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Abstract

Automatic pronunciation assessment is typi-
cally performed by acoustic models trained on
audio-score pairs. Although effective, these
systems provide only numerical scores, with-
out the information needed to help learners un-
derstand their errors. Meanwhile, large lan-
guage models (LLMs) have proven effective
in supporting language learning, but their po-
tential for assessing pronunciation remains un-
explored. In this work, we introduce TextPA,
a zero-shot, Textual description-based Pronun-
ciation Assessment approach. TextPA utilizes
human-readable representations of speech sig-
nals, which are fed into an LLM to assess pro-
nunciation accuracy and fluency, while also
providing reasoning behind the assigned scores.
Finally, a phoneme sequence match scoring
method is used to refine the accuracy scores.
Our work highlights a previously overlooked
direction for pronunciation assessment. Instead
of relying on supervised training with audio-
score examples, we exploit the rich pronun-
ciation knowledge embedded in written text.
Experimental results show that our approach
is both cost-efficient and competitive in perfor-
mance. Furthermore, TextPA significantly im-
proves the performance of conventional audio-
score-trained models on out-of-domain data by
offering a complementary perspective.

1 Introduction

Automatic pronunciation assessment offers an alter-
native to traditional language instruction by provid-
ing learners with accessible, scalable, and timely
feedback on their speaking abilities. Most prior
work in this area relies on supervised learning: col-
lecting speech recordings annotated with pronun-
ciation scores from human instructors and training
acoustic models to assess proficiency scores (Chen
et al., 2024; Gong et al., 2022). Although effec-
tive, models trained on audio-score pairs provide
only numerical scores, offering little insight into

why a particular score was assigned. Collecting
more informative and descriptive feedback, such
as detailed comments from human raters, can be
time-consuming and expensive.

Recently, Large Language Models (LLMs) have
gained popularity for their ability to generate nat-
ural, context-aware responses. We propose that
this generative capability can be leveraged to pro-
duce explainable feedback in pronunciation assess-
ment, going beyond simple scoring. LLMs have
also demonstrated the potential to provide valu-
able insights into language learning (C Meniado,
2023). Most studies focus on using LLMs in writ-
ing tasks (Lo et al., 2024). However, LLMs also
capture knowledge of language speaking, as hu-
mans have documented their knowledge about pro-
nunciation in written form to facilitate sharing and
teaching. Also, previous studies have shown that
LLMs, such as GPT, have the potential to interpret
textual descriptions of speech signals. In (Wang
et al., 2023), researchers wrote the pause durations
in a sentence — e.g., “it (<10 ms) is (<10 ms) noth-
ing (10 ms—50 ms) like (<10 ms) this,” — and put
the sentence into GPT to assess whether the pauses
are correct. However, this study focused only on
detecting inappropriate pauses using duration in-
formation, without exploring the ability of LLMs
to interpret other key dimensions of pronunciation,
such as articulation or intonation.

To bridge the gap between the textual under-
standing of LLMs and the physical acoustic signal,
audio-language models (ALMs) (Elizalde et al.,
2023; Tang et al., 20234; Chu et al., 2023) have
emerged. ALMs integrate audio and text by en-
coding audio into audio tokens, which are then
processed by the LLM with text tokens. How-
ever, most open-source ALMs are pre-trained on
audio captioning or speech recognition datasets
and show limited ability to assess speech without
fine-tuning (Deshmukh et al., 2024; Wang et al.,
2025b). Also, due to computational constraints,



these studies use smaller LLMs (e.g., 7B or 13B
Llama), limiting their ability to fully leverage LLM
capabilities. Closed-source large ALMs such as
GPT-audio and Gemini-audio have demonstrated
the potential for pronunciation assessment in zero-
shot settings (Wang et al., 2025a), but large ALMs
are costly to operate with an audio input. Since
audio tokens are much more expensive than text
tokens! and the number of audio tokens generated
from a speech signal can be much greater than the
number of text tokens in its corresponding tran-
script, using a large ALM with audio inputs is con-
siderably more expensive than using LLM with text
inputs.

We explore an alternative method to bridge the
gap between LL.M’s textual knowledge and phys-
ical speech signals. Instead of relying on audio
tokens, our method uses the existing capabilities
of LLMs by selecting text-based acoustic descrip-
tors common in written text. Pre-trained acoustic
models are used to generate these, including tran-
scripts, phoneme sequences (in both International
Phonetic Alphabet (IPA) and CMU Pronouncing
Dictionary (CMU) formats), and pause durations.
The descriptors are provided as input to LLMs for
pronunciation assessment. We incorporate a simi-
larity score between the recognized IPA sequence
and the transcript-mapped canonical IPA sequence
to improve assessment of pronunciation accuracy.

Our contributions are: 1) We propose TextPA,
a zero-shot pronunciation assessment model that
uses textual descriptions of speech signals; 2)
Our method produces interpretable and explainable
feedback, unlike conventional pronunciation assess-
ment systems that yield only numeric scores and
incorporating TextPA enhances the performance
of an audio-score-trained model on out-of-domain
data; 3) Compared to large ALMs, our approach
significantly reduces API costs while delivering
competitive or superior assessment performance.

2 TextPA

To assess English pronunciation in terms of ac-
curacy and fluency. Textual acoustic cues are ex-
tracted using a set of pre-trained models: the tran-
script is obtained from an automatic speech recog-
nition (ASR) model; pause information and the
recognized CMU sequence are derived from a pho-
netic aligner; and the IPA phoneme sequence is gen-

"For example, the OpenAl GPT-4o-mini-audio model

charges $10.00 per 1M audio tokens, compared to $0.15 per
1M text tokens (as of April 2025).

erated using a phoneme recognition model. These
textual representations are then provided as input
to an LLM, which is prompted to assess the pro-
nunciation and produce both accuracy and fluency
scores, along with the reasoning behind its evalu-
ations. Lastly, we introduce IPA match scoring to
further refine the accuracy score. Figure 1 presents
an overview of this TextPA framework. Our ap-
proach operates in a zero-shot setting, relying only
on existing pre-trained acoustic models and LLMs,
and does not require any audio-score pronunciation
data.

2.1 Textual Acoustic Cues for LLM Input
2.1.1 Transcript

A transcript lacking semantic coherence may result
from inaccurate recognition due to poor pronunci-
ation. Repeated words within a sequence or filler
words such as “hmm,” can indicate a lack of flu-
ency. In Figure 2, the speaker is told to say “his
head hurts even worse,” but their pronunciation
is highly inaccurate. Except for "His.", all other
words received only 3 out of /0 points. Due to poor
pronunciation and lack of fluency, the ASR model
produced an inaccurate transcript (i.e., “His hand
hands very well”) which is semantically incoher-
ent, signaling low pronunciation proficiency for the
LLM, as reflected in its reasoning. However, as the
ASR model is designed to recognize words rather
than analyze pronunciation, it may automatically
correct inaccurately pronounced words to produce
a semantically coherent sentence. For example, in
Figure 3, the speaker is instructed to say “maybe we
should get some cake” but mispronounced “cake.”
Although the pronunciation is inaccurate, the ASR
transcript (“maybe we should get some cards,”) is
still semantically reasonable. As a result, using the
transcript alone provides limited insight into the
finer details of articulation. To address this, we
incorporate the IPA and CMU phoneme sequences
that explicitly represent spoken sounds.

2.1.2 Recognized IPA and CMU Phoneme
Sequence

IPA, widely used in linguistics, dictionaries, and
language education materials, is a standardized
phonetic notation system that represents the sounds
of spoken language using a consistent set of sym-
bols. Each symbol corresponds to a specific speech
sound, providing a one-to-one mapping between
sound and notation. The CMU phoneme sequence
is a phonetic transcription format based on the
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: i canonical) [PA
Speech Automatic speech Transcript Word to ( )
Peecl recognition maybe we should get some cards IPA merbi:wi: fod
signa K mapping getsamkaxdz
. Phonemes (Recognized) CMU
. Phonetic aligner
R e i (CMU-based) M EH M B IY W IY SH UH D (0.12s pause)
GEHTS AHM (0.21s pause) K AH T
SRR Ra ity . Phonemes (Recognized) IPA > IPA match
(IPA'based) membiwi:fuodgessamka:t I scoring
norm
You are an expert evaluator of English pronunciation. Assess the accuracy and fluency of the given text input on a scale of 1 to 5,
with higher scores indicating better performance. A score of 5 represents native-speaker-level proficiency.
Input format:
{“""’i‘:ani:::l": "<Recognized ASR sentence>", Accuracy — 10rm #
"Phonemes_CMU": "<Recognized CMU pronouncing phoneme sequence, with (time.s pause) indicating pauses in speech.>", (LLM)
"Phonemes_[PA": "<Recognized IPA pronouncing phoneme sequence.>” }
Task: Return a dictionary with the following format:
{"A " <th t y score>,
“Fluency™ <the asesement fuency seoreo. Accuracy
"Reasoning": <detailed reasoning for the assigned score>}
Note: Do not include any other text other than the json object.
nput: Fluency
Transcript: [ maybe we should get some cards | @ / *
s> Phonemes CMU: [ M EH M B1Y W 1Y SH UH D (0,125 pause) G EH TS AH M (0215 pause) K AH T | Reasoning
Phonemes IPA: | membiwifudgessamkait |

Figure 1: An overview of TextPA.

Carnegie Mellon University Pronouncing Dictio-
nary (CMUdict). Unlike IPA, which is universal
in language and more fine-grained, CMU uses a
simplified set of phonemes tailored for American
English, which is widely used in speech process-
ing applications due to its compatibility with ASR
systems and phoneme-based models. Because both
representations are widely used, LLMs trained on
extensive text corpora have encountered and in-
ternalized the mapping between IPA and CMU
phoneme annotations and the word. For example,
in Case Study B (Figure 3), by comparing the rec-
ognized IPA and CMU sequences, the LLM can
identify that the word “cards” may have been mis-
pronounced and can leverage this information to
assess pronunciation accuracy. It is able to align
transcript words with the corresponding phoneme
sequence, even when word boundaries are not ex-
plicitly marked. We also embed pause information
from the phonetic aligner into the recognized CMU
phoneme sequence. Pauses are annotated in an eas-
ily interpretable format, e.g. “D (0.12s pause) G”
indicates a 0.12-second pause between the phones
“D” and “G”. As shown in Case Study B (Fig-
ure 3), the LLM leverages this pause information
when reasoning about the speaker’s fluency.

2.2 IPA Match Scoring

To assess pronunciation, the LLM internally
maps each word in the transcript to its canonical
phoneme sequence and compares it with the pro-
vided recognized phoneme sequence. Although

LLMs are capable of this, as shown in Case Study
B (Figure 3) where the model correctly identifies
the mispronunciation of the word “cards”, they
may still overlook some errors. For example, in the
same case, a discrepancy is observed between the
canonical phoneme sequence for the word “maybe”
(merbir /M EY B 1Y) and the recognized se-
quence (membi/M EH M B 1Y), indicating
inaccurate pronunciation. Although the human
annotation assigns a score of 10 out of 10 to the
pronunciation of “maybe”, our manual inspection
suggests that the word is not clearly articulated.
However, the LLM does not reflect this error in its
reasoning.

To further refine accuracy assessment, we in-
troduce IPA match scoring, which measures the
similarity between the recognized and canonical
phoneme sequences and uses this as an indicator
of pronunciation accuracy.” To perform IPA match
scoring, the transcript is first mapped to its canoni-
cal IPA phoneme sequence using a pronunciation
dictionary. We then compute the similarity be-
tween the transcript-mapped and the recognized
IPA sequences using the Smith-Waterman algo-
rithm (Smith et al., 1981). This algorithm is a
dynamic programming method originally devel-
oped for local alignment of biological sequences
such as DNA or proteins. It identifies the most
similar subsequences between two inputs, making

*We use IPA instead of CMU because IPA offers more
fine-grained phonetic detail. In addition, our empirical results
suggest that match scoring using IPA consistently outperforms
scoring with CMU phonemes.



Case study A

Ground-truth his head hurts even worse
(Human (10, 3, 3, 3, 3,)
annotation)
LLM input
Transcript his hand hands very well
Phonemes HH IH Z HH AE N D HH AE N
CMU D Z (0.05s pause) ER N EH R TH
IYRIHIY AHL
Phonemes hizhendhandsmexiir
IPA

| Mapped IPA | hizhendhaendzveriwel

LLM reasoning

The accuracy is low due to several mispronunciations
and inaccuracies in the phoneme recognition. "very
well" is completely different from "ER N EH R
IHIYRIHIY AHL" and "meaiar".

The word "hands" is repeated and there's a pause.
The fluency is slightly affected by the pause and the
unnatural sequence of words.

Figure 2: Case study A. Due to the inaccurate pro-
nunciation, the ASR model produced unnatural word
sequences, which in turn signaled to the LLM that the
pronunciation was not fluent.

it well-suited for phoneme sequence comparison,
which consists of subsequences representing differ-
ent words. Since the [IPA-matched scores and the
LLM-generated accuracy scores operate on differ-
ent scales, we apply min-max normalization across
the test set to align them within a common range.
The final accuracy score is then calculated as the av-
erage of the normalized Smith-Waterman similarity
and the normalized LLM-generated score.

3 Experimental Setup

3.1 Data and Evaluation Metric

We evaluated TextPA on the open-source Spee-
chocean762 (Zhang et al., 2021) and Mul-
tiPA (Chen et al., 2024) datasets >, both of which
focus on English speech produced by native Man-
darin speakers. The Speechocean762 (abbreviated
as Speechocean) dataset consists of 5,000 utter-
ances spoken by 250 speakers, with annotations at
the sentence, word, and phoneme levels. In this
study, we focus on sentence-level accuracy, fluency,
and prosody. The utterances in Speechocean are
scripted. Participants were instructed to read prede-
fined sentences, making the ground-truth transcript

3License: Attribution 4.0 International (CC BY 4.0)

Ground-truth
(Human
annotation)

LLM input

maybe we should get some cake
(40, 10, 10, 10, 10, 3,

*incorrect

Transcript maybe we should get some cards
Phonemes M EH M B IY W IY SH UH D
CMU (0.12s pause) G EH T S AH M
(0.21s pause) K AH T
Phonemes membiwi:fudgessamk
IPA a:t
Mapped [IPA | mertbi:wi:fudgetsam k

aadz

LLM reasoning

Accuracy: The pronunciation is generally accurate,
with most phonemes being correctly produced. The
vowel in 'cards' is slightly off. It appears to be
truncated to 'cot' sound rather than 'cards’. Still
quite understandable.

Fluency: The presence of pauses affects the
fluency score. (0.12s) is acceptable, (0.21s) pause
in a short sentence is a bit long. The pace is
slightly uneven overall. More natural speech would
exhibit smoother transitions between words.

Figure 3: Case study B. The transcript is semantically
reasonable despite inaccurate pronunciation. To address
this, the mismatch between the recognized phoneme se-
quence and the transcript provides the LLM with insight
into potential articulation inaccuracies. The mapped
IPA (i.e., the canonical IPA of the transcript) is shown
for reference and is not provided as input to the LLM.

available. However, our method operates without
the need for ground-truth information. Most sen-
tences in Speechocean are short, as shown in Fig-
ure 1, 2, and 3, with corresponding audio dura-
tions ranging from 2 to 20 seconds. Since TextPA
requires no training, we used only the Speechocean
test set, which contains 2,500 utterances.

The MultiPA data contains 50 audio clips, each
ranging from 10 to 20 seconds in duration, col-
lected from ~20 anonymous users interacting with
a dialogue-based chatbot. Unlike Speechocean,
where speakers are asked to read predefined sen-
tences, MultiPA data captures open-ended re-
sponses, allowing learners to speak freely or answer
questions. This allows for a more authentic assess-
ment of learners’ speaking abilities. Table 1 shows
example transcriptions from both datasets. We use
the Pearson correlation coefficient (PCC) as the
main evaluation metric since it has often been used
in prior studies and provides better interpretability



Speechocean | Two, four, seven.

It was good for me.

MultiPA  |I'm an active person and I enjoy playing a

data variety of sports. One of my favorite
sports to play is basketball as it is a great
way to stay fit and socialize with friends
at the same time.

I often go to the zoo. I think the zoo is a
very interesting place. And I go, I went to
the zoo once a week now.

Table 1: Example transcriptions from Speechocean
and MultiPA. Speechocean consists of relatively short,
scripted utterances from read-aloud tasks, whereas Mul-
tiPA data captures open-ended, conversational speech.

when comparing performances on different dataset.

3.2 Implementation Details

We use Whisper (Radford et al., 2023) (large-v3-
en) for transcription, the model from (Xu et al.,
2021)* for IPA sequence, Charsiu (Zhu et al., 2022)
predictive aligner for CMU sequence, and Phone-
mize (Bernard and Titeux, 2021)° for word-to-IPA
mapping. Acoustic models were run on an NVIDIA
RTX 4500 GPU. The LLM uses default API set-
tings, and results are from a single run.

4 Results

4.1 Performance on Free-speech

Table 2 shows the performance on MultiPA data.
We compare TextPA with different LLM back-ends.
Because TextPA (gpt-40-mini) performs better than
the TextPA (gemini-2.0-flash), we chose to run
GPT-40-mini-audio to compare the performance.
Results suggest that the proposed TextPA outper-
forms GPT-4o0-mini-audio in assessing pronuncia-
tion, achieving better performance in both accuracy
and fluency. We also compare performance with
the MultiPA model (Chen et al., 2024), an acoustic
model trained on Speechocean. Results show that
the proposed TextPA achieves higher accuracy and
provides competitive fluency assessment, showing
the effectiveness of TextPA in a zero-shot setting.
We evaluate the effectiveness of combining the
MultiPA and TextPA models. To account for differ-
ences in the scale of their prediction scores, we first
apply min-max normalization to each model’s out-
puts. The final prediction is obtained by averaging
the normalized scores. Despite the simplicity of
*https://huggingface.co/facebook/

wav2vec2-1v-60-espeak-cv-ft
SEspeakBackend("en-us")

this fusion strategy, the combined model achieves
notable performance improvement over using ei-
ther model alone. This improvement is likely due
to the distinct sources of information. MultiPA is
trained on paired audio-score data, learning directly
from acoustic examples, whereas TextPA operates
solely on text and leverages prior knowledge about
pronunciation assessment. Differing approaches
offer diverse perspectives, enabling the combined
system to achieve improved performance.

Due to the limited amount of paired audio-score
pronunciation data, MultiPA may have difficulty ac-
curately assessing words that were not encountered
during training. In contrast, TextPA has access to a
much broader vocabulary, leading to higher perfor-
mance on accuracy assessment. However, because
MultiPA analyzes raw audio recordings, it can cap-
ture acoustic cues such as detailed phone-level du-
rations or pitch variations. These cues are typically
not represented in written descriptions or are dif-
ficult to capture accurately in text, making them
challenging for LLMs to interpret. In fact, we also
explore the LLM’s ability to assess prosody using
ToBI annotations (Beckman and Hirschberg, 1994)
which offer a text-based representation of tonal pat-
terns and phrase boundaries. However, the LLM
appears to struggle with assessing prosody by ac-
curately interpreting these annotations, even when
given explicit instructions (see the Appendix B for
details). In essence, the two approaches provide
complementary advantages on the assessment task,
and combining them could be beneficial by lever-
aging the strengths of both.

Accuracy | Fluency
TextPA 0.697 | 0557
(gemini-2.0-flash)
TextPA 0728 | 0.650
(gpt-40-mini)
GPT-40-mini-audio 0.674 0.648
MultiPA model 0.618 0.683
MultiPA 1
uliPAmodel+ 1 260 | 0.784
TextPA (gpt-40-mini)

Table 2: Model performance on MultiPA data. Note that
MultiPA model was trained on Speechocean.

4.2 Performance on Scripted Utterances

Table 3 shows the performance on Speechocean.
We first compare the performance of TextPA
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using different LLM back-ends. Results indi-
cate that gemini-2.0-flash outperforms gpt-40-mini;
therefore, we conduct another experiment for the
Gemini-2.0-flash-audio in our performance com-
parison. In contrast to its strong performance on the
MultiPA dataset, TextPA performs relatively poorly
on Speechocean. This discrepancy might arise
from fundamental differences between the datasets.
Speechocean consists of shorter, more constrained
utterances (as shown in Table 1) which offer lim-
ited phonetic and semantic variation. Moreover,
Speechocean prompts students to repeat predefined
sentences, unlike the MultiPA data, which pro-
duces free-form speech. As a result, both the pause
cues between words and the semantic content of
the transcripts offer weaker indicators of language
proficiency, thereby reducing the effectiveness of
TextPA. These dataset differences may also explain
the performance inconsistency between Gemini
and GPT across the two datasets. Nevertheless,
TextPA remains competitive on Speechocean. Note
that TextPA relies solely on text tokens, whereas
Gemini-2.0-flash-audio uses text tokens for instruc-
tions and audio tokens for input speech signals. ¢
We also include in-domain models as references.
Since TextPA is a zero-shot approach without us-
ing training data, the in-domain models naturally
perform better. Directly combining the predictions
as done with MultiPA data does not lead to im-
provements for the in-domain setting due to the
performance gap. Further investigation is needed to
explore more effective ways of leveraging TextPA
for in-domain models.

4.3 Ablation Study on Textual Descriptions of
Speech Signals

We evaluate the performance of accuracy scor-
ing based on phoneme sequence matching. Our
findings demonstrate that IPA match scoring is
a straightforward yet highly effective method for
assessing pronunciation accuracy. We also in-
vestigated the performance of CMU match scor-
ing. Similar to IPA match scoring, the words in
the transcript are mapped to CMU labels using
the dictionary, and then compared with the recog-
nized CMU sequence through normalized Smith-
Waterman similarity scores. However, the results
indicate that the CMU sequence is less effective

SThe cost of gemini-2.0-flash is 0.1 per 1M text tokens and
$0.7 per 1M audio tokens, making Gemini-2.0-flash-audio
approximately 3.5 times more expensive in API calls than
running TextPA (Gemini-2.0-flash) on the Speechocean.

’ ‘ Accuracy | Fluency

Zero-shot
TextPA 0.507 | 0.466
(gpt-4o-mini)
TextPA 0532 | 0557
(gemini-2.0-flash)
| Gemini-2.0-flash-audio | 0.562 | 0.556
In-domain
(Lin and Wang, 2022) 0.72 -
(Liu et al., 2023b) - 0.795
MultiPA model 0.705 0.772

Table 3: Model performance on Speechocean.

for accuracy assessment compared to the IPA se-
quence. This difference comes from the higher
level of detail in the pronunciation representation
of the IPA, which contains more than 107 sylla-
ble letters, while the CMU set contains only 39
phonemes.

We also performed an ablation study to deter-
mine which textual descriptions of acoustic cues
are most effective for language models in pronun-
ciation assessment. When using an LLM, the tran-
script alone can offer insights. Augmenting the
input with recognized IPA sequences improves per-
formance, particularly in accuracy, as the LLM can
compare word transcriptions with their phonetic
transcriptions to better identify mispronunciations.
Adding CMU sequences alongside the transcript
helps to enhance both accuracy and fluency as well:
accuracy improves for similar reasons as with IPA,
while fluency benefits from the pause information
encoded in CMU sequences. Overall, combining
the transcript, CMU, and IPA sequences leads to
the best performance, with IPA match scoring pro-
viding additional boosts in accuracy.

4.4 TImpact of ASR Transcription Quality

Transcripts play a crucial role in TextPA. To ex-
amine the affect of ASR model quality (i.e., tran-
script quality), we compared LLM-based assess-
ment using transcripts generated by two Whisper
variants: large-v3-en (denoted as large-en) and
tiny. The large-en model, with 1550M parame-
ters, is English-only and generates higher-quality
transcripts that are more robust to inaccurate pro-
nunciation. In contrast, the tiny model, with only
39M parameters and multilingual training, is more
likely to produce transcription errors or misclassify



MultiPA data
Accuracy | Fluency
TextPA 0.728 | 0.650
(gpt-40-mini)

LLM: all 0.643 0.650
LLM: trans.+cmu 0.491 0.485
LLM: trans.+ipa 0.452 0.410
LLM: transcript 0.404 0.432
IPA match scoring 0.653 -

Speechocean
Accuracy | Fluency
TextPA 0.532 | 0557
(gemini-2.0-flash)

LLM: all 0.456 0.557
LLM: trans.4+cmu 0.427 0.553
LLM: trans.+ipa 0.448 0.458
LLM: transcript 0.313 0.310
IPA match scoring 0.507 -

Table 4: Ablation study of text-based acoustic cues. We
selected the LLM with the best performance on each
dataset as the representative model: gpt-4o-mini for the
MultiPA data and gemini-2.0-flash for the Speechocean
data. LLM: transcript uses only the transcript as input.
LLM: trans.+ ipa and trans.+ cmu add IPA or CMU
sequences, respectively. LLM: all combines all three
inputs: transcript, IPA, and CMU. Note that the fluency
scores for LLM: all and TextPA are identical, as IPA
score matching is only used to refine accuracy.

English as a different language when pronunciation
is inaccurate.

As shown in Table 6, when transcripts alone are
used as input to the LLM, tiny yields better assess-
ment results than large-en. This observation can
be illustrated through an analogy: using large-en
is like speaking to a listener with excellent English
comprehension — they can understand you even if
your pronunciation is poor. In contrast, the tiny
model resembles a listener with limited English
ability, who can only understand clearly articulated
speech. Whether a person with strong English lis-
tening comprehension (i.e., large-en) can under-
stand you provides less insight into your pronunci-
ation. In contrast, if people with weaker listening
ability (i.e., tiny) can understand you easily, it indi-
cates that your pronunciation is good.

Although the transcripts from tiny models per-
form better on their own, the large-en model is
more effective within the TextPA framework. In
TextPA, we incorporate the IPA and CMU se-
quences along with the transcript. Inaccurate pro-
nunciation can lead to unnatural IPA and CMU se-
quences, offering similar insights to the transcript
of tiny model. In addition, because the transcript
serve as a baseline for comparison, excessive ASR
errors introduce noise that reduces reliability. Over-
all, we believe that a stronger ASR model, such
as large-en, is the better choice within the TextPA
structure.

Accuracy Fluency
large-en | tiny | large-en | tiny
MultiPA data
LEM: all 0.643 | 0569 | 0.650 | 0.546
(gpt-40-mini)
LLM: transcript 0.404 | 0.556 | 0.432 | 0.442
Speechocean
LLM: all 0456 | 0.481 | 0.557 | 0523
(gemini-2.0-flash)
LLM: transcript 0.313 | 0.409 | 0310 | 0.431

Table 5: Impact of ASR transcription quality.

4.5 Analysis of Basic vs. Detailed Scoring
Guidelines

We investigated the impact of providing different in-
structions to the LLM, including basic and detailed
scoring guidelines. The basic scoring guideline
instructs the LLM a scoring range (1-5), where a
higher score indicates better pronunciation, with
a score of 5 reflecting native-speaker proficiency.
The detailed scoring guideline, on the other hand,
provides the same detailed annotation guidelines
used by human annotators. The detailed guidelines
define the language proficiency for each score level.
For example, for MultiPA data, an accuracy score
of 5 means “Excellent: The overall pronunciation
is nearly perfect with accurate articulation of all
sounds,” while a score of 4 means “Good: Minor
pronunciation errors may be present, but overall,
the pronunciation is highly accurate and easily un-
derstandable”, and so on. Results suggest that the
effectiveness is dataset-dependent, possibly influ-
enced by how the guidelines are written. However,
incorporating a detailed scoring guideline has the
potential to reduce performance, while also length-
ening the input text prompt and increasing model
operating costs.



Accuracy Fluency
Basic | Detailed | Basic | Detailed
MultiPA data
LEM:all g 643 | 0500 | 0.650 | 0.543
(gpt-40-mini)
LLM: all 0.554 | 0596 | 0.556 | 0.499
(gemini-2.0-flash)
Speechocean
LLM:all 1 o400 | 0474 | 0466 | 0.544
(gpt-4o-mini)
LLM: all 0.456 | 0470 | 0.557 | 0.561
(gemini-2.0-flash)

Table 6: Performance with basic or detailed guidelines.

5 Related Work

5.1 Speech Pronunciation Assessment

Speech pronunciation assessment models can be
categorized into closed- or open-response scenarios.
In closed-response settings, L2 learners read a pre-
determined sentence, which serves as the ground-
truth transcript for the model to guide the assess-
ment. A common approach in this scenario ex-
tracted Goodness of Pronunciation (GoP) features
to train an acoustic model (Gong et al., 2022; Do
et al., 2023). In addition to GoP, various other
features have been explored for model training, in-
cluding acoustic embeddings from self-supervised
learning (SSL) models, prosodic features such as
duration and energy, and transcript-based features
such as word embeddings (Chao et al., 2022; Yan
et al., 2025). In (Wu et al., 2025), researchers fine-
tuned an LLM using audio tokens and text prompts
to provide feedback on phone errors. However,
the performance of models trained with ground-
truth transcripts may degrade significantly when
such transcripts are unavailable. On the other hand,
open-response scenarios allow learners to speak
freely or respond to prompts, enabling a more
authentic evaluation of their pronunciation skills.
Models designed for open-response tasks do not
rely on ground-truth transcripts. Instead, they lever-
age ASR outputs or avoid ASR entirely (Lin and
Wang, 2021; Kim et al., 2022; Chen et al., 2024;
Liu et al., 2023b). Most prior studies rely on audio-
score pair data to train acoustic models for pronun-
ciation assessment, whereas zero-shot approaches
have been largely unexplored. In (Liu et al., 2023a),
researchers scored pronunciation based on the num-
ber of incorrectly recovered tokens from an SSL
model. However, like other previous studies, it
provided only numerical feedback instead of more

interpretable or explainable assessments.

5.2 LLM for Language Learning

LLMs have had a significant impact on education,
with many studies exploring how tools like Chat-
GPT can support language learning (Lo et al., 2024;
C Meniado, 2023). These models have proven
effective in helping learners identify and correct
writing errors, improve the quality of their writ-
ing (Barrot, 2023), and receive automated feed-
back (Mizumoto and Eguchi, 2023). Few studies
have focused on using LLMs to support speaking
skills. (Kim and Park, 2023) used ChatGPT as a
conversational partner in role-playing tasks, while
(Lee et al., 2023) used it to generate topics for oral
practice. A study by (Wang et al., 2023) used Chat-
GPT to assess how well ESL learners placed pauses
in their speech. However, the potential of LLMs to
support other aspects of oral language skills, such
as pronunciation accuracy and fluency as in TextPA,
remains under-explored.

6 Conclusion

We propose TextPA, a zero-shot pronunciation as-
sessment method that leverages interpretable, tex-
tual representations of speech signals to assess pro-
nunciation accuracy and fluency. These descrip-
tions include transcripts, IPA, and CMU phoneme
sequences, collectively reflecting pronunciation
characteristics. Specifically, semantically unnat-
ural transcripts may signal pronunciation issues,
mismatches between canonical and recognized
phoneme sequences reflect articulation errors, and
inappropriate pauses embedded in CMU sequences
reveal disfluencies. Experimental results demon-
strate that LLMs can effectively leverage textual
description of speech to assess different aspects of
pronunciation. Unlike conventional models trained
on audio-score pairs, TextPA operates without su-
pervision. TextPA focuses on human-readable rep-
resentations and prior knowledge of pronunciation,
aiming to provide interpretable and explainable
feedback that go beyond a score. We hope this work
offers a new perspective on pronunciation assess-
ment. Building on our initial exploration, future re-
search could further develop methods to more effec-
tively integrate TextPA with audio-trained models,
combining their strengths to improve assessment
accuracy and feedback quality for learners.



Limitations

While prosody is an important aspect of pronun-
ciation, we found it difficult to effectively assess
using our text-based approach. Compared to accu-
racy and fluency, prosodic features such as rhythm
and intonation are harder to describe precisely in
written form, making them less suitable for meth-
ods that rely solely on textual representations. As
a result, the LLM struggled to reliably evaluate
prosody without compromising assessment perfor-
mance on accuracy and fluency. In addition, both
the LLM and the ASR system introduce variabil-
ity across runs, leading to inconsistent assessment
results. In addition, budget constraints limited our
ability to use the most advanced LLMs or to eval-
uate large ALMs across all settings. Finally, al-
though LLM’s reasoning appeared reasonable in
our case study, no established metric exists to au-
tomatically verify its correctness, and exhaustive
manual evaluation of every sample is beyond the
scope of this study. These limitations suggest fu-
ture work in prosody modeling, dataset expansion,
and automatic reasoning evaluation.

Although certain words may have multiple valid
pronunciations depending on the speaker’s accent,
our study did not consider accent variation, since
the majority of the data involved attempts to mimic
General American English. Consequently, a po-
tential risk of this study is an overemphasis on a
single accent. While many English learners aim to
emulate native speakers, the more practical goal in
everyday communication is to express one’s opin-
ions clearly and be understood. This highlights
the importance of balancing pronunciation assess-
ment systems between intelligibility and nativeness.
When such systems overemphasize native-like pro-
nunciation, which is often tied to a specific ac-
cent, they might erroneously mark understandable
speech as “wrong.” Failing to strike this balance
can marginalize learners’ linguistic identities and
encourage unnecessary accent reduction at the ex-
pense of communicative effectiveness. In addition,
an overly narrow model can reinforce the idea that
only a single variety of English is valid, thereby
undermining the rich diversity of global English
accents.
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A Prompt

Figure 4 shows the TextPA prompt for LLM; ALM
prompt follows a similar format, but does not in-
clude input format instructions. We observed that
Gemini is more likely to return results that do not
match the required format, whereas GPT tends to
produce outputs that can be directly saved as JSON
files. If the model fails to generate a correctly for-
matted output for a given test sample, we re-run it
until a valid result is obtained.

B Prosody assessment

We investigate whether LLM could assess prosody
from textual descriptions. We only used the Mul-
tiPA data for this part of the study, as most sen-
tences in Speechocean are short and do not contain
sufficient prosodic variation for a reliable assess-
ment. First, we prompted the LLM to evaluate
prosody in addition to accuracy and fluency. As
shown in Table 7, the model performs worse in
terms of prosody assessment compared to fluency
and accuracy. In addition, introducing prosody as
an additional assessment criterion leads to a de-
crease in the model’s performance in both accuracy
and fluency.

We explore textual descriptions of prosody us-
ing annotations from the ToBI (Tones and Break
Indices) system (Beckman and Hirschberg, 1994)7,

https://github.com/monikaUPF/PyToBI



You are an expert evaluator of English pronunciation.
Assess the accuracy and fluency of the given text
input on a scale of 1 to 5, with higher scores indicating
better performance. A score of 5 represents native-
speaker-level proficiency.

Input format:

{"Transcript": "<Recognized ASR sentence>",
"Phonemes_ CMU": "<Recognized CMU pronouncing
phoneme sequence, with (time.s pause) indicating
pauses in speech.>",

"Phonemes_IPA": "<Recognized IPA pronouncing
phoneme sequence.>"}

Task: Return a dictionary with the following format:
{"Accuracy": <the assessment accuracy score>,
"Fluency": <the assessment fluency score>,
"Reasoning": <detailed reasoning for the assigned
score>}

Note: Do not include any other text other than the json
object.

Input:
Figure 4: LLM prompt.
Accuracy | Fluency | Prosody
LLM:zall g 633 | 0678 i
(gpt-4o-mini)
LLM,,: all
A 10590 | 0549 | 0.243
(gpt-4o0-mini)

Table 7: LLM performance with and without prosody
assessment. LLM,,: all is LLM: all with the introduction
of prosody as an additional assessment criterion. Note
that the transcript is generated using furbo version of
Whisper, an optimized version of large-v3 that provides
faster transcription with minimal loss in accuracy. The
results indicate that furbo performs comparably to large-
v3-en. (Section 4.1)

which provides a standardized approach to annotate
intonation and phrasing patterns in spoken English.
ToBI includes two primary components: the break
index and the tone index, both of which are crucial
for understanding the prosody of speech signals.
The break index ranges from O to 4 and is defined

as follows:
0: Clear phonetic marks for clitic groups

1:  Most phrase-medial word boundaries

2: Strong disjuncture, pause or virtual
pause, no tonal marks

3: Intermediate intonation phrase bound-
ary

4: Full intonation phrase boundary

The tone index includes the following categories:
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H: High pitch in the local pitch
range

L: Low pitch in the local pitch
range

*: Pitch accent, indicating that the
word is stressed

%: The end of an intonation phrase

-or ——: A phrase’s accent

Table 9 presents a selection of examples from
our attempts to assess prosody using an LLM. The
experimental results indicate that the LLM is less
effective in assessing prosody, and requiring it to do
so leads to a decline performance in accuracy and
fluency. A possible reason for this is that prosody is
harder to capture accurately using textual descrip-
tions. Since prosody is less commonly expressed in
written form, the LLM has more difficulty leverag-
ing its inherent knowledge for prosody assessment.

C Reasoning styles of GPT and Gemini

We compare the reasoning styles from GPT-4o-
mini and Gemini-2.0-Flash models. We find that
Gemini is more likely to cite the provided CMU
and IPA phoneme sequences in its responses to sup-
port its assessment score. In contrast, GPT tends
to provide more generalized observations and is
more likely to suggest directions for improvement.
Table 8 presents example reasoning outputs from
both models given the same input.

The accuracy score of 4 reflects a strong
understanding and correct pronunciation
of most words, with only a few minor
errors in phoneme realization (e.g.,
'thought' was rendered correctly, but
some phonemes appeared less fluid). The
fluency score of 3 indicates that while the
speech is coherent, there are noticeable
pauses and slight hesitations that disrupt
the overall flow. The transitions between
phrases can be improved for a more
natural delivery. Overall, the speaker
demonstrates good pronunciation and
comprehension but could work on
smoother delivery.

gpt-
4o-
mini

The accuracy is reasonable, with some
mispronunciations, such as 'TH IH NG K'
for 'think' instead of '0 19 k', 'S OW T
CH ER N AE T R AH L' for social
network. However, most words are
understandable. The fluency is moderate.
There are several pauses which affect the
natural flow of speech. There is also some
word repetition (**ER R ER R**).

gemini
-2.0-
flash

Table 8: LLM Reasoning Comparison.



Index | Accuracy | Fluency | Prosody Prompt Textual description of prosody

LLMa 0.467 0.561 0.294 [ ToBI_sequence": "L-L% !H* L-L% L* L* H*+L L+H* L-H%
"<Recognized ToBI L+H* L* L* L-L% L* H* L* L*+H L-H%
sequence.> H*+L L* L-L% H-L% L-L% L* H* H-L% L*

L*+H LH- L*"
(Note: raw ToBI tone indices.)

LLMs 0.545 0.500 0.172 | "Prosody_annotated text": | "depends (%) imean it depends (¥, %) on (*)
"<Sequence of ASR- what (*) i'm looking (¥) for (*, %) if i'm (¥)
recognized words with going to buy (*, %) like (*) a phone or (¥*)
prosodic labels. "*' indicates | computer (*, %) 1 would definitely (*) choose
a pitch accent, and '%' big ones (*, %) because (%) the (%) quality
indicates a phrase (*) of the product (%) is more (*) reliable (*, -
boundary. Labels appear in | -) for sure (*)"
parentheses after the
corresponding word." (Note: Simplified ToBI tone indices,

including pitch accents, phrase accents, and
boundary tones, are provided along with the
corresponding words in the transcript.)

LLMc 0.494 0.617 0.231 | "Prosody_annotated_text": | "depends (%). i1 mean it depends (*). on (*)
"<Sequence of ASR- what (*) i'm looking, for (*). ifi'm (*) going
recognized words with to buy (*). like (*) a phone or (*) computer. i
prosodic labels. "*' indicates | would  definitely, choose  big ones
a pitch accent, '--' indicates | (*). because (%). the (%). quality (*) of the
a phrase accent, and '%' product (%). is more (*) reliable, for sure (*)"
indicates a phrase
boundary. Labels appear in | (Note: Simplified ToBI tone indices are used.
parentheses after the Only the final tone index for each word is
corresponding word." considered.)

LLMp 0.593 0.604 0.353 | "Prosody_annotated_text": | "depends (--,%).... i mean it depends (*).... on
"<Sequence of ASR- (*) what (*) i'm looking (*).. for (*).... if i'm (¥)
recognized words with going to buy (*).... like (*) a phone or (*)
prosodic labels. '*' indicates | computer (*).... i would definitely (*).. choose
a pitch accent, '--' indicates | big ones (¥*).... because (--,%).... the (--,%)....
a phrase accent, and '%' quality (*) of the product (--,%).... is more (¥)
indicates a phrase reliable (*)... for sure (*)"
boundary. Labels appear in
parentheses after the (Note: Simplified ToBI tone indices are used.
corresponding word." Break index information is represented by

the number of dots, with more dots ("...."")
indicating a longer break.)

LLMg 0.539 0.680 0.3043 | "Transcript_prosody": "depends ....i mean it depends ....on what i'm
"<Sequence of ASR looking ..for ....if i'm going to buy ...like a
recognized word with phone or computer ....i would definitely ..choose
prosody information.>" big ones ...because ...the ....quality of the

product ....is more reliable ...for sure"

Table 9: LLM performance in the presence of textual prosody descriptions. The Prompt column displays the
additional instructions given to the LLM, beyond the standard prompt shown in Figure 4. The Textual Description

of Prosody column illustrates an example input provided to the LLM.

12




	Introduction
	TextPA
	Textual Acoustic Cues for LLM Input
	Transcript
	Recognized IPA and CMU Phoneme Sequence

	IPA Match Scoring

	Experimental Setup
	Data and Evaluation Metric
	Implementation Details

	Results
	Performance on Free-speech
	Performance on Scripted Utterances
	Ablation Study on Textual Descriptions of Speech Signals
	Impact of ASR Transcription Quality
	Analysis of Basic vs. Detailed Scoring Guidelines

	Related Work
	Speech Pronunciation Assessment
	LLM for Language Learning

	Conclusion
	Prompt
	Prosody assessment
	Reasoning styles of GPT and Gemini

