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ABSTRACT

Recent advances in machine learning have inspired a surge of research into re-
constructing specific quantities of interest from measurements that comply with
certain physical laws. These efforts focus on inverse problems that are governed
by partial differential equations (PDEs). In this work, we develop an asymptotic
Sobolev norm learning curve for kernel ridge(less) regression when addressing
(elliptical) linear inverse problems. Our results show that the PDE operators in
the inverse problem can stabilize the variance and even behave benign overfitting
for fixed-dimensional problems, exhibiting different behaviors from regression
problems. Besides, our investigation also demonstrates the impact of various in-
ductive biases introduced by minimizing different Sobolev norms as a form of
implicit regularization. For the regularized least squares estimator, we find that all
considered inductive biases can achieve the optimal convergence rate, provided
the regularization parameter is appropriately chosen. The convergence rate is
actually independent to the choice of (smooth enough) inductive bias for both ridge
and ridgeless regression. Surprisingly, our smoothness requirement recovers the
condition found in Bayesian setting and extends the conclusion to the minimum
norm interpolation estimators.

1 INTRODUCTION

Inverse problems are widespread across science, medicine, and engineering, with research in this field
yielding significant real-world impacts in medical image reconstruction (Ronneberger et al., 2015)),
inverse scattering (Khoo et al., 2017 and 3D reconstruction (Sitzmann et al., 2020). One typical way
to solve (elliptical) inverse problems is conducted by statistical machine learning methods (Kaipio &
Somersalol, |2006; [Knapik et al., 2011} |Lu et al., [2022). To be specific, we consider the problem of
reconstructing a function f* from random sampled observations D = {(z;, y;)}?, from an unknown
distribution P on X' x ), where y; is the noisy measurement of f* through a measurement procedure
A, ie Ely|X = z] = (Af)(x). For simplicity, we assume .4 is self-adjoint (elliptic) linear operator
in this paper (Knapik et al.,[2011;|de Hoop et al., [2021; [Lu et al.;,2022). When the observations are
the direct observations of the function, the problem is a classical non-parametric function estimation
(De Vito et al.| [2005; [Tsybakovl, 2004). Nevertheless, the observations may also come from certain
physical laws described by a partial differential equation (PDE) (Stuart, 2010; Benning & Burger,
2018). Since the most challenging linear inverse problems A~ are ill-posed, where a small noise
in the observation can result in much larger errors in the solution. Further analysis (Knapik et al.,
2011} Nickl et al., [2020; |Lu et al.| 2021b; [2022; Nickl| 2023} [Randrianarisoa & Szabol [2023)) of how
the structure of the ill-posed inverse problem would change the information-theoretical analysis is
always needed.

To handle such ill-posed inverse problem, over-parameterized machine learning models (Raissi
et al., 2019; Han et al., 2018 |Sirignano & Spiliopoulos) [2018) and interpolated estimators (Yang
et al.;2021; (Chen et al., 2021a) become successful solutions to linear inverse problems and they can
generalize well under noisy observation, i.e., benign overfitting (Bartlett et al.| [2020a; [Frei et al.|
2022} |Cao et al.,[2022} [Zhu et al.| [2023)). Nevertheless, statistical mechanism and inherent properties
of these estimators for inverse problems are still unclear in terms of the following question:

What are the conditions inherent to inverse problems that facilitate or impede benign overfitting?
How to achieve it by selecting the appropriate inductive bias?
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To understand this question, we investigate physics-informed kernel methods (Chen et al.|[2021a;
Yang et al.,[2021])) as a theoretical model to model the over-parameterization behaviours. We found
that the PDE operator in the inverse problem stabilizes the variance, leading to benign overfitting
even in fixed-dimension settings. This contrasts with function fitting, where benign overfitting
typically occurs only in high-dimensional settings, while fixed-dimension settings tend to exhibit
catastrophic/temper overfitting Mallinar et al.| (2022); |Buchholz|(2022)); Rakhlin & Zhai| (2019a). We
also observed that inductive bias needs to focus enough on the low frequency component to achieve
best possible convergence rate. To this end, we consider a general class of norm, known as Kernel
Sobolev space (KSS) (Steinwart & Christmann, [2008; [Fischer & Steinwart, 20205 |Lu et al., [2022;
Zhang et al 2023} [Li et al.| |2024), to quantize inductive bias in a certain space, i.e. the amount
of support that the estimator is allowed to have on the tail of the spectrum. The KSS is a spectral
transformed space with polynomial transformation (Steinwart & Christmannl, [2008}; [Steinwart &
Scovel, |2012; [Fischer & Steinwart, [2020; Zhai et al.| [2024b)) which is a spectral characterization
of Sobolev spaces (Fischer & Steinwart, |2020; |/Adams & Fournier, [2003)), which is widely used in
characterizing the stability of (elliptic) inverse problems. Mathematically, given a non-negative real
number 3 > 0, the 3-power Sobolev space H” associated with a kernel K (see Definition [2.1|for
details). The parameter 5 € [0, 1] characterizes how much we are biased towards low frequency
functions. Regarding the learned model, we consider both regularized least square and minimum
norm interpolation in this paper for solving the abstract inverse problem:

Regularized Least Square (Knapik Minimum Norm Interpolation (Wang
et al., 2011} Nickl et al., [2020; |Lu et al., & Wang, 2018} Yang et al., |2021; |Chen
2022) et al.} 2021al)

fy += argmin y, || fllae : :
K ! [ :=argmin | f||ys
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Accordingly, we have developed the generalization guarantees of Sobolev norm learning for
both (Sobolev norm)-regularized least squares and minimum (Sobolev) norm interpolation in the
context of elliptical linear inverse problems. Based on the derived results, we investigate the effects
of various inductive biases (i.e. 3) that arise when minimizing different Sobolev norms. Minimizing
these norms imposes an inductive bias from the machine learning algorithms. In the case of the
regularized least squares estimator, we demonstrate that all the smooth enough inductive biases
are capable of achieving the optimal convergence rate, assuming the regularization parameter is
selected correctly. Additionally, the choice of inductive bias does not influence the convergence
rate for interpolators, e.g., the overparameterized/ridgeless estimators. This suggests that with a
perfect spectrally transformed kernel, the convergent behavior of regression will not change. The only
difference may occur when using empirical data to estimate the kernel, i.e. under the semi-supervised
learning setting (Zhou & Burges| 2008;|Zhai et al.,|2024b). The contributions and technical challenges
are summarized as below.

1.1 CONTRIBUTION AND TECHNICAL CHALLENGES

* Instead of considering regularizing RKHS norm (Lu et al., [2022; Randrianarisoa & Szabo),
2023) or interpolation while minimizing RKHS norm (Barzilai & Shamir, 2023 |(Cheng et al.,
2024), we consider (implicit) regularization using a Kernel Sobolev norm (Fischer & Steinwart,
2020) or spectrally transformed kernel (Zhai et al.l 2024b). Under such setting, we aim to study
how different inductive bias will change the statistical properties of estimators. To this end, we
derived the closed form solution for spectrally transformed kernel (Zhai et al., [2024b) estimators
for linear inverse problem via a generalized Representer theorem for inverse problem (Unser,
2021)) and extend previous non-asymptotic benign overfitting bounds (Bartlett et al.|[2020a;|Cheng
et al., [2024} |Barzilai & Shamir,[2023) to operator and inverse problem setting.

¢ Our non-asymptotic bound can cover both regularized and minimum norm interpolation kernel
estimators for solving (linear) inverse problems. For the regularized case, we recovered the
minimax optimal rate for linear inverse problem presented in (Lu et al.,|2022). We provide the
first rigorous upper bound for the excess risk of the min-norm kernel interpolator in the fixed
dimensional setting from benign overfitting to tempered overfitting, and catastrophic overfitting
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in Physics-informed machine learning. Qur results show that the PDE operators in inverse
problems possess the capability to stabilize variance and remarkably behave benign overfitting,
even for problems with a fixed number of dimensions, a trait that distinguishes them from
regression problems.

* Our target is to examine the effects of various inductive biases that arise from minimizing
different Sobolev norms, which serve as a form of inductive bias imposed by the machine
learning algorithms. For regularized regression in fixed dimension, traditional research (Fischer
& Steinwart, [2020; |Lu et al.l 2022;|Guastavino & Benvenuto, [2020) show that proper regularized
least square regression can achieve minimax optimal excess risk with smooth enough implicit
regularization of arbitrary spectral decay. Our bound concrete the similar phenomenon happens
in the overparamterized / interpolating kernel estimators where the choice of smooth enough
inductive bias also does not affect convergence speed. The smoothness requirement of implicit
bias 3 should satisfies \§ > ’\7’ —p, where r is the smoothness of the target function (characterized
by the source condition), A is the spectral decay of the kernel operator and p is the order of the
elliptical inverse problem, see Table [1| for details. Under the function estimation setting, the
selection matches the empirical understanding in semi-supervised learning (Zhou & Burges| 2008;
Zhou & Belkin, [2011; [Smola & Kondor, [2003; |Chapelle et al.l [2002; Dong et al., 2020; [Zhai
et al.,|2024b) and theoretically surprisingly matches the smoothness threshold determined for
the Bayesian Inverse problems (Knapik et al., 2011} |Szab¢ et al., 2013)).

1.2 RELATED WORK

Physics-informed Machine Learning: Partial differential equations (PDEs) are widely used in
many disciplines of science and engineering and play a prominent role in modeling and forecasting
the dynamics of multiphysics and multiscale systems. The recent machine learning revolution
transforming the computational sciences by enabling flexible, universal approximations for high-
dimensional functions and functionals. This inspires researcher to tackle traditionally intractable
high-dimensional partial differential equations via machine learning methods (Long et al., 2018}
2019; Raissi et al.,|2019; Han et al., [2018; Sirignano & Spiliopoulos, [2018; Khoo et al., 2017} [Liu
et al., [2020). Theoretical convergence results for deep learning based PDE solvers has also received
considerable attention recently. Specifically, |Lu et al.|(2021a)); |Grohs & Herrmann| (2020); Marwah
et al.| (2021); [Wojtowytsch et al.| (2020); |Xu| (2020); |Shin et al.| (2020); [Bai et al.|(2021) investigated
the regularity of PDEs approximated by a neural network and [Lu et al.| (2021a); Luo & Yang|(2020);
Duan et al.|(2021); Jiao et al.|(2021ab); Jin et al.|(2022); Doumeche et al.|(2024) further provided
generalization analyses. Nickl et al.|(2020); |Lu et al.|(2021b); [Hiitter & Rigollet| (2019); Manole et al.
(2021); [Huang et al.[(2021); |Wang et al.|(2023) provided information theoretical optimal lower and
upper bounds for solving PDEs from random samples. However, previous analyses have concentrated
on under-parameterized models, which do not accurately characterize large neural networks (Raissi
et al.,[2019; E & Yul 2018) and interpolating estimators (Yang et al.}2021; Chen et al.;2021a). Our
analysis addresses this gap in theoretical research and provide the first unified upper bound from
regularized least square estimators to benign overfitting minimum norm interpolators under fixed
dimensions. It is important to point out that concurrent work by [Haas et al.|(2024) also constructed
a kernel interpolator exhibiting benign overfitting in a fixed dimension, using a spiked kernel. In
our work, we do not modify the kernel but demonstrate benign overfitting through physics-informed
learning.

Learning with kernel: Supervised least square regression in RKHS has a long history and its
generalization ability and mini-max optimality has been thoroughly studied (Caponnetto & De Vitol
2007 Smale & Zhou, [2007; De Vito et al., [2005; Rosasco et al.,[2010; Mendelson & Neeman, [2010).
The convergence of least square regression in Sobolev norm has been discussed recently in (Fischer
& Steinwart, 2020; [Liu & Lil 20205 |[Zhang et al., 2023)). Recently, training neural networks with
stochastic gradient descent in certain regimes has been found to be equivalent to kernel regression
(Danielyl 2017 |Lee et al., [2017; [Jacot et al., 2018]). Recently |Lu et al.| (2022)); Randrianarisoa &
Szabo| (2023)); Doumeche et al.|(2024); Randrianarisoa & Szabo|(2023) use kernel based analysis
to theoretically understand physics-informed machine learning. Our work is different from this line
of researches in two perspective. Firstly, we consider the family of spectrally transformed kernels
(Zhai et al.| 2024b) to study how different inductive bias on smoothness would affect the efficiency
of machine learning estimators. Secondly, We aim to analyze the statistical behavior of kernel
interpolators, e.g., overparameterized estimators. Thus we build the first rigorous upper bound for the
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Param. | A>1 [ r € (0,1] [ p<0 [ s ] Hp
Eigendecay of Smoothness of the Order of the norm used for | norm used for
Kernel Matrix ground truth solution Inverse Problem regularization evaluation
(Capacity Condition) (Source Condition) (Capacity Condition on A) B € [0, 1] B, € [07 ﬁ]

Table 1: The parameters A, r, p, Hg and Hg: are used to describe our problem. The blue-shaded
blocks, A, 7, p and /', represent the parameters that are employed to characterize the inverse problem
task, which should influence the minimax optimal risk.

excess risk of the min-norm interpolator in the fixed dimensional setting from benign overfitting to
tempered overfitting in physics-informed machine learning.

2 PRELIMINARIES, NOTATIONS, AND ASSUMPTIONS

In this section, we introduce the necessary notations and preliminaries for Reproducing kernel Hilbert
space (RKHS), including Mercer’s decomposition, the integral operator techniques (Smale & Zhou,
2007; |IDe Vito et al.l 2005 |(Caponnetto & De Vito, [2007; [Fischer & Steinwart, [2020; [Rosasco et al.,
2010) and the relationship between RKHS and the Sobolev space (Adams & Fournier, |2003). The
required assumptions are also introduced in this section.

We consider a Hilbert space H with inner product (-,-),, is a separable Hilbert space of
functions H C R*. We call this space a Reproducing Kernel Hilbert space if f(z) = (f, K),, for
all K, € H:t — K(z,t),z € X. Now we consider a distribution p on X x V() C R) and denote
px as the marginal distribution of p on X'. We further assume E[K (z, )] < oo and E[Y?] < co.
We define g ® h = gh " is an operator from # to H definedas g @ h : f — (f, h),, g- The integral
operator technique (Smale & Zhou, 2007; (Caponnetto & De Vito, 2007) consider the covariance
operator on the Hilbert space H defined as ¥ = E,, K, ® K,. Then for all f € H, using the
reproducing property, we know that (X f)(z) = (K.,Xf),, = E[f(X)K (X, 2)] = E[f(X)K.(X)].
If we consider the mapping S : H — Lo (px ) defined as a parameterization of a vast class of functions
in RY via H through the mapping (Sg)(z) = (g, K,.) Its adjoint operator S* then can be defined
as S* : L3 = H : g = [, g(x)K,px(dx). We further define the empirical sampling operator

Sp:H =R as S, f i= ((f, Ku,),- -, (f, Kp,)) and S% : R™ — H as S50 = S°°_| 0, K,,, then
we know S’ngi : R™ — R™ is the Kernel Matrix we denote it as K and %S’Z;SZ, : H — H is the

empirical covariance operator .

Next we consider the eigen-decomposition of the integral operator £ to construct the feature
map mapping via Mercer’s Theorem. There exists an orthogonal basis {1, } of L2(px) consisting of
eigenfunctions of kernel integral operator £. The kernel function have the following representation
K(s,t) = Y i2) Mihi(s)yi(t). where 1; are orthogonal basis of L2(px). Then ¢; is also the
eigenvector of the covariance operator Y. with eigenvalue \; > 0, i.e. X1p; = \;1);.

Following the (Bartlett et al.| 2020a; (Cheng et al.| 2024; Barzilai & Shamir, 2023; [Tsigler &
Bartlett], |2023)), we conduct the theoretical analysis using spectral decomposition. Thus, in this paper,
we define the spectral feature map ¢ : H — R via ¢f := ((f, ¢i)4)i2; where ¢; = VA
which forms an orthogonal basis of the reproducing Kernel Hilbert space. Then ¢* : R™® — H
takes 0 to >~ 0;¢;. Then ¢*¢ = id : H — H, ¢p¢* = id : (5> — (5°. ¢ is an isometry i.e.
for any function f in H we have ||f||3, = [|¢f ||§go and ¢5° denotes the space of sequences of real

numbers {x;};°, such that the £ norm ||x||se = /=, x7 is bounded. Similarly we also define

Y H = L viaf = ((f,¥i)n)2,, the motivation of defining this is this can simplify our

computation in the lemmas, we define ¢* : R — H takes 6 to Y .o, 6;1);. We then define the

operator Ay : R — R corresponding to X is the operator such that X = ¢*A x ¢, which implies

Axy = AxAy. Followed by our notation, we can simplify the relationship between ¢ and 1 as
1/2 X wA1/2

¢ = A% and ¢* = p*AY>

Definition 2.1 (Sobolev Norm (Steinwart & Christmann), 2008 Steinwart & Scovel, [2012; Pillaud-

Vivien et al.,[2018; |[Fischer & Steinwart, 2020; Zhang et al.,[2023))). For 8 > 0, the S-power Kernel

Sobolev Space (KSS) is

W im (a0 3 < o0} € L),

i>1 i>1

4
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equipped with the 3-power norm via || 3~ ai Xy = (Ximpa)2.

Remark 1. We follows the definition of Sobolev space in (Steinwart & Christmannl 2008; [Pillaud-
Vivien et al., 2018 [Fischer & Steinwart, [2020; Zhang et al., [2023) which is introduced to characterize
the misspecification in kernel regression (Zhang et al.| 2023} |Kanagawa et al., |2016; [Pillaud-Vivien
et al., 2018}, |Steinwart et al.,[2009). The parameter (3 in the source condition controls the amount
of support that is allowed to have on the tail of the spectrum. As shown in Steinwart & Scovel
(2012); [Steinwart & Christmann|(2008)); [Fischer & Steinwart (2020), 42 is an interpolation between
Reproducing Kernel Hilbert Space and Lo space. Formally, ||£%/2f| s = || f||z, where £ = SS*

and || f|ls = ||E#f\\y for 0 < 8 < 1. Thus when 3 = 1, the H? is the same as Reproducing
Kernel Hilbert Space and when 3 = 0 the £ is the same as £ space. The Hilbert scale of function
spaces defined through varying 8 quantizes the inductive bias, serving as an regularity condition.

When we select our kernel to be the Matérn covariance kernel (Chen et al.,[2021b)), our definition
of Sobolev space coincide with the Sobolev space (Adams & Fournier, [2003) on the torus T =
[0, 1]l‘fer. The B-power norm definition of Sobolev space served as Fourier charaterization of Sobolev
space (Adams & Fournier, 2003 |Wendland} 2004) which is the most natural function space for PDE
analysis.

Assumption 2.2 (Assumptions on Kernel and Target Function). We assume the standard capacity
condition on kernel covariance operator with a source condition about the regularity of the target
function following |Caponnetto & De Vito| (2007 and assumption of the inverse problem following
Lu et al.|(2022). These conditions are stated explicitly below:

¢ (a) Assumptions on boundedness. The kernel feature are bounded almost surely, i.e.
|k(x,y)| < R and the observation y is also bounded by M almost surely.

* (b) Capacity condition (Steinwart & Scovel, 2012} [Steinwart & Christmann, [2008)). Consider
the spectral representation of the kernel covariance operator ¥ = ) ; At ® 1), we assume
polynomial decay of eigenvalues of the covariance matrix \; oc i~* for some A > 1. This
assumption satisfies for many useful kernels in the literature such as Minh et al.| (2006)), neural
tangent kernels (Bietti & Bachl 2020; (Chen & Xul [2020)).

¢ (¢) Source condition (Steinwart & Scovel, [2012; |Steinwart & Christmann, 2008 [Fischer &
Steinwart, 2020). We also impose an assumption on the smoothness of the true function, which
characterizes the regularity of the test function. There exists € (0, 1] such that f* = £7/2¢ for

some ¢ € L2 If f*(x) = (0., K;),,, the source condition can also be written as HZ% Oull2 <
o0o. The source condition can be understood as the target function lies in the r-power Sobolev
space.

¢ (d) Capacity conditions on .4 (Knapik et al., 2011} [Cabannes et al., 2021} |de Hoop et al.|
2021; [Lu et al 2022). For theoretical simplicity, we assume that the self-adjoint operators A are
diagonalizable in the same orthonormal basis ¢; . Thus we can assume A = Zfil PiY; ® Yy, for
positive constants p; > 0. We further assume p; o< :~P. We further assume p < 0, for the inverse
problem we consider inverse problem arising from PDEs where A is a differential operator.

Remark 2. Although the diagonalizable assumptions is strong, the assumption is usually made for
theoretical analysis of kernel-based inverse problem solver |Knapik et al.| (2011); |(Cabannes et al.
(2021); |de Hoop et al.[(2021); |Lu et al.| (2022). The parameter p here is used to characterise the
order of PDE. For example, operator A*’s spectrum decays at a different polynomial speed as
k varies. The co-diagonalization assumption holds since both the Laplacian operator A and the
shift-invariant Kernel covariance operator/inner product kernel with uniform data have the Fourier
modes as eigenfunction which is guaranteed by Bochner’s theorem.

Example 2.3 (Schrodinger equation on a Hypercube). Consider solving Schrédinger equation on
a hypercube —Au +u = f on T¢ = |0, 1}ger, where A is the Laplacian operator. To solve the
Schridinger equation, one observe collocation points 2; uniformly sampled from T¢ with associated
function values y; = f(x;) + €; (1 < i < n) where ¢; is a mean-zero i.i.d observational noise.

Decomposition of Signals Following [Bartlett et al| (2020b)); |Tsigler & Bartlett (2023); |(Cheng
et al.| (2024), we decompose the risk estimation to the "low dimension" part which concentrates
well and "higher dimension" part which performs as regularization. We define the decomposition
operations in this paragraph. We first additionally define ¢<j, : f — ((f, #i)2)¥_; which maps H
to it’s "low dimensional" features in R”, it intuitively means casting f € H to its top k features,

similarly we can define ¢~ : f = ((f, ¢i)#)72y - We also define %, takes ) € R* to Zle 0;0;,
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similarly we can define ¢% ; takes 6 € £5° to 3.2, | 6;_x¢;. For function f € H, we also define

f<k =L d<if = Zf:l (f, ¢i)2 ¢: which intuitively means only preserving the top k features,
for operator A : H — H, we also define A<y, : f +— (Af)<y. Similarly we could define fs, and
A k. We could show the decomposition f = f<i + f> and A = A<j, + A holds for both signal
and operators which is formally proved in Lemma[A:T]in the appendix.

We use || - || to denote standard [? norm for vectors, and operator norm for operators. We also

use standard big-O notation O(-), o(-), Q(-), O(-) (ignore logarithimic terms).

3 MAIN THEOREM: EXCESS RISK OF KERNEL ESTIMATOR FOR INVERSE
PROBLEM

Using the notations in Section we can reformulate the data generating process as y = S, A ff+e,
where y € R™ is the label we observed on the n data points {x;}?_,, f* is the ground truth function
and ¢ € N(0,021,x,) is the Gaussian noise. We first provide closed form solutions to ridge
regression via the recently developed generalized representer theorem for inverse problem (Unser,
2021).

e p

Lemma 3.1. The least square problem regularized by Kernel Sobolev Norm
p 1

fy := argmin ~ S, Af = glI* + 7l fll3es- )
fewHs M

has the finite-dimensional representable closed form solution f = AP _15';;@” where
O = (S, A25P18* 4 nvy, )"ty e R .

K~

For the simplicity of presentation, We denote the empirical spectrally transformed kernel
S, A?¥A=18* as K, and the regularized version S,, 4225715 + n~y, I as K7, and we denote the
spectrally transformed covariance operator 3. as A?%5.

3.1 CONCENTRATION COEFFICIENTS

We expect that K~ , ~ 7] which serves as a self-regularization term, inspired by Barzilai & Shamir
(2023) we quantify this by introducing the concentration coefficient for spectrally transformed kernel

K to measure the self-regularization effect of K.

Definition 3.2 (Concentration Coefficient p,, ;). We quantify this by what we call the concentration
coefficient

Yol 4+ (EKsp) + vn -
P 1= 12>kl + 1 G K1) V, where X = A%2%F.

Hn ( % K >k ) + Tn
Assumptions on feature map is essential to obtain various concentration inequalities, typically
sub-Gaussian assumptions on feature map is needed to obtain concentration results. However, this
does not hold for many common kernels. Following recent work Barzilai & Shamir| (2023), we only
require mild condition on features i.e. oy, 8 = O(1) which is applicable in many common kernels
(weakest assumption in the literature as far as the authors know), without imposing sub-Gaussian
assumptions, but our bound in the interpolation case can be tighter with the sub-Gaussian assumption

in Theorem [4.2] where in that case py, , = O(1).

Assumption 3.3 (Well-behaved features). Given k € N, we define oy, [y as follows.

) a\oa) ()2
oy = inf min { Z’%kpl z;/};;g ) : finite choices of a, b} ,
v i>kPi N

S i(2)? Y DI ()
k 7 Zi>k p%?

B := sup max { : finite choices of a, b} ,
xr
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(a,b) is picked in our proof of Lemmain the Appendix. Since inf < E < sup, one always
has 0 < ay, < 1 < Bj. We assume that oy, 8, = O(1).

Remark 3. For each term in these definitions, the denominator is the expected value of the numerator,
so ay, and By quantify how much the features behave as they are supposed to”. Note that g, and Sy
are O(1) in many common kernels. We here give several examples (Barzilai & Shamir|(2023))that
satisfies the assumptions, includes

o Kernels With Bounded Eigenfunctions If 1)?(x) < M uniformly holds for Vi, x then As-
sumptiontrivially holds that 3, < M for any k € N. Analogously, if ¢)7 > M’ then
ay > M’. This may be weakened to the the training set such that only a high probability
lower bound is needed. Kernels satisfies this assumption includes RBF and shift-invariant
kernels (Steinwart et al., 2006, Theorem 3.7) and Kernels on the Hypercube {0, 1}¢ of form

h(M [ETES ”2)Yan & Salman| (2019).
Telllz > d g

* Dot-Product Kernels on S% Follows the computation in (Barzilai & Shamir, 2023, Appendix
G), one can know dot-product Kernels on S? satisfies Assumption This examples
includes Neural Tangent kernel (Jacot et al.,[2018) on sphere.

Similar toBarzilai & Shamir|(2023)), we require regularity condition on S}, to overcome technical
difficulty in extending to infinite dimension in Lemma[C.3}
Assumption 3.4 (Regularity assumption on [3;). There exists some sequence of natural numbers
(ki)2, € Nwith k; — oo s.t. B, tr(Xsg,) — 0.
1—00 71— 00

We can know X k,; 1s still transformed trace class, so one always has tr(2~3> k;) — 0. As such,
71— 00

Assumption simply states that for infinitely many choices of £ € N, ;. does not increase too
quickly. This is of course satisfied by the previous examples of kernels with 3, = ©(1).
3.2 EXCESS RISK AND EIGENSPECTRUM OF SPECTRALLY TRANSFORMED KERNEL K

We evaluate excess risk in a certain Sobolev space HP" with B € [0,8]. The selection of
B’ is independent of certain learning algorithms on source and capacity conditions, but de-

pends on the downstream applications of learned inverse problem solution. We denote f =
AXP-18%(8, A25P~15* + nyI)~'y as f(y) to highlight its dependence on y € R™. Recall
the data generation process, y = S, A f* + ¢, we consider S,.A f* and € in bias and variance
separately. The excess risk R(f(y)) := ||f — f*||? 3,s has the following bias-variance decomposition.

1 = Pogor f* 50 = 1 (SuAS™) = £ 300 + Eclll (&) 1500]

bias: B variance: V'
Following benign overfitting literature (Barzilai & Shamir, 2023} Bartlett et al.| |2020b; |Cheng
et al., [2024), we perform the analysis on "low dimensional" (< k) and ”hlgh dlmensmnal" > k)
components respectively. Therefore, we define K <k as S .A<kZB 1S * and K7 Zp as K <k +nynd,

“

similarly we can define K-, and K7 Sk respectlvely We can also have K = K <k + Ky, (proved in
Appendix [A.T). To bound the excess rlsk of minimum norm interpolation kernel estimator, we need
to show the “high dimensional” part of the Kernel matrix K-, can behave as a self-regularization.
To show this, we present here the concentration bounds of eigenvalues with proof given in Appendix
IC.1]

Theorem 3.5 (Eigenspectrum of spectrally transformed kernel K). Suppose Assumption|3.4|holds,
and eigenvalues of . are given in non-increasing order (i.e. 2p + X > 0). There exists absolute
constant ¢,C,c1,co > 0 s.t. forany k < k' € [n] and § > 0, it holds w.p. at least 1 — § —
475 exp(—i—) — 2exp(—7; max (%,log(k))) that

Br Tk

1 klog(k)) or (Ss) (1 ~) 52 1 n? tr (S5,0)
(—-K) < 14 2220 Floglh+1)——2 |,y (=K) > ol nAPp24ap [1- =, | —= . ,
K (n ) < 1Bk (( + " Pk og( ) - A c2ll, n A Pl t+ag 3 tr(2>k/)2/tr(22>k,) o

where . is the k-th largest eigenvalue of%f(, Y= AP,y = tr(2~3>k)/(pi+1)\f+l), and
k,n =

0, otherwise
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3.3 MAIN RESULTS

In this section, we state our main results on the bias and variance of the kernel estimator. The
following theorem is the main result for upper bounds of the bias and variance with the proof details
given in Appendix [D.2)for bounding the variance and Appendix [E.3]for bounding the bias.

Theorem 3.6 (Bound on Variance). Let k € N, o2 is the noise variance and py, ,, is defined follows
Definition[3.2) then w.h.p. the variance can be bounded by

effective rank

&)

r( nq/}<k A 25— 5/¢§k5;;) " tr(s'n"«b;k/\;g%,ﬁ/ﬂﬁ¢>k§Z))
ﬂk(w§k5n5n¢§k)2 n?|| X5 k2

Remark 4. The variance bound is decomposed into two parts, the < k part which characterize the
variance of learning the "low dimension" components and > k part characterizing the variance of
learning "high dimension" components. We implement similar analysis for the bias as follows.

Theorem 3.7 (Bound on Bias). Let k € N, and py, , is defined follows Deﬁnition then there exists
Cy, ¢, > 0s.t. for any k with ¢Sk log(k) < n, every d > 0, then w.p. at least 1—§—8 exp(—g—;%)

z
the bias can be bounded by

2 2
V< OcPkn * (

~ 2
, 17195k ASkSSElR .o Br tr(Xsp) 2 lp<nfzilly ASE ot as
Pk n6 o B + ||¢>kf>k||A>k , + |+ o\ f’
Pk nt=6 n DeAg
bias on high frequency components, i.e. >k parts bias on low frequency components, i.e. <k parts
(6)

4  APPLICATIONS

Our main results can provide bounds for both the regularized (Yang et al., 2021; |Lu et al., [2022)
and unregularized cases (Chen et al.| [2021a) with the same tools. In this section, we present the
implication of our results for both regularized regression and minimum norm interpolation kernel
estimators.

4.1 REGULARIZED REGRESSION

In this section, we demonstrate the implication of our derive bounds for the classical setup where the
regularization y,, is relatively large. We consider regularized least square estimator with regularization
strength v, = ©(n~7). By selecting k as [nﬁ] in Theorem and Theorem we obtain
Pk = ©(1) and get a bound that matches |Lu et al.| (2022), which indicates the corectness and
tightness of our results.

s N

Theorem 4.1 (Bias and Variance for Reularlzed Regression). Let the kernel and target
function satisfies Assumptlonn nand Y = O(n~7), and suppose 2p + )\ﬂ >y >
0,2p+ Ar > 0, and r > 3, then for any 0 > 0, it holds w.p. at least 1 — § — O( ) that

28"

V< UQO(nmax{%’o}*l) B < O(nﬁ(max{/\(lf’*7‘),*2p+/\(ﬁ/*2ﬁ)})>
— = — o

OqM—l

. J

Remark 5. Once proper regularization norm is selected, i.e. A > % — p, with optimally selected

2p+ A3 . . 3(+2p+28") . Y(A(B 1))
Y= Gpratan which balance the variance n~ 2»+X8 and the bias n~ 2»¥8~ , our bound can

(8’ —r)
achieve final bound: n 2Az>fM+1 matches with the convergence rate build in the literature (Knapik et al.;
2011} [Lu et al.| [2022)

4.2 MIN-NORM INTERPOLATION FROM BENIGN OVERFITTING TO TEMPERED OVERFITTING

We now shift our attention to the overparameterized interpolating kernel estimators. Recently,
Mallinar et al.|(2022)) distinguished between three regimes: one where the risk explodes to infinity
(called catastrophic overfitting), another where the risk remains bounded (called tempered overfitting),
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and a third regime involving consistent estimators whose risk goes to zero (called benign overfitting).
These regimes are significantly different. In the tempered overfitting regime, when the noise is small,
estimator can still achieve a low risk despite overfitting. This means that the bias goes to zero, and the
variance cannot diverge too quickly. Recent work (Rakhlin & Zhail |2019bj |Cui et al.| 2021} Barzilai
& Shamir, 2023} |Cheng et al., [2024) showed that minimum (kernel) norm interpolators are nearly
tempered over-fitting. However, as shown in Theorem .2} the PDE operator in the inverse problem
can stabilize the variance term and make the min-norm interpolation (kernel) estimators benign
over-fitting even in fixed-dimension setting.

Theorem 4.2 (Bias and Variance for Interpolators). Let the kernel and target function satisfies

Assumption 2.2} [3.3|and[3.4, and suppose 2p + Amin{r, 3} > 0 and r > j', then for any

0 > 0 it holds w.p. at least 1 — § — O(m) that

3
V< o_gpi7n0(nmax{2p+>\ﬁ’,—l})’B < pk(;,n é(nmax{/\(’d/7r'),72p+)\(ﬁ’72;'3)}}).

Remark 6. For well-behaved sub-Gaussian features, the concentration coefficients py ., = ©(1)

Barzilai & Shamir (2023) and in the worst case p , can become O(nQp“”"l) which is shown
in the Appendix [F.2] Our bound can recover the results in [Barzilai & Shamir| (2023) by setting
p=0,8=1,8" = 0 and recover the results in|Cui et al.| (2021) when 0. = 0,3’ = 0 and py, ,, = 1.
Remark 7. Since the p considered for PDE inverse problems is a negative number (See Assumption
2.2), our bound showed that the structure of PDE inverse problem made benign over-fitting possible
even in the fixed dimesional setting. This result differs the behavior of regression with inverse problem
when large over-parameterized model is applied. The more negative p leads to smaller bound over the
variance which indicates Sobolev training is more stable to noise, matches with empirical evidence
(Son et al., 2021 Yu et al., |2021; |Lu et al., [2022).

4.3 IMPLICATION OF OUR RESULTS

Selection of Inductive Bias: As demonstrated in Theorem [4.1] and Theorem [4.2] variance is
independent of the inductive bias (i.e., ) and the only dependency is appeared in bounding the bias.
At the same time, the upper bound for the bias is a maximum of the orange part and the blue part.
The orange part is independent of the inductive bias and only depend on the inverse problem (i.e.,
and M) and evaluation metric (i.e., ), while the blue part is the only part depending on the inductive
bias used in the regularization. With properly selected inductive bias 3, one can achieve the best
possible convergence rate which only depends on the orange part. When the inductive bias does
not focus much on the low frequency eigenfunctions (i.e., Af > % — p), that means, regularized
with kernel which is not smooth enough, the rate is dominated by the blue part and is potential
sub-optimal. Under the function estimation setting, the selection matches the empirical understanding
in semi-supervised learning (Zhou & Burges| |2008;|Zhou & Belkin, 2011; Smola & Kondor, 2003}
Chapelle et al., 2002} |Dong et al., 2020; Zhai et al., |2024bja) and theoretically surprisingly matches
the smoothness requirement determined in the Bayesian inverse problem literature (Knapik et al.
2011;/Szabo et al.l [2013)).

Takeaway to Practitioners: Our theory demonstrated that to attain optimal performance in physics-
informed machine learning, incorporating sufficiently smooth inductive biases is necessary. For
PINNSs applied to higher-order PDEs, one needs smoother activation functions. This is because the
value of p for higher-order PDEs is a negative number with a larger absolute value, thus making the
term % — p larger. A larger value of % — p necessitates the use of smoother activation functions
Bietti & Bach|(2020); |Chen & Xu| (2020) to ensure the solution satisfies the required smoothness
conditions imposed by the higher-order PDE. Another implication of the theory is the variance
stabilization effects as mentioned before brought about by the PDE operator in the inverse problem.
Higher-order PDEs would benefit from more substantial stabilization effects. This motivates the idea
that Sobolev training (Son et al., 2021 |Yu et al., 2021) may not only aid optimization (Lu et al.|
2022)) but also contribute to improved generalization error for overparameterized models. However,
as previously demonstrated, utilizing a neural network with smoother activations is necessary to
leverage these benefits.

5 EXPERIMENTS
We conducted additional experiments on neural network to validate our theory as well as the-
oretical findings beyond kernel methods. To be specific, we consider the Poisson equation
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Noise Profile Ground truth f Predicted f
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10 50 100 500 1000 1e'01 3015601 1e+00 3e0 5e+0
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Figure 1: We verified our finding beyond kernel estimators. For all the plotted figure, we learn
two dimensional Poisson equation. (Left) We examine the impact of smooth inductive bias on
convergence. Our findings demonstrate that when the activation function is sufficiently smooth,
the inductive bias has a limited effect on improving convergence, which aligns with our theoretical
predictions. (Middle) Noise profile of Physics-informed interpolator and regression Interpolator. The
physics-informed interpolator exhibits benign overfitting, unlike the regression interpolator. (Right)
Visualization of the ground truth and the learned solutions for f and u = A f. The learned solution
for f effectively smooths out the high-frequency components in the error of A f.

u = Af on Q = [0,2]® with Dirichlet boundary condition on 92, where the ground truth
f(z1,22) = sin(mxq) sin(waa), where the data points {(z;, y;)}, are sampled uniformly from €2,
and y; = Af(x;) + € with e ~ N(0,02). Our experiments are able to illustrate our theory from the
following three aspects, and more experimental details can be found on Appendix[G]

Effect of Smoothness of the Inductive Bias To validate our finding on the necessity of using
smoother activation function, we use activation function ReLU, ReLU?, ReLU?, respectively, fix
noise level variance 02 = 0.1, and vary number of samples as 50, 100, 500, 1000 and plot the test
error against number of samples. The result in Figure [T[{Left) verifies our finding that when the
inductive bias is not smooth enough, the convergence will benefit from smoother activation function.
However, by comparing convergence rate of ReLU® and ReLU? in FigureLeft), when the activation
function is smooth enough, the convergence behavior would not be affected too much. This result
verifies our theoretical findings beyond kernel methods.

Benign Over-fitting of Physics-Informed Interpolator Following Benning & Burger| (2018)),
we verify the benign overfitting behavior by plotting the noise profiles of the Physics-Informed
interpolator. A noise profile characterizes the sensitivity of a learning procedure to noise in the
training set, specifically how the asymptotic risk varies with the variance of additive Gaussian noise.
We plot the noise profiles of both the regression interpolator and the Physics-Informed interpolator
in Figure [T{Middle). We can see that, the standard regression interpolator performs worse under
stronger noise level. Instead, the test risk of the Physics-Informed interpolator does not change too
much at various noise levels. This supports our theory that Physics-Informed interpolator can still
generalize well over noisy data, i.e., benign overfitting.

The Noise Stabilization Effect We also plotted the final output of the neural network in Figure [T}
The intuition behind our theory of benign overfitting in inverse problems differs from that of standard
regression because we predict A~1u rather than u in the regression setting. The operator A~!
functions as a kernel smoothing mechanism, where the Green’s function serves as the kernel. This
smoothing process attenuates high-frequency components, which are the dominant contributors to
the prediction error, and thus effectively alleviates their impact. For general PDEs governing physical
laws, most behave like differential operators, where the forward problem amplifies high-frequency
components. Consequently, solving the inverse problem tends to attenuate these high-frequency
components, resulting in a similar noise stabilization effect.

6 CONCLUSIONS

In conclusion, we study the behavior of kernel ridge and ridgeless regression methods for linear
inverse problems governed by elliptic partial differential equations (PDEs). Our asymptotic analysis
reveals that the PDE operator can stabilize the variance and even lead to benign overfitting in fixed-
dimensional problems, exhibiting distinct behavior compared to regression problems. Another key
focus of our investigation was the impact of different inductive biases introduced by minimizing
various Sobolev norms as a form of (implicit) regularization. Interestingly, we found that the final
convergence rate is independent of the choice of smooth enough inductive bias for both ridge and
ridgeless regression methods. For the regularized least-squares estimator, our results demonstrate
that all considered inductive biases can achieve the minimax optimal convergence rate, provided the
regularization parameter is appropriately chosen. Notably, our analysis recovered the smoothness
condition found by Empirical Bayes in the function regression setting and extended it to the minimum
norm interpolation and inverse problem settings.

10
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A ADDITIONAL NOTATIONS AND SOME USEFUL LEMMAS

For brevity, we denote simplified notation for < k and > k, for function f € H, we define
f<k = ¢L0<if, for operator A : H — H, we also define A<y, : f<p — ¢L d<pAf<i.

We denote tn (M) as the n-th largest eigenvalue of some matrix M. We also define td<y and id>p,.
We denote [n] as integers between 1 and n.

P< kS‘; is the map from R” — R*, therefore, we can consider it as k X n matrix, where each
column is the top k features of the data points. S',*Lgbg % is the map from R* — R™, therefore, we can
consider it n X k matrix, and (qﬁgkg,’;)T = S’,*L(bgk. Similar reasoning holds for > k case.

Note that for simplicity, we always convert to using v for convenient computation, by using
the following: ¢<j = A;f/zwgk and ¢ = w;kAgf/z, also similar for > k. This is because
E([S.¥%,]%) = 1 by Lemma

Next we deliver several useful lemmas.

The following lemma justifies our < k and > k decomposition.

Lemma A.1 (Decomposition lemma). The following holds:

1. For any function f € H, f = f<i + f>k;
2. For any operator A : H — H, A= A< + Asi;

3. For the spectrally transformed kernel matrix K K=K <k + K Sk
Proof. We first prove (1),
<fa ¢1>?—[ <f (bk > k 00
) +1/H
T A <<f, qsmm) =S foausi+ Y (f, i) ndi

(f, dr)n =t =kt

Z<fa i) ndi = f.

i=1
Then we move on to (2), for any f € H, we have
(A<k + Asi)f = (Af)<k + (Af)sk = Af. By (1)
Finally we prove the statement (3) , this is because
K =8, A?27718 = 8, (AL S0 + A2 50 N8 = §, AL, 00185 + 8, A2, 8018 = Ko + Koy
O

J<k + >k

In the followmg lemma modified from [Barzilai & Shamir (2023)), we give a lemma which is useful
for bounding f (y)<x’s norm in bounding bias and variance mE i

Lemma A.2. Denote f(y) := AXP~18*(K7) "Ly (highlight its dependence on y), we have

d<nf )<k + d<u A<k DL SE (K2,) 7! Sudanf () <k = d<r A< D2, S5 (K1)
—_— \—,_/\W—/v

kx1 kxn nxn nx1 kxn nxn nx1

wherIe K7 L1, IS the regularized version of spectrally transformed matrix, defined as S, A2 Ei?é’; +
nynl.

Proof. First we discuss the ridgeless case i.e. v, = 0, where f is the minimum norm solution, then

f>k is also the minimum norm solution to S,L.A>kf>k =y — S,LA<kf<k, then similar towe can
write

for = AZP7LG(8, A2, 50180 "My — Sp Ay fr).
Therefore,
¢>kf>k = Aiéﬁ—l¢>k5';(‘§’n“42>k2§;1$¥:)71(y - S’n(l%kA;\kﬁﬁék’fASk)-
As such, we obtain min norm interpolator is the the minimizer of following

¢f(y) =argmin v(d<pf<i)

f<k

=[(d<rf<i)” (Y — Sndip AT d<ifar) T (Sn AL 20 80 dorSE) TAZE ]
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The vector ¢ f (y) gives minimum norm if for any additional vector n<j, € R* we have

U(¢§kf§k(y)) 1 U(¢§kf§k(y) +n<k) — U(d)gkfgk(y)) in H? norm.
We first write out the second vector

U(¢Skf§k:(y)+77gk)_”(¢§kf§k(y)) = [77;@7 _ngAik(Sntk)T(SnAikEi?S;)_l(¢>k5’;§)TA,>4’§671]~
Then we compute the inner product w.r.t. % norm, by we have:
NERAST s (d<kf<)
k& * & —1 &%\ — Ok Crsx
i AS (S0 ts) " (Sn AL EL S T (05 rS) T AR AT AT (65457
(1) (2)
(SnAZi B0 50) 7 (g = Sud AT b far) = 0.
Note that (1) and (2) cancel out, and since the equality above holds for any 7)<, we have:
si-a(d<ifr) = A (SndZp) T (80 A2 2001 80) 7 Yy — 8o A bk f<r) = 0.

Therefore,

d<nfr — A1 b<kSp(KL) " (y — SuAf<r) = 0.
With some simple algebraic manipulation we can obtain the required identity
b fer + ¢§kv4§kzé?S:L(f{lk)_lgnv‘lfgk . ¢§kA§kZi;15';(f~(lk)_ly~

This finishes our discussion on ridgeless case.
For the regularized case i.e. y,, > 0, first we prove

fy)<k + ASI«ZZlSZ(f(zk)*lgn«‘tgkf(y)gk = AngZlSZ(KZk)”y-
We kno~w by~f(“f =K+ nyl = (}~(>k +nyl) + ng = f(lk + f(gk, we split K7 into two
parts: K '>Y . and K <. Accordingly, f(y)<x can be represented as
F)<n = Ludrf(y) = 9L <A 1S (K Ny
= AL S (B + K<)y
Therefore, taking it back to LHS, we have
F@W) <k + AckS2 S (K2 ) ™ 8 A<k f (y) <k (LHS)
= A<k S2 SR + K™y
+ AL S (KL T SpAar AL (KL + K<)y (Bxpand f(y)<i)

equals to f(gk
= Ak X585 (KL) UKL, + Kai) (K2, + K<) ™'y
= A, 22185 (K2,) "y (RHS).

We project LHS and RHS back to R¥ for convenient usage in we project the functions in H
back to R* so we use ¢y, in both two sides and we obtain

b<rf )<k + S<kAk L S (KL) T Su Ak f ()< = barAk L, SHKL,) ™y,
which concludes the proof. O

This lemma justifies we can switch between using Sobolev norm and matrix norm by using ¢.

Lemma A.3 (Equivalence between Sobolev norm and Matrix norm). For any function f € H? " we

have
2 2
115 = NOfNIA,, -
And additionally, || f<k |3, = <k f<kll? < L Foullfer = ||¢>kf>k||i>f ,
sl- =i=
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Proof. According to the definition of Sobolev norm, we have

LHS = ||
= [l¢x=F72¢|2  (byisometry ie. ||f]l2 = [[6f]*)
= [Aga-snndfl? by ¢o" =id: 15 — 1)
=ll¢fI3,,_, =RHS.

1-87

Then for the < k case, we have
I f<kllags = llof<rllz,,
Since (¢ f<k)<k = d<if<k, allits > k entries are zero, then
lof<ulli_ . = (0f<k) Asup (df<i) = (Df<i)TASY L (df<i) = lp<hf<rlls <
»1-8 b
The proof above works similarly for the > £ case.

Lemma A.4 (Separation of < k and > k case). For any function f € H®', then

11500 = W f<nllzger + 1 f>nll50 -
Proof.
1£113, = ll=—P02 7|2
0o k 0o
= Z (21— -p' )/2 f]2 Z pn (1A 252 4+ Z [pn(1=F)/2 f12
=1 i=1 i=k+1

16<x =80 72 ferl? + 1654280 7 fol?

= [l f<rllfer + 1 f>ell30 -

Lemma A.5. E([S’nw;k]i) =1 holds for any i >k, j € [n].
Proof.
E([Sn3il3:) = E([(vi, Ka)3)) = E(Wi())?) = 1.

Last we present a lemma which is useful in > & case in deriving bias’s bound.

Lemma A.6.
(A+UCV) U =A""U(I+CVAU)™!

Proof. By Sherman-Morrison-Woodbury formula we have
(A+vcv)yt=Aa"t— A luCct+vAatu)ytvat
Therefore,
(A+UCcV)'U=A""U - AU C +vATlU) " tvATi
=AU - (CT'+VAT'U)"'VAT'U)

(
=AUl - (CcTtrvATIU)Y TN CT +VATIO) (O VATIU)
(

=ATWU{I -1+ (CC +VvATIU)T
=A"'U(I+CcVvATtU)!
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A.1 PROOF OF LEMMA3]

Proof. As mentioned in Definition we have || f|lys = ||E% fll2 thus we can rewrite the
objective function (3) as

2 I P 1-8 18 .1 p-1

[y = argmlnEHSnAf_sz"‘"’YnHZ 2 fllue X f'y = argmlnE”Sn-AE 2 g_sz"*"YanHH-
By representer theorem for inverse problem (Unser, [2021)), the solution of the optimization

problem g., = arg min 1[5, ADEF g — ylI* + vnllg|l3 have the finite dimensional representation

that 9y = Ax T 5*0 for some 6,, € R™. Then we know the f,y =x% .AE*B’lé én for

some 0,, € R™. Plug the finite dimensional representation of fA, to objectlve function (3)) thus we
have

, —argmmfns AZSPLGE 0, — %+ |2 AR S0,.]12,.
6, ER™

Thus we have 0, = (5,A2%0~16%8, A25F-18% 4 ~ G, A25F-18%)=1(§ A25F=1G%)y
(S, A2YP=18* + nry, I)~ty. (For A is self-adjoint and co-diagonalizable with 3..)

B CONCENTRATION LEMMAS

Here we present several lemmas for bounding several quantities in[D} [E]
Lemma B.1. Let k € [n], a be the power of A, and b be the power of X, we bound the trace of this

1
n X n matrix, w.p. at least 1 — QeXp(—?n) we have
k
fan“Ab < tr(Sny LA ZN s ¥s15h) < an“Ab
>k >k
Proof. Note that Ajffzb is a diagonal matrix with entry p¢ /\b (i > k).
n oo
tr(Snw;kAi]:Ebw>kS Z nw>k Aazb)<w>k5 Z Z pa/\b n¢>k
j=1 Jj=1li=k+1

Uj
Here we denote the term inside j summation as v;, then by@ the expectation of the trace is

ana/\b

i>k
We also know that v; is lower bounded by 0 and by def. of S, it can be upper bounded by

= 30 PENu()? < B Y pINL

i=k+1 i=k+1
denoted as M
Then we have 0 < v; < M for all j and v; is independent, we can apply the Hoeffding’s inequality

to bound 7, v;
2>
Zw —anl)\b| >t) < 2exp( M2)

i>k
—92t2
We then pick ¢ := 2 3., p¢A?, and we get 73 52 n, and we know the trace value exactly
n
corresponds to Y7, v;.
Therefore, w.p.at least 1 — 2 exp(— 5 n),
k
fanﬂAb < tr(Sny LA G0 ¥k Sh) < n > PN
i>k i>k
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Here we present the modified version of Lemma 2 in Barzilai & Shamir| (2023), we rewrite it to
fit into our framework for completeness.

Lemma B.2. For any k € [n] there exists some absolute constant ¢, co > 0 s.t. the following hold
simultaneously w.p. at least 1 — 2 exp(—§ max{ 7, log(k)})

1. (<83 5,0%) > max{ Vi — /3 max{n, A(1+ Sklog(k)}, 0}
—_———
kxk
2. 1 (V<uSiSab%y) < comax{n, Bk log(k)}.
kxk

Moreover, there exists some ¢ > 0 s.t. if cBpklog(k) < n then w.p. at least 1 — 2 exp(—g—;%) and
some absolute constant ¢1 > 0 it holds that

e1n < pu(V<iSESntty) < 1 (<rSpSatty) < com.

Proof. We will bound the singular values ai(S’nwg .) since 0;(A)? = 11;(AT A) for any matrix A.

——
nxk

We know rows of this matrix are independent isotropic random vectors in R¥, where randomness
is over the choice of x, where by the definition of g the rows are heavy-tailed having norm
bounded by

|leach row of S'nvjﬁékﬂ < VkBy.

Here we can use |Vershynin| (2011)[Theorem 5.41] which is applicable for heavy-tailed rows,
there is some absolute constant ¢/ > 0 s.t. for every ¢ > 0, one has that w.p. at least 1 —
2k exp(—2c't?)

Vn = t\/EkBr < Uk(gnwgk) < 01(§n¢*§k) < Vn+ t\/kBy.

We pick t = \/ﬁ max{", log(k)} + 6% then w.p. at least 1 — 2exp(5> max{ 2 log(k)}) it
holds that

o1 (Srﬂ/}*gk) (f—i— \/ max(n, klog(k)) + klog(k )fck)

< (x/ﬁJr 12\/n+ <1+ if) klog(k)>2

<3n+ ( ﬁk) klog(k),

where the last inequality followed from the fact that (a + b)? < 2(a? + b?) for any a, b € R. Since

. 2
Br>1 we obtain o (Snwgk) < ¢ max{n, Bk log(k)} for a suitable co > 0, proving (2).
For the lower bound, we simultaneously have

& 1 1
Ok (Snw;k:> >/n— \/5\/2 max(n, klog(k)) + klog(k)%

>V — \/; max <n,5k (1 + 01/) klog(k)).

Since the singular values are non-negative, the above implies

Ok <5’nw*§€) > max{y/n — \/; max <n,ﬂk (1 + Cll> klog(k)> ,0}2

which proves (1).
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Next we move on to prove the moreover part, taking ¢ = (1 + ) we now have by assumption
that 7 > ¢ log(k) > log(k) (where we used the fact that ¢ > 1 and Bi > 1), the probability that

(D and (2)holdis 1 —2 exp(——f) Furthermore, plugging ¢8ik log(k) < n into the lower bound
(1) obtains the following

2
b (V<kSiSuvty) = max (ﬁ - \/ 5 max (n, ek Toa(k), o)

n 2 1 2
> —/=) =(1-—=]) n
= (v yf5) = ()
Similarly since Sk log(k) < n, the upper bound (2) becomes

1 (¢gk5'2§n1/§k) < can.

Lemma B.3. There exists some constant c, d,c1,c0 > 0s.t. for any k € N with ¢Sk log(k) < mn, it
holds w.p. at least 1 — 8 exp(— 62 7) the following hold simultaneously

L cein) o, p; 2)\ p <tr(S VI, A oy ﬁ,wgkg*) <eand i n, b 2)\ ﬂ

2. end i, PN, ﬁ+2ﬁtr(5 Yy, AZE g+25¢§k§*) < cand o  PIN, A28,
3 (W< SESat,) > cins

4. 1 (P<kSESnhky) < com.

Proof. By Lemma | (1) and (2) each hold w.p. at least 1 — 2 exp(—#n), so the probability of
k
they both hold is at least (1 — 2 exp(—3 ﬁ n))2. And by Lemma , (3), (4) simultaneously holds

with probability at least 1 — 2 exp(— ﬁ—, % ). Therefore, the probability of all four statements hold is at
least

/

(1 —2exp(— /819 n))*(1 - 26xp(—ag))
>1—8exp(— min{%m ;;Z})
>1—8exp{— min(ﬂ7 é}%>

Since we know S > 1 then we replace ¢’ with min{%, ¢’} results in the desired bound holding
w.p. atleast 1 — 8exp(—4z 7).
k
O

Lemma B.4 (Concentration bounds on || S, A 1 fE]? in . Forany k € [n] and § > 0, it holds
w.p. at least 1 — § that

R * 1 *
[1SnAsk for? < gn||¢>k-/4>kf>k||§:>k-
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Proof. Letv; := (Askf%, Ko;)3, then LHS is equal to 3, v;. Since 2 is independent, it holds
that v; are independent random variables with mean

Efv;] = E{¢%s0scAskfin D 6i(z)61)3]

i=1

=E[( Z [<b>ku4>k;f;k}i¢i7Z@(xj)(biﬁ-t]
i=k+1 1=1
=E[( Y [¢srAsifinlidi(z;))’]
=kt 1
= Z Z VANV 6 As i F21)i [0 e Ak F2) Ba i ()00 (2)
i>k >k =1 if i=1;0 otherwise
=Y NilbseAskfL4)7 = H¢>k-/4>kf;k||i§k-

i>k

Then we can apply Markov’s inequality:

n 1 .
POY vy 2 snlésedsifiylE.,) <4

=1

C BOUNDS ON EIGENVALUES

Theorem C.1. Suppose Assumption holds, and eigenvalues of S are given in non-increasing
order (i.e. 2p + S\ > 0). There exists absolute constant ¢,C,c1,co > 0 s.t. forany k < k' € [n)]

and § > 0, it holds w.p. at least 1 — § — 47} exp(— 4 ;) — 2exp(—7; max (%,1og(k))) that

1 - klog(k tr (S5,
i <nK) < c1fy <1+°S( )> Ai’piﬂog(kﬂ)(n )

1. 1 n? tr (S)
—K | >l n>\ﬁ i +a 1-= 3 > ,
i (n ) 2 Colk,n AR Dk k O\ tr(Xsp)?/tr(X2,)) "

where yu, is the k-th largest eigenvalue of K, ¥ := A?YP, 1 = tr(i>k)/(p%+1)\f+l), and
: {1, if Chiklog(k) < n
k,n — .

0, otherwise

Proof. We hereby give the proof of Theorem [3.5] From Lemma[C.3] we have that
1~ 1~ 1 -
)‘f+k_min(n7k)p?+k7min(n)k;)/”‘min(n,k)(Dk>+/f('n(ﬁK>k) < Hi(ﬁK) < Afpfm(Dk)er(gKM),
where Dy is as defined in the lemma.
We bound the two terms at the RHS seperately. From Lemma [C.6 it holds w.p. at least

£

1 —47% exp(— B; 7+ that for some absolute constants ¢’, ¢} > 0,
1 - tr i k
e SN (piméiﬂ + B log(k + 1>(n>)> .

For the other term, because p;(Dy) = Ui(%(SnE;,im)(S'nE;i/Q)T) = ui(%iﬁgkéﬁgnw;k), by

ther exists some absolute constants ¢/, ¢/ > 0, s.t. w.p. at least 1 — 2 exp(—g—: max{%,log(k)})

klog(k)

1
Np2un(Dy) < L max{n, Bk log(k)}A2p2 < /8, (1 + ) 2,
n n
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where the last inequality uses the fact that 5 > 1.
Therefore, by taking ¢ = max(c’, ¢”), both events hold w.p. at least 1 — & — 474 exp(—7-7-) —

2 exp(—4- max (7, log(k))) and the upper bound of 11:( 1 K') now becomes
1- klog(k tr (Ese
bk <nK> < ¢18k <1 + OS”) )\fpﬁ + log(k + 1)(7])

for some suitable absolute constant ¢; = max(c}, ¢f) > 0.

The other equation of this theorem is proved similarly as the "moreover" part in Lemma|B.2]
which states that uy(Dy) > co if CBiklog(k) < n, and from the lower bound of Lemma|C.6} it
holds w.p. at least 1 — §. O

Lemma C.2 (Extension of Ostrowski’s theorem). We present the abstract matrix version here and
we can obtain the bounds by substituting inside, let i,k € N satisfy 1 < ¢ < min(k,n) and a
matrix X}, € R"*F. Let Dy, := %XkaT € R™ ™, Suppose that the eigenvalues of ¥ are given in
non-increasing order A1 > Ao > ... then

1
AiJrlc7min(n,k),umin(n,}’c) (Dk) < i (nXkESkX];r> < )\LMI(Dk)

Proof. We extends Ostrowski’s theorem to the non-square case, where the proof is similar to Lemma
5 in|Barzilai & Shamir| (2023)). Let 7; denote the number of positive eigenvalues of %X Eo<kX ,z, it
follows from Dancis|(1986)[Theorem 1.5, Ostrowski’s theorem] that for 1 < ¢ < 7y,

1
it k—min(n,k) Hmin(n,k) (Dr) < Ni(;szgkX]?) < Aipp1 (D).

Now we’ll only have to consider the case where m; < i. By definition of 7; there are some
orthonormal eigenvectors of X kZSkaT, Uny 41, - - - , Up, With eigenvalues 0. Since X > 0, for each
such 0 eigenvector v,

0= (Xfv)'Ser(Xiv) = Xfv=0.
In particular, Dy has vr,41,...,v, as O eigenvectors and since D, > 0, we have that
tri+1(Dk), .., n(Dg) = 0. So for ¢ > 1 we have

1
it k—min(n,k) Hmin(n,k) (Dk) < Hi(ﬁszgng) < Aipa (Dy).
O
Lemma C.3 (Symmetric Bound on eigenvalues of %f(). Letik € Nsatisfy 1 <i<nandi <k,

let Dy, = %SAHE;}QS’T’; = %(S’nZ;im)(SnZ;i/Q)T , and eigenvalues of 3 is non-increasing i.e.
2p+ A3 > 0, then

1 - 1 - 1~
)\?-Q—k—min(n,k)pz%rkfmin(n,k)/’Lmin(n,k)(Dk>+Mn(ﬁK>k) < ,ui(ﬁK) < )\fpf,ul(DkH,ul(ﬁKm)
In particular

1 - 1 -
A?Jrkfmin(n,k)pz?—i-k—min(n,k)Nmin(n,k’) (D) < m(ﬁK) < Afpful(Dk) + N1(5K>k)~
Proof. We can decompose K into the sum of two hermitian matrices K <k and K- . Then we can
use Weyl’s theorem [Horn & Johnson| (1985)[Corollary 4.3.15] to bound the eigenvalues of K as

1i(K<i) + pn(Ksi) < pi(K) < pi(K<p) + pa (Ksp).

Then since K<; = (SnZ;,lc/Q)AQZﬂ(S’nZ;,lc/Q)T, we use the extension of Ostrowski’s theorem
derived at LemmalC.2lto obtain the bound:

1 -~
)\?—&-k—min(n,k)p?—i-k—min(n,k)Umin(n,k)(Dk) < Mi(ﬁKSk) < /\iljfl (Dk)

Therefore, by combining the two results, it yields:

1 - 1 - 1 -~
)‘Z_k_Inin(,L7k)p?+k_min(n,k)Mmin(n,k)(Dk)+ﬂrb(ﬁK>k) < ,Uz(ﬁK) < )\?p?/ll(Dk)+M1(ﬁK>k)~

The "in particular" part follows from un(%f( k) > 0. O
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Lemma C.4 (Symmetric Bound on eigenvalues of %f( >k). Forany & > 0, it holds w.p. at least
1 — 0 that for all i € [n],

1 - 1 n? 1 n?
ak tr(Xsk) (1 - 5\/tr(§~]>k)2/tr(2~32>k)> < pi= K>k) < ﬂk*tr(2>k) <1 + 6\/tr(§~3>k)2/tr(§~32>

where 3 1= A2%P,

Proof. We decompose the matrix into the diagonal component and non-diagonal component and
bound them respectively, we denote diagonal component as diag(%f( sk) and Asy = %f( Sk —
diag(1K2,).

Recall that K, := S’nA2 26715'* and for any i € [n],

1 -
[5K>k] <KII,A2]€EB 1K1‘>

= E<Z¢l )1, Z PEN T (i) i) u
=1

I=k+1

1 & 2,5 2
:72 A ’
n P zlﬁl(x)

I=k+1
Therefore, by definition of c;, and (§;, we have

1 1~ 1
akﬁtr(AikZik) < [~ Kol < Bkgtr(/@kﬂik).
Therefore,
1 .1 1
o~ tr(A2, 20,01 < diag(~K>x) < fi tr(A2, 27, )1

Then by Weyl!’s theorem |[Horn & Johnson| (1985)[Corollary 4.3.15], we can bound the eigenvalues of
15

=K< as

n

1 1 - 1
e, tr(AZ,22,) + pn(Asp) < Mz‘(EK>k) < ﬁkﬁ (A2, 22,) + p1 (Asp)-

It remains to bound the eigenvalues of A<, we first bound the expectation of the matrix norm using

n

EflAsil] S EllASHIFY2 = | > E[(% > PN (@ )d(e;))?]

i,j=1,i#j 1>k

_n(n—1) 4 28 4 28y _ 1 & n?
‘\/ pr TS S VS = L [l s

By Markov’s inequality,

1
P(Askll 2 SE[lA>Lll]) <6
So w.p. at least 1 — § it holds that

n2

1 1 ~
A < ZE[||A < —tr(X = =5
Akl < 5 [[Ask]l] < no r( >k)\/tr(2>k)2/tr(22>k)

O

Lemma C.5 (Upper bound of largest eigenvalue). Suppose Assumption B4 holds, and eigenvalues of
Y. are given in non-increasing order (i e. 2p + B > 0). There exists absolute constant ¢, ¢’ > 0 s.t.
it holds w.p. at least 1 — 47k exp(— 5 ;) that

1 . A tr f]
1 (nsnAZ’zBls;;) <c <pi+1A§+1 + Brlog(k + 1) (n>’“)> .

where ¥ := A?%FP, ry = 7”(2“)
pk+1)‘k+1
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Proof. Letmy, = py (% Ko ), Kiy1p = S A7 pE£+11 pS the meaning ofthe footnote k+ 1:p

follows similar rule as the footnote > k, and let ¥ = A2%F, 3., = 7A>k2 S S, E>k Asp =
—1 371

A>k2>k 357 Asy. Observe that my, = | |E>k ||, we would like to bound ||E>k || using the matrix

Chernoff inequahty with intrinsic dimension. Tropp| (2015)[Theorem 7.2.1]. However, this inequality

was proved for finite matrices, so we’ll approximate the infinite matrix with finite ones. my, can be

bounded as:

1 - 1 - 1 - 1~ 2
me = || Kisir + - Kopll S 115 Rl + 115 Kopll = [Ss1pll + my.

Furthermore, m; can be bounded as

1 -
My < = tr(Ksp) ZZp Ni(27)? < By Y pIA < By tr(Bsp).

j 1i>p’ 1>p’

If p is finite, we can take p = p’ and m;, = 0. Otherwise, p is infinite, and m, < B, tr(X5,).

B
y assumption [3.4} /
Ve > 0,dp" € Ns.t. my <e.

We define S, , = Ak+1p/2k+1p5 * G ZkaAka/,Where Sif =(f Ka,),, and
Si*g = 6;K,,. Then we will have Skt = Z” S7
and ul(]EEk.H;p/). For the first,

7. +1+ We need a bound on both ul(SiH:p,)

) ﬂ -
1 (Shy1p) = Z PENi()? < Z PN W) < 2 tr(8sp).
1=k+1 1=k+1

Let L := B:tr(3.,) denoting the RHS. For the second item, EXy 1.y = Spipyy =

diag(p? .1 \g 41 - - P2 AL). Thus, ESs1r = ot AL sy ]
Now the conditions of Tropp|(2015)[Theorem 7.2.1] are satisfied. So, for 1., = 1)

)\B

2
Prt1Me+1

andany t > 1+ _1+ﬁl;;"k’

B
k+1Ak+1

$ et=1\ Pr+1 kg1 /T
P(|[Shsrr || = 07N 1) < 27y <tt> .

Using the fact that p%+1>‘£+1/L =n/Brrp and e < e, vy <y,

)nt/ﬂm

P(my —my > tpk+1)‘k+1) < IP’(HEka | > tpk+1)‘k+1) < 2ry, (t

Now pick t = €3 + 2’3"‘% In(k + 1), then
&3
Tk n
]P)(mk —mp >tpk+1)\k+1) 7(]{—’_1) exp ( Qﬁkrk>

As aresult, we obtain that for ¢’ = 2¢®, ¢ = ¢?, the inequality holds w.p. at least 1 —47% exp(— 5; =)
that

tr i: k
my < c (p%+1)‘£+1 + Br log(k + 1)(n>)> +my.
As p' tends to oo in some sequence determined by Assumption 1, m;, tends to 0. Therefore, we obtain
the desired result. O

In the following we present an important lemma for bounding largest and smallest eigenvalues
of unregularized spectrally transformed matrix. This lemma would be useful to bound concentration
coefficient py, ,, in the interpolation case.
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Lemma C.6 (Bounds on i3 (1I~( >k) and /,Ln(lf( >k)). Suppose Assumptionﬂholds, then there
exists absolute constant c,c’ > 0 s.t. it holds w.p. at least 1 — 47% exp(——k —) that

1 - tr(2
,ul(;K>k) <c (piﬂ)\fﬂ + B log(k + 1)(n>k)> .

And for any k' € Nwith k' >k, and any § > 0 it holds w.p. at least 1 — § — 474 exp(—5-7-) that

1 n2 1
a (1 B 5\/tr(i>k/) 2/tr(X2 >k’)> a Mn( K>k,)

where & := A2XP, 1), 7"(E>B")
pk+1>‘k+1

ﬂk

Proof. By Weyl’s}heorem Hom & Johnson~(l985)[Corollary 4.3.15], for any k' > k we have
b (K>k) > pin (Kspr) + pin (Kgkr) > pn(K>57). So the lower bound comes from with k"
and the upper bound directly comes from [C.3]

O

D UPPER BOUND FOR THE VARIANCE

Lemma D.1 (Upper bound for variance). We define the variance of the noise be o2 and evaluate
variance in H?' norm, If for some k € N, K Z i 18 positive-definite then

(Ml(}?;k)il)2 tr(gnw<kAZk2Z ﬁ/wgkéﬁ)
L C B R T (i e

(R0 (St AR stk >]

V<O’§'|:

Proof. Recall V = ]E5[||f(5)||3_iﬁ,] we can split the variance into ”f(s)ﬁ’f”?-tﬁ’ and ||f(€)>k||3‘[ﬁ/

according to Lemma To bound these, by Lemma we could bound ||¢< f(e)<x||%

¢k fE)>kl} - respectively using matrix inequalities.

9
1-87
R

First we hand]e ld<nf(e)<rllZ | using Lemmawhile substituting y with &, we have
o5

d<nf(e)<n + d<n AT S (KL) T S A<k f(e)<h = d<r Ak XL S (KL,) e

We multiply by (¢<pf(e)<r)TA Ak22 sra_p, € RYF on two sides respectively (note that the
motivation of multiplying an additional diagonal matrix term here is to make the p term only have
ok (Y<kSy, SnabZy,)), and this would not affect the polynomial bound.

Then since ||¢<. f (e )<k|| <k > 0, we have
- A 25— B+(1-8")

k —1gx 7y V16 f
(G<nf(©) <) "N oy i 0k Ak EE S5 (KL,) Sk f () <k
Quadratic term w.r.t. ¢ <y f(€) <

(¢<kf( )< ) Zk22—3+(1—ﬂ )¢<k"4<k2<k S*(K’Y Y le

Linear term w.r.t. ¢<y f(a) <k
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Then we lower bound the quadratic term and upper bound the linear term respectively, first we lower
bound the quadratic term:

(b<rf()<n) AT o v Sk AL SH(K L) T S Ak f(2) <k

Diagonalize the operators,

= (i f () <k) AT s oo Pk (B AT 1 <) S (KL T 80 (0 AT dh) F ()<

= (d<if () <) TASE i d<k S (K2 T S AT (9<rf (€)<k) (S<rdly = id<r)

k k
By ¢§k = Aél/zwﬁk and d)*gk = ¢*gkA§1/z,

= (¢§kf(€)§k)TAilflEl/2fg/ Sy (K2) 7 St ASL, o (d<k f(e)<k)
— T N —

Ax1/2
1xk kxk kxn nxn nxk kx1
> i (K2) ™) e (<r S5 Sntby) (d<nf(€)<n)"ASE i (d<nf(€)<h)-

The last inequality is because py(AB) = ur(BA) for k x k matrix A, B by (Horn & Johnson| 1985,
Theorem 1.3.20).

‘We continue to derive the bound

pn (K20) 7Y i (<8 Sntbty,) (d<nf(e)<i) TASE  (d<if(€)<k)

»ni-p’

= H(bsch(ﬁ)gkllis;c_ﬁ/ pn (K271 i (V<S5 S0y,

= 1 @)<rl3er 1 (B2 ™) mr(Wo<rS)5ntbZy)-
This finishes lower bound of the quadratic term, we continue to upper bound the linear term
(b<rf () <k) AT o orsn <k A<k SH(KY,) e
= ((bgkf(E)Sk)TAilifzgfﬂJr(lfg’)¢Sk¢;k1\i;ﬁ—1(bSkSr*L(Klk)_lE

= ((bgkf(f)gk)TAi/flzl/Q_ﬁ/ < Si(KL,) e By ¢p<rdly, = id<k and <y, = ASS,1<p)

1xk kx1
7 <k <k G (¢ -
= (¢§kf(5)§k)TA§(1_;s/>/z Z—lg—ﬂ/ﬂwSkS’:(Klk) 'e
1xk kx1
A <k pay g —
< Haﬁgkf(dgkllA;ffg, IAS a2 <k S (K L) el

r k Ok [ T —

= Hf(g)SkHHB’ ||Ai—lz—[i’/2w§k5n(Klk) 15”'
Therefore, we obtain

R % — Gk O * R <k Gk [ T —
(&)<l ma((BL) ™) ik (< SiSntiZy) < 1F (@) <nllpe 1A 15 o< Si(KL,) ™ tell.
Therefore,

> 18 s A<k ik (T _

ET(Klk) 1Snw§kA272275’wSkSn(Klk) 18

P ((K2) 12 i (W<n S Sy )2
Then we take expectation w.r.t € we have

1£(e) <kl <

nxn nxn nxXn

% 14 <k & % 1
o 9 9 tI‘((KZk)i Sn¢*§kA2—2zfﬁ’w§kS: (Klk)i )
Ecl[f(e)<kllyysr <oz = G
B /”'n((Klk)_l)2 Mk(i/)ngﬁSn?ﬁ;k)z

nxn
o2, (BT (S A T v
- :U’n((Klk)il)z Mk(wﬁkszsnw%k)z ,
kxk

where the last inequality is by using the fact that tr(M M’ M) < p1(M)? tr(M’) for positive-definite
matrix M, M'.
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Now we move on to bound the > k components || ¢, f(€)>x ||i>k
»1-8

||¢>kf(5)>k‘|i>fiﬂ
= lléok A=k ZE SR el
=T (K719, S A ks AZE o Ak B2, S ()7
= T (K) S S p ASE a1 @5k S (K7) e By 2(B— 1)+ (1= 8') = = + 28— 1).

We take expectation over €

SU;?,LM((K )" ) tr(S ¢>I~cAA22( BI+28— 1)¢>k3*)
So'glul((K ) ) tI‘(S ¢>k 22( B/ +28— 1)¢>ksn)

nxn
:O—glul((‘[%lk)_ ) tr(S ¢>kAA22( 5+23)w>k‘§:)ﬂ

nxn

E.|lp=rf(e)>klA

A2xB

where the second last inequality is still using the fact that tr(MM’'M) < py(M)?tr(M’) for
positive-definite matrix M, M’, and the last inequality is using K7 = K2, to infer y; (K N—hH <
pa(K2) 7). 0

Theorem D.2 (Bound on Variance with concentration coefficient). Following previous Theorem
@’s assumptions, we can express the bound of variance using concentration coefficient py, j

effective rank

tr(Snzb%kAj]jzzfg'wSkS’;) + ( n¢>kAA22 5+25¢>kS:))
fe (V< Sy Sntp%y,)? n?([ S ?

V< O—gp%,n : (

Proof. By|[D.1]we have

V <o?. ((Nl([:(zk)_l)Q tr (S nw<k A 23— 5/7/}<k5 )
- (IU’”(K’Y )71)2 Mk(¢<ksnsnwgk)

"‘(Hl(f(zk)i )? tr( n1/’>kA;§E ﬁ’+2ﬁ’l/)>k‘§:)>'

. 1 .
Then by py (K2,)"! = ——— i (K2,) 7t = ————=——, we have
~ npn (K2, ” npi (2K2,)
(K207 (K1) _ (u(Ksn) +9)° <2
= - ~ = k,n
(BB (K202 7 (n(Ksk) +9)?
And
(ma(K2,)7h?
1 1
,Un( KV )
IR ST
72 (£ KZ,)? [Eskl?
2
< —p’“’; Lt
n= skl
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Therefore,
V<o ((m({(lk)_ly (S AT s s b<kS)
T Mea(BZ)™? i ($<nShSav,)?
(B2 ™2 (S A s 051 S5) )

<g2. (pi tf(5n¢*§kA27227ﬁ/w§kS;)
S o0g " o
ik (Y<k S5 Snt%,)?
2
pk,n 1 .
?m r( nw>k .A22 w+2[ﬂ/1>kSn))

effective rank

tI‘(S w<k .A 25— ﬁ’wﬁk‘g;:) ( n'(/)>kA_A22 ﬂ+2/3’(/)>k‘§’:7,))
Nk(¢§ksnsn¢§k)2 n?|| S5kl

<ot (
[

Lemma D.3 (Simplified Upper bound for variance using concentration). There exists some absolute
constant ¢, ¢’ ,Cy > 0 s.t. forany k € Nwith ¢fiklog(k) < n, it holds w.p. at least 1 —8 exp(% %)
the variance can be upper bounded as:
—24—p' 2
Zigkpi A; Zkaz)\ i+ ﬁ)
n 0[S k2

V< Cleﬂi,n<

Proof. By Theorem[D.2] we have
effective rank

Q * <k Qs Gk
tr(sn¢§kA272275/ d}SkSn) ( nw>}cAAzz B/ +28 w>ksn))

1k (V< Sy St Ey)? n2[|S5 2
Then we can apply concentration inequalities, by Lemma it holds w.p. at least 1 — 8 exp(;—ﬁ, %)

H

that

V<o, (

9 _5/ 2
B anzigkpi A; 02n21>kp2)\ B +28
< 0Pk 2,2 2 2
cin n ||E>k||
—o\—p' 2\ —B8'+28
Co Di<kPi A LiskPidi
<02 5 max{ 2. ¢ ( < + > )
< 0Pk {C% 2} n n[ Sk 2

Then we take C to be max E—%, 2} to obtain the desired bound. O
1

E UPPER BOUND FOR THE BIAS

Lemma E.1 (Upper bound for bias). Suppose that for some k < n, the matrix K l i 1S positive-definite,
then

i K —1H2 ( gks:zgnw* ) A %
B <3< 1(( = ) ) - e 5 <k — ||Sn./4>k;f>k||2
P (K272 e ($<r S 800, ) 2 (A5l )
o< fZkll; <
A 25128

N’n((f(lk)_I)Qlj'k(wﬁksnsnwgk) Mk(AA’;Zﬁ')
+ o5k fE I35
»1-8
F ALY o (K2 T PSnAs k ok P11 (Snt % p A 1 5 15)

nxn

||¢<kf<kHA<k 125>~

p(K2,)7Y (< :; W)
pn (K2,) ™12 g, (V<S5 8n10% )2

HIAZE sl
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Proof. Similar as variance, by lemma[A.4] we can bound < k and > k separately, for brevity we

define the error vector & := ¢(f(SnAf*) — f*) € £, by lemmawe can bound ||€<||s1-s
and [|€s /51— separately.
We first discuss ||{<y |z -o, by lemma[A.2] we have

S<if(SnAf*) + bk A<k D2, S (KL T SnAF (SnAf )<k = d<e A<k D2, S (K2,) 7 S Af”.
(7
By definition of &, we have < = ¢<i(f — [*) = d<if<r — d<ifZy, so we have <. f =
E<k + O<i fZy
LHS of () = &<k + b f2y, + d<n A<k T Si(KL,) T S L AT (Exk + d<r )
=8k + o<k fly + ¢§k-’4§k22;1§;(Rzk)71$n¢gkAik€§k
+ i A<k SL S (KL,) T Sud AT d<n Ly -
*)

And
RHS of () = ¢<r A<k X2, S (K2,) 7 S (05 AT <k f2k + 05 AT borf2r)
= ¢<n Ak ST G (KL) T Snd AT bk f2s
*)
+¢§k«4gk222132(f(lk)_lgn¢*>k/\,>4k¢>kf;k-

The two (*) terms get cancelled out, therefore
Eck + b Ak DL S (KL ) T Sng AT k.
= par Ak D2, SH (KL ) T 900t A bon L — bnfs

T A<k
A

We multiply {2, A7, 54/, in both sides and since ||§§k||i§k >0,

A-1x1-p—8"/2
T A<k B—14% /T —14 <k
ggkAA—lzl—ﬁ—ﬁ’/Q¢SkASkz§k S:L(K;k) Sn¢EkAA gﬁk
T A<k B—=1 & (1o -14 >k T A<k
< gSkAA—lzl—a—ﬂ'/z‘bSk-ASkEgk SZ(Klk) Sn(b*>kA_A ¢>kf;k - fgkAA,lzl,g,gfm(bgkf%h

LHS is the quadratic term w.r.t. {<; and RHS is the linear term w.r.t. {<, similar to Variance case,
we lower bound LHS and upper bound RHS respectively.

1xk kxk kxn nxn nXk kXk pyq
NN NN /N A
E<k

LHS = ¢L, ASE, L 0<iSy (K1) 7! Sudiy AT

T A<k Gk (T2 -14 <k
:ggkAiufza')/wakSZ(Klk) Snwgk/\;\szgk.

Since (1 — ')+ 3'/2 = (1 —f')/2 + 1/2, it can be lower bounded by
(K207 (€2eASE €l (VarSiSuvy) i (ASku s )
= lésklier  mn((BZ) ™ m (vsrSiSuvize) e (AShoss) -
Next we upper bound RHS, first we bound the first term in RHS
First term in RHS = fgkASk gi)gkASkEi;lS'Z (Klk)*1§n¢*>kAik¢>kf;k

A-1x1-8-8"/2
T <k & 7% —1& k
= fgkAifﬁ'/z(bSkSr*z(Klk) Sn¢*>kAi\ ¢>kf;k‘
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Since (1 — )/2—1/2——ﬁ /2 1tequalsto
f<kA s(1-87)/2 z 1/2¢<k5*( ) 1SnA>kf;k
= ELLASE o U<k SH(EL,) T SnAs i f2s
< lecullyer  m((KL)™Y \/m<w<kézwzk>||5*nA>kf;k||.
5(1-8%) —_—

kxk

Then we bound the second term in RHS
Second term in RHS = §<kA —in1-5-g’ /2¢<kf<k = €<kA na-g )/zAiiguzf,ﬂQbSkf;k

<lleskllazy | lo<rforlaze, |,

Therefore, gather the terms we have

Hfﬁk”iif_ﬁ/ Nk( Al/238’ /4w<k5 ( ) IS w<kAA1/2gﬂ /4)
< lklyzs Wl (Vi Sn Sl SnAsi S
»(1-= _,_/

+leslyze | MosufZillaze, -

So

leanlyer < PUEEDT) Vf”{wg'“g’ig"w:’“)
TN T (BT e (vanSSuie ) e (ASh s

H¢<kf<k||A<k N

(K20~ ) (wgksnsnwgk) e (M550
By [la +b]|* < 2(||a]|* + [[b]]*), we can bound [|€<k |13, s by

+

2<u1<<{(;k>-1>2 1 (Psi5;500%0)
(K23 ™12 p(<i S5 Snth )2k (A5 )
H¢<kf<k|| <k )

180 As e 25117

—251-28

+
ﬂk(wéksnsnwgk) :U’k(AAzgﬁ’)

Now we discuss the > k case, which is more complicated, we bound it by three quantities by the fact
that (A + B + C)? < 3(A? + B? + (?) and bound them respectively as follows

I65kf2n = O5p AT SUE) TS0 AL R
>k
<30k f2alion  + 105k AskZE SR S0 Ask 2l + Nosn A D2 UK T S Ak faulion )
=T »l— sl
‘We first bound the second term
||§Z5>kA>kEB 1S*(K7) 1SﬂA>’¢f§k”i>f ;
25
<NAZE | o5 kA kB0 S (KY) TS As i 241
= AZF AT s ok S (KY) T S AR i 2412
<NAZE o i () TP S Ak 2k P 11 (S % A 06 1) D515

nxn

< NAZE 0 | al(B L) T P USn A S22 1 (S5 kA ZE 2051y S5 157).

nxn
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The last inequality is by yu1 (K2,)~1) > pu (K7)71).
Then we move on to bound the third term, that is, we want to bound

||¢>kA>kE§;1$’:L(K'V)*1S'nAgkf;k||i>f p
-
= IAZ5s1 05k SH (R TSm0 LA Sk S 2l
1=
First we deal with (K 7)_1(5’,@; 5) first, we can write it as
(K7) 7N (Snoty) = (K2) + (Sndtp) Asss 1 (0<653) ™ (Sndty),
then apply |A.6| with A = K , U= S'ngé* ,C = Agf L,V = ¢<k§*, we have it equal to
pp y >k <k A28 S n
(K2) 7 (Snd%) (T 4+ Agbgs 1 (9<rS) (KL,) ™ (Sndy) ™
Then we sub. the identity above to obtain
HAZ’%B—I¢>kSZ(I~(7)_1§n¢§k1\§k¢gkfgkHi>f y
-
= ||A;(kl73/>/zAZgB—1¢>kk§n(f{lk)_1§n¢*§k(]k + Ailgzﬁ—l(bSkS:(Klk)_lgnﬂ%k)_lfxf\kd)gkf;kH2
= ”Aig(fﬂuﬂﬁfm/a¢>k*§;(le)_lgn¢gk(Ai§2ﬁ—1/2 (Ailj2z—ﬁ +wﬁkg:;(f(lk)_lgnw;k)Agf/z)_lAik(bSkf;k”2
= ”AZ’;(—B’wﬂ—m/g¢>kS:(le)7l*§n¢gkA§51/2( 3\5227/3 + wSkS:L(Klk)71Snw§k)71A§€221/2—5Aflkasﬁkf;k”2
- ” AZ;(—13’+2/3)/2w>k‘§;(f(lk)71/2 (Klk)ilp Sndjgk (Aiﬁ2g—ﬂ + ¢§kSZ(klk)71§n¢*§k)71 A§ﬁ121/27ﬂ QSSkak ”2
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Above can be bounded by
IR 288k A% as sk (KL, 2 i (KZ,) ™)
(1) (2)
1 (V< Sy Satty) i (V<rS (K2,) 7 Sny) 1) 1< fenll sz

—251-28 ’
3) 4) 3

For (1) it can be upper bounded by
I(E25,) 2800 AT arsas kS (K2) 71|

A2
<IAZE s Nl — (K271
S"A;If/i'+/i||7

where the last transition is by the fact that I,, — ny, (K 7,) " is PSD matrix with norm bounded by 1
for ~y,, > 0.
For (4), it can be upper bounded by

p($<r S5 (K2,) M Sty) ™)
1
(<S5 (K2,) " 801%,))2
< — ! = .
k(<SS )2 pn (K Ly)~1)2
Therefore, the third term overall can be bounded by
AZE pi((K2)™Y) (< SESntsy)
P (K20 7Y% (< S Snths )2

We gather all the terms then we get the desired bound. O

*
lo<nfarllase, | .-
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Lemma E.2 (Simpliﬁed Upper bound for bias using concentration). There exists some absolute
constant c, c,Cy > 0 s.t. forany k € N with cf;klog(k) < n, it holds w.p. at least 1 — 6 —

8exp(— 52 %), the bias can be upper bounded as:

Bop(MlC Ly apl)
2 = (SN P>kASES > k|| A >k
Mn(% lk)Q 2>\6 o AS
Nl(%K ) ||¢<kf<k|| <k
+ 2x1-28

5/
PRAR
+ H¢>kf;k||i>k »

+ 1AZF W(é||¢>kA>kf>k||A>k)(Pk+1/\ii11)

R
I | oSl )

Proof. Recall that from [EI] we have

()7 (Y SkS* Anl/)zk) 5 x ||2
pes & SpA
= (’un((Klk)_l)2 'uk(w 7* ¢<k) ( ifzﬁ/) || >kf>k||
||¢<kf<kH <;: e

(K 23) ™12 (<S58t ) 2 (A Sl )
+ ||¢>/€f;kHA>57B
+ ||A21 ol ﬂli(f%lk)i ] ||S A>kf>k|| Nl(S 7/}>kAA2z;2B 1¢>k'§;)

nxn

||¢<kf<kHA 12ﬂ>-

p (K201 (< ZS k)
pn (K212 pue (V<S5 St )2

Al

Y V1) — 1 Y V1) — 1
We first apply p1((K1,)™") = PNEY <) and pn((K2,)7") = AR also apply con-
centration inequalities using Lemma Lemma [B:4] and Lemma [C.2], then w.p. at least

1—06—8exp(— ﬂQ %), we can obtain bound like this

(/‘1(%}%;1@)2 cin
”n(%Klif 03”21’%)‘5
Ml(%Klk)QHCbSkf;kHisk

1
(5n||¢>k-/4>kf>k”i§k)

n - A-2x1-28
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»1-8
1 1 26—1
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2 (TR E .
2 1777 \2
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2k B e ol )
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This can be upper bounded by

p(EK2)% 1 ,
CQ(M I TVAtIE el
M1(5K7 )? ||¢<kf<k||2<k
+ 7 S
k>‘k

+ ||¢>kf;k“i>k ﬂ

2
+ ||A§{€ ol 7( ) (< H¢>kA>kf>kHi;k)(piﬂ)\kil )
pa (LKL,
>
+ 1A~ ,@+,@H (L K'y )||¢<kf<kH <k 2172/3)
where C > 0 is some constant only depends on ¢y, co. O

Theorem E.3 (Bound on bias). There exists some absolute constant Co,c,c > 0s.t. foranyk € N

with ¢Sk log(k) < m, it holds w.p. at least 1 — § — 8 exp(— 52 k) the bias can be further bounded
as

5 .
1 ﬁktr(2>k) 5 1

A v n 7
(||¢>k >k:f>k||A>kp )\5 + lo<nfZil? AR s (7 + " ) p%)\g

+ H¢>kf§klli>k )-
n1-p8"

Proof. We refer result from previous lemmal[E.2]
1777 )2
(G EL) 1
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+ L —251-28
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mGIS)S Pl
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+ || B +BH ( K'y ) 21—%)

Note that by definition of py, ,, (refer to Definition @), we have a following estimations:

p(EK2)? (i (EKop) +n)? <2
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and
1777 )2 >k
HA>k ||H1(;K>k) o HAA226|| ||A>k H/Ll(lk'yk)Q
—B'+8 = - = —oy_g/
¥ /in(%Klk) ,un(%K>k) AR no -
ﬁk tr i k
<O+ P 2o
We bound first and forth term first
m(EE27 1 1 ) i 1 1 , ) s
" (SN0 kAsk fulliyzn) + 1AL o | —5=— (G o>k Ask forllioe) (PR AT )
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<ot g + Azl ascupon
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5 > >kJ> A k, pi)\g /ln(%Klk)z k+17k+1 A—4y1-8'-28
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Since two terms here have the same order, we can just bound it by
1

1
Clpim(gH¢>kv4>kf>kHi§k)W
Kk

where ¢; is some constant.
Next we bound the second and fifth term

lf(v 2 |2 N
m(KLL) ||¢§kf§k“/\§5221726 oK ﬂl(%Klk)Q
FIAS e sl =5~

||¢’§kf;k||igk
A—2

’ —B’ ~
Pi)\g > Nn(%Klk) n1-28
- 2 Betr(Esk) o | s Brtr(Esk) o)y ok
§H¢§kfgk||,\i§221_26 (ka,n(’)/n T) + P;m(% + T) ||AA,227E/ ||).
We know # and HAZ’f B || are of the same order, and py, , > 1 by its definition, therefore, the
P
second ternkl \I)zlould be dominated by the fifth term. So we can bound it by
5k tr(i>k) 1
copblloaifinlien (et P
aA-2x1-28 n pk)‘k

Therefore, the final bound becomes

Br tr(S>k) 1

1 1
2 2 3 x 12 2
02(01'0’“7"(5||¢>kA>kf>k||A§k)p%)\£’ + c2pk,n||¢§kf§k”1\§’i221_2ﬁ (’Yn =+ ) pi)\g,
+H¢>kf;k”i>k )
s1-8'
3 -
Pk, 1 . Brtr(X>k) 1
Scé 5n(||¢>k-’4>kf>k”i;k 24\ A3 +H¢Skf§k:”i§k (’Yn"' — )2 218’
pk)\k A—251-28 pk>‘k
H|¢>kf;k||i>k )s
s1-p/
Clis w.rt. Oy, ¢, ca, and we finally just take Cy = CY to finish the proof. O

F APPLICATIONS

F.1 REGULARIZED CASE

Theorem F.1 (Regularized case, Proof of Theorem[d1). Let the kernel and target function satisfies
Assumpti()n Yo =0(n"7),and v < 2p+ S\ 2p+ Ar > 0and r > [ then for any § > 0, it

holds wp. 1 — 6 — O(@) that

V = c20(nm CUHEF 01 g o L5 (e max{A8 =0 —20en 3 =200,

SN
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Proof. We use the two lemmas [D.3] [E-3| for upper bounding bias and variance in this proof, there
exists some absolute constants ¢, ¢’ > 0, first we need to pick k s.t. cﬂkkzlog(k‘) < n, then the

two lemmas will simultaneously hold w.p. at least 1 — § — 16 exp(— ﬁz %). With regularization,
we can pick k large enough s.t. the concentration coefficient py, ,, = 0(1) to achieve so, we want
ul(%ffyﬂ) = O(vn). By Lemma we can show w.p. at least 1 — 474 exp(—g—;%)
1 - —op— _
Nl(ﬁK>k) = On(pi+1/\£+1) = On(k » 6/\) = On(n) = On(n™7). (®)

This can be achieved by setting k(n) = [n?7+5% |, note that we have < 1, therefore,
k(n) = O(%) and the lemmas can be used for sufficient large n.

We combine the probability of both[D.3] [E.3]and 8] hold:

1
k3)

2p+[‘3>\

/
n
O
B k ) (
where we use the fact that ﬁ; % = Q(log(n)) since k(n) = O(log’zn) ).
Then now we can assume [D.3] [E-3]and 8] hold, and we provide the bound on variance and bias
respectively.

By Theoremand we sub. p; = O(i7P), \; = O(i ), |Zsi] = piH)\fH = O((k +
1)*5>\72p) = O(k—Fr=2p),

15 16exp(— exp(~0(1) =1-5-0(})

k

—2y—p B8'+28
) TN 2\
v SCmfPi,AZlém : Lot ]! )

n S5k 2
max k1+2p+>\[3'71 L1-2p+X (8" ~26) ~ max k1+2p+/\6/71
2030(1)0( { - }, Ty ) = O'?O( { - })

We substitute & with [n2777% | to obtain the final bound

y(1+2p+287)
V = o200t

For bias, recall that by Theorem[E.3] we have

).

)
1
<||¢>kA>kf>k||A>k v
K
* 2 ﬁktr(2>k) 2 1
+ ||¢5kf§’“”/\§'izzl,25 (v + - ) N

Flloskfeliae )

By tr(Ss4) = Yiwp 2N, = O(kN,p?) = O(kvy,), then

B tr(X n —dp—
o+ B0 2 (03,4 1) — 042) = 072
Recall that
o< fE,ll; < ) / / /
; 2n1-28 _ O(kmax{1+4p—)\(1—ﬁ —28)—2r" 2p+Ap })
pkAk

Therefore, the second term’s bound is

O(kmax{l—27‘—)\(1—6/),—2P+A(5/—25)}).

Since 2p + Ar > 0 and r > 3/, we have 2p + 2r' + A > 1, and 21’ 4+ (1 — 8’)\ > 1, We can quote
Lemma [F3] for the remaining terms, so the third term’s bound is

O(k172r'7(17ﬁ')/\).
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First term’s bound is the same as the second
O(kmax{l—Zr'—A(l—ﬁ’),—2p+)\(,5/—25)}).

So we sub. k = [nZ#7* | to obtain

B < 1.6, (nowte max(1-2' 215, —20 428 —29)])y
5

1-X(1—-7)
2

And we substitute ' = to obtain the final bound

B = O(n7tax max{A(8'=r).—2p+A(8'~28)})).
O

F.2 INTERPOLATION CASE

Theorem F.2 (Interpolation case, proof of Theorem[d.2). Let the kernel and target function satisfies
Assumption 2A2p+8X>0,2p+ A\r > 0andr > [, then for any § > 0 it holds w.p. at least

- - O(lg(n ) that

3
V< o2 pk nO( max{2p+Ag’, —1}) p]ij”O(nmax{)\(ﬁ —r),—2p+A(B —25)}})

where py, , = O(nQerB )"1), when features are well-behaved i.e. subGaussian it can be improved to
Pkn = 0(1).
Proof. Same as regularized case, we use the two theorems [D.3] [E-3| for upper bounding bias and
variance in this proof, there exists some absolute constants ¢, ¢’ > 0, first we need to pick & s.t.
cBrklog(k) < n, then the two lemmas will simultaneously hold w.p. at least 1 — § — 16 exp( —;—é 7).
Since 8 = o(1) we know it can be upper bounded by Cj for some Cy > 0. Similar to Barzilai &
Shamir| (2023), we let k := k(n) := an[e00 T Togn and we also let K =k (n) = n?log*(n). So
the probability of those theorems hold become 1 — § — O(L).

In this case, py, ,, cannot be regularized to o(1) if the features are not well-behaved, we compute
its bound first, which requires bounding y1 (£ K-})and fn (2 K >k) respectively.

We apply Lemmaby setting 6 = log n, then w.p. 1 — log( y we have
1 - 1 n2 tr (S i
pin (S Fop) ap(1 - I )
n logn \/ tr(Xsp) /tr(32,) n
1 tr(i>k/)
=Q((1 —logn N
(1= ogmy ) T2
k' 1-2p—BA
:Q(()i
n
_ Q((n2 log® n)1—2p—5A
n

_ Q(n1—4p—2m)_

(Zi>k/ pf)\?)2 I
28 T 1./1—2p—xB —
Disk! PEN; Kk v

Note that the first equality is because we have tr(Xs )2/ tr(2 20)=

kK =n? log4(n), Q means we neglect logarithmic terms.
For i1 (£ K+ ) term by Lemma we have w.p. 1 — O(5) exp(—Q(%))
1~ _op_ A on
(- Kok) = O 4a X ) = Ok~ = O(n=2r~ %), ©)

Using the bound of 11 (1 K~}) and fin (2 K~p,),we have py,, = O(n?P+8A—1),

At the same time, we have Eq. O Lemma@ Theorem [D.3}[E3]all hold simultaneously hold
with probability 1 — § — O(log n))

Recall from Lemma[D.3] that
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—2y—f 2\ —B'+28
i<kPi N As
V<o, (i gzl

n n||Esk 2
e i) B
, n nk72ﬁ)\f4p
~ max{k! T2 1}
= 023 Ol - )-

So we sub. k = ©(n) and the final bound of variance is
V < o O ),
For bias, similar to the regularized case, the bound is
1 ’ ’ ’
gpi’no(kmax{l—%“ —A(1-8"),—2p+X(B —26)})-
The main difference is the choice of k, since k& = é(n) the final bound is

%pi O(nmax1=2r A1), 2p A 20)]

Note that if the features are well-behaved, then py, ,, can be improved to o(1). O

F.3 LEMMAS FOR SUBSTITUTING POLYNOMIAL DECAY
LemmaF3. Leta € R, 1 < k €N, then

1+ =k a<1

Ziia < q1+log(k) a=1
i<k 1-1—(1—i1 a> 1.

Therefore, » ;) i~ = O(max{k=*t1 1})

Proof. We know that, fora < 1

1 1
<] %=1+ —(k""-1) <14 —Fk'
> i +/ = +1_a( ) < +—

i<k
Fora =1
ZZ_“<1+/ “%dr =1+ log(k).
i<k
Fora > 1
> 1
Zf@gu/ %dr =1+ .
N 1 a—1
i<k
O
LemmaF4. Leta € R, 1 < k €N, then
Z’i_a c o0 a S 1
~ [+ (k+1)+ H(k+1)7"] a>1
Therefore, >, i~ % is O(k=**1) if a > 1, otherwise it diverges to infinity
Proof. We know that,
/ ad:r<Zl (k+1)~ +/ % dx.
k+1 =h k+1
If a < 1 then f;jl 2~ % = oo which implies the series diverge, otherwise, fkoil 7 = ail (k +
1)—a+1
O
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Lemma F.5. Assume [¢f*]; = ©(i™"), ¥’s polynomial decaying eigenvalues satisfy \; = ©(i~)
(A >0), and A’s eigenvalue is O(i~P) (p < 0), then

* 1 .
||¢>k-’4>kf>k”i§k =0 <k2p+27“'+)\1) lf?p + 27", + A > 1,

||¢§kf§k||igk = O(max{kl+2p—>\(l—26)—2w’1});
A—2x1-28

1
* |12 _ : / /
H¢>kf>k||A;f75, =0 (W) if2r'+(1-8)A>1,

1-A(1—
where v’ = 7(2 n,

Proof. We know from [F4] that,
* * 1 1 .
o5 kAskforllige = D0 TEpir =30 <lzp+w) =6 <k2p+z+x_1> i 2p+2r 1 > 1.
i>k i>k
Similarly, using[F3]
1 ~ ’

.2 _ 1-28 _ _ 142p—A(1—28)—2r

||¢Skf§k||Aik_2217 Z (bf >\ Z @ (’[M"‘W) = O(max{k P ( ) 71})
i<k i<k

Using[F4] again, we’ll have

* —1 1
||¢>kf>k;||i;k , - Z ¢f AB Z@ < o +(1 ) = C"') <kQ'ﬂ+(1—ﬂ')A—1 leT +( ,8 )A > 1

i>k >k
O

Lemma F.6. Assume X.’s polynomial decaying eigenvalues satisfy \; = O(i™*) (A > 0), and A’s
eigenvalue is ©(i~P). And we suppose B’“%Og(k) = o(1), Br = o(1).
Then it holds w.p. at least 1 — O(Z5 ) exp(—Q(%)) that

1~ —op—
(- Kok) = OO i) = O(k 2%,

Proof. We use - C.6| then there exists absolute constant ¢,¢’ > 0 s.t. it holds w.p. at least 1 —
475 exp(—ﬂ——) that

1 tr(Es)
(5 Kok) SO apign + B log(k + 1) ==22)
B2 k
= O(Ngy1Phr1 (1 + B log(k + 1)5))
=0\ 1Prs);
where ¥ := A2%8, ry, 7”(21’“)
pk+1)‘k+1
The last inequality is because % =o(1).
Now we bound the probability of this holds, we can derive ry = ﬂ% =0(k),1-
475 exp(F= ) = 1 - O(F) exp(-Q(%))- 0

G IMPLEMENTATION DETAILS OF EXPERIMENTS

we consider the Poisson equation v = Af on = [0,2]? with Dirichlet boundary condition on
0f), where the ground truth f(zq,22) = SiIl(’/TZL’l) sin(mxs), where the data points {(x;, y;) 7",
are sampled uniformly from €2, and Vi = Af(z;) + ¢ with e ~ N(0,02). The training loss
function is ming L(#) := 2 327" | (Af(x;0) — y;)*. To satisfy the boundary condition, we enforce

f(@) = 21 (21 — 2)ao (22 — 2) fun(2), where fy is the neural network (Liang et al.| 2021). For clean
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Noise Profile
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Figure 2: We again verified our findings using PDE with solution of low regularity at the origin.
The noise profile of Physics-informed interpolator exhibits benign overfitting, unlike the regression
interpolator.

test loss, we use = > | (f(x;,0) — f(;))? to match the definition of excess risk, where {(z;,;)}
is re-sampled from (2.

In all experiments, we use Adam optimizer with learning rate Se-3 for regression problem, and
le-4 for PINN problem where both are optimally tuned. Weight decay is set as le-4, and learning
rate schedule is StepLR with step size 3000 and gamma 0.8. In both experiments we train for 100000
iterations to allow convergence. All models considered are sufficiently over-parametrized.

For the experiment verifying the effect of smoothness of the inductive bias, we uses the one-layer
wide neural network with width 10000 (we choose one-layer here to avoid explosion of output due to
ReLU4), and vary different activation functions ReLU,ReLU2,ReLU? and ReLU*. Noise level o2
is set as 0.1. We vary sample size 50, 100, 500, 1000 and plot the convergence rate using different
activation functions.

For the experiment verifying benign over-fitting of Physics-Informed interpolator, we train
sufficient iterations to ensure interpolation into the noise. The used learning model here is a two-layer
wide neural network with hidden size 1024, with sample size 500, using ReLU as activation function.
We vary noise variance le-1, 3e-1, Se-1, 1e+0, 3e+0, Se+0, and plot the clean test loss against noise
variance.

For the figure of visualizing landscape, we use a two-layer wide neural network with hidden
size 1024, with sample size 500, using ReLLU as activation function and with noise variance 5 and
train it until it interpolates into the noise. We using the 100x100 grid on [0, 2]? to display landscape
of ground truth f and model output f , also we display A f and A f , where red dots are the training
set points.

Verifying the Benign Overfitting Beyond Co-diagonalization Assumption We provide additional
experiments on the PDE

—V - (|z|Vu) = f forxz € Qand u = 0 for z € 9N

where the commutative assumption no longer holds. Our result demonstrates that it still verifies our
two findings. Here we consider solving a solution u(z) = sin(27(1 — |z|)) defined on Q = {z :
|z| < 1} a(z;0) = (1 — |z]) unn(z; 0) to automatically satisfy the boundary condition, where uxn
is the neural network. We maintain the same configurations as previous experiments.
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