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ABSTRACT

Model-Based Reinforcement Learning involves learning a dynamics model from
data, and then using this model to optimise behaviour, most often with an online
planner. Much of the recent research along these lines (Chua et al., 2018; Janner
et al., 2019; Yu et al., 2020) presents a particular set of design choices, involving
problem definition, model learning and planning. Given the multiple contribu-
tions, it is difficult to evaluate the effects of each. This paper sets out to disam-
biguate the role of different design choices for learning dynamics models, by com-
paring their performance to planning with a ground-truth model – the simulator.
First, we collect a rich dataset from the training sequence of a model-free agent on
5 domains of the DeepMind Control Suite. Second, we train feed-forward dynam-
ics models in a supervised fashion, and evaluate planner performance while vary-
ing and analysing different model design choices, including ensembling, stochas-
ticity, multi-step training and timestep size. Besides the quantitative analysis, we
describe a set of qualitative findings, rules of thumb, and future research directions
for planning with learned dynamics models. Videos of the results are available at
https://sites.google.com/view/learning-better-models.

1 INTRODUCTION

Recently reinforcement learning (RL) (Sutton & Barto, 2018), in particular actor-critic ap-
proaches (Lillicrap et al., 2015) were shown to successfully solve a variety of continuous control
problems (Schulman et al., 2017; Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018).
The simplicity of this approach has led to an explosion of research demonstrating the effectiveness
of these methods (Vecerik et al., 2019; Kalashnikov et al., 2018). However, model-free RL suffers
from two key disadvantages (Dulac-Arnold et al., 2021). First, model-free RL is sample inefficient,
often requiring millions or billions of environment interactions. Second, the learned policies are tied
to a specific task, making transfer of learned knowledge in multi-task settings or across related tasks
difficult (Finn et al., 2017; Andrychowicz et al., 2017).

Model-Based RL holds the promise of overcoming these drawbacks while maintaining the benefits
of model-free methods. Model-based RL involves learning a dynamics model from data, and then us-
ing this model to optimise behaviour, most often with an online planner. Since the dynamics model
is ideally independent of the reward and state-action distribution, multi-task settings are simple: the
reward function can be changed at will (Rajeswaran et al., 2020; Argenson & Dulac-Arnold, 2021;
Belkhale et al., 2021). For the same reason, offline learning with off-policy data is possible (Yu
et al., 2020; Kidambi et al., 2020; Argenson & Dulac-Arnold, 2021). Moreover, model-based RL
can achieve a better sample efficiency (Janner et al., 2019; Nagabandi et al., 2018; 2020; Byravan
et al., 2020; Buckman et al., 2018; Hafner et al., 2019b; Argenson & Dulac-Arnold, 2021).

In this paper we investigate the impact of the different model learning design choices on the planner
performance. For this evaluation we focus on learning models using feed-forward neural networks
as these are the dominant models in the recent model-based RL literature. A large portion of these
papers mainly proposes different methods to train the networks and variations on the planner. Un-
fortunately, each new paper proposes a series of evolutions, and so individual design choices are
rarely ablated fully. This is the goal of our work. We look specifically at the effects of various model
learning design choices on the planning performance. We consider 4 different design choices, deter-
ministic vs. stochastic models, multi-step vs. 1-step losses, use of ensembles, and input noise. These
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Figure 1: Domains of the DM Control Suite (Tassa et al., 2018) used in this paper. (a) cart-pole, (b) finger, (c)
ball in cup, (d) walker, and (e) humanoid. These domains include various challenges like high-dimensionality,
non-rigid strings and multiple contacts.

design choices have been proposed to obtain better long term prediction (Abbeel et al., 2005; Chua
et al., 2018; Hafner et al., 2019b) and planning performance (Venkatraman et al., 2015; Sanchez-
Gonzalez et al., 2020; Pfaff et al., 2020). To derive best practices for each choice-parameter, we
perform ablation studies evaluating the impact of the different choices. In addition we investigate
the qualitative performance of the learned models, by evaluating their ability to describe complex
trajectories with reasonable fidelity, and to be consistent.

The contributions of this paper are

• We perform a systematic comparison evaluating the planning performance of different design
choices for model learning, i.e., stochastic models, multi-step loss, network ensembles and
input noise, on five DeepMind Control Suite environments.

• We observe that mean squared error (1-step or multi-step) is not a good predictor of planning
performance when using a learned model.

• We find that multiple model learning design choices can obtain high reward and consistent
long-term predictions for the evaluated systems excluding the humanoid. The differences in
reward between the different combinations is not significant.

• We characterise best practices for learning models using feed-forward networks. For our
experiments, deterministic models need to be trained using the multi-step loss and combined
with ensembles. Stochastic models require more ensemble components and input noise.

The paper is structured as follows. First, we cover related work on model-based RL for continuous
control in Sec 2. Afterwards, we review the naive approach to learning dynamics models (Sec. 3).
Section 4 introduces the design choices of model learning and evaluates the learned models using
model-predictive control. The subsequent discussion (Sec. 5) summarizes the insights, results and
highlights general challenges of model learning for planning.

2 RELATED WORK

Learning dynamics model has a long tradition in robotics. The seminal work of Atkeson et al. (1986)
proposed to learn the dynamics parameters of a rigid-body kinematic chain from data. To remove the
limitations of analytic rigid-body models (Atkeson et al., 1986; Lutter et al., 2020; 2021), black-box
function approximation was leveraged (Schaal et al., 2002; Choi et al., 2007; Calinon et al., 2010;
Nguyen-Tuong et al., 2009; Nguyen-Tuong & Peters, 2010; Lutter et al., 2019; Lutter & Peters,
2019) to learn system models able to learn the peculiarities of real-world robotic systems.

The majority of model-based RL focuses on learning dynamics models, which predict the next step
using the current state and action. The model learning for control literature refers to these models
as forward models (Nguyen-Tuong & Peters, 2011). Model-based RL algorithms use the model as
a simulator to generate additional data (Sutton, 1991; Janner et al., 2019; Morgan et al., 2021), to
evaluate the reward of an action sequence (Chua et al., 2018; Nagabandi et al., 2018; Lambert et al.,
2019; Nagabandi et al., 2020), to improve the value function estimate (Feinberg et al., 2018; Buck-
man et al., 2018) or backpropagate the policy gradients through time (Miller et al., 1995; Deisenroth
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& Rasmussen, 2011; Heess et al., 2015; Byravan et al., 2020; Amos et al., 2021). Current model-
based RL methods use 1-step predictions to compute the optimal trajectory. Most current model-
based RL approaches use different architectures of deep networks to approximate the model, e.g.,
deterministic networks (Nagabandi et al., 2018; Byravan et al., 2020; Feinberg et al., 2018; Kuru-
tach et al., 2018), stochastic networks (Heess et al., 2015; Lambert et al., 2019), recurrent networks
(Hafner et al., 2019a;b; 2020; Ha & Schmidhuber, 2018), stochastic ensembles (Chua et al., 2018;
Nagabandi et al., 2020; Janner et al., 2019; Kidambi et al., 2020; Yu et al., 2020; Buckman et al.,
2018; Rajeswaran et al., 2020; Lambert et al., 2020b) and graph neural networks (Sanchez-Gonzalez
et al., 2018).

In this work we focus on feed-forward neural networks for learning dynamics models with contin-
uous states and actions. The learned models are used with model predictive control (MPC) (Garcia
et al., 1989; Allgöwer & Zheng, 2012; Pinneri et al., 2020) to solve continuous control tasks. Sim-
ple feed-forward neural networks are the standard of most model-based RL and already offer many
different variations that affect the planning performance. For the considered environments, MPC
enables the direct evaluation of the learned models without requiring a policy or value function
approximation. Therefore, the model performance for planning can be directly measured and com-
pared to planning with the ground-truth model.

3 LEARNING DYNAMICS MODELS

We concentrate on 1-step forward models and review this setup in more detail. Dynamics models
predict the next observation xi+1 using the current observation xi and action ui. These models can
be used as a simulator for planning without interacting with the real system. For example, some
sample-based planning algorithms sample action sequences close to the current plan, evaluates the
reward of each action sequence by simulating the trajectories using the dynamics model and updates
the plan using the action sequences with the highest reward. The simplest approach to learn such
a forward model is to use a deterministic model that minimizes the prediction error. This objective
can be achieved by minimising the 1-step mean squared error between the predicted and observed
next state. This optimization loss is described by

θ∗ = arg min
θ

1

ND

∑
x,u∈D

(xi+1 − x̂i+1)
T

(xi+1 − x̂i+1) with x̂i+1 = f(xi,ui; θ),

with the model parameters θ, the dataset D with ND samples.

Dataset Current model-based RL algorithms re-use the data collected by the agent to learn the
model. Therefore, the data is acquired in the vicinity of the optimal policy. This exploration leads to
a specialized model for the considered task as only regions of high reward are explored. Hence, the
current learned models are not independent of the state-action distribution and the reward function
cannot be interchanged at will. In contrast to model-based RL, system identification focuses purely
on obtaining the optimal data for learning the model cover most of the state space.

Integrator Instead of predicting the next observation, one can predict the change of the observation.
Then the system dynamics are modelled as an integrator described by x̂i+1 = xi + ∆t f(xi,ui; θ)
with the time step ∆t. This technique has proven to result in more stable long term prediction
compared to predicting the next state and has been widely adapted (Chua et al., 2018; Janner et al.,
2019; Yu et al., 2020; Amos et al., 2021; Lambert et al., 2020a).

Normalization Optimizing the MSE can be problematic if the scales of the different observations
are different. In this case, the model overfits to the dimensions with larger scales. For forward
models this results in overfitting to the velocities as the position is usually an order of magnitude
smaller. To mitigate this overfitting the MSE can be normalized using the diagonal variance of the
dataset ΣD. The normalized MSE is described by

θ∗ = arg min
θ

1

ND

∑
x,u∈D

(xi+1 − x̂i+1)
T

Σ−1D (xi+1 − x̂i+1) .

The normalized MSE is comparable to standardization of the model inputs and outputs. In our ex-
periments we did not observe any significant benefits using standardization instead of the normalized
MSE.
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Figure 2: The learning curves comparing deterministic and stochastic models for five seeds on the five test
domains. The shaded area marks the 20/80 percentile. For all systems except the humanoid, the stochastic
and deterministic ensembles learn a good model that enables successful planning. The obtained reward is
marginally below the reward obtained by planning with the true model. For the humanoid both approaches fail.

4 RESULTS

In the following we present our quantitative and qualitative evaluation of the model learning design
choices. We evaluate the planning performance for 4 different design choices, i.e., stochastic mod-
els (Sec. 4.2), multi-step loss (Sec. 4.3), network ensembles (Sec. 4.4) and input noise (Sec. 4.5).
These different design choices have been previously proposed within the literature to improve the
model for planning (Abbeel et al., 2005; Chua et al., 2018; Hafner et al., 2019b) and generate better
long-term predictions (Venkatraman et al., 2015; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020).
For each of these proposed models we first introduce the approach, summarize the results and con-
clude the best practices. The best hyperparameter for model learning were identified first using
random search and the ablation studies compare to the optimal hyperparameter. The humanoid is
only used for the initial ablation study as no model-learning approach learns a model that could be
used for planning. A more detailed experimental setup, the hyperparameters and additional ablation
studies are contained in the appendix. The links within the results point to the referenced section
contained in https://sites.google.com/view/learning-better-models/.

4.1 EXPERIMENTAL SETUP

Data Sets For the experiments the models are learned using a fixed data set. The data sets are
recorded using five snapshots of an MPO policy (Abdolmaleki et al., 2018) during the training
process. Therefore, the data set has diverse trajectories including random movements and optimal
trajectories. The combined data set contains 500 episodes which corresponds approximately to 1
hour of data for the cartpole and 5 hours of data for the humanoid.

Evaluation Criteria The models are evaluated using the normalized task reward and the MSE. The
normalized reward is rescaled such that the maximum reward per episode is 1000. The MSE is
computed using the test set with an 80/20 split and normalized using the data set variance. If not
specifically mentioned, the MSE is computed between a predicted and observed trajectory of 0.5s.

Model Predictive Control The planning performance of the models is evaluated using a CEM-
based MPC agent (Garcia et al., 1989; Allgöwer & Zheng, 2012; Pinneri et al., 2020). Instead
of maximizing the raw actions, we optimize the control points and interpolate linearly to obtain
the actions at each simulation step. This approach simplifies the planning as the search space is
decreased. We do not use a terminal value function. The MPC hyperparameters are optimized
w.r.t. the true model and held fixed for planning with all learned models. For ensembles, we use a
fixed ensemble component per rollout during forward prediction and do not switch between different
components per rollout step. The reward is averaged across the rollouts of the ensemble (Chua et al.,
2018; Lambert et al., 2019; Nagabandi et al., 2020; Argenson & Dulac-Arnold, 2021).

4.2 DETERMINISTIC VS. STOCHASTIC MODELS

Instead of using a deterministic model, Chua et al. (2018) proposed to use stochastic models. This
model predicts the change of the system using a normal distribution. If the covariance matrix is
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Figure 3: The learning and loss curves averaged across five seeds for different horizons of the multi-step loss.
The MSE is computed between an observed and predicted trajectory of length 0.5s. The shaded area visualizes
the 20/80 percentile. For all systems, the multi-step loss for up to 5 steps improves the model performance for
planning. For longer horizons, the MSE keeps decreasing but the obtained reward also decreases.

assumed to be diagonal, the next state is described by

xt+1 = xt + ∆t
[
µ̂(xt,ut;θ) + σ̂(xt,ut;θ) ξ

]
with ξ ∼ N (0, 1), the mean µ̂ and standard deviation σ̂. Instead of minimizing the MSE, the
stochastic model maximizes the 1-step log-likelihood described by

θ∗ = arg max
θ

− 1

2ND

∑
x,u∈D

[
(∆x− µ̂)

T
Σ̂−1 (∆x− µ̂) + log(|Σ̂|)− k log(2π)

]
with ∆x = (xi+1 − xi) /∆t, the diagonal covariance matrix Σ̂ containing σ̂2 and the state space
dimensionality k. To make the optimization numerically stable the standard deviation is bounded by
[σmin,σmax]. This clipping can be obtained using the differentiable transformation

σ̂ = σmin + S (σmax − σmin + S(σmax − σ̂))

with the softplus function S. Depending on the implementation, the network can either predict the
standard deviation (Hafner et al., 2019a) or the logarithm of the standard deviation (Chua et al.,
2018). The common motivation for this stochastic model is the estimation of aleatoric uncertainty,
which arises from the fundamental stochasticity of the environment. However, most performed
experiments use a deterministic environment, which has no aleatoric uncertainty. The main benefits
of the stochastic model for deterministic environments is the lower entropy bound and the adaptive
selection of precision. The lower entropy bound reduces the risk of model exploitation by increasing
the variance of the model predictions. The state-dependent variance enables a model with limited
capacity to trade-off precision with higher variance at specific states. Prior work (Nagabandi et al.,
2020; Hafner et al., 2019b) has also shown that fixing the variance to for all states can achieve the
same performance as the state-dependent variance.

Results The learning curves comparing stochastic and deterministic models are shown in Figure 2.
Videos of the model performance are available at [Link]. Both the deterministic and the stochastic
ensemble learn a model that can be used for planning for most environments. For the cartpole, finger,
ball in cup and walker the learned models are able to solve the task. The differences in reward are
not large and the qualitative differences of the rewards are not visible. Compared to the true model,
the obtained rewards are marginally lower and exhibit a higher variance. The differences between
models are not clearly visible in the videos. Visualising the plans [Link] of the approximated models
shows that the plans are plausible. Only for the ball in cup system the model exploitation is obvious
as the ball can pass through the top of the cup. When transferring the models to a different task (Ap-
pendix - Table. 2), increasing the replan intervals (Appendix - Fig. 8) and comparing the learning
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Figure 4: The learning curves averaged over five seeds for different number of ensembles. The shaded area
highlights the 20/80 percentile. The obtained reward increases when increasing the number of ensembles. For
stochastic ensembles the increase in performance is higher compared to deterministic ensembles. Without an
ensemble both models do not fail at the task and only obtain a lower reward.

speed, the performance of the deterministic ensembles is better. For the humanoid both variants fail
to learn a good model. The MPC agent is able to easily exploit the approximated model. The visu-
alized plans show that the optimization finds an action sequence that lets the humanoid magically
float midair [Link].

The results are partially different compared to Chua et al. (2018), which shows that the stochastic
ensembles perform better than deterministic ensembles. We also found that stochastic ensembles are
better, when the deterministic model was trained using the 1-step loss. However, if the deterministic
model is trained using the multi-step loss (Sec. 4.3), the deterministic models achieve the same or
better performance than the stochastic models trained on the 1-step log-likelihood.

Conclusion Both deterministic and stochastic ensembles are capable to learn models for planning
for most evaluated systems and fail for the humanoid. However, both model types require different
design choices to learn a good model for planning.

4.3 1-STEP LOSS VS. MULTI-STEP LOSS

The previously described losses optimized the 1-step loss that uses the information of two consec-
utive observations to learn the parameters. While this information is theoretically sufficient to learn
the model accurately, various approaches (Abbeel et al., 2005; Venkatraman et al., 2015; Hafner
et al., 2019b) have used the multi-step loss to learn better models. For the deterministic model the
multi-step loss is described by

θ∗ = arg min
θ

1

HND

∑
D

H∑
i=0

(xi+1 − x̂i+1)
T

Σ−1D (xi+1 − x̂i+1)

with the horizon H , the prediction x̂i+1 = x̂i + ∆t f(x̂i,ui; θ) and x̂0 = x0. The computational
complexity of the multi-step loss grows linearly with the horizon as the model needs to be evaluated
H times for each gradient update. Extending the multi-step loss to stochastic models is non-trivial.
To compute the log-likelihood conditioned on the previous prediction one would need to propa-
gate the uncertainty through the non-linear dynamics which is not possible analytically. Various
approximations to propagate the uncertainty have been used for optimizing the policy (Deisenroth
& Rasmussen, 2011; Watson et al., 2021), but these approaches have not been adapted to model
learning, yet. Therefore, we do not consider these approximations within this comparison and leave
it for future work.

Results The learning curves and loss curves on the test set are shown in Figure 3. The obtained
reward for multi-step loss using up to 10 steps is higher than the reward of the 1-step optimization
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Figure 5: The learning curves averaged over 5 seeds for different levels of input noise. The shaded area
highlights the 20/80 percentile. For deterministic models the input noise is not required to achieve a high
reward. For stochastic models the input noise significantly improves the reward for walker and ball in cup.
Without the noise ball in cup cannot be solved using the stochastic ensemble.

loss. For very long horizons the obtained reward drops for finger and ball in cup. The increase of
the reward due to multi-step loss varies by system. For the walker and cartpole the increase is not
large. For the finger and ball in a cup the multi-step loss is required to achieve a high reward. For
all systems an horizon of 3 to 5 steps works best, which is much lower compared to the planning
horizon of 50+ steps. In addition, we observed that increasing the horizon using a schedule results
in a lower reward (Figure 9). The systems that benefit the most from the multi-step objective only
obtain a reward comparable to the 1-step optimization loss. In contrast to the reward, the MSE
keeps improving when increasing the horizon. This observation highlights that a lower MSE does
not necessarily imply a better model for planning. We elaborate the implications of the MSE on the
planning performance in section 5.

Conclusion For deterministic ensembles the multi-step objective increases the reward. Increasing
the horizon using a schedule performs worse. A horizon between 3-5 steps performs the best for
these systems. Despite the lower multi-step MSE for long horizons, the planning starts to fail for too
long horizons. This observation highlights that the MSE (single or multi-step) is not a good indicator
for the planning performance. A similar observation has been made for the 1-step log-likelihood by
Lambert et. al. (Lambert et al., 2020a).

4.4 SINGLE NETWORK VS. NETWORK ENSEMBLE

To prevent the planner to exploit the model, various authors used the ensemble disagreement
as a measure of epistemic uncertainty to regularize for the policy optimization. For example,
PETS (Chua et al., 2018) averages over the reward of the predicted ensemble trajectories to pre-
vent over-fitting to too optimistic predictions. MOReL (Kidambi et al., 2020) and MOPO (Yu et al.,
2020) add a reward penalty to state with high epistemic uncertainty to prevent the policy optimiza-
tion venturing into uncertain regions. The epistemic uncertainty can be approximated using boot-
strapped network ensembles. The ensembles stack deep networks with different initialisation and
train the networks with different minibatches. Therefore, all ensemble components are trained using
the same data but the order and composition of the mini-batches is different. The computational
and memory complexity for training the models and planning increases linearly with the number of
ensemble components.

Results The learning curves for different ensemble sizes are shown in figure 4. Videos highlighting
the model entropy [Link] and open-loop rollouts [Link] are available. More ensemble components
increase the obtained reward. The increase in reward depends on the model type and specific system.
For deterministic models the ensemble size only significantly matters for ball in a cup. For this task,
the reward doubles when using a model ensemble. For the other systems the reward increases by up
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Figure 6: The reward discrepancy measuring the difference between the expected and observed reward. If
the discrepancy is positive the planner is too optimistic. If the value is negative the planner is too pessimistic.
The planner with the true model rarely over-estimates the future reward. The learned model frequently over-
estimates the future reward highlighting the model exploitation. Especially for the humanoid the planner ex-
pects a too high reward in close to all time steps. For the other systems the model exploitation is not so drastic
as the maximum mode ist at 0.

to 20%, which qualitatively does not significantly affect the task completion. For stochastic models,
the advantages of ensembles is more significant compared to deterministic models. For all systems
except the cartpole, the ensembles significantly outperform the single deep network. It is important
to note that the computational complexity grows linearly with the number of ensembles. Therefore,
future work needs to evaluate whether the increased performance of ensembles persists when the
computational budget is fixed.

Qualitatively, the videos show that each ensemble component provides a stable long-term prediction
of 1 second for all systems except the humanoid. The open-loop rollouts of the provide a diverse set
of trajectories that are all physically plausible and not obviously wrong. However, the predictions
are not perfect and have minor errors. For example, the walker marginally sinks into the floor and the
edges of the cup are not modelled accurately. Only for the humanoid the predictions yield diverging
trajectories that are obviously wrong. Furthermore, the entropy describing the epistemic uncertainty
increases at intuitive state space configurations. For example the entropy increases when the finger
touches the spinner or the walker is in contact with the floor.

Conclusion Adding more ensemble components to the model increases the planning performance.
For the considered systems, the stochastic models benefit more using ensembles. The reward gain
beyond five ensemble components is marginal. It is important to note that a single deep network
does not completely fail at the task and only obtains a lower reward.

4.5 PERFECT OBSERVATIONS VS. INPUT NOISE

For dynamics models the data commonly lies on a manifold due to system constraints and over-
parametrized observations. For example the cartpole positions with sine/cosine features lie on the
cylinder. When predicting long time horizons using the approximate model, one will inevitably
deviate from the manifold. This deviation is inevitable as even simulators with perfect assumptions
and knowledge frequently violate constraints. Simulators use forces orthogonal to the constraint
to return to the manifold. For learned models returning to the manifold is not straight forward
as the dynamics are random outside the manifold. Therefore, it is very common that the policy
optimization exploits these random dynamics during planning to obtain a high reward. Sanchez-
Gonzalez et al. (2020) proposed to add noise to the inputs to learn a dynamics model that remains
on the manifold for long horizons. Adding noise to the inputs causes them to lie outside the manifold.
Using these inputs the model learns to predict solutions that return to the manifold. In this case the
next step of the stochastic model is described by

x̂t+1 = xt + ∆t
[
µ̂(xt + λLD ω,ut;θ) + σ̂(xt + λLD ω,ut;θ) ξ

]
,

with ω ∼ N (0, 1), the Cholesky decomposition LD of the variance ΣD, and noise amplitude λ.

Results The learning curves for different noise amplitudes are shown in figure 5. Adding noise to the
inputs can be beneficial, if the noise amplitude is not chosen too large for the specific environment.
If the amplitude is too large the obtained reward drops significantly. For the deterministic models
trained using the multi-step loss the input noise is not required to achieve a good performance. For
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the stochastic models the input noise significantly improves the obtained reward for ball in cup and
walker. Especially for ball in cup the adding inputs noise is required to obtain a high reward. Without
the input noise, the stochastic model fails on this task.

Conclusion Adding input noise during the training can improve the model performance, if the noise
amplitude is not too large. For some models this data augmentation is even required to solve the
task, e.g., ball in cup with a stochastic model.

5 CONCLUSION

Feed-forward networks can learn models that enable planning for most of the considered systems.
The obtained reward is only slightly lower than the reward when planning with the true model.
Qualitatively, the models generate feasible plans and stable open-loop predictions for more than
100 steps. No single design choice works significantly better. Multiple combinations achieve a
comparable reward. Deterministic models must be trained using the multi-step loss and combined
with ensembles to achieve a good performance. Stochastic models trained using the 1-step log-
likelihood perform well when ensembles are used and noise is added to the inputs.

High Dimensional Systems All tested models fail for the humanoid. The learned models predict
diverging trajectories for open-loop sequences. The planner is too optimistic (Fig. 6) and finds
an action sequence that lets the humanoid float midair [Link]. The results for the humanoid are
expected as – to the best of our knowledge – only DreamerV2 (Hafner et al., 2020) obtained a
humanoid model that is able to generate stable open-loop rollouts by using significant more data,
online learning and a recurrent latent space model.

Model Exploitation The model exploitation is visible when comparing the difference between ex-
pected and obtained reward (Fig. 6). The approximate model frequently overestimates the reward,
while the true model does not. Especially, systems that involve contacts of two moving bodies, e.g.,
finger and ball in cup, are more prone to exploitation. One common failure mode for ball in cup
is that the planner tries to tunnel the ball through the bottom of the cup [Link]. The collisions of
ball and cup are modelled for the open-loop trajectories. Only during planning, an action sequence
is found that enables to bypass this collision. Therefore, the modeling the contact is not the main
problem but the model exploitation in the vicinity of strong non-linear changes.

Mean Squared Error The experiments show that the MSE (multi-step or 1-step) is not a good
indicator for planning performance. A similar observation was described by Lambert et al. (2020a)
for the 1-step log-likelihood. It is important to note that this observation does not suggest that one
desires a higher MSE model. The result only suggests that MSE is not sufficient to estimate the
planning performance of the model. During training, the reward increases and the MSE decreases
with the number of updates. However, the MSE does not provide information about the planning
performance when comparing two trained models. A particular peculiar example of this effect is
shown in figure 10. For ball in cup only a coarse time step obtains a high reward, even though the
MSE is an order of magnitude higher compared to smaller time steps. It is intuitive that the accuracy
is not that important for this task. The trajectory after the collision does not need to be modelled
precisely. The model must only ensure that the ball can not tunnel into the cup.

Future Work To advance model learning for planning, the existing techniques must be (1) extended
to high-dimensional observations and (2) made more robust to avoid model exploitation. As data
fit is not the main indicator for planning performance and ensembles are not sufficient to prevent
model exploitation, a promising research direction is adversarial model learning. This approach
can explicitly incorporate the planner into the model learning objective to minimize the reward
discrepancy and promises to learn a robust model. One should specifically focus on dynamics with
strong non-linearities as these are more susceptible to model exploitation.
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APPENDIX

6 EXPERIMENTAL SETUP

Systems To evaluate the model learning approaches, we apply these algorithms to Cartpole, Finger,
Ball in Cup, Walker and Humanoid of the Deepmind Control suite (Figure 1). These systems cover a
wide range of tasks, include contacts and include high-dimensional systems. For example the finger
environment requires learning the interactions between the finger and the spinner. The ball in cup
environment requires learning the collision shapes such that the ball does not tunnel into the cup.
The walker and humanoid require to learn high dimensional dynamics and contacts with the floor.

Data Sets The data sets are recorded using five snapshots of an MPO policy during the training
process. Therefore, the data set has diverse trajectories including random movements and optimal
trajectories. The combined data set contains 500 episodes which corresponds approximately to 1
hour of data for the cartpole and 5 hours of data for the humanoid.

Observations The observations are over-parameterized and can include Cartesian coordinates or
sensors. For example, the finger contains touch sensors on the tip. The humanoid observations
contain the ego-centric positions of hands and feet. Therefore, the data does not correspond to
minimal coordinates of the simulator. Due to the overparameterized representation, the data lies
on a low-dimensional manifold defined by the kinematic structure. Therefore, not all points in Rn
correspond to physically possible configuration. The system is fully observed. Hence, the simulator
state - except the x-y world coordinates of the floating base systems - can be reconstructed from the
observations.

Reward Function For environments with sparse rewards the reward function is smoothed to provide
a dense function. Therefore, the reward corresponds to the euclidean distance to the goal state. This
smoothing is necessary to provide a good search signal for the planner. The reward per step is
bounded to be between 0 and 1. The reported normalized reward scales the reward such that the
maximum obtainable reward for a single episode is 1000.

Mean Squared Error The reported MSE is computed using the test set with an 80/20 split and
normalized using the data set variance. If not specifically mentioned the MSE is computed between
a predicted and the observed trajectory of 0.5s.

Model Predictive Control The planning performance of the models is evaluated using a CEM-
based MPC agent (Garcia et al., 1989; Allgöwer & Zheng, 2012; Pinneri et al., 2020). Instead
of maximizing the raw actions, we optimize the control points and interpolate linearly to obtain
the actions at each simulation step. This approach simplifies the planning as the search space is
decreased. We do not use a terminal value function. The MPC hyperparameters are optimized
w.r.t. the true model and held fixed for planning with all learned models. For ensembles, we use a
fixed ensemble component per rollout during forward prediction and do not switch between different
components per rollout step. The reward is averaged across the rollouts of the ensemble (Chua et al.,
2018; Lambert et al., 2019; Nagabandi et al., 2020; Argenson & Dulac-Arnold, 2021).

7 ADDITIONAL EXPERIMENTS & ABLATION STUDIES

In addition to the experiments presented in the main paper, we provide additional experiments
that vary the dataset (Sec. 7.1), the task for the trained model (Sec. 7.2) and the replan fre-
quency (Sec. 7.3). We also provide ablation studies evaluating the impact of a schedule for the
multi-step loss (Sec. 7.4) and the impact of the time discretization (Sec. 7.5).

7.1 MODEL GENERALIZATION W.R.T. DATASET

To test the performance across different datasets, we compare the planning performance when vary-
ing the dataset. We consider 5 different datasets that contain epsiodes with different average reward.
For example dataset 0 contains only random actions while dataset 4 contains the converged MPO
policy. The average and maximum reward of the datasets are shown in figure 7. The results show
that the approach of learning a model and utilizing the model for planning achieves - in most cases -
a higher reward than the average and maximum reward of the dataset. For the most domains the
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Table 1: The hyperparameters for the deep networks and the model predictive control. The deep network
parameters were identified using random search to obtain the parameters with the highest reward for each
system. Ablation studies comparing different network parameters did not show any coherent trend for all
systems. Therefore, these studies are omitted. The MPC parameters were optimized using random search using
the ground-truth dynamics models.

Deep Network Parameters
Cartpole - Swing Up Finger - Spin Ball in Cup - Catch Walker - Walk Humanoid - Stand

Deterministic Stochastic Deterministic Stochastic Deterministic Stochastic Deterministic Stochastic Deterministic Stochastic
Time Step [s] 0.01 0.01 0.01 0.01 0.04 0.04 0.01 0.025 0.02 0.025
Network Dimension [2 x 128] [3 x 256] [4 x 512] [2 x 512] [2 x 512] [3 x 512] [3 x 256] [3 x 512] [3 x 512] [4 x 512]
Activation Swish ReLu Swish Elu ReLu Swish Swish Elu Elu Elu
Learning Rate 5e-4 1e-4 5e-4 5e-4 5e-4 5e-4 5e-4 1e-4 1e-4 1e-4
Batch Size 256 64 512 512 128 128 512 128 256 128
Multi-step Horizon 20 - 5 - 3 - 5 - 5 -
# Ensemble 5 5 5 5 5 5 5 5 5 5
Input Noise 0.0 1e-3 1e-2 1e-3 5e-3 5e-2 0.0 5e-2 1e-3 1e-3

Model Predictive Control Parameters
Cartpole - Swing Up Finger - Spin Ball in Cup - Catch Walker - Walk Humanoid - Stand

Horizon 1.25s / 125# 0.25s / 25# 0.75s / 19# 0.50s / 50# 0.50s / 50#
Replan Interval [s] 1/100s 1/100s 1/100s 1/100s 1/50s
# Control Points 1/50s / 63# 1/75s / 19# 1/25s / 19# 1/20s / 10# 1/50s / 25#
# Particles 200 500 200 200 500
# Iterations 1 1 1 1 1
Exploration Noise σ 0.5 1.0 0.5 1.0 0.75
Exploration Noise β 2.0 3.0 3.0 2.0 1.5
argmaxu True True True True True

model-based planning approach obtains a high reward for dataset 1 or dataset 2, which is far from
containing the data of the optimal policy. Therefore, the learned models are capable to generalize
the beyond the state-action distribution of the dataset. The generalization is not perfect as for the
random dataset, the performance is commonly worse. However, this is to be expected as the random
dataset often does not contain large portions of the state space. For example, the random actions
dataset for the cartpole do not contain states close to the balancing of the cartpole. Therefore, the
planner with the learned model can swingup the pendulum but not balance the pendulum. When
comparing deterministic and stochastic models, the deterministic models achieve in most cases a
better or identical performance than the stochastic model. The only exception is dataset 2 for ball in
a cup.
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Figure 7: The obtained reward for the four different DM control suite environments and 5 different
datasets with different average reward. In most cases, the model-based planning approach obtains a
higher reward than the average dataset reward. Even when the dataset contains only random actions,
i.e., dataset 0, the planner obtains a much higher reward than random actions.

7.2 MODEL GENERALIZATION W.R.T. TASK

To test the transferability of the learned models, we transfer the approximate models between the
different walker tasks. For example, the model is trained using walker walk data and applied to solve
walker stand and walker run. The results are summarized in table 2. The deterministic model per-
forms well in the transfer tasks as the learned models generalize to the other two tasks. The obtained
reward is marginally lower than training the model for the specific task. Only when transferring the
deterministic model from walker stand to walker run the reward is much lower than training the
model on walker run. This difference is expected as the state-action distribution between the stand
and run task are very different. Furthermore, the experiments show that the transfer from the run to
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Table 2: The obtained reward when transferring the model between tasks. The model is trained using the train-
ing domain and then applied to the evaluation domain. The deterministic model exhibits a good performance
and obtains a comparable reward than the model trained on the test domain for most transfers. The stochastic
model performs worse than the deterministic model when the model is transferred between tasks.

Walker Stand Walker Walk Walker Run
Train Domain Model Type 20th Per Avg 80th Per 20th Per Avg 80th Per 20th Per Avg 80th Per

Walker Stand Deterministic Ensemble 820.1 897.8 976.4 787.8 853.5.5 949.5 344.4 394.6 446.2
Stochastic Ensemble 468.4 690.0 905.5 296.6 426.0 565.6 87.0 140.9 190.9

Walker Walk Deterministic Ensemble 890.0 931.3 993.2 822.9 869.0 962.3 463.5 503.6 563.6
Stochastic Ensemble 685.4 782.9 886.3 672.8 750.2 930.6 212.5 300.7 411.5

Walker Run Deterministic Ensemble 799.7 865.2 985.5 817.7 839.9 954.5 422.7 464.6 559.7
Stochastic Ensemble 334.2 668.9 909.7 70.5 328.1 595.5 53.7 158.0 268.3

- True Model 927.7 967.6 994.8 883.8 920.9 965.8 563.1 590.4 634.0

the stand task is simpler than transferring the model from stand to the run task. This difference is
intuitive as the run datasets contains configurations of the standing walker, while the stand task does
not contain the data of the fast moving walker.

When comparing the transfer of the deterministic and stochastic model, the deterministic model
performs much better than the stochastic model. When transferred the 20th percentile of the de-
terministic model is better than the 80th percentile of the stochastic model for most task transfer.
Therefore, the deterministic model is better when transferring models between tasks.

7.3 REPLAN FREQUENCY

An additional experiment to test the model performance for planning is to reduce the replanning
frequency and observe the decrease in reward. As the replanning frequency is reduced, the planner
evaluates fewer action sequences, is more likely to overfit to the approximate model and takes more
steps before adapting the plan to the observed model mismatch. Therefore, the obtained reward can
decrease for the true and approximate model. The results are shown in figure 8. For the cartpole and
finger domain, the stochastic and deterministic model perform comparable. For the ball in cup and
walker domain, the deterministic model performs better than the stochastic model. Especially for
the walker domain, the deterministic model performance does not decrease while the reward of the
stochastic model decreases by a lot. The obtained reward decreases slower / does not decrease for
the deterministic model while the reward of the stochastic model decreases faster.
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Figure 8: The obtained reward when decreasing the replan frequency for the deterministic, stochastic
and true model. The shaded area highlights the 20/80 percentile. For the different replan frequencies,
the deterministic model obtains a better or comparable reward compared to the stochastic model.

7.4 MULTI-STEP LOSS WITH SCHEDULE

Instead of training directly on the multi-step loss, one can increase the horizon of the multi-step
loss using a schedule. One starts to train on the 1-step loss and increases the horizon with the
number of updates. In this work we increase the horizon linear w.r.t. to the number of updates.
The motivation for this schedule is that the multi-step loss is too ambiguous / hard to optimize this
loss directly. Therefore, one uses a curriculum that starts with the simple 1-step loss and makes
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the optimization slowly harder. The results for the multi-step loss using a schedule is shown in
figure 9. In our experiments a schedule leads worse results than directly training on the multi-step
loss directly. The MSE curves clearly show the effect of the horizon as the loss curves start identical.
After some updates, the loss curves spread out according to the horizon length. Similar to training
without schedule, the longer horizon lead to a better MSE. However, the MSE becomes unstable for
some very long horizons. This instability was not observed without the schedule. Furthermore, the
obtained rewards are comparable or worse compared to not using the schedule. This is especially
visible for the Finger spin task. Even for the optimal horizon length of 5 steps, the schedule causes
the model to obtain a reward comparable to 1-step loss, which is significantly worse compared to
training without the schedule. Therefore, the model seems to over-fit to the 1-step and cannot obtain
the same performance as training on the multi-step loss without schedule.
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Figure 9: The learning curves and loss curves for the multi-step loss using a schedule to linearly in-
crease the horizon. The schedule cause the loss curve to start identical and spread once the schedule
increases the horizon. Compared to training on the multi-step loss without a schedule, the training
with the schedule performs comparable or worse.

7.5 TIME DISCRETIZATION

A frequently neglected design choice for model learning is the choice of the time step. The time step
can be chosen as a multiple of the observation frequency. The common choice of model-based RL
approaches is to use the time step of the model-free RL agent, which uses control frequencies of 30
- 100Hz and up-scales the actions using action repeats. These control frequencies are much lower
than the simulation time steps ranging from 100 - 500Hz for the considered environments. However,
the time step can be chosen differently to simplify learning the model. The learning and loss curves
for different time steps are shown in figure 10 and figure 11.

Deterministic Model If the time step is chosen too coarse, the MSE is much higher than a finer
time step. Despite the lower accumulation error the MSE is higher. If the time step is too small, i.e.,
< 1/100s, the MSE starts increasing again due to the higher accumulation error. For most evaluated
systems, the deterministic model obtained the smallest MSE for a model time step between 1/40−
1/100s. In terms of reward, the reward is lower for very coarse time steps as the time step lower
bounds the control points distance for the planner. For example, the reward for cartpole swingup and
finger spin the reward decreases for time steps greater than 1/100s. A particular peculiar example
is ball in a cup. For this domain, the planner only obtains a high reward when using a very coarse
model with a time step of 1/20− 1/25s, despite that the MSE is about an order of magnitude larger
than the MSE for a timestep of 1/50s. This result shows that even the multi-step MSE is not a
sufficient criteria to evaluate the model for planning. The optimal time step to obtain the highest
reward depends on the domain. Cartpole swingup and finger spin require a fine time step of 1/100s,
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ball in a cup catch only solves the task using a very coarse time step of 1/25s and walker walk
performs well for time steps between 1/40− 1/100s.

Stochastic Model The optimal time steps for the stochastic models are identical to the optimal
discretization of the deterministic model. Therefore, the optimal time step depends on the domain
but not the model representation. In contrast to deterministic models, stochastic models perform
slightly better in terms of reward for more coarse time steps. However, for very fine time steps the
stochastic models perform worse than deterministic models. For example, the deterministic model
solves the task for all time steps < 1/10s while the stochastic model fails for time steps < 1/50s.
Furthermore, the MSE of ball in a cup shows that the stochastic models can diverge for very fine
time steps.
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Figure 10: The learning and loss curves for different time discretization averaged over 5 seeds.
The shaded regions highlight the 20/80 percentile. For too fine and too coarse time steps, the MSE
increases. The lowest MSE is obtained for time steps between 1/40 − 1/100s. The optimal time
step to obtain the highest reward depends on the domain, while cartpole swingup and finger spin
require a fine time step, ball in a cup catch only solves the task using a very coarse time step.
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Figure 11: The learning and loss curves for the stochastic model with different time discretization
averaged over 5 seeds. The shaded area highlights the 20/80 percentile. Similar to the deterministic
model, the optimal time step depends on the domain. The optimal time steps are identical to the
optimal time steps of the deterministic model.

18


	Introduction
	Related Work
	Learning Dynamics Models
	Results
	Experimental Setup
	Deterministic vs. Stochastic Models
	1-Step Loss vs. Multi-step Loss
	Single Network vs. Network Ensemble
	Perfect Observations vs. Input Noise

	Conclusion
	Experimental Setup
	Additional Experiments & Ablation Studies
	Model Generalization w.r.t. Dataset
	Model Generalization w.r.t. Task
	Replan Frequency
	Multi-step Loss with Schedule
	Time Discretization


