
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ATM: IMPROVING MODEL MERGING BY
ALTERNATING TUNING AND MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging has recently emerged as a cost-efficient paradigm for Multi-task
Learning (MTL). Among merging solutions, Task Arithmetic (Ilharco et al., 2022)
stands out for its simplicity and effectiveness. In this paper, we start by motivat-
ing the effectiveness of task vectors with their relation to multi-task gradients. We
show that in the single epoch scenario, task vectors are exactly equivalent to gra-
dients obtained by performing gradient descent in a multi-task setting, and still
approximate the latter with further epochs. We further strengthen the explanation
by showing that task vectors work best when equality is maintained and motivate
their effectiveness in the general case by showing that most of the contribution in
the total update is determined by the gradient of the first epoch. Guided by this
parallel, we propose viewing model merging as a single step in an iterative pro-
cess that Alternates between Tuning and Merging (ATM). Acting as a midpoint
between model merging and multi-task gradient descent, ATM obtains state-of-
the-art results with the same data and computing requirements. We first exten-
sively evaluate our approach under diverse settings, demonstrating state-of-the-art
performance, leading by an accuracy of up to 19% in computer vision and 20% in
NLP over the best baselines. We then motivate its effectiveness empirically, show-
ing increased orthogonality between task vectors and, theoretically, proving it to
minimize an upper bound to the loss obtained by finetuning jointly on all tasks.

1 INTRODUCTION

The pretrain-and-finetune paradigm has become the standard approach for numerous deep learning
tasks. In this framework, a model pretrained on large-scale unlabeled data is adapted to a specific
downstream task with minimal tuning. However, when addressing multiple tasks, a key limitation
is the need to store separate finetuned models for each task. Model merging addresses this issue
by combining task-specific models into a single model capable of handling all tasks. This approach
significantly reduces storage costs, as the unified model’s size remains comparable to that of a single
task model, regardless of task count. Among numerous model merging methods, task arithmetic
(Ilharco et al., 2022) stands out for its simplicity and effectiveness. Given a pretrained model θ0
and a model θi finetuned on task ti, the task vector τi is the subtraction of the pretrained weights
from the finetuned ones (i.e. τi = θi − θinit). For multi-task learning with n tasks, task arithmetic
computes the sum of the n task vectors, properly scales it with a coefficient α, and adds the resulting
vector to the pretrained model.

In this paper, we motivate the effectiveness of task arithmetic by relating task vectors with gradients
of the average loss over all the tasks. In particular, we show that when a model is finetuned for a
single epoch using Gradient Descent, the corresponding task vector is exactly the additive inverse of
the gradient of the loss, rescaled by the learning rate. Analogously, the multi-task vector obtained
by summing the task vectors is equivalent to the additive inverse of the gradient of the average loss
across all tasks. With this perspective, task addition is equivalent to a step of gradient descent on
the sum of the average losses of the tasks. When the finetuning is performed for several epochs,
the equality is replaced by an approximation with an error dependent on the learning rate. We
further show that, while the single-epoch-finetuning assumption is violated in practice, the analogy
to gradients can still explain why task vectors work in the first place. In fact, we show that, if we
consider the trajectory in the parameter space followed by the model during fine-tuning, the greatest
contribution in terms of gradient norm is given by the first epoch. When this does not hold, we often

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

θ
(0)
base

θ
(1)
A

θ
(1)
B

τ
(1)
A+B

τ
(1)
A

τ
(1)
B

θ
(1)
base

θ
(2)
A

θ
(2)
B

τ
(2)
A+Bτ

(2)
A

τ
(2)
B

θ
(2)
base

θ
(h−1)
base

θ
(h)
A

θ
(h)
B

τ
(h)
A+B

τ
(h)
A

τ
(h
B

θ
(h)
base

Tuning
θ
(h)
A = finetune(θ(h−1)

base , A)

θ
(h)
B = finetune(θ(h−1)

base , B)

Merging
τ
(h)
A+B = τ

(h)
A + τ

(h)
B

θ
(h)
base = θ

(h−1)
base + τ

(h)
A+B

Figure 1: An illustration of the ATM framework up to the iteration h with |T | = 2 tasks (A and
B). Starting with the pretrained model θ(0)base as the base model, the FT step consists of finetuning
it separately on the |T | tasks and the Merge step performs task vector aggregation and applies the
multi-task task vector to the current base model, resulting in the next-iteration multi-task model.
The process iterates with the resulting model at each iteration as the new base model for the next,
until predefined iteration h or when some predefined condition is met. We observe increased task
vector orthogonality as the ATM iteration grows.

find the gradients from the subsequent epochs to be aligned with the previous one, confirming that
the direction is indeed dictated by the latter.

In this view, aggregation and merging in task arithmetic correspond to a noisy step of gradient de-
scent when finetuning on the union of tasks, using as loss the sum of the average losses of the tasks.
In practice, this means that the one-step nature of these techniques likely results in overshooting the
multi-task minimum, as they would be actually tackling gradient descent over a multi-task dataset
with a single noisy step, where the multiplicative factor that is optimized over the validation set is, in
fact, the learning rate. Building on these insights, we overcome the limitations of traditional one-step
task vector applications by introducing Alternating Tuning and Merging (ATM) - a novel multi-task
model merging framework that generalizes task arithmetic by iteratively alternating between fine-
tuning and merging, enabling a more gradual and refined integration of task-specific knowledge.
Given a compute budget of b epochs per task, traditional methods finetune each task for b epochs
in a single pass. In contrast, ATM distributes the budget across k iterations, with each iteration
performing b

k epochs of finetuning followed by task vector aggregation. The unified model from
each iteration serves as the starting point for the next. After k iterations, the final unified model is
deployed and evaluated. Notably, ATM is agnostic to the merging framework, allowing the inte-
gration of any interference-resolution techniques during the merge step to enhance performance. In
general, ATM significantly reduces time overhead compared to current baselines, and extensive ex-
periments in computer vision and NLP show that it achieves state-of-the-art results without requiring
hyperparameter tuning.

Our analysis of ATM unveils intriguing properties that shed light on its effectiveness. First, ATM
task vectors exhibit a higher degree of orthogonality compared to baseline methods. We further
prove that, in the simplified case where gradient descent is used to update the model, ATM minimizes
the loss obtained by training jointly on all tasks. Our code, together with experiment configurations
and checkpoints, is available for reproducibility purposes 1

Our contribution is four-fold and is summarized as follows:

• We expose that task vectors, under certain conditions, are either equivalent to or approxi-
mate the gradients of loss of the corresponding tasks.

1Link concealed to preserve anonymity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We point out that existing merging frameworks adopt one-shot merging, which likely over-
shoots the multi-task optimum, especially when task vectors exhibit large norms.

• We propose Alternating Tuning and Merging (ATM), a novel state-of-the-art model merg-
ing framework that generalizes task vector arithmetic. Thanks to its flexibility, ATM can
readily integrate any interference-resolution framework, requiring no additional overhead.

• We empirically and mathematically motivate the effectiveness of ATM by showing in-
creased orthogonality between task vectors obtained through ATM as compared to standard
ones. We additionally prove that ATM reduces the loss of a multi-task model finetuned on
the union of the datasets.

2 RELATED WORK

Mode connectivity and model merging Mode connectivity studies the weights that characterize
local minima on the loss landscape. Frankle et al. (2020) investigated linear mode connectivity in
models briefly trained from identical starting points, while Entezari et al. (2022) speculated that
all models converge to a shared basin once neuron permutations are resolved. Leveraging these
insights, permutation-based model merging aims to combine diverse models into a unified one,
aiming to inherit their capabilities without the overhead associated with ensembling. Singh & Jaggi
(2020) proposed an optimal-transport weight-matching method, while Git Re-Basin (Ainsworth
et al., 2022) proposed three novel matching methods acting both on weights and activations, with
REPAIR (Jordan et al., 2023) demonstrating significant barrier reduction through activation renor-
malization. Most recently, Navon et al. (2023) proposed merging models in the embedding space
of deep neural networks, while Crisostomi et al. (2024) proposed a cycle-consistent matching pro-
cedure for improved merging. When models share the same pretrained initialization, Wortsman
et al. (2022) propose fusing them via a simple average. Jolicoeur-Martineau et al. (2023) propose to
merge models by pushing them towards the population mean to ensure stability. RegMean Jin et al.
(2022) and Fisher-weighted averaging Matena & Raffel (2021) fall under the regime of weighted
averaging, where the weights are optimized according to some criteria. Daheim et al. shed light
on the positive relation between post-averaging multi-task performance and the gradient mismatch
between the constituent models. Finally, Choshen et al. (2022) even proposed model merging in re-
placement of pertaining. They argue that pretrained checkpoints are not always the optimal starting
point for further finetuning, and a model resulting from merging finetuned models can be a better
starting point than any of its constituents.

Task vectors Task vector-based merging (Ilharco et al., 2022) finetunes a pretrained model on dif-
ferent tasks to obtain task vectors (differences between finetuned and original checkpoints). Arith-
metic operations on these vectors enable forgetting, analogy learning, and multi-task learning. Sev-
eral works aim to improve task vector merging by reducing task interference (Deep et al., 2024;
Wang et al., 2024; Huang et al., 2024). Some methods include sparsifying task vectors or finetuning
only lottery tickets (Panda et al., 2024). TIES-merging (Yadav et al., 2023) merges vectors by prun-
ing, selecting a unified sign vector, and merging disjointly, while Model Breadcrumbs (Davari &
Belilovsky, 2023) prunes both small and large-magnitude weights. DARE Merging (Yu et al., 2023)
randomly masks out a portion of weights and scales up the rest. AdaMerging (Yang et al., 2023) op-
timizes aggregation coefficients, while Yang et al. (2024) propose task-specific modules for test-time
adaptation. Ortiz-Jimenez et al. (2024) introduce the concept of weight disentanglement and pro-
pose finetuning in the tangent space. Unlike these one-shot methods, we introduce the perspective
of iterative model merging, evolving a base model towards a better multi-task performance.

3 TASK VECTORS AS GRADIENTS

In this section, we show that task vectors are tightly related to the gradients of the loss over the union
of the tasks.

Theorem 3.1. Let
{
θ
(k)
t

}|T |

t=1
be a set of models obtained by finetuning θbase for k epochs over the

set of tasks T via Gradient Descent (GD) with a learning rate of η, where fine-tuning over task

t ∈ T minimizes Lt(θ) = 1
nt

∑nt

i=1 ℓ(xi, yi, θ). Let moreover
{
τ
(k)
t

}|T |

t=1
be a set of task vectors,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

with each τ
(k)
t = θ

(k)
t − θbase. Let τ (k)MT be the multi-task vector τ (k)MT =

∑
t∈T τ

(k)
t . Finally let θ(k)MT

be the model obtained minimizing the loss
∑|T |

i=1 Li for k epochs with GD using learning rate equal
to αη. It holds that

τ
(1)
MT = −η∇

∑
t∈T

Lt(θbase) (1)

τ
(k)
MT = −η

∑
t∈T

k−1∑
j=0

∇Li(θ
(j)
MT) +

η2

2
C({θ(j)MT }

k−2
j=1) +O(η3) (2)

with

C({θ(j)MT }
h
j=1) =

∑
t∈T

h∑
ℓ=0

∇2Lt(θ
(ℓ)
MT)

ℓ∑
m=0

α ∑
t′ ̸=t,t′∈T

∇L
′
t(θ

(m)
MT) + (α− 1)∇Lt(θ

(m)
MT)

We report the proof in appendix A.1. To better appreciate the relation between a task vector and a
gradient computed over the corresponding task dataset, it is worth focusing on the single task case,
in which one is exactly the additive inverse of the other, scaled by the learning rate η.
Remark 3.1. From theorem 3.1, it follows that, for a single task t, and after a single epoch of
finetuning,

τt = −η∇Lt(θbase)

where η is the learning rate.

This also implies that, under the abovementioned assumptions, adding the task vector to the pre-
trained model can be seen as an approximation of a finetuning of the latter.

Corollary 3.1.1. Let θ(k)TA be the model obtained using vanilla task arithmetics i.e., θ(k)TA = θbase +

α
∑T

t=1 τ
(k)
t . Using the same notation of Theorem 3.1, it holds that

θ
(1)
TA = θ

(1)
MT (3)

θ
(k)
TA = θ

(k)
MT +

η2

2
C({θ(j)MT }

k−2
j=1) +O(η3) for k ≥ 2 (4)

Figure 2: Accuracy of a model merged
using task vectors over the task-specific
models fine-tuned for 1 epoch and at
convergence.

When k > 1, τMT still approximates the gradient of a
model finetuned for the same number of epochs via gra-
dient descent, but with an error that is o(η2). In fact, we
show in fig. 2 that the multi-task model obtained by merg-
ing models finetuned for a single epoch works better than
the one obtained by merging models finetuned to conver-
gence. In other words, the best resulting merged model is
obtained when task arithmetic is exactly a step of gradi-
ent descent. The effectiveness of task vectors in the k > 1
case, when the error nullifies the equality with respect
to gradients, can instead be motivated by the observation
that most of the trajectory followed by the model during
the finetuning phase is dictated by the gradient of the first
epoch: fig. 3a in fact shows that if we consider the epoch-
wise normalized gradient norm for epoch k obtained as

∇k =
∥∇(k)

θ L∥∑K
k′=1 ∥∇

(k′)
θ L∥

,

then the first epoch accounts for the largest contribution, reaching, in some cases, almost 70% of the
total of the gradient norms for all the epochs. When this is not true, e.g. in dataset RESISC45, we
speculate that the direction is still mostly the one dictated by the previous epoch: looking at fig. 3b,
we can see that the gradients of the first 5 epochs maintain high cosine similarity (> 0.8) with that of
the first one. It is worth remarking that, by considering Gradient Descent (GD) instead of Stochastic
Gradient Descent (SGD), the analysis does not apply exactly to the real case. However, considering
SGD as an approximation to GD, we speculate that the intuition is still correct. Under this unifying
lens, reducing task interference is analogous to reducing conflicting gradients in multi-task learning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

CIF
A
R
10

0

SV
H
N

R
ESI

SC
45

M
N
IS

T

Eur
oS

AT

G
TSR

B
D
TD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

G
ra

d
ie

nt
N

or
m

(a) Normalized gradient norms after 5 epochs of fine-
tuning.

(b) Pairwise cosine similarities of the gradients of the
first 10 epochs over dataset RESISC45.

4 ATM: ALTERNATING TUNING AND MERGING

Building upon the insights of section 3, we argue that task arithmetic is an approximation to a single
GD step over the union of all the tasks. Following this parallel, we advocate taking further update
steps sequentially and iteratively. The overall framework of ATM is depicted in fig. 1. Specifically,
starting from a pretrained checkpoint as the base model θ(0)base, we finetune it separately on each task
to obtain the first-iteration task vectors τ (1)1 , . . . , τ

(1)
|T | . Task vectors are then aggregated and added

to the base model to form the first-iteration unified model θ(1)base. The procedure is iterated, and at
each iteration k, the unified model θ(k)base becomes the new base model for the next iteration of ATM
(eq. (5)). The k-th iteration task vector for task t, τ (k)t , is obtained as θ(k)t − θ

(k)
base, where θ

(k)
t is a

model obtained finetuning the k-th iteration base model θ(k)base on task t.

θ
(k+1)
base = θ

(k)
base +

α

|T |
∑
t∈T

τ
(k)
t ∀k = 0, . . . ,K − 1 (5)

After K iterations, we ultimately obtain θ
(K)
base . The exact value of K can be predefined or based

on a stop condition. Using a pretrained model is the standard practice. However, Choshen et al.
(2022) have suggested that pretrained checkpoints are not always the optimal starting point for fur-
ther finetuning. Rather, they show that a model resulting from the merging of finetuned models can
be a better starting point than any of its constituents. Inspired by this, throughout ATM iterations,
we evolve the base model by iteratively merging task-specific finetuned models at each iteration
until the compute budget is met. In practice, each iteration of ATM involves finetuning the current
base model on all |T | tasks of interest, thereby obtaining |T | task vectors. These task vectors deter-
mine the task-specific directions the current base model should follow in order to attain enhanced
performance on the corresponding tasks. The merging step of ATM at a given iteration simply con-
sists of summing the mean current-iteration task vectors to the current base model, although any
interference-resolution method in the task vector literature can be integrated. This step is intended
to pull the base model closer to the multi-task basin on the loss landscape. The averaging step en-
sures the magnitude of the update remains insensitive to the number of tasks. Note that after each
iteration, the task vectors of the previous iterations can be safely discarded. Therefore, at any instant
of ATM, we only store one task vector for each of the |T | tasks and the base model, incurring no
additional memory requirements.

5 UPPER BOUNDING THE MULTI-TASK LOSS

In this section we explore the relationship between the the ATM loss, defined as the mean of average
losses over all tasks, and the loss of a model trained jointly of all the datasets. Analogously to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

section 3, we will conduct this analysis under the assumption that GD, rather than SGD, is used for
optimizing the model parameters. This simplifying assumption removes the stochasticity introduced
by random sampling, enabling a more straightforward analysis while still providing valuable insights
into the underlying dynamics of the optimization process. With a slight abuse of notation, we denote
with t both the task and its corresponding dataset with cardinality nt. The total number of samples
for all tasks is given by N =

∑
t∈T nt.

Inspired by the target model introduced by Daheim et al. (2023), we define as target loss for model
merging the loss Ltarget(θ) of a model trained jointly on all the datasets. Namely, Ltarget(θ) =
1
N

∑N
i=1 ℓ(xi, yi, θ). Given theorem 3.1,in the case in which we perform the merging after one step

of finetuning on each dataset, the ATM update using gradient is

θ
(k+1)
base = θ

(k)
base +

α

|T |
∑
t∈T

τ
(k)
t = θ

(k)
base − αη∇

(
1

|T |
∑
t∈T

Lt

)

Namely, we are performing a gradient descent step minimizing the function LATM = 1
|T |
∑

t∈T Lt.
Having established that one step of ATM in gradient descent minimizes LATM, a crucial question
arises: under what conditions does minimizing LATM also lead to the minimization of Ltarget? In
other words, when can we be certain that optimizing the ATM loss will also minimize the loss
associated with training jointly on all datasets? To answer this question, we first note that LATM is
an unweighted average of the individual dataset losses, while the target loss is a weighted average:

Ltarget(θ) =

∑
t∈T ntLt(θ)∑

t∈T nt
,

We now analyze the parameter update from θ(k) to θ(k+1). For both ATM and target methods, we
denote the change in loss, Lmethod, as ∆Lmethod = Lmethod(θ

(k))− Lmethod(θ
(k+1)). In the following

theorem, we prove that if the drop in ATM loss exceeds a threshold δ the target loss will also
decrease. The value of δ depends on the size of the largest dataset with a decreasing loss and the
smallest dataset with an increasing loss. In particular, if the former dataset is larger than the latter, a
reduction in ATM loss reduces the target loss. In practice, this is ensured when the loss is reduced
on the largest dataset.

Theorem 5.1. Let D be the set of datasets where the loss decreases after a parameter update, and I
be the set of datasets where the loss increases or remains unchanged, defined as D = {t | ∆Lt > 0}
and I = {t | ∆Lt ≤ 0}. If the reduction in the ATM loss satisfies ∆LATM > δ, where

δ =
1

|T |

(
1− mint∈I nt

maxt∈D nt

)∑
t∈I

|∆Lt|,

then the target loss Ltarget will also decrease, i.e., ∆Ltarget > 0.

We redirect the reader to appendix A.2 for the formal proof.

Remark 5.1. If we choose the target loss to be the maximum of the average loss across all datasets
Ltarget1 = maxt∈T Lt, by leveraging the equivalence between the L1-norm and the max norm, we
obtain the bound Ltarget ≤ T · LATM.

6 EXPERIMENTS

In this section, we illustrate the experimental setup and outcomes by comparing ATM against several
recent baselines across a number of classification tasks in computer vision and NLP.

6.1 EXPERIMENTAL SETTING

Datasets and Models To evaluate ATM, we conduct experiments across multiple neural architec-
tures and datasets in both computer vision and natural language processing (NLP) domains. For
computer vision tasks, we test ATM with a ViT-B-16 backbone (Dosovitskiy et al., 2021) and eval-
uate it on a diverse set of datasets: CIFAR100 (Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Comparisons as computational budget K varies for ViT-B-16.

EuroSAT (Helber et al., 2019), GTSRB (Houben et al., 2013), MNIST (Lecun et al., 1998), RE-
SISC45 (Cheng et al., 2017), and SVHN (Netzer et al., 2011). For NLP tasks, we instead employ
RoBERTa-base (Liu, 2019) and BERT-base-uncased (Devlin et al., 2019), evaluating them on the
GLUE benchmark (Wang et al., 2019).

Baselines and Metrics To gauge the performance of ATM, we consider several model merging
baselines, including task arithmetic (TA) (Ilharco et al., 2022), TIES-merging (Yadav et al., 2023),
and model breadcrumbs (Davari & Belilovsky, 2023) for both computer vision and NLP tasks, and
DARE merging (Yu et al., 2023) for NLP tasks only. We adhere to author-recommended hyper-
parameters, whenever needed or available, in order to ensure fair comparisons across experiments.
Specifically, for TIES-merging, we retain the top 15% of weights based on magnitude ranking. For
model breadcrumbs, we set β = 0.85 and γ = 0.993. For DARE merging, we use a drop rate of
0.9. In all settings, we adopt mean aggregation of task vectors and use a scaling factor of 1 when
applying them to the base model.

6.2 IMPACT OF EPOCH DISTRIBUTION ON PERFORMANCE

Figure 5: Multi-task accuracy for differ-
ent budget distributions (ViT-B-16)

In this experiment, we first establish a fixed compute bud-
get of 10 finetuning epochs for each task. Then, we seek
the optimal distribution of epochs among different num-
bers of ATM iterations. To exemplify, if 10 epochs are
distributed among 5 iterations, then in each iteration a
task is finetuned for 2 epochs.

As shown in fig. 5, when a fixed compute budget is as-
sumed, maximizing the number of iterations while min-
imizing the number of epochs per iteration achieves the
best results for ATM. This suggests that applying more
fine-grained updates to the base model is preferred to the
application of abrupt updates. Distributing the budget of
10 epochs into 10 iterations achieves the highest average
accuracy of 89%, surpassing the extreme of 1 iteration of
10 epochs by 21%. Note that this latter setting is analogous to task arithmetic, which performs
one-shot merging. Following this finding, we use this 1 epoch, 10 iterations setting for most of the
presented experiments.

6.3 EFFECT OF COMPUTE BUDGET

Figure 6: Average multi-task
accuracy as budget varies.

We extend the comparison of ATM against baseline methods un-
der different compute budgets. Specifically, we vary the per-task
number of finetuning epochs (K) within {2, 4, 10}, and compare
the average test accuracy across tasks. As shown in 4, ATM’s over-
all performance is remarkably superior, regardless of the budget.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Comparisons as computational budget K varies for RoBERTa-base.

Moreover, as the budget increases up to 10 epochs, the proportional
advantage of ATM over baselines is also increased. ATM leads with
an edge of 7%, 11%, and 21% over the best-performing baseline,
for 2, 4, and 10 epochs of budget, respectively. For detailed results
on both vision and NLP benchmarks, we refer the reader to B.2.

Interestingly, we observe that while the accuracy of ATM increases with more epochs of finetuning,
the opposite is true for the baseline methods, see 6. In other words, the more specialized the task-
specific models, the lower the performance of the unified multi-task model. ATM takes a different
approach by gradually specializing the intermediate multi-task models, eschewing this issue.

6.4 COMPARISONS IN ORIGINAL SETTINGS

Assuming the availability of training data, we compare the following three ATM settings against var-
ious baselines under their original settings: (i) ATM finetuned on validation data (valFT ATM) for 10
iterations of 1 epoch, (ii) ATM finetuned on training data for 10 iterations of 1 epoch, and (iii) ATM
finetuned on training data until convergence for 30 iterations of 1 epoch. As shown in table 1, all
ATM variants outperform the baselines by a large margin. When the training data is available and
the budget is limited to 10 epochs, ATM achieves an average accuracy of 89%, leading by 17% over
the best-performing baseline. Assuming no compute budget restriction, ATM converges after 30
iterations, achieving a remarkable average test accuracy of 91%.

6.5 TRAINING-DATA FREE SETTING

One realistic constraint in practice is the absence of per-task training data, as finetuned models may
be downloaded from an online repository. In this section, we assume only the availability of the
validation data split, which is commonly exploited for hyperparameter tuning by baseline methods.
In contrast to the baselines, in this setting, ATM uses the validation data for finetuning the vari-
ous tasks, leaving hyperparameters untuned. We call this textitATM variant valFT ATM, and we
compare its performance of against ATM and the baselines, adopting the author-suggested hyper-
parameters to ensure fair comparisons. As shown in Table 1, valFT ATMsignificantly outperforms
the best-performing baseline by 10%. Note that the gap of 7% between valFT ATM and ATM is
admittedly due to the amount of data for finetuning, but on all tasks (except for EuroSAT), valFT
ATM performs comparably to ATM. We observe a similar phenomenon in the NLP domain as well.

6.6 TIME AND MEMORY COMPLEXITIES

Method Time Memory
Task Arithmetic O(n ∗ d) O(d)
TIES O(n ∗ d ∗ log(d)) O(d)
Breadcrumbs O(n ∗ d ∗ log(d)) O(d)
ATM O(k ∗ n ∗ d) O(d)

Table 2: Comparison of methods in
terms of time and memory complexity

This experiment compares ATM against baselines in
terms of time and memory consumption, assuming the
parameter count of the backbone to be d. Memory-wise,
ATM introduces no additional requirements compared to
task arithmetic, as the task vectors of each iteration can

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

CIFAR100 DTD EuroSAT GTSRB MNIST RESISC45 SVHN Average

Task Arithmetic 0.59 0.46 0.78 0.61 0.96 0.63 0.77 0.69
TIES 0.70 0.51 0.76 0.60 0.94 0.73 0.78 0.72

Breadcrumbs 0.60 0.47 0.77 0.60 0.95 0.63 0.75 0.68
ValFT ATM: 10 Orders 0.78 0.61 0.53 0.97 0.99 0.88 0.95 0.82

ATM: 10 Orders 0.79 0.61 0.98 0.97 0.99 0.89 0.96 0.89
ATM: 30 Orders 0.83 0.68 0.99 0.99 1.00 0.94 0.97 0.91

Table 1: Accuracy comparison under original baseline settings (ViT-B-16)

be deleted after the merge step. The time complexity
of iteration-k ATM is equivalent to that of k times task
arithmetic, as it iterates finetuning and merging for k it-
erations. We argue that this time complexity is generally
asymptotically negligible compared to those of TIES and breadcrumbs, of which the dominant time
overhead stems from pruning each task vector post-hoc according to the magnitude ranking of all
weights, incurring O(d ∗ log(d)) time complexity. We compare the time and space complexities in
table 2. Note that as long as log(d) is asymptotically greater than k, which is generally the case since
k is usually a predefined constant integer (e.g. 10), ATM is faster than both TIES and breadcrumbs.

7 DISCUSSION

7.1 ORTHOGONALITY

Orthogonality between task vectors has been recommended as a desirable property for multi-task
merging (Ilharco et al., 2022). Davari & Belilovsky (2023) adopts pairwise cosine similarity be-
tween task vectors as a proxy for task interference. Following this line, we again back the validity
of this observation by identifying a positive correlation between ATM performance and task vector
orthogonality. As shown in Figure fig. 9, as the number of ATM iterations increases, the magni-
tude of cosine similarity between task vectors tends to shrink, suggesting greater orthogonality as
performance improves. Furthermore, as shown in 10, we find that ATM task vectors exhibit lower-
magnitude average cosine similarity compared to the baseline methods.

7.2 TASK PROFICIENCY IS NOT MERGEABILITY

As shown in fig. 6, task-specific expertise does not imply multi-task performance. We observe that
better-performing task-specific models result in worse multi-task models when adopting baseline
methods, hinting that downstream performance is not a predictor of post-merging performance. We
speculate that specialized models end up in highly dispersed locations in the parameter space, and
merging them abruptly in a one-shot fashion generates a suboptimal multi-task model; this can be
observed in fig. 8, where baseline methods end up all in the same (suboptimal) loss basin. On
the contrary, a lower degree of specialization ensures the task-specific models remain closer to the
pretrained checkpoint in the parameter space, leading to less aggressive updates when merging. The
above insights translate to less aggressive updates (shorter-norm task vectors) being more amenable
to merging. Capitalizing on this, ATM gradually aggregates task-specific models and updates the
base model accordingly, merging less aggressively but over multiple iterations. At each iteration,
the ATM task vectors represent the best nudges for the current base model without referring back to
the initial pretrained model as all baseline methods do.

7.3 EDUCATED TRAJECTORY

Figure 8: 2D PCA projection of various
approaches.

Task arithmetic performs the aggregation step abruptly in
a one-shot fashion over the initial pretrained checkpoint,
likely overshooting the multi-task optimum. In ATM,
however, the loss landscape is traversed iteration by itera-
tion as the base model updates, leading to more informed
nudges toward the multi-task optimum. Figure 8 depicts

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: Average magnitudes of pairwise co-
sine similarity between ATM task vectors

Figure 10: Average magnitudes of cosine simi-
larity between task vectors

the 2D projection of various checkpoints via PCA. No-
tably, TIES and breadcrumbs, being post-hoc enhance-
ments of task arithmetic, end up around the same basin,
whereas ATM takes gradual steps toward a different and
better basin, signaling the effectiveness of our novel iter-
ative merging paradigm.

7.4 LIMITATIONS OF ITERATIVE MERGING

It is important to note that, while we have extensively shown the benefits of ATM in all the con-
sidered settings, its iterative nature also has its drawbacks. In particular, iterative merging does not
yield a task representation that can be used for immediate adaptation to new tasks, as we instead se-
quentially obtain a series of K vectors per task. storage. However, the approach is still advisable for
obtaining a single model that performs best overall in all the tasks. In this regard, we made sure to
maintain a fair comparison by using the same computing budget and data requirements, showing that
a small validation set is sufficient to effectively employ the framework; such a set is always assumed
to be presented in the literature and is usually used to optimize for the merging hyperparameters.
Finally, while the approach is similar to performing gradient descent on the union of all the tasks,
it still inherits one important property of task arithmetic: by obtaining the task vectors separately,
the approach does not require centralizing the data on a computing node, making it amenable to
federated settings where data privacy is a key requirement.

8 CONCLUSIONS

In conclusion, this paper identifies a key limitation of task arithmetic—overshooting due to abrupt
model merging—and establishes its connection to gradient descent, forming the basis for our pro-
posed model merging framework. We present Alternating Tuning and Merging (ATM), an iterative
framework that addresses the shortcomings of one-shot merging techniques. By alternating between
finetuning and merging, ATM effectively prevents overshooting and enhances multi-task perfor-
mance. Extensive experiments on computer vision and NLP benchmarks demonstrate that ATM
achieves state-of-the-art accuracy while maintaining computational efficiency comparable to exist-
ing baselines. Additionally, our theoretical analysis reveals that ATM optimizes the upper bound
of the loss over the union of all the tasks and improves task vector orthogonality. The flexibility of
ATM opens numerous future research directions, including the integration of interference-mitigation
techniques and further refinement through advancements from the gradient descent literature.

ETHICS STATEMENT

This research was conducted with a strong commitment to ethical standards in both data usage and
experimental methodology. All datasets utilized in this study are publicly available. No personally
identifiable information was accessed or used during the course of this research. Additionally, the
experiments were designed to ensure fair comparisons across methods. We encourage future work
that adheres to these same ethical principles and addresses broader societal impacts of machine
learning technologies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results and have taken steps to facilitate this
for the broader research community. The code, datasets, and configurations used for the experiments
in this paper are made available via a public repository. We are open to providing further instructions
on the usage of our code. The hyperparameters, frameworks, and evaluation metrics have been
thoroughly documented, and we provide clear descriptions of our experimental setup to allow for
straightforward replication of our findings. We encourage the community to utilize these resources
and provide feedback for further improvements.

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging models
modulo permutation symmetries. In The Eleventh International Conference on Learning Repre-
sentations, 2022.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10), 2017.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for bet-
ter pretraining. ArXiv preprint, abs/2204.03044, 2022. URL https://arxiv.org/abs/
2204.03044.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 2014. doi:
10.1109/CVPR.2014.461. URL https://doi.org/10.1109/CVPR.2014.461.

Donato Crisostomi, Marco Fumero, Daniele Baieri, Florian Bernard, and Emanuele Rodolà. c2m3:
Cycle-consistent multi-model merging. In Advances in Neural Information Processing Systems,
volume 37, 2024.

Nico Daheim, Thomas Möllenhoff, Edoardo Ponti, Iryna Gurevych, and Mohammad Emtiyaz Khan.
Model merging by uncertainty-based gradient matching. In The Twelfth International Conference
on Learning Representations.

Nico Daheim, Thomas Möllenhoff, Edoardo Ponti, Iryna Gurevych, and Mohammad Emtiyaz Khan.
In The Twelfth International Conference on Learning Representations, 2023.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. ArXiv preprint, abs/2312.06795, 2023. URL https://arxiv.
org/abs/2312.06795.

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in
model merging through magnitude-based sampling. ArXiv preprint, abs/2406.11617, 2024. URL
https://arxiv.org/abs/2406.11617.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics,
2019. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=YicbFdNTTy.

11

https://arxiv.org/abs/2204.03044
https://arxiv.org/abs/2204.03044
https://doi.org/10.1109/CVPR.2014.461
https://arxiv.org/abs/2312.06795
https://arxiv.org/abs/2312.06795
https://arxiv.org/abs/2406.11617
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?id=dNigytemkL.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research. PMLR, 2020. URL http://proceedings.mlr.press/
v119/frankle20a.html.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7), 2019.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detec-
tion of traffic signs in real-world images: The German Traffic Sign Detection Benchmark. In
International Joint Conference on Neural Networks, number 1288, 2013.

Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
Tuning-free high-performance model merging. ArXiv preprint, abs/2405.17461, 2024. URL
https://arxiv.org/abs/2405.17461.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. The Eleventh Inter-
national Conference on Learning Representations, 2022.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. ArXiv preprint, abs/2212.09849, 2022. URL https:
//arxiv.org/abs/2212.09849.

Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-Julien.
Population parameter averaging (papa). ArXiv preprint, abs/2304.03094, 2023. URL https:
//arxiv.org/abs/2304.03094.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR:
REnormalizing permuted activations for interpolation repair. In The Eleventh International Con-
ference on Learning Representations, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11), 1998. doi: 10.1109/5.726791.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. ArXiv preprint,
abs/1907.11692, 2019. URL https://arxiv.org/abs/1907.11692.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. 2021.

Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, and Haggai Maron. Equiv-
ariant deep weight space alignment, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011. Granada, 2011.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mit-
tal. Lottery ticket adaptation: Mitigating destructive interference in llms. ArXiv preprint,
abs/2406.16797, 2024. URL https://arxiv.org/abs/2406.16797.

12

https://openreview.net/forum?id=dNigytemkL
http://proceedings.mlr.press/v119/frankle20a.html
http://proceedings.mlr.press/v119/frankle20a.html
https://arxiv.org/abs/2405.17461
https://arxiv.org/abs/2212.09849
https://arxiv.org/abs/2212.09849
https://arxiv.org/abs/2304.03094
https://arxiv.org/abs/2304.03094
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2406.16797

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
fb2697869f56484404c8ceee2985b01d-Abstract.html.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue a multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
rJ4km2R5t7.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In Forty-first Inter-
national Conference on Machine Learning, 2024.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accu-
racy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research. PMLR, 2022. URL https://proceedings.mlr.press/
v162/wortsman22a.html.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. 2023.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. In The Twelfth International
Conference on Learning Representations, 2023.

Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xiaojun Chen, Xingwei Wang, and Dacheng
Tao. Representation surgery for multi-task model merging. ArXiv preprint, abs/2402.02705, 2024.
URL https://arxiv.org/abs/2402.02705.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2023.

A PROOFS

A.1 PROOF THEOREM 3.1 AND COROLLARY 3.1.1

In this section we will prove the Theorem 3.1 and Corollary 3.1.1. We repeat the statement of the
theorem and of the corollary for easiness of reading.

Theorem. 3.1 Let
{
θ
(k)
t

}|T |

t=1
be a set of models obtained by finetuning θbase for k epochs over the

set of tasks T via Gradient Descent (GD) with a learning rate of η, where finetuning over task t ∈ T

minimizes Lt(θ) =
1
nt

∑nt

i=1 ℓ(xi, yi, θ). Let moreover
{
τ
(k)
t

}|T |

t=1
be a set of task vectors, with each

τ
(k)
t = θ

(k)
t − θbase. Let τ (k)MT be the multi-task vector τ

(k)
MT =

∑
t∈T τ

(k)
t . Finally, let θkMT be the

model obtained minimizing the loss
∑|T |

i=1 Li for k epochs. It holds that

τ1MT = −η∇
∑
t∈T

Lt(θbase) (6)

τkMT = −η
∑
t∈T

k−1∑
j=0

∇Li(θ
j
MT) +

η2

2
C({θjMT }

k
j=1) +O(η3) (7)

13

https://proceedings.neurips.cc/paper/2020/hash/fb2697869f56484404c8ceee2985b01d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb2697869f56484404c8ceee2985b01d-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://arxiv.org/abs/2402.02705

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

with

C({θjMT }kj=1) =
∑

t∈T

∑k
ℓ=0 ∇2Lt(θ

ℓ
MT)
∑ℓ

m=0

[
α
∑

t′ ̸=t,t′∈T ∇L
′
t(θ

m
MT) + (α− 1)∇Lt(θ

m
MT)
]

Corollary. 3.1.1 Let θkTA be the model obtained using vanilla task arithmetics i.e., θkTA = θbase +

α
∑|T |

t=1 τ
k
t . It holds that

θ1TA = θ1MT (8)

θkTA = θkMT + η2o(1) for k > 1 (9)

where η is the learning rate used for the finetuning of the model on the single datasets.

We recall that θki is the model obtained finetuing on task i for k epochs and that both the finetuing
on different tasks and the training on the average loss start from a pretrained model θ0.

To prove the statement of the theorem and of the corollary we need a intermediate result. We
introduce the following notation:

ri(θ) = α
∑
j ̸=i

∇Lj(θ) + (α− 1)∇Li(θ) = α

|T |∑
j=1

∇Lj(θ)−∇Li(θ
(0)) (10)

pki (θ
0, θ1MT, . . . , θ

k
MT) =

k∑
j=0

ri(θ
k
MT) (11)

ski (θ
0, . . . , θkMT) =

k∑
j=0

∇2Li(θ
j
MT)[p

j
i (θ

0, . . . , θj−1
MT)]. (12)

Lemma A.1. Using the notation introduced in theorem 3.1, it holds that

θ
(1)
i = θ

(1)
MT + ηp0i (θ

0) (13)

and for m ≥ 2

θ
(m+1)
i = θ

(m+1)
MT + ηpmi (θ0, . . . , θmMT)−

η2

2
sm−1
i (θ0, . . . , θm−1

MT) +O(η3) (14)

Proof. We first show that the statement is true for m = 1, and then prove the results for m ≥ 2 by
induction. In this case, the base case is given for m = 2. In the induction step, instead, we prove
that if the statement holds for any given case m then it must also hold for the next case m+ 1.

m = 1. First epoch For each task i = 1, . . . , |T |

θ
(1)
i = θ(0) − η∇Li(θ

(0)) while θ
(1)
MT = θ(0) − αη

∑
i∈T

∇Li(θ
(0)).

Consequently, it holds that

θ1i = θ
(1)
MT + η

α∑
j ̸=i

∇Lj(θ
(0)) + (α− 1)∇Li(θ

(0))

= θ

(1)
MT + ηri(θ

(0)) = θ
(1)
MT + ηp0i (θ

0).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

m = 2. Second epoch

θ
(2)
i = θ1i − η∇Li(θ

1
i)

= θ
(1)
MT + ηri(θ

(0))− η∇Li

(
θ
(1)
MT + ηri(θ

(0))
)

Taylor
≈ θ

(1)
MT + ηri(θ

(0))− η∇Li(θ
(1)
MT)−

η2

2
∇2Li(θ

1
MT)ri(θ

(0)) +O(η3)

= θ
(1)
MT − η∇Li(θ

(1)
MT) + ηri(θ

(0))− η2

2
∇2Li(θ

1
MT)ri(θ

(0)) +O(η3)

= θ
(1)
MT − η∇Li(θ

(1)
MT) + ηα

∑
t∈T

∇Li(θ
(1)
MT)− ηα

∑
t∈T

∇Li(θ
(1)
MT) + ηri(θ

(0))

− η2

2
∇2Li(θ

1
MT)ri(θ

(0)) +O(η3)

= θ
(1)
MT + ηri(θ

1
MT) + ηri(θ

(0))− η2

2
∇2Li(θ

1
MT)ri(θ

(0)) +O(η3)

= θ1MT + ηp1i (θ
0, . . . , θ1MT)−

η2

2
s0i (θ

0) +O(η3)

Inductive step Let us assume that

θmi = θmMT + ηpm−1
i (θ0, . . . , θm−1

MT)− η2

2
sm−2
i (θ0, . . . , θm−2

MT) +O(η3)

We can derive that

θm+1
i = θmi − η∇Li(θ

m
i)

= θmMT + ηpm−1
i (θ0, . . . , θm−1

MT)− η2

2
sm−2
i (θ0, . . . , θm−2

MT)− η∇Li(θ
m
i) +O(η3)

= θmMT + ηpm−1
i (θ0, . . . , θm−1

MT)− η2

2
sm−2
i (θ0, . . . , θm−2

MT)

− η∇Li

(
θmMT + ηpm−1

i (θ0, . . . , θm−1
MT)− η2

2
sm−2
i (θ0, . . . , θm−2

MT)

)
+O(η3)

= θmMT + ηpm−1
i (θ0, . . . , θm−1

MT)− η2

2
sm−2
i (θ0, . . . , θm−2

MT)

− η∇Li(θ
m
MT)−

η

2
∇2Li(θ

m
MT)

(
ηpm−1

i (θ0, . . . , θm−1
MT)− η2

2
sm−2
i (θ0, . . . , θm−2

MT)

)
+O(η3)

= θmMT + ηpm−1
i (θ0, . . . , θm−1

MT)− η2

2
sm−2
i (θ0, . . . , θm−2

MT)

− η∇Li(θ
m
MT)−

η2

2
∇2Li(θ

m
MT)p

m−1
i (θ0, . . . , θm−1

MT) +O(η3)

= θ
(m+1)
MT + ηpmi (θ0, . . . , θmMT)−

η2

2
sm−1
i (θ0, . . . , θm−1

MT) +O(η3)

Proof Theorem and Corollary. For the first epoch

θ1TA = θ0 + α
∑
i∈T

τ1i = θ0 − ηα
∑
i∈T

∇Li(θ
0)

while, choosing αη as learning rate for the loss
∑

i∈T Li :

θ
(1)
MT = θ(0) − αη

∑
i∈T

∇Li(θ
(0)).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

So θ
(1)
MT = θ1TA.

For k ≥ 2, notice that

θkMT = θ0 − αη

k−1∑
j=0

∇
∑
t∈T

Li(θ
j
MT). (15)

Now, using Lemma A.1 , using that

−αη

k−1∑
j=0

∇
∑
t∈T

Lt(θ
j
MT) + ηpk−1

i (η0, . . . , ηk−1
MT)

= −αη

k−1∑
j=0

∇
∑
t∈T

Lt(θ
j
MT) +

k−1∑
j=0

ri(θ
k
MT)

= −αη

k−1∑
j=0

∇
∑
t∈T

Li(θ
j
MT) +

k−1∑
j=0

α
∑
j∈T

∇Lj(θ
j
MT)−∇Li(θ

j
MT)

= −η

k−1∑
j=0

∇Li(θ
j
MT)

Namely

θm+1
i = θ

(m+1)
MT + ηpmi (θ0, . . . , θmMT)−

η2

2
sm−1
i (θ0, . . . , θm−1

MT) +O(η3)

= θ0 − αη

m∑
j=0

∇
∑
t∈T

Li(θ
j
MT) + ηpmi (θ0, . . . , θmMT)−

η2

2
sm−1
i (θ0, . . . , θm−1

MT) +O(η3)

= θ0 − η

m∑
j=0

∇Li(θ
j
MT)−

η2

2
sm−1
i (θ0, . . . , θm−1

MT) +O(η3)

we can rewrite the tasks vectors as

τki = θki − θ0 (16)

= −η
k−1∑
j=0

∇Li(θ
j
MT)−

η2

2
sk−2
i (θ0, . . . , θk−2

MT) +O(η3) (17)

Consequently the model obtain with TA is

θkTA = θ0 + α
∑
i∈T

τki

= θ0 − ηα

k−1∑
j=0

∑
i∈T

∇Li(θ
j
MT)− α

∑
i∈T

η2

2
sk−2
i (θ0, . . . , θk−2

MT) +O(η3)

= θkMT − α
∑
i∈T

η2

2
sk−2
i (θ0, . . . , θk−2

MT) +O(η3)

A.2 PROOF THEOREM 5.1

In this section, we provide a rigorous proof of Theorem 5.1, establishing the conditions under which
ATM implicitly optimizes the loss of the model trained on the union of datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. Suppose that when transitioning from parameter θi to parameter θi+1, the change in the
average loss for each dataset Dk is given by ∆Lk = Lk(θ

i) − Lk(θ
i+1). We denote by P the set

of tasks for which the delta of the loss is positive and by P the set for which it is negative, namely
P = {k ∈T s.t. ∆Lk > 0} and N = {k ∈T s.t. ∆Lk ≤ 0} The set {1, . . . , n} = P ∪ N . In the
following formulas we will use the symbol | different purposes. For sets, like Di , |Dj | denotes the
cardinality of the set, while for scalars, such as ∆Lk, |∆Lk| denote their absolute value. Since the
task in N have negative ∆Lk, it holds that∑

j∈N

|Dj |∆Lj = −
∑
j∈N

|Dj ||∆Lj |.

For hypothesis ∆LATM > δ, this implies
∑n

j=1 ∆j > nδ. We have that
∑

j∈P ∆Lj+
∑

j∈N ∆Lj =∑
j∈P ∆Lj −

∑
j∈N |∆Lj | > nδ, namely

∑
j∈P ∆Lj > nδ +

∑
j∈N |∆Lj |

We want to prove that ∆Ltarget > 0. Let us now consider ∆Ltarget > 0 iff
∑n

j=1 |Dj |∆j > 0.

n∑
j=1

|Dj |∆j =
∑
j∈P

|Dj |∆Lj +
∑
j∈N

|Dj |∆Lj

=
∑
j∈P

|Dj |∆Lj −
∑
j∈N

|Dj ||∆Lj |

> min
j∈P

|Dj |
∑
j∈P

∆Lj −max
j∈N

|Dj |
∑
j∈N

|∆Lj |

> min
j∈P

|Dj |

nδ +∑
j∈N

|∆Lj |

−max
j∈N

|Dj |
∑
j∈N

|∆Lj |

= nmin
j∈P

|Dj |δ + (min
j∈P

|Dj | −max
j∈N

|Dj |
∑
j∈N

)|∆Lj |

The last line of the previous equation is positive by hypothesis since we assumed δ > 1
n (1 −

minj∈N |Dj |
maxj∈P |Dj |)

∑
j∈N |∆Lj |.

B ADDITIONAL RESULTS

B.1 FULL RESULTS OVER VARYING COMPUTATIONAL BUDGET

In the main paper, we pictorially depicted the multi-task accuracies of the baselines and variants
of ATM, in the form of radar plots. For deeper analysis, here we report the full results of ATM
compared to the baselines, as the computational budget varies for 2, 4, 7, and 10 epochs.

B.2 COSINE SIMILARITY OF EPOCH-WISE GRADIENTS

We report in fig. 11 the cosine similarity of gradients for the first 10 epochs over DTD and EuroSAT,
as these do not have a marked difference in gradient norms between the first epoch and the remaining
ones in fig. 3a. We see that the alignment of subsequent gradients observed in RESISC45 still holds
in DTD, even if with less marked similarities. On the other hand, this does not seem to hold for
EuroSAT.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

CIFAR100 DTD EuroSAT GTSRB MNIST RESISC45 SVHN average
K

=
2

Task Arithmetic 0.58 0.39 0.78 0.59 0.98 0.58 0.83 0.68
TIES 0.76 0.46 0.71 0.55 0.96 0.71 0.81 0.71

Breadcrumbs 0.72 0.48 0.80 0.61 0.97 0.70 0.81 0.72
ValFT ATM 0.70 0.53 0.84 0.84 0.98 0.78 0.90 0.80

ATM 0.74 0.51 0.89 0.76 0.98 0.74 0.89 0.79

K
=

4

Task Arithmetic 0.71 0.48 0.80 0.62 0.97 0.71 0.82 0.73
TIES 0.75 0.45 0.69 0.56 0.97 0.69 0.84 0.70

Breadcrumbs 0.68 0.43 0.79 0.61 0.97 0.67 0.81 0.71
ValFT ATM 0.66 0.55 0.73 0.85 0.98 0.83 0.94 0.79

ATM 0.75 0.55 0.95 0.90 0.99 0.82 0.94 0.84

K
=

7

Task Arithmetic 0.67 0.44 0.79 0.62 0.97 0.67 0.83 0.71
TIES 0.72 0.43 0.66 0.56 0.97 0.66 0.85 0.69

Breadcrumbs 0.65 0.41 0.76 0.62 0.97 0.62 0.81 0.69
ValFT ATM 0.75 0.62 0.66 0.96 0.99 0.85 0.96 0.83

ATM 0.77 0.58 0.98 0.96 0.99 0.87 0.95 0.87

K
=

10

Task Arithmetic 0.63 0.41 0.76 0.63 0.97 0.62 0.83 0.69
TIES 0.68 0.41 0.70 0.56 0.98 0.62 0.86 0.69

Breadcrumbs 0.60 0.40 0.78 0.58 0.98 0.59 0.81 0.68
ValFT ATM 0.78 0.61 0.53 0.97 0.99 0.88 0.95 0.82

ATM 0.79 0.61 0.98 0.97 0.99 0.89 0.96 0.89

Table 3: ATM vs. Baselines as budget varies (ViT-B-16)

CoLA SST2 MRPC QQP MNLI QNLI RTE Average

K
=

2

Task Arithmetic 0.70 0.56 0.66 0.37 0.47 0.54 0.51 0.54
TIES 0.69 0.51 0.68 0.37 0.37 0.51 0.47 0.51

Breadcrumbs 0.69 0.53 0.66 0.37 0.45 0.52 0.48 0.53
DARE 0.84 0.53 0.68 0.41 0.32 0.50 0.47 0.54

valFT ATM 0.71 0.78 0.68 0.46 0.64 0.68 0.67 0.66
ATM 0.72 0.78 0.69 0.44 0.65 0.68 0.62 0.66

K
=

4

Task Arithmetic 0.71 0.60 0.66 0.37 0.51 0.54 0.51 0.56
TIES 0.69 0.51 0.68 0.37 0.42 0.51 0.47 0.52

Breadcrumbs 0.70 0.57 0.66 0.37 0.49 0.53 0.51 0.55
DARE 0.83 0.50 0.65 0.41 0.33 0.50 0.46 0.53

valFT ATM 0.70 0.83 0.70 0.68 0.67 0.73 0.62 0.70
ATM 0.73 0.81 0.70 0.58 0.70 0.80 0.67 0.71

K
=

7

Task Arithmetic 0.71 0.65 0.65 0.38 0.52 0.56 0.55 0.57
TIES 0.69 0.51 0.68 0.37 0.42 0.51 0.47 0.52

Breadcrumbs 0.71 0.61 0.65 0.37 0.50 0.54 0.52 0.56
DARE 0.84 0.52 0.65 0.43 0.33 0.49 0.44 0.52

valFT ATM 0.69 0.85 0.69 0.75 0.68 0.72 0.60 0.71
ATM 0.72 0.79 0.70 0.73 0.73 0.82 0.67 0.74

K
=

10

Task Arithmetic 0.71 0.66 0.60 0.38 0.56 0.59 0.60 0.59
TIES 0.69 0.51 0.68 0.37 0.43 0.51 0.47 0.52

Breadcrumbs 0.71 0.61 0.62 0.38 0.54 0.57 0.57 0.57
DARE 0.85 0.51 0.64 0.42 0.33 0.49 0.44 0.52

valFT ATM 0.68 0.86 0.66 0.76 0.70 0.73 0.63 0.72
ATM 0.72 0.83 0.69 0.76 0.74 0.81 0.66 0.74

Table 4: ATM vs Baselines as budget varies (RoBERTa-base)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

CoLA SST2 MRPC QQP MNLI QNLI RTE Average
K

=
2

Task Arithmetic 0.61 0.70 0.39 0.65 0.41 0.57 0.54 0.55
TIES 0.32 0.50 0.32 0.63 0.37 0.50 0.54 0.45

Breadcrumbs 0.60 0.68 0.39 0.65 0.40 0.57 0.54 0.55
DARE 0.82 0.54 0.69 0.40 0.33 0.50 0.46 0.53

ValFT ATM 0.66 0.71 0.47 0.65 0.44 0.57 0.56 0.58
ATM 0.68 0.68 0.39 0.64 0.46 0.56 0.61 0.58

K
=

4

Task Arithmetic 0.59 0.66 0.39 0.67 0.41 0.55 0.57 0.55
TIES 0.32 0.50 0.32 0.63 0.38 0.51 0.53 0.46

Breadcrumbs 0.58 0.65 0.40 0.67 0.41 0.55 0.56 0.54
DARE 0.82 0.53 0.66 0.43 0.33 0.50 0.47 0.54

ValFT ATM 0.67 0.75 0.47 0.70 0.54 0.64 0.62 0.62
ATM 0.68 0.76 0.44 0.74 0.59 0.66 0.67 0.65

K
=

7

Task Arithmetic 0.58 0.65 0.38 0.66 0.42 0.55 0.58 0.55
TIES 0.33 0.50 0.33 0.63 0.38 0.51 0.53 0.46

Breadcrumbs 0.58 0.65 0.38 0.66 0.41 0.55 0.59 0.55
DARE 0.83 0.52 0.66 0.43 0.33 0.51 0.46 0.53

ValFT ATM 0.66 0.75 0.47 0.70 0.59 0.67 0.64 0.64
ATM 0.69 0.81 0.51 0.78 0.63 0.70 0.66 0.68

K
=

10

Task Arithmetic 0.59 0.66 0.39 0.64 0.42 0.55 0.59 0.55
TIES 0.35 0.51 0.34 0.64 0.38 0.51 0.53 0.47

Breadcrumbs 0.59 0.65 0.39 0.64 0.42 0.55 0.60 0.55
DARE 0.82 0.51 0.69 0.42 0.33 0.51 0.47 0.54

ValFT ATM 0.66 0.73 0.50 0.71 0.59 0.69 0.63 0.64
ATM 0.68 0.81 0.53 0.78 0.65 0.72 0.66 0.69

Table 5: ATM vs. Baselines as budget varies (BERT-base-uncased)

(a) Dataset EuroSAT. (b) Dataset DTD.

Figure 11: Pairwise cosine similarities of the gradients of the first 10 epochs over datasets that do
not exhibit most of the gradient norm localized in the first epoch.

19

	Introduction
	Related work
	Task Vectors as Gradients
	ATM: Alternating Tuning and Merging
	Upper bounding the multi-task loss
	Experiments
	Experimental setting
	Impact of Epoch Distribution on Performance
	Effect of Compute Budget
	Comparisons in Original Settings
	Training-data Free Setting
	Time and Memory Complexities

	Discussion
	Orthogonality
	Task Proficiency is not Mergeability
	Educated Trajectory
	Limitations of Iterative Merging

	Conclusions
	Proofs
	Proof Theorem 3.1 and Corollary 3.1.1
	Proof Theorem 5.1

	Additional Results
	Full results over varying computational budget
	Cosine similarity of epoch-wise gradients

