (CMU) formats), and pause durations.107

The descriptors are provided as input to LLMs for108

pronunciation assessment. We incorporate a simi-109

larity score between the recognized IPA sequence110

and the transcript-mapped canonical IPA sequence111

to improve assessment of pronunciation accuracy.112

Our contributions are: 1) We propose TextPA,113

a zero-shot pronunciation assessment model that114

uses textual descriptions of speech signals; 2)115

Our method produces interpretable and explainable116

feedback, unlike conventional pronunciation assess-117

ment systems that yield only numeric scores and118

incorporating TextPA enhances the performance119

of an audio-score-trained model on out-of-domain120

data; 3) Compared to large ALMs, our approach121

significantly reduces API costs while delivering122

competitive or superior assessment performance.123

2 TextPA124

To assess English pronunciation in terms of ac-125

curacy and fluency. Textual acoustic cues are ex-126

tracted using a set of pre-trained models: the tran-127

script is obtained from an automatic speech recog-128

nition (ASR) model; pause information and the129

recognized CMU sequence are derived from a pho-130

netic aligner; and the IPA phoneme sequence is gen-131

1For example, the OpenAI GPT-4o-mini-audio model
charges $10.00 per 1M audio tokens, compared to $0.15 per
1M text tokens (as of April 2025).

erated using a phoneme recognition model. These 132

textual representations are then provided as input 133

to an LLM, which is prompted to assess the pro- 134

nunciation and produce both accuracy and fluency 135

scores, along with the reasoning behind its evalu- 136

ations. Lastly, we introduce IPA match scoring to 137

further refine the accuracy score. Figure 1 presents 138

an overview of this TextPA framework. Our ap- 139

proach operates in a zero-shot setting, relying only 140

on existing pre-trained acoustic models and LLMs, 141

and does not require any audio-score pronunciation 142

data. 143

2.1 Textual Acoustic Cues for LLM Input 144

2.1.1 Transcript 145

A transcript lacking semantic coherence may result 146

from inaccurate recognition due to poor pronunci- 147

ation. Repeated words within a sequence or filler 148

words such as “hmm,” can indicate a lack of flu- 149

ency. In Figure 2, the speaker is told to say “his 150

head hurts even worse,” but their pronunciation 151

is highly inaccurate. Except for "His.", all other 152

words received only 3 out of 10 points. Due to poor 153

pronunciation and lack of fluency, the ASR model 154

produced an inaccurate transcript (i.e., “His hand 155

hands very well”) which is semantically incoher- 156

ent, signaling low pronunciation proficiency for the 157

LLM, as reflected in its reasoning. However, as the 158

ASR model is designed to recognize words rather 159

than analyze pronunciation, it may automatically 160

correct inaccurately pronounced words to produce 161

a semantically coherent sentence. For example, in 162

Figure 3, the speaker is instructed to say “maybe we 163

should get some cake” but mispronounced “cake.” 164

Although the pronunciation is inaccurate, the ASR 165

transcript (“maybe we should get some cards,”) is 166

still semantically reasonable. As a result, using the 167

transcript alone provides limited insight into the 168

finer details of articulation. To address this, we 169

incorporate the IPA and CMU phoneme sequences 170

that explicitly represent spoken sounds. 171

2.1.2 Recognized IPA and CMU Phoneme 172

Sequence 173

IPA, widely used in linguistics, dictionaries, and 174

language education materials, is a standardized 175

phonetic notation system that represents the sounds 176

of spoken language using a consistent set of sym- 177

bols. Each symbol corresponds to a specific speech 178

sound, providing a one-to-one mapping between 179

sound and notation. The CMU phoneme sequence 180

is a phonetic transcription format based on the 181
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Transcript
maybe we should get some cards

Phonemes (Recognized) CMU
M EH M B IY W IY SH UH D (0.12s pause) 
G EH T S AH M (0.21s pause) K AH T

Automatic speech 
recognition

Phonetic aligner
(CMU-based)

Phoneme recognition
(IPA-based)

/

Speech 
signal

Word to 
IPA

mapping

Mapped 
(canonical) IPA

/m eɪ b iː w iː ʃ ʊ d 
ɡ ɛ t s ʌ m k ɑːɹ d z

You are an expert evaluator of English pronunciation. Assess the accuracy and fluency of the given text input on a scale of 1 to 5, 
with higher scores indicating better performance. A score of 5 represents native-speaker-level proficiency.
Input format: 
{"Transcript": "<Recognized ASR sentence>",
"Phonemes_CMU": "<Recognized CMU pronouncing phoneme sequence, with (time.s pause) indicating pauses in speech.>",
"Phonemes_IPA": "<Recognized IPA pronouncing phoneme sequence.>” }

Task: Return a dictionary with the following format:
{"Accuracy": <the assessment accuracy score>, 
"Fluency": <the assessment fluency score>,
"Reasoning": <detailed reasoning for the assigned score>}

Note: Do not include any other text other than the json object. 
Input: 

Transcript:              maybe we should get some cards
Phonemes CMU:   M EH M B IY W IY SH UH D (0.12s pause) G EH T S AH M (0.21s pause) K AH T
Phonemes IPA:       m ɛ m b i w iː ʃ ʊ d ɡ ɛ s s ʌ m k ɑː t

Mean/Accuracy
(LLM)

norm

norm

LLM

/

Phonemes (Recognized) IPA
m ɛ m b i w iː ʃ ʊ d ɡ ɛ s s ʌ m k ɑː t

IPA match 
scoring

Reasoning

Fluency

Accuracy

Figure 1: An overview of TextPA.

Carnegie Mellon University Pronouncing Dictio-182

nary (CMUdict). Unlike IPA, which is universal183

in language and more fine-grained, CMU uses a184

simplified set of phonemes tailored for American185

English, which is widely used in speech process-186

ing applications due to its compatibility with ASR187

systems and phoneme-based models. Because both188

representations are widely used, LLMs trained on189

extensive text corpora have encountered and in-190

ternalized the mapping between IPA and CMU191

phoneme annotations and the word. For example,192

in Case Study B (Figure 3), by comparing the rec-193

ognized IPA and CMU sequences, the LLM can194

identify that the word “cards” may have been mis-195

pronounced and can leverage this information to196

assess pronunciation accuracy. It is able to align197

transcript words with the corresponding phoneme198

sequence, even when word boundaries are not ex-199

plicitly marked. We also embed pause information200

from the phonetic aligner into the recognized CMU201

phoneme sequence. Pauses are annotated in an eas-202

ily interpretable format, e.g. “D (0.12s pause) G”203

indicates a 0.12-second pause between the phones204

“D” and “G”. As shown in Case Study B (Fig-205

ure 3), the LLM leverages this pause information206

when reasoning about the speaker’s fluency.207

2.2 IPA Match Scoring208

To assess pronunciation, the LLM internally209

maps each word in the transcript to its canonical210

phoneme sequence and compares it with the pro-211

vided recognized phoneme sequence. Although212

LLMs are capable of this, as shown in Case Study 213

B (Figure 3) where the model correctly identifies 214

the mispronunciation of the word “cards”, they 215

may still overlook some errors. For example, in the 216

same case, a discrepancy is observed between the 217

canonical phoneme sequence for the word “maybe” 218

(m eI b i: / M EY B IY) and the recognized se- 219

quence (m E m b i / M EH M B IY), indicating 220

inaccurate pronunciation. Although the human 221

annotation assigns a score of 10 out of 10 to the 222

pronunciation of “maybe”, our manual inspection 223

suggests that the word is not clearly articulated. 224

However, the LLM does not reflect this error in its 225

reasoning. 226

To further refine accuracy assessment, we in- 227

troduce IPA match scoring, which measures the 228

similarity between the recognized and canonical 229

phoneme sequences and uses this as an indicator 230

of pronunciation accuracy.2 To perform IPA match 231

scoring, the transcript is first mapped to its canoni- 232

cal IPA phoneme sequence using a pronunciation 233

dictionary. We then compute the similarity be- 234

tween the transcript-mapped and the recognized 235

IPA sequences using the Smith-Waterman algo- 236

rithm (Smith et al., 1981). This algorithm is a 237

dynamic programming method originally devel- 238

oped for local alignment of biological sequences 239

such as DNA or proteins. It identifies the most 240

similar subsequences between two inputs, making 241

2We use IPA instead of CMU because IPA offers more
fine-grained phonetic detail. In addition, our empirical results
suggest that match scoring using IPA consistently outperforms
scoring with CMU phonemes.
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his hand hands very wellTranscript

HH IH Z HH AE N D HH AE N
D Z (0.05s pause) ER N EH R IH
IY R IH IY AH L

Phonemes 
CMU

h ɪ z h æ n d h æ n d s m ɛ ɹ i ɹ ɪPhonemes
IPA

The accuracy is low due to several mispronunciations
and inaccuracies in the phoneme recognition. "very
well" is completely different from "ER N EH R
IH IY R IH IY AH L" and "m ɛ ɹ i ɹ ɪ".
The word "hands" is repeated and there's a pause.
The fluency is slightly affected by the pause and the
unnatural sequence of words.

LLM reasoning

Case study A

LLM input

his head hurts even worseGround-truth
(Human 

annotation)

h ɪ z h æ n d h æ n d z v ɛ ɹ i w ɛ lMapped IPA

(10,   3,      3,     3,       3,  )

Figure 2: Case study A. Due to the inaccurate pro-
nunciation, the ASR model produced unnatural word
sequences, which in turn signaled to the LLM that the
pronunciation was not fluent.

it well-suited for phoneme sequence comparison,242

which consists of subsequences representing differ-243

ent words. Since the IPA-matched scores and the244

LLM-generated accuracy scores operate on differ-245

ent scales, we apply min-max normalization across246

the test set to align them within a common range.247

The final accuracy score is then calculated as the av-248

erage of the normalized Smith-Waterman similarity249

and the normalized LLM-generated score.250

3 Experimental Setup251

3.1 Data and Evaluation Metric252

We evaluated TextPA on the open-source Spee-253

chocean762 (Zhang et al., 2021) and Mul-254

tiPA (Chen et al., 2024) datasets 3, both of which255

focus on English speech produced by native Man-256

darin speakers. The Speechocean762 (abbreviated257

as Speechocean) dataset consists of 5,000 utter-258

ances spoken by 250 speakers, with annotations at259

the sentence, word, and phoneme levels. In this260

study, we focus on sentence-level accuracy, fluency,261

and prosody. The utterances in Speechocean are262

scripted. Participants were instructed to read prede-263

fined sentences, making the ground-truth transcript264

3License: Attribution 4.0 International (CC BY 4.0)

maybe we should get some cardsTranscript

M EH M B IY W IY SH UH D
(0.12s pause) G EH T S AH M
(0.21s pause) K AH T

Phonemes 
CMU

m ɛ m b i w iː ʃ ʊ d ɡ ɛ s s ʌ m k
ɑː t

Phonemes
IPA

Accuracy: The pronunciation is generally accurate,
with most phonemes being correctly produced. The
vowel in 'cards' is slightly off. It appears to be
truncated to 'cot' sound rather than 'cards'. Still
quite understandable.
Fluency: The presence of pauses affects the
fluency score. (0.12s) is acceptable, (0.21s) pause
in a short sentence is a bit long. The pace is
slightly uneven overall. More natural speech would
exhibit smoother transitions between words.

LLM reasoning

LLM input

maybe we should get some cakeGround-truth
(Human 

annotation)

m eɪ b iː w iː ʃ ʊ d ɡ ɛ t s ʌ m k
ɑːɹ d z

Mapped IPA

Case study B

(  10,   10,    10,   10,   10,     3,)
*incorrect

Figure 3: Case study B. The transcript is semantically
reasonable despite inaccurate pronunciation. To address
this, the mismatch between the recognized phoneme se-
quence and the transcript provides the LLM with insight
into potential articulation inaccuracies. The mapped
IPA (i.e., the canonical IPA of the transcript) is shown
for reference and is not provided as input to the LLM.

available. However, our method operates without 265

the need for ground-truth information. Most sen- 266

tences in Speechocean are short, as shown in Fig- 267

ure 1, 2, and 3, with corresponding audio dura- 268

tions ranging from 2 to 20 seconds. Since TextPA 269

requires no training, we used only the Speechocean 270

test set, which contains 2,500 utterances. 271

The MultiPA data contains 50 audio clips, each 272

ranging from 10 to 20 seconds in duration, col- 273

lected from ~20 anonymous users interacting with 274

a dialogue-based chatbot. Unlike Speechocean, 275

where speakers are asked to read predefined sen- 276

tences, MultiPA data captures open-ended re- 277

sponses, allowing learners to speak freely or answer 278

questions. This allows for a more authentic assess- 279

ment of learners’ speaking abilities. Table 1 shows 280

example transcriptions from both datasets. We use 281

the Pearson correlation coefficient (PCC) as the 282

main evaluation metric since it has often been used 283

in prior studies and provides better interpretability 284
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Two, four, seven.Speechocean
It was good for me.
I'm an active person and I enjoy playing a
variety of sports. One of my favorite
sports to play is basketball as it is a great
way to stay fit and socialize with friends
at the same time.

MultiPA
data

I often go to the zoo. I think the zoo is a
very interesting place. And I go, I went to
the zoo once a week now.

Table 1: Example transcriptions from Speechocean
and MultiPA. Speechocean consists of relatively short,
scripted utterances from read-aloud tasks, whereas Mul-
tiPA data captures open-ended, conversational speech.

when comparing performances on different dataset.285

3.2 Implementation Details286

We use Whisper (Radford et al., 2023) (large-v3-287

en) for transcription, the model from (Xu et al.,288

2021)4 for IPA sequence, Charsiu (Zhu et al., 2022)289

predictive aligner for CMU sequence, and Phone-290

mize (Bernard and Titeux, 2021)5 for word-to-IPA291

mapping. Acoustic models were run on an NVIDIA292

RTX 4500 GPU. The LLM uses default API set-293

tings, and results are from a single run.294

4 Results295

4.1 Performance on Free-speech296

Table 2 shows the performance on MultiPA data.297

We compare TextPA with different LLM back-ends.298

Because TextPA (gpt-4o-mini) performs better than299

the TextPA (gemini-2.0-flash), we chose to run300

GPT-4o-mini-audio to compare the performance.301

Results suggest that the proposed TextPA outper-302

forms GPT-4o-mini-audio in assessing pronuncia-303

tion, achieving better performance in both accuracy304

and fluency. We also compare performance with305

the MultiPA model (Chen et al., 2024), an acoustic306

model trained on Speechocean. Results show that307

the proposed TextPA achieves higher accuracy and308

provides competitive fluency assessment, showing309

the effectiveness of TextPA in a zero-shot setting.310

We evaluate the effectiveness of combining the311

MultiPA and TextPA models. To account for differ-312

ences in the scale of their prediction scores, we first313

apply min-max normalization to each model’s out-314

puts. The final prediction is obtained by averaging315

the normalized scores. Despite the simplicity of316

4https://huggingface.co/facebook/
wav2vec2-lv-60-espeak-cv-ft

5EspeakBackend("en-us")

this fusion strategy, the combined model achieves 317

notable performance improvement over using ei- 318

ther model alone. This improvement is likely due 319

to the distinct sources of information. MultiPA is 320

trained on paired audio-score data, learning directly 321

from acoustic examples, whereas TextPA operates 322

solely on text and leverages prior knowledge about 323

pronunciation assessment. Differing approaches 324

offer diverse perspectives, enabling the combined 325

system to achieve improved performance. 326

Due to the limited amount of paired audio-score 327

pronunciation data, MultiPA may have difficulty ac- 328

curately assessing words that were not encountered 329

during training. In contrast, TextPA has access to a 330

much broader vocabulary, leading to higher perfor- 331

mance on accuracy assessment. However, because 332

MultiPA analyzes raw audio recordings, it can cap- 333

ture acoustic cues such as detailed phone-level du- 334

rations or pitch variations. These cues are typically 335

not represented in written descriptions or are dif- 336

ficult to capture accurately in text, making them 337

challenging for LLMs to interpret. In fact, we also 338

explore the LLM’s ability to assess prosody using 339

ToBI annotations (Beckman and Hirschberg, 1994) 340

which offer a text-based representation of tonal pat- 341

terns and phrase boundaries. However, the LLM 342

appears to struggle with assessing prosody by ac- 343

curately interpreting these annotations, even when 344

given explicit instructions (see the Appendix B for 345

details). In essence, the two approaches provide 346

complementary advantages on the assessment task, 347

and combining them could be beneficial by lever- 348

aging the strengths of both. 349

Accuracy Fluency
TextPA

(gemini-2.0-flash)
0.697 0.557

TextPA
(gpt-4o-mini)

0.728 0.650

GPT-4o-mini-audio 0.674 0.648
MultiPA model 0.618 0.683

MultiPA model +
TextPA (gpt-4o-mini)

0.769 0.784

Table 2: Model performance on MultiPA data. Note that
MultiPA model was trained on Speechocean.

4.2 Performance on Scripted Utterances 350

Table 3 shows the performance on Speechocean. 351

We first compare the performance of TextPA 352

5
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using different LLM back-ends. Results indi-353

cate that gemini-2.0-flash outperforms gpt-4o-mini;354

therefore, we conduct another experiment for the355

Gemini-2.0-flash-audio in our performance com-356

parison. In contrast to its strong performance on the357

MultiPA dataset, TextPA performs relatively poorly358

on Speechocean. This discrepancy might arise359

from fundamental differences between the datasets.360

Speechocean consists of shorter, more constrained361

utterances (as shown in Table 1) which offer lim-362

ited phonetic and semantic variation. Moreover,363

Speechocean prompts students to repeat predefined364

sentences, unlike the MultiPA data, which pro-365

duces free-form speech. As a result, both the pause366

cues between words and the semantic content of367

the transcripts offer weaker indicators of language368

proficiency, thereby reducing the effectiveness of369

TextPA. These dataset differences may also explain370

the performance inconsistency between Gemini371

and GPT across the two datasets. Nevertheless,372

TextPA remains competitive on Speechocean. Note373

that TextPA relies solely on text tokens, whereas374

Gemini-2.0-flash-audio uses text tokens for instruc-375

tions and audio tokens for input speech signals. 6376

We also include in-domain models as references.377

Since TextPA is a zero-shot approach without us-378

ing training data, the in-domain models naturally379

perform better. Directly combining the predictions380

as done with MultiPA data does not lead to im-381

provements for the in-domain setting due to the382

performance gap. Further investigation is needed to383

explore more effective ways of leveraging TextPA384

for in-domain models.385

4.3 Ablation Study on Textual Descriptions of386

Speech Signals387

We evaluate the performance of accuracy scor-388

ing based on phoneme sequence matching. Our389

findings demonstrate that IPA match scoring is390

a straightforward yet highly effective method for391

assessing pronunciation accuracy. We also in-392

vestigated the performance of CMU match scor-393

ing. Similar to IPA match scoring, the words in394

the transcript are mapped to CMU labels using395

the dictionary, and then compared with the recog-396

nized CMU sequence through normalized Smith-397

Waterman similarity scores. However, the results398

indicate that the CMU sequence is less effective399

6The cost of gemini-2.0-flash is 0.1 per 1M text tokens and
$0.7 per 1M audio tokens, making Gemini-2.0-flash-audio
approximately 3.5 times more expensive in API calls than
running TextPA (Gemini-2.0-flash) on the Speechocean.

Accuracy Fluency

Zero-shot
TextPA

(gpt-4o-mini)
0.507 0.466

TextPA
(gemini-2.0-flash)

0.532 0.557

Gemini-2.0-flash-audio 0.562 0.556

In-domain
(Lin and Wang, 2022) 0.72 -

(Liu et al., 2023b) - 0.795
MultiPA model 0.705 0.772

Table 3: Model performance on Speechocean.

for accuracy assessment compared to the IPA se- 400

quence. This difference comes from the higher 401

level of detail in the pronunciation representation 402

of the IPA, which contains more than 107 sylla- 403

ble letters, while the CMU set contains only 39 404

phonemes. 405

We also performed an ablation study to deter- 406

mine which textual descriptions of acoustic cues 407

are most effective for language models in pronun- 408

ciation assessment. When using an LLM, the tran- 409

script alone can offer insights. Augmenting the 410

input with recognized IPA sequences improves per- 411

formance, particularly in accuracy, as the LLM can 412

compare word transcriptions with their phonetic 413

transcriptions to better identify mispronunciations. 414

Adding CMU sequences alongside the transcript 415

helps to enhance both accuracy and fluency as well: 416

accuracy improves for similar reasons as with IPA, 417

while fluency benefits from the pause information 418

encoded in CMU sequences. Overall, combining 419

the transcript, CMU, and IPA sequences leads to 420

the best performance, with IPA match scoring pro- 421

viding additional boosts in accuracy. 422

4.4 Impact of ASR Transcription Quality 423

Transcripts play a crucial role in TextPA. To ex- 424

amine the affect of ASR model quality (i.e., tran- 425

script quality), we compared LLM-based assess- 426

ment using transcripts generated by two Whisper 427

variants: large-v3-en (denoted as large-en) and 428

tiny. The large-en model, with 1550M parame- 429

ters, is English-only and generates higher-quality 430

transcripts that are more robust to inaccurate pro- 431

nunciation. In contrast, the tiny model, with only 432

39M parameters and multilingual training, is more 433

likely to produce transcription errors or misclassify 434

6



MultiPA data
Accuracy Fluency

TextPA
(gpt-4o-mini)

0.728 0.650

LLM: all 0.643 0.650
LLM: trans.+cmu 0.491 0.485
LLM: trans.+ipa 0.452 0.410
LLM: transcript 0.404 0.432

IPA match scoring 0.653 -
CMU match scoring 0.208 -

Speechocean
Accuracy Fluency

TextPA
(gemini-2.0-flash)

0.532 0.557

LLM: all 0.456 0.557
LLM: trans.+cmu 0.427 0.553
LLM: trans.+ipa 0.448 0.458
LLM: transcript 0.313 0.310

IPA match scoring 0.507 -
CMU match scoring 0.263 -

Table 4: Ablation study of text-based acoustic cues. We
selected the LLM with the best performance on each
dataset as the representative model: gpt-4o-mini for the
MultiPA data and gemini-2.0-flash for the Speechocean
data. LLM: transcript uses only the transcript as input.
LLM: trans.+ ipa and trans.+ cmu add IPA or CMU
sequences, respectively. LLM: all combines all three
inputs: transcript, IPA, and CMU. Note that the fluency
scores for LLM: all and TextPA are identical, as IPA
score matching is only used to refine accuracy.

English as a different language when pronunciation435

is inaccurate.436

As shown in Table 6, when transcripts alone are437

used as input to the LLM, tiny yields better assess-438

ment results than large-en. This observation can439

be illustrated through an analogy: using large-en440

is like speaking to a listener with excellent English441

comprehension – they can understand you even if442

your pronunciation is poor. In contrast, the tiny443

model resembles a listener with limited English444

ability, who can only understand clearly articulated445

speech. Whether a person with strong English lis-446

tening comprehension (i.e., large-en) can under-447

stand you provides less insight into your pronunci-448

ation. In contrast, if people with weaker listening449

ability (i.e., tiny) can understand you easily, it indi-450

cates that your pronunciation is good.451

Although the transcripts from tiny models per- 452

form better on their own, the large-en model is 453

more effective within the TextPA framework. In 454

TextPA, we incorporate the IPA and CMU se- 455

quences along with the transcript. Inaccurate pro- 456

nunciation can lead to unnatural IPA and CMU se- 457

quences, offering similar insights to the transcript 458

of tiny model. In addition, because the transcript 459

serve as a baseline for comparison, excessive ASR 460

errors introduce noise that reduces reliability. Over- 461

all, we believe that a stronger ASR model, such 462

as large-en, is the better choice within the TextPA 463

structure. 464

Accuracy Fluency
large-en tiny large-en tiny
MultiPA data

LLM: all
(gpt-4o-mini)

0.643 0.569 0.650 0.546

LLM: transcript 0.404 0.556 0.432 0.442
Speechocean

LLM: all
(gemini-2.0-flash)

0.456 0.481 0.557 0.523

LLM: transcript 0.313 0.409 0.310 0.431

Table 5: Impact of ASR transcription quality.

4.5 Analysis of Basic vs. Detailed Scoring 465

Guidelines 466

We investigated the impact of providing different in- 467

structions to the LLM, including basic and detailed 468

scoring guidelines. The basic scoring guideline 469

instructs the LLM a scoring range (1-5), where a 470

higher score indicates better pronunciation, with 471

a score of 5 reflecting native-speaker proficiency. 472

The detailed scoring guideline, on the other hand, 473

provides the same detailed annotation guidelines 474

used by human annotators. The detailed guidelines 475

define the language proficiency for each score level. 476

For example, for MultiPA data, an accuracy score 477

of 5 means “Excellent: The overall pronunciation 478

is nearly perfect with accurate articulation of all 479

sounds,” while a score of 4 means “Good: Minor 480

pronunciation errors may be present, but overall, 481

the pronunciation is highly accurate and easily un- 482

derstandable”, and so on. Results suggest that the 483

effectiveness is dataset-dependent, possibly influ- 484

enced by how the guidelines are written. However, 485

incorporating a detailed scoring guideline has the 486

potential to reduce performance, while also length- 487

ening the input text prompt and increasing model 488

operating costs. 489
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Accuracy Fluency
Basic Detailed Basic Detailed

MultiPA data
LLM: all

(gpt-4o-mini)
0.643 0.500 0.650 0.543

LLM: all
(gemini-2.0-flash)

0.554 0.596 0.556 0.499

Speechocean
LLM: all

(gpt-4o-mini)
0.420 0.474 0.466 0.544

LLM: all
(gemini-2.0-flash)

0.456 0.470 0.557 0.561

Table 6: Performance with basic or detailed guidelines.

5 Related Work490

5.1 Speech Pronunciation Assessment491

Speech pronunciation assessment models can be492

categorized into closed- or open-response scenarios.493

In closed-response settings, L2 learners read a pre-494

determined sentence, which serves as the ground-495

truth transcript for the model to guide the assess-496

ment. A common approach in this scenario ex-497

tracted Goodness of Pronunciation (GoP) features498

to train an acoustic model (Gong et al., 2022; Do499

et al., 2023). In addition to GoP, various other500

features have been explored for model training, in-501

cluding acoustic embeddings from self-supervised502

learning (SSL) models, prosodic features such as503

duration and energy, and transcript-based features504

such as word embeddings (Chao et al., 2022; Yan505

et al., 2025). In (Wu et al., 2025), researchers fine-506

tuned an LLM using audio tokens and text prompts507

to provide feedback on phone errors. However,508

the performance of models trained with ground-509

truth transcripts may degrade significantly when510

such transcripts are unavailable. On the other hand,511

open-response scenarios allow learners to speak512

freely or respond to prompts, enabling a more513

authentic evaluation of their pronunciation skills.514

Models designed for open-response tasks do not515

rely on ground-truth transcripts. Instead, they lever-516

age ASR outputs or avoid ASR entirely (Lin and517

Wang, 2021; Kim et al., 2022; Chen et al., 2024;518

Liu et al., 2023b). Most prior studies rely on audio-519

score pair data to train acoustic models for pronun-520

ciation assessment, whereas zero-shot approaches521

have been largely unexplored. In (Liu et al., 2023a),522

researchers scored pronunciation based on the num-523

ber of incorrectly recovered tokens from an SSL524

model. However, like other previous studies, it525

provided only numerical feedback instead of more526

interpretable or explainable assessments. 527

5.2 LLM for Language Learning 528

LLMs have had a significant impact on education, 529

with many studies exploring how tools like Chat- 530

GPT can support language learning (Lo et al., 2024; 531

C Meniado, 2023). These models have proven 532

effective in helping learners identify and correct 533

writing errors, improve the quality of their writ- 534

ing (Barrot, 2023), and receive automated feed- 535

back (Mizumoto and Eguchi, 2023). Few studies 536

have focused on using LLMs to support speaking 537

skills. (Kim and Park, 2023) used ChatGPT as a 538

conversational partner in role-playing tasks, while 539

(Lee et al., 2023) used it to generate topics for oral 540

practice. A study by (Wang et al., 2023) used Chat- 541

GPT to assess how well ESL learners placed pauses 542

in their speech. However, the potential of LLMs to 543

support other aspects of oral language skills, such 544

as pronunciation accuracy and fluency as in TextPA, 545

remains under-explored. 546

6 Conclusion 547

We propose TextPA, a zero-shot pronunciation as- 548

sessment method that leverages interpretable, tex- 549

tual representations of speech signals to assess pro- 550

nunciation accuracy and fluency. These descrip- 551

tions include transcripts, IPA, and CMU phoneme 552

sequences, collectively reflecting pronunciation 553

characteristics. Specifically, semantically unnat- 554

ural transcripts may signal pronunciation issues, 555

mismatches between canonical and recognized 556

phoneme sequences reflect articulation errors, and 557

inappropriate pauses embedded in CMU sequences 558

reveal disfluencies. Experimental results demon- 559

strate that LLMs can effectively leverage textual 560

description of speech to assess different aspects of 561

pronunciation. Unlike conventional models trained 562

on audio-score pairs, TextPA operates without su- 563

pervision. TextPA focuses on human-readable rep- 564

resentations and prior knowledge of pronunciation, 565

aiming to provide interpretable and explainable 566

feedback that go beyond a score. We hope this work 567

offers a new perspective on pronunciation assess- 568

ment. Building on our initial exploration, future re- 569

search could further develop methods to more effec- 570

tively integrate TextPA with audio-trained models, 571

combining their strengths to improve assessment 572

accuracy and feedback quality for learners. 573
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Limitations574

While prosody is an important aspect of pronun-575

ciation, we found it difficult to effectively assess576

using our text-based approach. Compared to accu-577

racy and fluency, prosodic features such as rhythm578

and intonation are harder to describe precisely in579

written form, making them less suitable for meth-580

ods that rely solely on textual representations. As581

a result, the LLM struggled to reliably evaluate582

prosody without compromising assessment perfor-583

mance on accuracy and fluency. In addition, both584

the LLM and the ASR system introduce variabil-585

ity across runs, leading to inconsistent assessment586

results. In addition, budget constraints limited our587

ability to use the most advanced LLMs or to eval-588

uate large ALMs across all settings. Finally, al-589

though LLM’s reasoning appeared reasonable in590

our case study, no established metric exists to au-591

tomatically verify its correctness, and exhaustive592

manual evaluation of every sample is beyond the593

scope of this study. These limitations suggest fu-594

ture work in prosody modeling, dataset expansion,595

and automatic reasoning evaluation.596

Although certain words may have multiple valid597

pronunciations depending on the speaker’s accent,598

our study did not consider accent variation, since599

the majority of the data involved attempts to mimic600

General American English. Consequently, a po-601

tential risk of this study is an overemphasis on a602

single accent. While many English learners aim to603

emulate native speakers, the more practical goal in604

everyday communication is to express one’s opin-605

ions clearly and be understood. This highlights606

the importance of balancing pronunciation assess-607

ment systems between intelligibility and nativeness.608

When such systems overemphasize native-like pro-609

nunciation, which is often tied to a specific ac-610

cent, they might erroneously mark understandable611

speech as “wrong.” Failing to strike this balance612

can marginalize learners’ linguistic identities and613

encourage unnecessary accent reduction at the ex-614

pense of communicative effectiveness. In addition,615

an overly narrow model can reinforce the idea that616

only a single variety of English is valid, thereby617

undermining the rich diversity of global English618

accents.619
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A Prompt 757

Figure 4 shows the TextPA prompt for LLM; ALM 758

prompt follows a similar format, but does not in- 759

clude input format instructions. We observed that 760

Gemini is more likely to return results that do not 761

match the required format, whereas GPT tends to 762

produce outputs that can be directly saved as JSON 763

files. If the model fails to generate a correctly for- 764

matted output for a given test sample, we re-run it 765

until a valid result is obtained. 766

B Prosody assessment 767

We investigate whether LLM could assess prosody 768

from textual descriptions. We only used the Mul- 769

tiPA data for this part of the study, as most sen- 770

tences in Speechocean are short and do not contain 771

sufficient prosodic variation for a reliable assess- 772

ment. First, we prompted the LLM to evaluate 773

prosody in addition to accuracy and fluency. As 774

shown in Table 7, the model performs worse in 775

terms of prosody assessment compared to fluency 776

and accuracy. In addition, introducing prosody as 777

an additional assessment criterion leads to a de- 778

crease in the model’s performance in both accuracy 779

and fluency. 780

We explore textual descriptions of prosody us- 781

ing annotations from the ToBI (Tones and Break 782

Indices) system (Beckman and Hirschberg, 1994)7, 783

7https://github.com/monikaUPF/PyToBI
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You are an expert evaluator of English pronunciation. 
Assess the accuracy and fluency of the given text 
input on a scale of 1 to 5, with higher scores indicating 
better performance. A score of 5 represents native-
speaker-level proficiency.

Input format: 
{"Transcript": "<Recognized ASR sentence>",
"Phonemes_CMU": "<Recognized CMU pronouncing 
phoneme sequence, with (time.s pause) indicating 
pauses in speech.>",
"Phonemes_IPA": "<Recognized IPA pronouncing 
phoneme sequence.>"}

Task: Return a dictionary with the following format:
{"Accuracy": <the assessment accuracy score>, 
"Fluency": <the assessment fluency score>,
"Reasoning": <detailed reasoning for the assigned 
score>}

Note: Do not include any other text other than the json
object. 
Input: 

Figure 4: LLM prompt.

Accuracy Fluency Prosody
LLM: all

(gpt-4o-mini)
0.633 0.678 -

LLMp: all
(gpt-4o-mini)

0.590 0.549 0.243

Table 7: LLM performance with and without prosody
assessment. LLMp: all is LLM: all with the introduction
of prosody as an additional assessment criterion. Note
that the transcript is generated using turbo version of
Whisper, an optimized version of large-v3 that provides
faster transcription with minimal loss in accuracy. The
results indicate that turbo performs comparably to large-
v3-en. (Section 4.1)

which provides a standardized approach to annotate784

intonation and phrasing patterns in spoken English.785

ToBI includes two primary components: the break786

index and the tone index, both of which are crucial787

for understanding the prosody of speech signals.788

The break index ranges from 0 to 4 and is defined789

as follows:790
0: Clear phonetic marks for clitic groups
1: Most phrase-medial word boundaries
2: Strong disjuncture, pause or virtual

pause, no tonal marks
3: Intermediate intonation phrase bound-

ary
4: Full intonation phrase boundary

791

The tone index includes the following categories:792

H: High pitch in the local pitch
range

L: Low pitch in the local pitch
range

*: Pitch accent, indicating that the
word is stressed

%: The end of an intonation phrase
- or ––: A phrase’s accent

793

Table 9 presents a selection of examples from 794

our attempts to assess prosody using an LLM. The 795

experimental results indicate that the LLM is less 796

effective in assessing prosody, and requiring it to do 797

so leads to a decline performance in accuracy and 798

fluency. A possible reason for this is that prosody is 799

harder to capture accurately using textual descrip- 800

tions. Since prosody is less commonly expressed in 801

written form, the LLM has more difficulty leverag- 802

ing its inherent knowledge for prosody assessment. 803

C Reasoning styles of GPT and Gemini 804

We compare the reasoning styles from GPT-4o- 805

mini and Gemini-2.0-Flash models. We find that 806

Gemini is more likely to cite the provided CMU 807

and IPA phoneme sequences in its responses to sup- 808

port its assessment score. In contrast, GPT tends 809

to provide more generalized observations and is 810

more likely to suggest directions for improvement. 811

Table 8 presents example reasoning outputs from 812

both models given the same input.

The accuracy score of 4 reflects a strong
understanding and correct pronunciation
of most words, with only a few minor
errors in phoneme realization (e.g.,
'thought' was rendered correctly, but
some phonemes appeared less fluid). The
fluency score of 3 indicates that while the
speech is coherent, there are noticeable
pauses and slight hesitations that disrupt
the overall flow. The transitions between
phrases can be improved for a more
natural delivery. Overall, the speaker
demonstrates good pronunciation and
comprehension but could work on
smoother delivery.

gpt-
4o-
mini

The accuracy is reasonable, with some
mispronunciations, such as 'TH IH NG K'
for 'think' instead of 'θ ɪ ŋ k', 'S OW T
CH ER N AE T R AH L' for social
network. However, most words are
understandable. The fluency is moderate.
There are several pauses which affect the
natural flow of speech. There is also some
word repetition (**ER R ER R**).

gemini
-2.0-
flash

Table 8: LLM Reasoning Comparison.

813
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Index Accuracy Fluency Prosody Prompt Textual description of prosody 

LLMA 0.467 0.561 0.294 ToBI_sequence": 
"<Recognized ToBI 
sequence.> 

"L-L% !H* L-L% L* L* H*+L L+H* L-H% 
L+H* L* L* L-L% L* H* L* L*+H L-H% 
H*+L L* L-L% H-L% L-L% L* H* H-L% L* 
L*+H LH- L*" 
 
(Note: raw ToBI tone indices.) 

LLMB 0.545 0.500 0.172 "Prosody_annotated_text": 
"<Sequence of ASR-
recognized words with 
prosodic labels. '*' indicates 
a pitch accent, and '%' 
indicates a phrase 
boundary. Labels appear in 
parentheses after the 
corresponding word." 

"depends (%)  i mean it depends (*, %)  on (*) 
what (*) i'm looking (*) for (*, %)  if i'm (*) 
going to buy (*, %)  like (*) a phone or (*) 
computer (*, %)  i would definitely (*) choose 
big ones (*, %)  because (%)  the (%)  quality 
(*) of the product (%)  is more (*) reliable (*, -
-)  for sure (*)" 
 
(Note: Simplified ToBI tone indices, 
including pitch accents, phrase accents, and 
boundary tones, are provided along with the 
corresponding words in the transcript.) 

LLMC 0.494 0.617 0.231 "Prosody_annotated_text": 
"<Sequence of ASR-
recognized words with 
prosodic labels. '*' indicates 
a pitch accent, '--' indicates 
a phrase accent, and '%' 
indicates a phrase 
boundary. Labels appear in 
parentheses after the 
corresponding word." 

"depends (%).  i mean it depends (*).  on (*) 
what (*) i'm looking,  for (*).  if i'm (*) going 
to buy (*).  like (*) a phone or (*) computer.  i 
would definitely,  choose big ones 
(*).  because (%).  the (%).  quality (*) of the 
product (%).  is more (*) reliable,  for sure (*)" 
 
(Note: Simplified ToBI tone indices are used. 
Only the final tone index for each word is 
considered.) 

LLMD 0.593 0.604 0.353 "Prosody_annotated_text": 
"<Sequence of ASR-
recognized words with 
prosodic labels. '*' indicates 
a pitch accent, '--' indicates 
a phrase accent, and '%' 
indicates a phrase 
boundary. Labels appear in 
parentheses after the 
corresponding word." 

"depends (--,%).... i mean it depends (*).... on 
(*) what (*) i'm looking (*).. for (*).... if i'm (*) 
going to buy (*).... like (*) a phone or (*) 
computer (*).... i would definitely (*).. choose 
big ones (*).... because (--,%).... the (--,%).... 
quality (*) of the product (--,%).... is more (*) 
reliable (*)... for sure (*)" 
 
(Note: Simplified ToBI tone indices are used. 
Break index information is represented by 
the number of dots, with more dots ("....") 
indicating a longer break.) 

LLME 0.539 0.680 0.3043 "Transcript_prosody": 
"<Sequence of ASR 
recognized word with 
prosody information.>" 

"depends ....i mean it depends ....on what i'm 
looking ..for ....if i'm going to buy ....like a 
phone or computer ....i would definitely ..choose 
big ones ....because ....the ....quality of the 
product ....is more reliable ...for sure" 

 
Table 9: LLM performance in the presence of textual prosody descriptions. The Prompt column displays the
additional instructions given to the LLM, beyond the standard prompt shown in Figure 4. The Textual Description
of Prosody column illustrates an example input provided to the LLM.
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