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ABSTRACT

Alpha mining seeks to identify predictive alpha factors that generate excess re-
turns beyond the market from a vast and noisy search space; however, existing
evolution-based approaches struggle to facilitate the systematic evolution of al-
phas. Traditional methods, such as genetic programming, cannot interpret hu-
man natural-language instructions and often fail to extract valuable insights from
unsuccessful attempts, leading to low interpretability and inefficient exploration.
Analogously, without mechanisms for systematic evolution, e.g., long-term plan-
ning and reflection, existing multi-agent approaches may easily fall into repetitive
evolutionary routines, ending up with inefficient evolution. To overcome these
limitations, we introduce AlphaAgentEvo, a self-evolving Agentic Reinforce-
ment Learning (ARL) framework for alpha mining, which moves alpha mining
beyond the brittle “search–backtest–restart” cycle toward a continuous trajectory
of evolution. Instructed by a hierarchical reward function, our agent engages in
self-exploration of the search space, progressively learning basic requirements
(e.g., valid tool calls) and then harder objectives (e.g., continuous performance
improvements). Through this process, the agent acquires advanced behaviors such
as long-horizon planning and reflective reasoning, which enable it to actively re-
act to the underlying state (e.g., market regime shifting) and realize a self-evolving
agent, taking a step toward more principled and scalable alpha mining. Extensive
experiments demonstrate that AlphaAgentEvo achieves more efficient alpha evo-
lution and generates more diverse and transferable alphas, consistently surpassing
a wide range of baselines. Notably, with only 4B parameters, it outperforms LLM-
driven evolution methods configured with state-of-the-art close-source reasoning
models, highlighting the promise of ARL for next-generation alpha mining.

1 INTRODUCTION

Alpha mining, which refers to uncovering quantitative signals that generate excess returns beyond the
market, remains highly challenging due to its vast search space, high-variance feedback signals, spu-
rious correlations, and high computational cost. These issues make the process both computation-
ally intensive and prone to false discoveries, highlighting the need for more systematic approaches.
In this context, the notion of alpha evolution becomes central: instead of viewing each candidate
alpha as an independent trial, the process emphasizes progressively transforming an initial alpha
into a stronger one through multi-turn interaction that incorporates evaluative feedback, refines its
structure, and enhances its performance. This evolution-oriented perspective not only increases the
likelihood of uncovering genuinely effective alpha factors (hereafter, alphas for simplicity) but also
helps retain their internal logic and interpretability across interaction turns, offering a principled al-
ternative to ad hoc trial-and-error exploration. Yet despite this promise, existing approaches struggle
to effectively realize such systematic alpha evolution.

Traditional evolution-oriented approaches, such as Genetic Programming (GP) (Lin et al., 2019;
Schmidt & Lipson, 2010; Zhaofan et al., 2022), rely heavily on heuristic search and random muta-
tion Ren et al. (2024), without leveraging valuable insights from negative feedback, thereby missing
opportunities to learn from failures and refine alpha design. Moreover, these methods cannot inter-
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Figure 1: Comparison of evolution-oriented approaches in alpha mining.

pret their evolution process with human-readable language, which not only limits their usability but
also increases the risk of generating alphas that capture spurious correlations (Shi et al., 2025b).

Emerging Large Language Models (LLMs) (Yang et al., 2025; DeepSeek-AI et al., 2025; OpenAI,
2025) and multi-agent frameworks (Tang et al., 2025; Li et al., 2025) bring richer human instructions
but often lack mechanisms for self-evolution, such as long-term planning and reflective reasoning
from past outcomes. As a result, they tend to fall into repetitive local modifications, leading to
inefficient exploration. Consequently, current alpha mining workflows remain myopic: they search,
backtest, and restart rather than systematically evolve alphas. This gap calls for an evolution-
oriented paradigm that couples deliberate planning and reflective reasoning to refine alphas over
multi-turn trajectories.

To overcome these limitations, we introduce AlphaAgentEvo, the first self-evolving Agentic Rein-
forcement Learning (ARL) framework for alpha mining. First, AlphaAgentEvo aims to move alpha
mining beyond the brittle “search–backtest–restart” cycle toward a continuous interaction trajectory,
dubbed as evolution, encouraging progressively refined alphas by searching diverse alphas grounded
in a given seed. During the ARL process, an LLM-driven agent engages in large-scale exploration
of the alpha search space, interacting with an evaluation tool under the guidance of a hierarchical
reward structure. With this reward, the agent explicitly learns to satisfy basic requirements (e.g.,
constructing valid alphas) and then moves on to harder objectives (e.g., performance and streak
improvements). More importantly, the agent acquires advanced behaviors, such as long-horizon
planning and reflective reasoning, that enable it to actively react to the underlying state (e.g., mar-
ket regime shifting). Ultimately, AlphaAgentEvo gives rise to a self-evolving agent, taking a step
toward more principled and scalable alpha mining.

Results show that AlphaAgentEvo, at a relatively lightweight scale of 4B parameters, consis-
tently outperforms GP, multi-agent, tool-use RL, and LLM-driven evolution baselines by a sig-
nificant margin. Moreover, AlphaAgentEvo generates diverse and transferable alphas, avoiding
over-exploitation of specific patterns and showing stronger out-of-sample robustness. These results
underscore the superiority of our self-evolving ARL paradigm for evolution-oriented alpha mining.

Our key contributions are summarized as follows:

• We propose a novel framework, AlphaAgentEvo, that reformulates alpha mining from a
brittle “search–backtest–restart” loop into an evolution-oriented paradigm. To the best of
our knowledge, this is the first self-evolving agentic reinforcement learning framework for
quantitative alpha mining.

• In this paradigm, an LLM-driven agent performs multi-turn exploration of the alpha search
space under a hierarchical reward function, gradually acquiring advanced behaviors, such
as long-horizon planning and reflective reasoning, that enable it to evolve alphas across
changing market regimes, thereby overcoming performance bottlenecks in dynamic mar-
kets and realizing a self-evolving agent.

• Through extensive experiments, our method demonstrates strong evolution efficiency and
the generated alphas’ validity, diversity, and transferability, demonstrating strong general-
ization in the self-evolving agent. Remarkably, even with only 4B parameters, AlphaAgen-
tEvo surpasses strong baselines with state-of-the-art LLMs on several metrics.
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2 METHOD

2.1 PROBLEM DEFINITION

An alpha factor (or simply alpha) is a quantitative signal designed to predict future stock returns.
We consider a stock universe S = {s1, . . . , sN} over a time horizon H = {h1, . . . , hL}, with a
feature matrix X ∈ RN×L×d where d denotes the number of raw features. An alpha is a mapping
f : Xh 7→ rh+1, where Xh represents the market data observed up to and including time h and
rh+1 is the subsequent return. Beyond static alpha mining, we view alpha evolution as learning
an evolution policy instead of directly optimizing a single alpha. Let Dseed denote a distribution
over expert-designed seed alphas. For a given seed fseed ∼ Dseed, the policy π interacts with the
backtesting tool for T turns and produces evolved alphas Fπ(fseed). We evaluate each evolved
factor on two market distributions: Devo, which corresponds to the in-distribution regimes observed
during the agent’s multi-turn evolution, and Dtest, which captures out-of-distribution market regimes.
Formally, we learn the evolution policy by

π⋆ = argmax
π

Efseed∼Dseed

[
max

f∈Fπ(fseed)

(
EX∼Devos(f ;X) + λEX∼Dtests(f ;X)

)]
s.t. sim(f, fseed) ≤ δ for all f ∈ Fπ(fseed),

(1)

where s(·;X) is the performance scoring function on market features X, λ > 0 trades off in-
distribution fitness and out-of-distribution generalization, and sim(·, ·) is an AST-based structural
similarity between alphas. The constraint sim(f, fseed) ≤ δ leads the policy π to search in a local
neighborhood of each seed, producing evolved alphas that are both stronger and still interpretable,
rather than overfitting to noise via unconstrained global optimization.

2.2 SELF-EVOLVING AGENTIC REINFORCEMENT LEARNING

Existing RL-based finetuning approaches are typically designed for single-turn language modeling
or reasoning, where evaluation is per response and cross-turn coupling is weak. In contrast, alpha
evolution is inherently a multi-turn tool-in-the-loop process. To realize a self-evolving agent, we
extend GRPO (Shao et al., 2024; DeepSeek-AI et al., 2025), into an Agentic Reinforcement Learning
(ARL) formulation that directly optimizes the policy LLM in the think-propose-evaluate loop with
an external evaluation tool U .

Figure 2: The ARL framework of AlphaAgentEvo. (a) An alpha evolving trajectory. In each turn
of the trajectory, the agent (policy LLM) generates multiple tool calls (i.e., alpha proposals) after
analyzing/reflecting on previous alphas and their feedback (tool resp). (b) The multi-turn on-policy
RL training process: each evolving trajectory is assigned a reward through the reward function.
Trajectories that originate from the same seed alpha are grouped, and their rewards are jointly used
for advantage estimation and agent update.

In our formulation, each turn consists of policy-generated reasoning tokens and tool call tokens that
trigger the tool, followed by tool response tokens (tool resp in Fig.2); all are appended to the trajec-
tory, but only policy-generated tokens (indicated by Mi,t) contribute to gradients. To broaden explo-
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ration, at turn t, the policy LLM produces a set of kt parallel offspring F (t) as candidates, which are
jointly evaluated by U . Note that when generating turn t’s tokens, the policy LLM conditions on the
entire past trajectory τ1:t−1 to refine alphas, enabling reflective reasoning across previous attempts.

For each input x sampled from the dataset D, a group of trajectories T = {τ1, . . . , τG} are rolled
out by the old policy πold. Their rewards are normalized within the group to estimate their relative
advantages {Â1, . . . , ÂG} using the group average reward as a baseline, i.e., Âg =

R(τg)−µT
σT

, where
µT and σT denote the mean and standard deviation of {R(τj)}Gj=1. The optimization objective is

JGRPO(θ) = Ex∼D, T ={τ1,...,τG}∼πold

[
1

G

G∑
i=1

1∑
t Mi,t

∑
t

Mi,t min

(
πθ(τi,t | x, τi,<t,U)
πold(τi,t | x, τi,<t,U)

Âi,t,

clip
(

πθ(τi,t | x, τi,<t,U)
πold(τi,t | x, τi,<t,U)

, 1− ϵ, 1 + ϵ

)
Âi,t

)
− βDKL[πθ ∥πref]

]
,

(2)

where τi is a complete evolution trajectory, τi,t its t-th token, and πθ(·) / πold(·) are the current/old
policies conditioned on x, past tokens τi,<t, and the tool U . The mask Mi,t excludes tool-emitted
tokens from gradients, 1∑

t Mi,t
normalizes for effective length, clip(·) is ratio clipping with param-

eter ϵ, and DKL is a KL penalty to a reference policy πref with weight β.

In summary, our ARL formulation adapts GRPO from single-turn text optimization to interactive,
multi-turn alpha evolution. This enables the model to plan, analyze, and reflect throughout a long
trajectory that progressively evolves alphas beyond the heuristic “search–backtest–restart” cycle.

2.3 ALPHA EVOLUTION REWARD FUNCTION

Unlike domains such as mathematics or generic tool use, alpha mining is central to quantitative
investment but remains highly challenging due to its vast search space, noisy data with spurious
correlations, and high computational cost, making it infeasible to rely on a single scalar reward.
Moreover, the logical semantics of alphas and the need for efficient search are critical for effective
alpha mining but rarely considered in other reasoning tasks. These challenges motivate a hierarchical
reward function that enables principled alpha evolution throughout multiple turns, where AlphaA-
gentEvo integrates multiple objectives: ensuring valid alpha candidates, preventing excessive devi-
ation from the seed alpha, promoting diversity exploration, rewarding performance improvements,
and sustaining progress across turns.

Starting from an individual component, Tool Call Reward (Rtool) provides feedback on correct tool
usage and penalizes failed attempts, defined as Rtool(τ) = αsucc · Nsucc − αfail · Nfail, where Nsucc
and Nfail denote the number of successful and failed tool calls, respectively. Here, each α denotes
the corresponding weighting coefficient (e.g., αsucc). Next, for direction-aware alpha generation,
Consistency Reward (Rcons) prevents excessive deviation from the seed alpha by penalizing can-
didates whose structural similarity sim(fi, fseed) falls below a lower threshold hlow (we set to 0.1
in our experiments), i.e., Rcons(τ) =

∑
fi∈Fsucc(τ)

αcons · 1[sim(fi, fseed) > hlow], where 1[·] is an
indicator function. This serves as a soft constraint, preventing random drifts that may harm inter-
pretability. Exploration Reward (Rexpl) encourages diversified exploration by rewarding alphas
whose similarity to previously proposed ones remains low:

Rexpl(τ) =
∑

fi∈Fsucc(τ)

αexp ·
(
1− max

fj∈F<i(τ)
sim(fi, fj)

)
, (3)

where Fsucc(τ) is the set of successfully runnable offspring alphas in trajectory τ , F<i(τ) denotes
all factors proposed before fi (including the seed). The structural similarity score sim(·, ·) measured
by Abstract Syntax Tree (AST) overlap (Tang et al., 2025) is written as:

sim(fi, fj) =
|AST(fi) ∩ AST(fj)|

max(|AST(fi)|, |AST(fj)|)
. (4)

To encourage performance improvement while handling noisy metrics, Performance Reward
(Rperf) uses a logarithmic scaling αperf · log(1 + exp(s(f∗) − max(0, s(fseed))). Finally, Streak
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Reward (Rstreak) provides an additional bonus αstreak · Nstreak, where Nstreak denotes the length of
the longest sequence of progressive performance improvements within a trajectory, serving as a
booster towards efficient alpha evolution.

Totally, the hierarchical reward of a trajectory τ is

R(τ) =
min

(
Rcons(τ), Ccons

)
+ min

(
Rexpl(τ), Cexpl

)
min

(
Rtool(τ), Ctool

) + min
(
Rperf(τ), Cperf

)
· min

(
Rstreak(τ), Cstreak

)
, (5)

where each component reward Rj(τ) is capped by its corresponding Cj (e.g., Ctool) to avoid any
single term from overwhelming the total reward. The tool-use term treats each tool call as a cost,
preventing brute-force search through frequent tool calls and encouraging meaningful and efficient
alpha evolution. This hierarchical reward structure transforms the sparse and noisy feedback from
financial backtesting into dense, multi-dimensional signals. By balancing direction-aware consis-
tency and exploration (normalized by tool usage) and integrating performance with sustained im-
provement through a multiplicative term, it progressively guides the agent from basic compliance to
higher-level objectives, ultimately preventing collapse into repetitive patterns and enabling efficient
alpha evolution Wang et al. (2025).

3 EXPERIMENTS

In this section, we present the main experimental results, while we strongly encourage readers to
refer to Sec. E in the Appendix for a detailed case analysis that provides a deeper understanding
of the agent’s self-evolution process. For details on the training statistics, please refer to Sec. C; for
training configurations and the evaluation tool, please refer to Sec. D and Sec. F in the Appendix.

3.1 EXPERIMENT SETTINGS

Datasets. To systematically evaluate alpha evolution ability, we construct an expert-curated
dataset, referred to as AlphaEvo500, which serves as an alpha evolution benchmark in this study. It
consists of 350 seed alphas for training, 50 for validation, and 100 for testing, enabling a controlled
yet diverse setting for evolutionary experiments. To further assess the generalization ability, we
additionally incorporate Alpha158 (Yang et al., 2020) as an extra test set.

Backtesting settings. Backtesting is conducted on the HS300 and CSI500 markets, spanning from
January 2023 to November 2025, and covering both bearish and bullish market conditions. For
model training, only one year of market data (2023-01-01 to 2024-01-01) is used to accelerate
iterations. For evaluation, alpha evolution experiments are performed on two distinct periods: 2023-
01-01 to 2024-01-01 (bearish) and 2024-01-01 to 2025-01-01 (bullish), with test split’s alphas as
the seeds. It should be noted that no data information is disclosed from the evaluation tool or the
prompt, covering both the market and the time range. We adopt a single-factor evaluation protocol,
where the cross-sectional values of each alpha are treated as signals, without extra processing. In
each rebalancing period, we long at most the top 10% of stocks in the universe. The rebalancing
frequency is set to every 5 trading days. Unless otherwise specified, other experimental settings are
described at the beginning of each subsection. For detailed data and operators that we use in this
paper, please see Sec. G in the Appendix.

Evaluation metrics. We evaluate the capability of AlphaAgentEvo to evolve alphas by com-
puting the pass rate at the third and fifth turns, denoted as pass@3 and pass@5, respectively. For
performance measurement, we adopt the Information Ratio (IR) as s(f), which quantifies risk-
adjusted excess return. Given a seed alpha fseed with score s(fseed), a generated alpha is regarded
as successful if its score is higher than the seed and non-negative. Formally, the pass rate at turn
T is defined as:

pass@T =
1

N

N∑
j=1

1

[
max

f∈
⋃T

t=1 F(t)
s(f) > max

(
0, s(f

(j)
seed)

)]
, (6)

where N is the number of test cases, F (t) is the set of evolved alphas at turn t, and the indicator 1[·]
equals 1 if the success condition is satisfied and 0 otherwise. In addition, we report the valid ratio
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(VR), which measures the percentage of generated alphas that are syntactically valid and executable
in backtesting, reflecting the reliability of the generation process.

For alpha performance measurement, we adopt the Annualized Excess Return (AER) to quantify
the yearly excess investment return relative to the benchmark index and the Information Ratio (IR)
to measure the risk-adjusted performance, which calculates the ratio between the AER and the an-
nualized standard deviation of an alpha’s daily excess returns. With these evaluation metrics, we
can comprehensively assess an alpha’s profitability and risk-bearing capacity. We do not rely on
cross-sectional correlation-based metrics (such as information coefficient or IC), since some of the
seed alphas are designed as stock-selection signals in the form of Boolean expressions, where their
values for unselected stocks are set to NaN, making these measures unreliable.

Compared methods. We compare against four categories of baselines: (i) Genetic Programming
(GP) with (Lin et al., 2019; Schmidt & Lipson, 2010; Zhaofan et al., 2022; Patil, 2023) 4, 20, and
50 offspring per generation, representing traditional heuristic search; (ii) LLM-driven evolution-
ary frameworks, AlphaAgent (Tang et al., 2025) (multi-agent evolution) and GEPA Agrawal et al.
(2025) (reflective prompt evolution); (iii) a series of reasoning LLMs that evolve alphas via our
unified pipeline, incorporating our base models (i.e., Qwen3-1.7B and Qwen3-4B-thinking (Yang
et al., 2025)) and state-of-the-art models (GPT-5-mini (OpenAI, 2025), DeepSeek-R1 (Guo et al.,
2025)); (iv) a tool-use RL approach ToolRL Qian et al. (2025). All methods share the same back-
testing tool, training tool call budgets, and inference tool call budget of 4 offspring per turn (unless
otherwise noted), ensuring a fair comparison. We also compare multi-factor portfolio performance
with global optimization approaches Zhu & Zhu (2025); Fan & Shen (2024); Ke et al. (2017) (Sec.
B, Appendix).

3.2 ALPHA EVOLUTION PERFORMANCE

To evaluate whether AlphaAgentEvo can consistently outperform existing evolution-oriented base-
lines in terms of alpha evolution capability, we first focus on VR and the pass rate, as illustrated
previously. By evaluating on AlphaEvo500 and Alpha158 alpha libraries across two periods, we
further test the generalization ability of our approach under distinct market regimes. Note that Al-
phaAgentEvo models are trained with at most 3 turns.

Results on AlphaEvo500. Table 1 shows the results in the HS300 and CSI500 markets. While
GP’s expression system is incompatible with AlphaEvo500, we are unable to test GP here. In terms
of pass rates, Qwen3 and GPT-5-mini offer only limited improvements, and DeepSeek-R1 performs
more strongly but inconsistently. For an agentic RL baseline, ToolRL, its Pass@3 remains the
same level as GPT-5-mini, but fails to generalize to a longer horizon due to the shortcomings in
multi-turn planning. By contrast, AlphaAgentEvo achieves clear superiority: even the 1.7B version
surpasses GPT-5-mini, while the 4B model outperforms the strongest baseline GEPA and attains
the best overall results. These findings demonstrate that our self-evolving agent not only effectively
generalizes to different market regimes but also to longer evolution trajectories.

Table 1: Performance comparison on AlphaEvo500 across two markets during 2024-2025.

Method HS300 CSI500

VR Pass@3 Pass@5 VR Pass@3 Pass@5

Qwen3-1.7B (Yang et al., 2025) 0.676 0.08 0.11 0.657 0.35 0.43
Qwen3-4B-thinking (Yang et al., 2025) 0.942 0.36 0.47 0.951 0.68 0.78
GPT-5-mini (OpenAI, 2025) 0.970 0.75 0.88 0.972 0.73 0.82
DeepSeek-R1 (Guo et al., 2025) 0.872 0.68 0.71 0.886 0.71 0.86
ToolRL-1.7B Qian et al. (2025) 0.864 0.74 0.78 0.851 0.66 0.74
ToolRL-4B Qian et al. (2025) 0.954 0.75 0.81 0.961 0.73 0.76
GEPA (Agrawal et al., 2025) (GPT-5-mini) 0.992 0.87 0.90 0.971 0.86 0.91
GEPA (Agrawal et al., 2025) (DeepSeek-R1) 0.977 0.83 0.87 0.978 0.82 0.88
AlphaAgentEvo-1.7B (ours) 0.940 0.77 0.90 0.923 0.76 0.78
AlphaAgentEvo-4B (ours) 0.979 0.97 0.97 0.977 0.93 0.95

Results on Alpha158. Table 2 reports the results on the external Alpha158 library, which serves
as an additional test set. GP reveals poor results with limited offspring size, while the 4-offspring
setting is aligned with all other approaches. This highlights the inefficiency of purely heuristic

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

search. The multi-agent framework AlphaAgent improves upon GP, yielding higher VR and rea-
sonable pass rates, particularly with stronger backbone models. However, AlphaAgentEvo again
achieves the most consistent improvements. AlphaAgentEvo-1.7B’s VR remains above 0.91 across
both market periods, while the 4B version shows a striking advantage in pass rates, with pass@5
exceeding 0.72 in the bearish period and reaching 0.994 in the bullish period, nearly saturating the
success rate. This demonstrates not only superior evolutionary efficiency but also strong adaptability
to different market styles and factor libraries.

Table 2: Performance comparison on Alpha158 across two periods.

Method 2023-01 – 2024-01 2024-01 – 2025-01

VR Pass@3 Pass@5 VR Pass@3 Pass@5

GP (4 offspring) 0.766 0.000 0.074 0.823 0.003 0.003
GP (20 offspring) 0.714 0.000 0.058 0.713 0.125 0.132
GP (50 offspring) 0.619 0.022 0.024 0.633 0.094 0.107
AlphaAgent (Tang et al., 2025) (GPT-3.5-turbo) 0.905 0.236 0.495 0.900 0.643 0.783
AlphaAgent (Tang et al., 2025) (DeepSeek-R1) 0.975 0.294 0.550 0.966 0.750 0.848
Qwen3-1.7B (Yang et al., 2025) 0.714 0.100 0.113 0.674 0.500 0.543
Qwen3-4B-thinking (Yang et al., 2025) 0.792 0.350 0.450 0.974 0.848 0.856
DeepSeek-R1 (Guo et al., 2025) 0.889 0.327 0.519 0.874 0.872 0.943
GPT-5-mini (OpenAI, 2025) 0.988 0.156 0.293 0.975 0.828 0.903
AlphaAgentEvo-1.7B (ours) 0.952 0.506 0.613 0.917 0.909 0.926
AlphaAgentEvo-4B (ours) 0.982 0.581 0.725 0.982 0.963 0.994

Summary. Across both datasets and market conditions, AlphaAgentEvo exhibits clear superiority
over a wide range of strong baselines. Its ability to sustain both high valid ratios and high pass rates
underscores the effectiveness of our self-evolving agent paradigm. Importantly, these results validate
that the proposed framework not only accelerates the discovery of profitable alphas but also reduces
invalid generations and enhances robustness under dynamic market environments.

3.3 EVOLUTION ANALYSIS.

To probe into how AlphaAgentEvo’s agent and its generated alphas evolve across turns, in Fig. 3, we
visualize its IR trajectory and per-turn standard deviation (Std.) along with average consistency score
against ToolRL Qian et al. (2025) on AlphaEvo500. For better visual clarity, we display the uncer-
tainty band as ±0.25×std. In Fig. 3 (a), our approach’s mean IR increases more rapidly than ToolRL,
leading to a continually widening gap. Fig. 3 (b) shows that AlphaAgentEvo more aggressively
explores in the search space as the agent continues to mine alphas, resulting in a higher standard
deviation. Moreover, AlphaAgentEvo stays anchored to seed alphas, ensuring that improvements
accumulate progressively rather than degenerating into uncontrolled search. These patterns cannot
be explained by alpha-level evolution alone. The accelerating IR gains across turns, together with
the simultaneous rise in exploration and stabilized consistency, indicate that the agent’s strategy in
each turn is evolving (improving over time). These experience-dependent behaviors constitute clear
evidence of agent-level self-evolution, rather than merely evolving individual alphas.

Figure 3: Comparison between AlphaAgentEvo and ToolRL’s evolution trajectories.

3.4 ABLATION STUDY
To verify the effectiveness of our ARL training and reward design, we compare validity rates before
and after training and ablate two key reward components. As shown in Fig. 4(a), training markedly
improves validity, confirming the model’s ability to generate well-formed alphas. In Fig. 4(b)–(c),
removing either the exploration or direction-aware reward lowers pass rates on both datasets, with
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Figure 4: Ablation study on reward components.

the largest drops at pass@3 (AlphaEvo500: 0.65→0.54/0.51; Alpha158: 0.581→0.513/0.510).
These results show that exploration and direction-awareness are both critical and complementary
for efficient alpha evolution.

3.5 DIVERSITY AND TRANSFERABILITY OF ALPHAS

To investigate whether models suffer from reward hacking (Wang et al., 2025) by overexploiting
specific patterns, we analyze the structural similarity distribution of the top 20 generated alphas
(evaluated on the alpha evolution period) using Eq. 4. Note that for GP, Alpha158 serves as seeds due
to an incompatible alpha calculation system; therefore, its results are provided solely for reference.
For AlphaAgent, we reset its alpha zoo for each seed alpha.

In Fig. 5, the seed alpha library (AlphaEvo500 test split) exhibits a broad similarity distribution,
with an average pairwise similarity of 0.043 and a relatively high maximum similarity of 0.722, re-
flecting the presence of clusters of closely related alphas despite overall diversity. When comparing
different models, our method achieves both a low average similarity (0.039) and a low maximum
similarity (0.263), indicating that the generated alphas are more diverse. By contrast, models such
as DeepSeek-R1 and Qwen3-4B tend to produce alphas with higher maximum similarity (0.583 and
0.600, respectively), suggesting partial over-concentration on specific patterns. AlphaAgent (GPT-
4) also shows an elevated average similarity (0.058), suggesting that for different seed alphas, it may
repeatedly fall into local optima with limited diversity. These statistics highlight a key advantage of
our approach: it does not overexploit narrow or spurious patterns and instead learns genuinely
generalizable evolutionary strategies.

Figure 5: Similarity scores of top 20 alphas generated by different models.

To assess the out-of-sample performance of alphas from different LLMs, we collect two groups of
evolved alphas from each LLM. While one group uses market data from 2023-01-01 to 2024-01-01
as an evolution period, the other uses 2024-01-01 to 2025-01-01 to evolve alphas. Then, the first
group undergoes backtesting from 2024-01-01 to 2025-01-01 (test period 1), and the second group
from 2025-01-01 to 2025-06-01 (until the datasets are created), noted as test period 2. These evolved
alphas are sampled from each model’s top-20 candidates without altering their original order such
that the selected subsets share the same average IR during the evolution period. Specifically,
the average evolution-period IR is 1.05 for test period 1 and 2.72 for test period 2.
Compared to two state-of-the-art LLMs, GPT-5-mini and DeepSeek-R1 (R1), our AlphaAgentEvo-
4B demonstrates highly competitive performance, consistently achieving a higher average AER and
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Figure 6: Alpha performance comparison with state-of-the-art LLMs on out-of-sample periods.

average IR across test periods 1 and 2. This indicates that its evolution strategy exhibits favorable
out-of-sample generalization and superiority under diverse market conditions. Meanwhile, its violin
plots of test period 2 reveal a more evident top-heavy distribution, with a wider upper and narrower
lower tail, suggesting that a greater share of its evolved alphas achieve positive predictive power.

4 RELATED WORK

Due to the vast number of available operators and features, the search space for alphas is astro-
nomically large. A traditional category is Genetic Programming (GP), which generate candidates
through random mutation and crossover (Lin et al., 2019; Schmidt & Lipson, 2010; Zhaofan et al.,
2022; Patil, 2023), or introduce hierarchical mechanisms to identify reusable components for effi-
cient search (Zhang et al., 2020). While GP can recycle partial structures from existing alphas, they
are largely heuristic, fail to exploit feedback from failed candidates, and offer limited interpretability.
Some Reinforcement Learning (RL)-based attempts (Yu et al., 2023; Shi et al., 2025a; Zhu & Zhu,
2025) further guide alpha mining with reward signals, but they still operate at the operator level and
rely heavily on trial-and-error. In non-stationary markets, such incremental search is easily misled
by spurious correlations and struggles to discover robust alphas.

Large language models (LLMs) provide a promising alternative by leveraging semantic reason-
ing and domain knowledge to construct more interpretable alphas (Wang et al., 2023; Haluptzok
et al., 2023; Weng, 2023; Sumers et al., 2024; Shi et al., 2025b). Several recent studies (Luo et al.,
2025; Wang et al., 2024) integrate LLMs into alpha mining, such as FAMA for dynamic factor
combination (Li et al., 2024) and AlphaAgent (Tang et al., 2025) for a multi-agent architecture for
decay-resistant alphas. However, these approaches remain essentially prompt-driven, lacking mech-
anisms for long-horizon planning, systematic reflection, and self-evolution. In parallel, RL-based
LLM post-training (Wang et al., 2025; Jin et al., 2025; Chen et al., 2025) has made progress in
mathematics, games, and tool use. Self-evolving LLM systems ang Gao et al. (2025); Agrawal
et al. (2025); Romera-Paredes et al. (2024); Chen et al. (2023) demonstrate great potential in solv-
ing complex problems through progressive refinement, but their application to alpha mining remains
problematic, due to their vulnerability to market regime shifts or the inherent inability of text-based
experience to fully encode desired evolutionary patterns. In this work, we bridge this gap with a
self-evolving agentic RL paradigm.

5 CONCLUSION

In this work, we introduced AlphaAgentEvo, a novel agentic reinforcement learning paradigm for
alpha mining. By reformulating alpha mining from a brute-force searching problem into a multi-turn
evolution-driven paradigm, our framework endows LLM-driven agents with stronger self-evolution
capabilities, enabling them to dynamically extract structure from noisy and high-variance financial
tool feedback through hierarchical reward signals. Extensive experiments on AlphaEvo500 and Al-
pha158 confirm that our method not only delivers consistently higher valid ratios and pass rates, but
also generalizes effectively across market regimes and longer evolutionary trajectories, surpassing
modern self-evolution approaches associated with state-of-the-art close-source LLMs with only 4B
parameters. These results highlight self-evolving ARL as a principled and generalizable paradigm
for next-generation quantitative investment.
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REPRODUCIBILITY STATEMENT

In this submission, we have made extensive efforts to ensure the reproducibility of our work. Specif-
ically, the dataset files used in this paper are enclosed in the supplementary materials, including
training, validation, and test splits. The evaluation tool’s parameters are described in Sec. 3.1 and
the tool schema in Sec. F. Available data variables and representative functions are listed in Sec. G,
Appendix. Training configurations are documented in Sec. D of the Appendix.

In addition, we provide the full source code (including training pipelines, evaluation scripts, and
evaluation tools) as supplementary files. We will publicly release the source code associated with
the used data once the paper is accepted to facilitate further research.
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A DISCLOSURE OF LARGE LANGUAGE MODEL USAGE

In this paper, Large Language Models (LLMs) are only used for polishing paragraph content, check-
ing and revising grammar, and writing visualization code for some experimental results during the
paper writing process. All other parts of this paper were completed by human authors, in particular,
the conception of research ideas, the creation of figures in the paper, the conduct of experiments,
and the recording of experimental data.

B MULTI-FACTOR PERFORMANCE COMPARISON.

While some baseline approaches cannot be compared directly, to evaluate AlphaAgentEvo’s per-
formance with them, we evaluate AlphaAgentEvo based on the multi-factor strategy where a group
of alphas are weighted to generate an meta alpha. We report the performance comparison results
against three categories of baselines, including time series models (TS model), a non-LLM RL
framework, and LLM-agent-based frameworks. For fairness, the top-10 mined alphas from each
LLM-agent-based framework are evenly combined for backtesting.

Table 3: Multi-factor portfolio performance comparison from 2024-01 to 2025-11.
Method Category Trainable AER IR MDD

LightGBM Ke et al. (2017) TS model ✓ -0.009 1.192 -0.195
Stock-Mixer Fan & Shen (2024) TS model ✓ 0.013 1.977 -0.182
AlphaQCM Zhu & Zhu (2025) RL Framework ✓ 0.027 1.815 -0.192
AlphaAgent Tang et al. (2025) Multi-LLM-agent ✗ 0.064 2.046 -0.196
GPT-5-mini OpenAI (2025) Single-LLM-agent ✗ -0.158 0.587 -0.213
ToolRL-4B Qian et al. (2025) Single-LLM-agent ✓ -0.027 1.532 -0.215
AlphaAgentEvo-4B (ours) Single-LLM-agent ✓ 0.129 2.442 -0.176

C TRAINING ANALYSIS

To analyze the policy LLM’s changes during the reinforcement learning process, we present the
rewards in training and validation sets, average response length, and the output entropy during Al-
phaAgentEvo’s training.
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(b) Training reward and response length
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Figure 7: Training statistics of AlphaAgentEvo.

Training reward vs. validation reward. Fig. 7(a), both training and validation reward curves
rise steadily from ∼0.16 to ∼0.38–0.39 over 150 steps, with the validation reward closely tracking
the training reward and maintaining a small generalization gap (visually < 0.02 throughout). The
improvement is fastest in the first 50 steps and then saturates gradually, with minor jitter but no sign
of overfitting: validation continues to trend upward in tandem with training.

Response length. Fig. 7(b) shows a clear stepwise increase in average response length. Early on
(0–50 steps), the model rapidly adapts to task requirements and learns to produce stable tool calls.
Between 50–100 steps, growth slows as it improves tool-call quality and forms its own evolution
strategy. After 100 steps, response length stabilizes at a relatively high level, reflecting the transition
from basic adaptation to more complex reasoning for alpha mining.
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Output entropy. As shown in Fig. 7(c), output entropy first decreases as the agent masters consis-
tent reasoning, then remains stable, and finally rises again after ∼125 steps. This rebound indicates
renewed exploration, where the model diversifies its reasoning to generate richer alphas.

Taken together, these results verify that our training can converge stably with good generalization,
and our method is capable of effective complex reasoning to mine richer and more effective alphas.

D TRAINING CONFIGURATIONS

We train Qwen3 (Yang et al., 2025) (1.7B and 4B) on 10 × RTX4090 GPUs for 150 steps using the
Verl framework (Sheng et al., 2024). The 4B model provides sufficient capability while maintaining
a favorable performance–efficiency trade-off for large-scale alpha mining, with the 1.7B variant
serving as a lighter comparison. Each batch samples 20 seed alphas, with 3 rollouts per seed, up
to 3 turns per trajectory, and up to 4 tool calls per turn. The coefficient β for KL loss is set to
0.001. The 80th-step checkpoint is used for testing. Reward caps are set as Ctool = 1, Ccons = 0.2,
Cexpl = 0.3, Cperf = 0.5, and Cstreak = 0.6. The weighting coefficients are αsucc = 0.1, αfail = 0.2,
αcons = 0.02, αexp = 0.02, αperf = 0.1, and αstreak = 0.15. We set the learning rate to 1× 10−6 with
a warmup ratio of 0.1, and use the Adam optimizer for training. The policy LLM is updated with a
mini-batch size 20.

E CASE ANALYSIS

We take a sample from Alpha158 as a case study (only first two turns) to showcase why our model
outperforms other baselines in alpha evolution, as shown in Fig. 8.

In the first turn, two models demonstrate fundamentally different approaches to evaluating the seed
alpha. The baseline model immediately suggests horizontal adjustments such as extending the look-
back window or applying Z-score normalization, e.g., “maybe using a longer window... or ZS-
CORE...”. This reflects a focus on technical re-scaling while leaving the underlying semantics of
the alpha unchanged. By contrast, AlphaAgentEvo-4B begins with a critical examination of the
seed alpha: ”I should check if the current alpha has any issues ... perhaps we can look at the
cumulative effect of down days...”. This reasoning explicitly questions the behavioral implication
of the alpha—whether a higher value actually aligns with profitable trading logic. By identifying
the misalignment between signal direction and trading outcome, AlphaAgentEvo-4B opens the path
toward semantic reconstruction. This critical stance directly motivates subsequent refinements such
as combining with RSI, normalizing by volatility, and embedding structural signals (e.g., ZigZag),
which collectively transform a weak predictor into an alpha with strong positive alpha.

In the second turn, this divergence becomes even clearer. The baseline model reflects only on param-
eter choices from its previous trial: “Looking at the previous attempts: the first new alpha SIGNIFI-
CANT DOWN DAYS 90 ... But its IR is worse (-0.3529), so maybe the threshold is too strict or the
window is too long.” The analysis remains confined to surface-level tuning, without questioning the
semantic suitability of the alpha design. In contrast, AlphaAgentEvo-4B demonstrates a stronger
capacity for reflective reasoning: “RSI DOWN COUNT ... giving a high IR of 0.9417 ... the key
here is that the previous factors improved by incorporating other indicators (RSI, volatility, swing
points) with the down count...” Rather than merely fine-tuning thresholds, AlphaAgentEvo-4B dis-
tills general patterns from past attempts and reasons about why certain designs succeed. Building
on this reflection, it further proposes new factor constructions, such as adding industry neutrality
or volatility adjustment, showing an ability to transform statistical feedback into structured insights
that guide subsequent evolution.

Overall, the baseline model remains locked in mechanical parameter tweaks, while AlphaAgentEvo-
4B demonstrates a dialectical process: integrating empirical outcomes with theoretical reasoning to
refine the alpha semantics. This difference explains why our model converges to successful, high-
performance alphas while the baseline model fails.
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NAME : CNTN60

  DESC: Pct of down days in window

  EXPR: COUNT($close<DELAY($close,1),60)/60
IR: -0.0793

So it's the percentage of days in the last 60 days 

where the close was lower than the previous day's 

close. That's a measure of downward momentum 

over 60 days.

...Let me think about possible improvements.

1 .  Use a  combinat ion  of  down days  and  the 

magnitude of the decline. 

2. Use the Z-score of the down day percentage to 

capture extreme values...

Think

NAME:SIGNIFICANT_DOWN
_DAYS_90
EXPR:COUNT($close<0.
99*DELAY($close, 1), 
90)/90

Success: True
IR: -0.3529

Tool Response

Looking at the previous attempts: the first new factor 

SIGNIFICANT_DOWN_DAYS_90 ...But its IR is worse (-0.3529), 

so maybe the threshold is too strict or the window is too long. 

...The second factor, DOWN_DAY_ZSCORE, standardizes 

the count ratio...Maybe standardizing doesn't help here 

because the underlying signal is weak.

Let me brainstorm some ideas.

1. Combine down days with high sell volume.

2. Use a z-score of the down day count relative to the 

industry...

Think

NAME:INDUSTRY_NEUTRAL
IZED_DOWN_RATE_60
EXPR:INDUSTRY_NEUTRAL
IZE(COUNT($close<DELAY
($close,1),60)/60,$ind
ustry)

Tool Call

Success: True
IR: -0.4712

Tool Response

NAME:CHIP_CONCT_DOWN_R
ATE_RANK_60
EXPR:RANK(($chip_conct
_90)*(COUNT($close<DELA
Y($close,1),60)/60))

Tool Call

Success: True
IR: -0.8117

Tool Response

NAME:DOWN_DAY_ZSCORE
EXPR:ZSCORE(COUNT($c
lose<DELAY($close,1),
60)/ 60)

Tool Call

Success: True
IR: -0.0793

Tool Response

First, I need to understand what 'CNTN60' does. 

A higher value would mean more down days, 

which might be a bearish signal.

... I should check if the current factor has any 

issues... If the factor is high (more down 
days), the strategy would buy stocks that 
have been declining, which might be bad...
... To improve this, perhaps we can look at the 

cumulative effect of down days...

... Let me think of some specific expressions...

2. Momentum-Adjusted Down Days: Combine 

the down day count with a momentum indicator. 

3. Swing Point Analysis: Use zigzag functions to 

find swing highs/lows and then count how many 

days since the last swing low...

Think

Looking at the previous results: RSI_DOWN_COUNT multiplied the 

down count by RSI(14), giving a high IR of 0.9417. That's good. RSI 

is a momentum indicator, so combining it with the down count 

might capture both trend strength and downward movement... 

SWING_DOWN_DAYS uses zigzag to find the days since the last 

swing low, which might be a more robust measure of downside 

moves.

So the key here is that the previous factors improved by 
incorporating other indicators (RSI, volatility, swing points) 
with the down count. I need to think of new combinations. Let 

me brainstorm some ideas.

First idea: Add industry neutrality to the RSI_DOWN_COUNT. The 

previous RSI_DOWN_COUNT had a high IR. If I neutralize it by 

industry, it might be better...

Another idea: Use the ATR to adjust the down count. ATR 

measures volatility. Maybe when ATR is high, the down count is 

more significant...

Think

NAME:INDUSTRY_RSIDOWN_C
OUNT
EXPR:INDUSTRY_NEUTRALIZ
E((COUNT($close<DELAY($c
lose,1),60)/60)*RSI($clo
se,14),$industry)

Tool Call

Success: True
IR: 0.543

NAME:ATR_RSIDOWN_COUNT
EXPR:(COUNT($close<DEL
AY($close,1),60)/60)*RS
I($close,14)*(ATR($high,
$low, $close,14)/$close)

Tool Call

Success: True
IR: 1.1863

Tool ResponseTool ResponseTool Response

Success: True
IR: 0.6739

NAME:SWING_DOWN_D
AYS
EXPR:ZIGZAG_BOTTO
M_DAYS($close, 1)

Tool Call

NAME:RSI_DOWN_COU
NT
EXPR:(COUNT($clos
e<DELAY($close,1),
60)/60)*RSI($clos
e,14)

Tool Call

Success: True
IR: 0.9417

Tool Response

Tool Call

Figure 8: Case study: AlphaAgentEvo-4B vs. our base model Qwen3-4B-thinking.

F EVALUATION TOOL

As part of AlphaAgentEvo, we design a dedicated tool interface, evaluate factor, to support
the evaluation of alphas with backtesting. The simplified tool schema is shown in Listing 1, which
illustrates the core arguments (factor name, factor expr, and metric). For clarity, some
auxiliary parameters such as time range and market are omitted here.
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Listing 1: Schema of the evaluate factor tool used in this paper.
1 {
2 "type": "function",
3 "function": {
4 "name": "evaluate_factor",
5 "description": "A tool for evaluating factors with backtesting",
6 "parameters": {
7 "type": "object",
8 "properties": {
9 "factor_name": {

10 "type": "string",
11 "description": "The name of the factor"
12 },
13 "factor_expr": {
14 "type": "string",
15 "description": "The expression of the factor"
16 },
17 "metric": {
18 "type": "string",
19 "description": "The metric to evaluate (default: ’

Information_Ratio_with_cost’)",
20 "default": "Information_Ratio_with_cost"
21 }
22 },
23 "required": ["factor_name", "factor_expr"]
24 }
25 }
26 }

G AVAILABLE DATA AND FUNCTIONS

Data variables used to construct alphas are shown in Table 5, all sourced from Tushare (Wang,
2024). A representative set of functions to operate these data variables are displayed in Table 4.

Table 4: Representative functions used in our alpha expressions.
Function Name Description
A. Cross-Sectional Operations
RANK(var) Cross-sectional percentile rank of a variable.
ZSCORE(var) Standardizes a variable (z-score) cross-sectionally.
INDUSTRY NEUTRALIZE(var,
$industry)

Neutralizes the variable’s exposure within industries.

B. Time-Series / Rolling Window
TS MEAN(var, p) Rolling mean over the past ‘p‘ periods.
TS MAX(var, p), TS MIN(var,
p)

Rolling maximum and minimum.

TS RANK(var, p) Time-series percentile rank over a window.
TS PCTCHANGE(var, p) Percentage change over ‘p‘ periods.
DELTA(var, p) Difference from ‘p‘ periods ago (xt − xt−p).
EMA(var, p), SMA(var, p) Exponential and Simple Moving Average.
C. Mathematical & Logical
LOG(var), POW(var, exp) Natural logarithm and power.
DELAY(var, p) Value of the variable ‘p‘ periods ago (lag).
COUNT(cond, p) Count of times a condition is true over ‘p‘ periods.
A ? B : C Ternary operator (if condition A then B, else C).
D. Advanced & Technical
TS CORR(var1, var2, p) Rolling correlation between two variables.
REGBETA(var1, var2, p) Rolling beta from regressing var1 on var2.
RSI(var, p) Relative Strength Index.
MACD(var, p short, p long) Moving Average Convergence Divergence.
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Table 5: Available data variables.
Variable Name Description
Price & Market Data
$open Opening price
$high Highest price of the day
$low Lowest price of the day
$close Closing price
$volume Trading volume (shares)
$amount Trading amount (CNY)
$change Price change vs. previous close
$return Last day’s return
Chip-Distribution Data
$his low Historical low price since listing
$his high Historical high price since listing
$cost 5pct Cost where 5% of chips lie below
$cost 15pct Cost where 15% of chips lie below
$cost 50pct Median cost of chips
$cost 85pct Cost where 85% of chips lie below
$cost 95pct Cost where 95% of chips lie below
$weight avg Average cost across all chips
$winner rate The chip win rate
$chip conct 90 Chip concentration within the densest 90%
$chip conct 70 Chip concentration within the densest 70%
Order-Flow / Money-Flow Data
$buy sm vol, $sell sm vol Small-lot buy/sell volume
$buy sm amount,
$sell sm amount

Small-lot buy/sell turnover

$buy md vol, $sell md vol Medium-lot buy/sell volume
$buy md amount,
$sell md amount

Medium-lot buy/sell turnover

$buy lg vol, $sell lg vol Large-lot buy/sell volume
$buy lg amount,
$sell lg amount

Large-lot buy/sell turnover

$buy elg vol, $sell elg vol Extra-large-lot buy/sell volume
$buy elg amount,
$sell elg amount

Extra-large-lot buy/sell turnover

$net mf vol Net inflow volume (buy - sell)
$net mf amount Net inflow amount
Benchmark & Industry
$bench open, $bench high,
$bench low, $bench close

Benchmark index OHLC prices

$bench preclose Benchmark previous close
$bench volume Benchmark trading volume
$bench amount Benchmark trading amount
$bench turn Benchmark turnover ratio
$bench return Benchmark last day’s return
$industry Categorical industry label
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