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ABSTRACT

Recent advances in machine learning have inspired a surge of research into re-
constructing specific quantities of interest from measurements that comply with
certain physical laws. These efforts focus on inverse problems that are governed
by partial differential equations (PDEs). In this work, we develop an asymptotic
Sobolev norm learning curve for kernel ridge(less) regression when addressing
(elliptical) linear inverse problems. Our results show that the PDE operators in
the inverse problem can stabilize the variance and even behave benign overfitting
for fixed-dimensional problems, exhibiting different behaviors from regression
problems. Besides, our investigation also demonstrates the impact of various in-
ductive biases introduced by minimizing different Sobolev norms as a form of
implicit regularization. For the regularized least squares estimator, we find that all
considered inductive biases can achieve the optimal convergence rate, provided
the regularization parameter is appropriately chosen. The convergence rate is
actually independent to the choice of (smooth enough) inductive bias for both ridge
and ridgeless regression. Surprisingly, our smoothness requirement recovers the
condition found in Bayesian setting and extends the conclusion to the minimum
norm interpolation estimators.

1 INTRODUCTION

Inverse problems are widespread across science, medicine, and engineering, with research in this field
yielding significant real-world impacts in medical image reconstruction (Ronneberger et al., 2015),
inverse scattering (Khoo et al., 2017) and 3D reconstruction (Sitzmann et al., 2020). One typical way
to solve (elliptical) inverse problems is conducted by statistical machine learning methods (Kaipio &
Somersalo, 2006; Knapik et al., 2011; Lu et al., 2022). To be specific, we consider the problem of
reconstructing a function f∗ from random sampled observationsD = {(xi, yi)}ni=1 from an unknown
distribution P on X ×Y , where yi is the noisy measurement of f∗ through a measurement procedure
A, i.e. E[y|X = x] = (Af)(x). For simplicity, we assume A is self-adjoint (elliptic) linear operator
in this paper (Knapik et al., 2011; de Hoop et al., 2021; Lu et al., 2022). When the observations are
the direct observations of the function, the problem is a classical non-parametric function estimation
(De Vito et al., 2005; Tsybakov, 2004). Nevertheless, the observations may also come from certain
physical laws described by a partial differential equation (PDE) (Stuart, 2010; Benning & Burger,
2018). Since the most challenging linear inverse problems A−1 are ill-posed, where a small noise
in the observation can result in much larger errors in the solution. Further analysis (Knapik et al.,
2011; Nickl et al., 2020; Lu et al., 2021b; 2022; Nickl, 2023; Randrianarisoa & Szabo, 2023) of how
the structure of the ill-posed inverse problem would change the information-theoretical analysis is
always needed.

To handle such ill-posed inverse problem, over-parameterized machine learning models (Raissi
et al., 2019; Han et al., 2018; Sirignano & Spiliopoulos, 2018) and interpolated estimators (Yang
et al., 2021; Chen et al., 2021a) become successful solutions to linear inverse problems and they can
generalize well under noisy observation, i.e., benign overfitting (Bartlett et al., 2020a; Frei et al.,
2022; Cao et al., 2022; Zhu et al., 2023). Nevertheless, statistical mechanism and inherent properties
of these estimators for inverse problems are still unclear in terms of the following question:

What are the conditions inherent to inverse problems that facilitate or impede benign overfitting?
How to achieve it by selecting the appropriate inductive bias?
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To understand this question, we investigate physics-informed kernel methods (Chen et al., 2021a;
Yang et al., 2021) as a theoretical model to model the over-parameterization behaviours. We found
that the PDE operator in the inverse problem stabilizes the variance, leading to benign overfitting
even in fixed-dimension settings. This contrasts with function fitting, where benign overfitting
typically occurs only in high-dimensional settings, while fixed-dimension settings tend to exhibit
catastrophic/temper overfitting Mallinar et al. (2022); Buchholz (2022); Rakhlin & Zhai (2019a). We
also observed that inductive bias needs to focus enough on the low frequency component to achieve
best possible convergence rate. To this end, we consider a general class of norm, known as Kernel
Sobolev space (KSS) (Steinwart & Christmann, 2008; Fischer & Steinwart, 2020; Lu et al., 2022;
Zhang et al., 2023; Li et al., 2024), to quantize inductive bias in a certain space, i.e. the amount
of support that the estimator is allowed to have on the tail of the spectrum. The KSS is a spectral
transformed space with polynomial transformation (Steinwart & Christmann, 2008; Steinwart &
Scovel, 2012; Fischer & Steinwart, 2020; Zhai et al., 2024b) which is a spectral characterization
of Sobolev spaces (Fischer & Steinwart, 2020; Adams & Fournier, 2003), which is widely used in
characterizing the stability of (elliptic) inverse problems. Mathematically, given a non-negative real
number β > 0, the β-power Sobolev space Hβ associated with a kernel K (see Definition 2.1 for
details). The parameter β ∈ [0, 1] characterizes how much we are biased towards low frequency
functions. Regarding the learned model, we consider both regularized least square and minimum
norm interpolation in this paper for solving the abstract inverse problem:

Regularized Least Square (Knapik
et al., 2011; Nickl et al., 2020; Lu et al.,
2022)

f̂γ := argmin
f

γn∥f∥Hβ

+
1

n

n∑
i=1

∥Af(xi)− yi∥2
(1)

Minimum Norm Interpolation (Wang
& Wang, 2018; Yang et al., 2021; Chen
et al., 2021a)

f̂ := argmin
f

∥f∥Hβ

s.t.Af(xi) = yi

(2)

Accordingly, we have developed the generalization guarantees of Sobolev norm learning for
both (Sobolev norm)-regularized least squares and minimum (Sobolev) norm interpolation in the
context of elliptical linear inverse problems. Based on the derived results, we investigate the effects
of various inductive biases (i.e. β) that arise when minimizing different Sobolev norms. Minimizing
these norms imposes an inductive bias from the machine learning algorithms. In the case of the
regularized least squares estimator, we demonstrate that all the smooth enough inductive biases
are capable of achieving the optimal convergence rate, assuming the regularization parameter is
selected correctly. Additionally, the choice of inductive bias does not influence the convergence
rate for interpolators, e.g., the overparameterized/ridgeless estimators. This suggests that with a
perfect spectrally transformed kernel, the convergent behavior of regression will not change. The only
difference may occur when using empirical data to estimate the kernel, i.e. under the semi-supervised
learning setting (Zhou & Burges, 2008; Zhai et al., 2024b). The contributions and technical challenges
are summarized as below.

1.1 CONTRIBUTION AND TECHNICAL CHALLENGES

• Instead of considering regularizing RKHS norm (Lu et al., 2022; Randrianarisoa & Szabo,
2023) or interpolation while minimizing RKHS norm (Barzilai & Shamir, 2023; Cheng et al.,
2024), we consider (implicit) regularization using a Kernel Sobolev norm (Fischer & Steinwart,
2020) or spectrally transformed kernel (Zhai et al., 2024b). Under such setting, we aim to study
how different inductive bias will change the statistical properties of estimators. To this end, we
derived the closed form solution for spectrally transformed kernel (Zhai et al., 2024b) estimators
for linear inverse problem via a generalized Representer theorem for inverse problem (Unser,
2021) and extend previous non-asymptotic benign overfitting bounds (Bartlett et al., 2020a; Cheng
et al., 2024; Barzilai & Shamir, 2023) to operator and inverse problem setting.

• Our non-asymptotic bound can cover both regularized and minimum norm interpolation kernel
estimators for solving (linear) inverse problems. For the regularized case, we recovered the
minimax optimal rate for linear inverse problem presented in (Lu et al., 2022). We provide the
first rigorous upper bound for the excess risk of the min-norm kernel interpolator in the fixed
dimensional setting from benign overfitting to tempered overfitting, and catastrophic overfitting
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in Physics-informed machine learning. Our results show that the PDE operators in inverse
problems possess the capability to stabilize variance and remarkably behave benign overfitting,
even for problems with a fixed number of dimensions, a trait that distinguishes them from
regression problems.

• Our target is to examine the effects of various inductive biases that arise from minimizing
different Sobolev norms, which serve as a form of inductive bias imposed by the machine
learning algorithms. For regularized regression in fixed dimension, traditional research (Fischer
& Steinwart, 2020; Lu et al., 2022; Guastavino & Benvenuto, 2020) show that proper regularized
least square regression can achieve minimax optimal excess risk with smooth enough implicit
regularization of arbitrary spectral decay. Our bound concrete the similar phenomenon happens
in the overparamterized / interpolating kernel estimators where the choice of smooth enough
inductive bias also does not affect convergence speed. The smoothness requirement of implicit
bias β should satisfies λβ ≥ λr

2 −p, where r is the smoothness of the target function (characterized
by the source condition), λ is the spectral decay of the kernel operator and p is the order of the
elliptical inverse problem, see Table 1 for details. Under the function estimation setting, the
selection matches the empirical understanding in semi-supervised learning (Zhou & Burges, 2008;
Zhou & Belkin, 2011; Smola & Kondor, 2003; Chapelle et al., 2002; Dong et al., 2020; Zhai
et al., 2024b) and theoretically surprisingly matches the smoothness threshold determined for
the Bayesian Inverse problems (Knapik et al., 2011; Szabó et al., 2013).

1.2 RELATED WORK

Physics-informed Machine Learning: Partial differential equations (PDEs) are widely used in
many disciplines of science and engineering and play a prominent role in modeling and forecasting
the dynamics of multiphysics and multiscale systems. The recent machine learning revolution
transforming the computational sciences by enabling flexible, universal approximations for high-
dimensional functions and functionals. This inspires researcher to tackle traditionally intractable
high-dimensional partial differential equations via machine learning methods (Long et al., 2018;
2019; Raissi et al., 2019; Han et al., 2018; Sirignano & Spiliopoulos, 2018; Khoo et al., 2017; Liu
et al., 2020). Theoretical convergence results for deep learning based PDE solvers has also received
considerable attention recently. Specifically, Lu et al. (2021a); Grohs & Herrmann (2020); Marwah
et al. (2021); Wojtowytsch et al. (2020); Xu (2020); Shin et al. (2020); Bai et al. (2021) investigated
the regularity of PDEs approximated by a neural network and Lu et al. (2021a); Luo & Yang (2020);
Duan et al. (2021); Jiao et al. (2021a;b); Jin et al. (2022); Doumèche et al. (2024) further provided
generalization analyses. Nickl et al. (2020); Lu et al. (2021b); Hütter & Rigollet (2019); Manole et al.
(2021); Huang et al. (2021); Wang et al. (2023) provided information theoretical optimal lower and
upper bounds for solving PDEs from random samples. However, previous analyses have concentrated
on under-parameterized models, which do not accurately characterize large neural networks (Raissi
et al., 2019; E & Yu, 2018) and interpolating estimators (Yang et al., 2021; Chen et al., 2021a). Our
analysis addresses this gap in theoretical research and provide the first unified upper bound from
regularized least square estimators to benign overfitting minimum norm interpolators under fixed
dimensions. It is important to point out that concurrent work by Haas et al. (2024) also constructed
a kernel interpolator exhibiting benign overfitting in a fixed dimension, using a spiked kernel. In
our work, we do not modify the kernel but demonstrate benign overfitting through physics-informed
learning.

Learning with kernel: Supervised least square regression in RKHS has a long history and its
generalization ability and mini-max optimality has been thoroughly studied (Caponnetto & De Vito,
2007; Smale & Zhou, 2007; De Vito et al., 2005; Rosasco et al., 2010; Mendelson & Neeman, 2010).
The convergence of least square regression in Sobolev norm has been discussed recently in (Fischer
& Steinwart, 2020; Liu & Li, 2020; Zhang et al., 2023). Recently, training neural networks with
stochastic gradient descent in certain regimes has been found to be equivalent to kernel regression
(Daniely, 2017; Lee et al., 2017; Jacot et al., 2018). Recently Lu et al. (2022); Randrianarisoa &
Szabo (2023); Doumèche et al. (2024); Randrianarisoa & Szabo (2023) use kernel based analysis
to theoretically understand physics-informed machine learning. Our work is different from this line
of researches in two perspective. Firstly, we consider the family of spectrally transformed kernels
(Zhai et al., 2024b) to study how different inductive bias on smoothness would affect the efficiency
of machine learning estimators. Secondly, We aim to analyze the statistical behavior of kernel
interpolators, e.g., overparameterized estimators. Thus we build the first rigorous upper bound for the
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Param. λ > 1 r ∈ (0, 1] p < 0 Hβ Hβ′

Eigendecay of
Kernel Matrix

(Capacity Condition)

Smoothness of the
ground truth solution

(Source Condition)

Order of the
Inverse Problem

(Capacity Condition on A)

norm used for
regularization
β ∈ [0, 1]

norm used for
evaluation
β′ ∈ [0, β]

Table 1: The parameters λ, r, p, Hβ and Hβ′ are used to describe our problem. The blue-shaded
blocks, λ, r, p and β′, represent the parameters that are employed to characterize the inverse problem
task, which should influence the minimax optimal risk.

excess risk of the min-norm interpolator in the fixed dimensional setting from benign overfitting to
tempered overfitting in physics-informed machine learning.

2 PRELIMINARIES, NOTATIONS, AND ASSUMPTIONS

In this section, we introduce the necessary notations and preliminaries for Reproducing kernel Hilbert
space (RKHS), including Mercer’s decomposition, the integral operator techniques (Smale & Zhou,
2007; De Vito et al., 2005; Caponnetto & De Vito, 2007; Fischer & Steinwart, 2020; Rosasco et al.,
2010) and the relationship between RKHS and the Sobolev space (Adams & Fournier, 2003). The
required assumptions are also introduced in this section.

We consider a Hilbert space H with inner product ⟨·, ·⟩H is a separable Hilbert space of
functions H ⊂ RX . We call this space a Reproducing Kernel Hilbert space if f(x) = ⟨f,Kx⟩H for
all Kx ∈ H : t→ K(x, t), x ∈ X . Now we consider a distribution ρ on X × Y(Y ⊂ R) and denote
ρX as the marginal distribution of ρ on X . We further assume E[K(x, x)] < ∞ and E[Y 2] < ∞.
We define g ⊗ h = gh⊤ is an operator from H to H defined as g ⊗ h : f → ⟨f, h⟩H g. The integral
operator technique (Smale & Zhou, 2007; Caponnetto & De Vito, 2007) consider the covariance
operator on the Hilbert space H defined as Σ = EρXKx ⊗ Kx. Then for all f ∈ H, using the
reproducing property, we know that (Σf)(z) = ⟨Kz,Σf⟩H = E[f(X)K(X, z)] = E[f(X)Kz(X)].
If we consider the mapping S : H → L2(ρX ) defined as a parameterization of a vast class of functions
in RX via H through the mapping (Sg)(x) = ⟨g,Kx⟩ Its adjoint operator S∗ then can be defined
as S∗ : L2 → H : g →

∫
X g(x)KxρX(dx). We further define the empirical sampling operator

Ŝn : H → Rn as Ŝnf := (⟨f,Kx1
⟩, · · · , ⟨f,Kxn

⟩) and Ŝ∗
n : Rn → H as Ŝ∗

nθ =
∑n

i=1 θiKxi
, then

we know ŜnŜ
∗
n : Rn → Rn is the Kernel Matrix we denote it as K̂, and 1

n Ŝ
∗
nŜn : H → H is the

empirical covariance operator Σ̂.
Next we consider the eigen-decomposition of the integral operator L to construct the feature

map mapping via Mercer’s Theorem. There exists an orthogonal basis {ψi} of L2(ρX ) consisting of
eigenfunctions of kernel integral operator L. The kernel function have the following representation
K(s, t) =

∑∞
i=1 λiψi(s)ψi(t). where ψi are orthogonal basis of L2(ρX ). Then ψi is also the

eigenvector of the covariance operator Σ with eigenvalue λi > 0, i.e. Σψi = λiψi.
Following the (Bartlett et al., 2020a; Cheng et al., 2024; Barzilai & Shamir, 2023; Tsigler &

Bartlett, 2023), we conduct the theoretical analysis using spectral decomposition. Thus, in this paper,
we define the spectral feature map ϕ : H → R∞ via ϕf := (⟨f, ϕi⟩H)∞i=1 where ϕi =

√
λiψi

which forms an orthogonal basis of the reproducing Kernel Hilbert space. Then ϕ∗ : R∞ → H
takes θ to

∑∞
i=1 θiϕi. Then ϕ∗ϕ = id : H → H, ϕϕ∗ = id : ℓ∞2 → ℓ∞2 . ϕ is an isometry i.e.

for any function f in H we have ∥f∥2H = ∥ϕf∥2ℓ∞2 and ℓ∞2 denotes the space of sequences of real

numbers {xi}∞i=1 such that the ℓ2 norm ∥x∥ℓ∞2 =
√∑∞

i=1 x
2
i is bounded. Similarly we also define

ψ : H → ℓ∞2 via ψf := (⟨f, ψi⟩H)∞i=1, the motivation of defining this is this can simplify our
computation in the lemmas, we define ψ∗ : R∞ → H takes θ to

∑∞
i=1 θiψi. We then define the

operator ΛX : R∞ → R∞ corresponding to X is the operator such that X = ϕ∗ΛXϕ, which implies
ΛXY = ΛXΛY . Followed by our notation, we can simplify the relationship between ϕ and ψ as
ϕ = Λ

1/2
Σ ψ and ϕ∗ = ψ∗Λ

1/2
Σ .

Definition 2.1 (Sobolev Norm (Steinwart & Christmann, 2008; Steinwart & Scovel, 2012; Pillaud–
Vivien et al., 2018; Fischer & Steinwart, 2020; Zhang et al., 2023)). For β > 0, the β-power Kernel
Sobolev Space (KSS) is

Hβ := {
∑
i≥1

aiλ
β/2
i ψi :

∑
i≥1

a2i <∞} ⊂ L2(ρX ),

4
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equipped with the β-power norm via ∥
∑

i≥1 aiλ
β/2
i ψi∥β := (

∑
i≥1 a

2
i )

1/2.

Remark 1. We follows the definition of Sobolev space in (Steinwart & Christmann, 2008; Pillaud-
Vivien et al., 2018; Fischer & Steinwart, 2020; Zhang et al., 2023) which is introduced to characterize
the misspecification in kernel regression (Zhang et al., 2023; Kanagawa et al., 2016; Pillaud-Vivien
et al., 2018; Steinwart et al., 2009). The parameter β in the source condition controls the amount
of support that is allowed to have on the tail of the spectrum. As shown in Steinwart & Scovel
(2012); Steinwart & Christmann (2008); Fischer & Steinwart (2020), Hβ is an interpolation between
Reproducing Kernel Hilbert Space and L2 space. Formally, ∥Lβ/2f∥β = ∥f∥L2

where L = SS∗

and ∥f∥β = ∥Σ
1−β
2 f∥H for 0 ≤ β ≤ 1. Thus when β = 1, the Hβ is the same as Reproducing

Kernel Hilbert Space and when β = 0 the Hβ is the same as L2 space. The Hilbert scale of function
spaces defined through varying β quantizes the inductive bias, serving as an regularity condition.

When we select our kernel to be the Matérn covariance kernel (Chen et al., 2021b), our definition
of Sobolev space coincide with the Sobolev space (Adams & Fournier, 2003) on the torus Td =
[0, 1]dper. The β-power norm definition of Sobolev space served as Fourier charaterization of Sobolev
space (Adams & Fournier, 2003; Wendland, 2004) which is the most natural function space for PDE
analysis.

Assumption 2.2 (Assumptions on Kernel and Target Function). We assume the standard capacity
condition on kernel covariance operator with a source condition about the regularity of the target
function following Caponnetto & De Vito (2007) and assumption of the inverse problem following
Lu et al. (2022). These conditions are stated explicitly below:

• (a) Assumptions on boundedness. The kernel feature are bounded almost surely, i.e.
|k(x, y)| ≤ R and the observation y is also bounded by M almost surely.

• (b) Capacity condition (Steinwart & Scovel, 2012; Steinwart & Christmann, 2008). Consider
the spectral representation of the kernel covariance operator Σ =

∑
i λiψi ⊗ ψi, we assume

polynomial decay of eigenvalues of the covariance matrix λi ∝ i−λ for some λ > 1. This
assumption satisfies for many useful kernels in the literature such as Minh et al. (2006), neural
tangent kernels (Bietti & Bach, 2020; Chen & Xu, 2020).

• (c) Source condition (Steinwart & Scovel, 2012; Steinwart & Christmann, 2008; Fischer &
Steinwart, 2020). We also impose an assumption on the smoothness of the true function, which
characterizes the regularity of the test function. There exists r ∈ (0, 1] such that f∗ = Lr/2ϕ for
some ϕ ∈ L2. If f∗(x) = ⟨θ∗,Kx⟩H, the source condition can also be written as ∥Σ 1−r

2 θ∗∥H <
∞. The source condition can be understood as the target function lies in the r-power Sobolev
space.

• (d) Capacity conditions on A (Knapik et al., 2011; Cabannes et al., 2021; de Hoop et al.,
2021; Lu et al., 2022). For theoretical simplicity, we assume that the self-adjoint operators A are
diagonalizable in the same orthonormal basis ϕi . Thus we can assume A =

∑∞
i=1 piψi ⊗ ψi, for

positive constants pi > 0. We further assume pi ∝ i−p. We further assume p < 0, for the inverse
problem we consider inverse problem arising from PDEs where A is a differential operator.

Remark 2. Although the diagonalizable assumptions is strong, the assumption is usually made for
theoretical analysis of kernel-based inverse problem solver Knapik et al. (2011); Cabannes et al.
(2021); de Hoop et al. (2021); Lu et al. (2022). The parameter p here is used to characterise the
order of PDE. For example, operator ∆k’s spectrum decays at a different polynomial speed as
k varies. The co-diagonalization assumption holds since both the Laplacian operator ∆ and the
shift-invariant Kernel covariance operator/inner product kernel with uniform data have the Fourier
modes as eigenfunction which is guaranteed by Bochner’s theorem.

Example 2.3 (Schrödinger equation on a Hypercube). Consider solving Schrödinger equation on
a hypercube −∆u + u = f on Td = [0, 1]dper, where ∆ is the Laplacian operator. To solve the
Schrödinger equation, one observe collocation points xi uniformly sampled from Td with associated
function values yi = f(xi) + εi (1 ≤ i ≤ n) where εi is a mean-zero i.i.d observational noise.
Decomposition of Signals Following Bartlett et al. (2020b); Tsigler & Bartlett (2023); Cheng
et al. (2024), we decompose the risk estimation to the "low dimension" part which concentrates
well and "higher dimension" part which performs as regularization. We define the decomposition
operations in this paragraph. We first additionally define ϕ≤k : f 7→ (⟨f, ϕi⟩H)ki=1 which maps H
to it’s "low dimensional" features in Rk, it intuitively means casting f ∈ H to its top k features,
similarly we can define ϕ>k : f 7→ (⟨f, ϕi⟩H)∞i=k+1. We also define ϕ∗≤k takes θ ∈ Rk to

∑k
i=1 θiϕi,

5
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similarly we can define ϕ∗>k takes θ ∈ ℓ∞2 to
∑∞

i=k+1 θi−kϕi. For function f ∈ H, we also define
f≤k := ϕ∗≤kϕ≤kf =

∑k
i=1 ⟨f, ϕi⟩Hϕi which intuitively means only preserving the top k features,

for operator A : H → H, we also define A≤k : f 7→ (Af)≤k. Similarly we could define f>k and
A>k. We could show the decomposition f = f≤k + f>k and A = A≤k +A>k holds for both signal
and operators which is formally proved in Lemma A.1 in the appendix.

We use ∥ · ∥ to denote standard l2 norm for vectors, and operator norm for operators. We also
use standard big-O notation O(·), o(·),Ω(·), Õ(·) (ignore logarithimic terms).

3 MAIN THEOREM: EXCESS RISK OF KERNEL ESTIMATOR FOR INVERSE
PROBLEM

Using the notations in Section 2, we can reformulate the data generating process as y = ŜnAf∗ + ε,
where y ∈ Rn is the label we observed on the n data points {xi}ni=1, f∗ is the ground truth function
and ε ∈ N (0, σ2

εIn×n) is the Gaussian noise. We first provide closed form solutions to ridge
regression via the recently developed generalized representer theorem for inverse problem (Unser,
2021).

Lemma 3.1. The least square problem regularized by Kernel Sobolev Norm

f̂γ := argmin
f∈Hβ

1

n
∥ŜnAf − y∥2 + γn∥f∥2Hβ . (3)

has the finite-dimensional representable closed form solution f̂ = AΣβ−1Ŝ∗
nθ̂n where

θ̂n := (ŜnA2Σβ−1Ŝ∗
n + nγnI︸ ︷︷ ︸

K̃γ

)−1y ∈ Rn .

For the simplicity of presentation, We denote the empirical spectrally transformed kernel
ŜnA2Σβ−1Ŝ∗

n as K̃, and the regularized version ŜnA2Σβ−1Ŝ∗
n + nγnI as K̃γ , and we denote the

spectrally transformed covariance operator Σ̃ as A2Σβ .

3.1 CONCENTRATION COEFFICIENTS

We expect that K̃>k ≈ γ̃I which serves as a self-regularization term, inspired by Barzilai & Shamir
(2023) we quantify this by introducing the concentration coefficient for spectrally transformed kernel
K̃ to measure the self-regularization effect of K̃>k.
Definition 3.2 (Concentration Coefficient ρn,k). We quantify this by what we call the concentration
coefficient

ρk,n :=
∥Σ̃>k∥+ µ1(

1
nK̃>k) + γn

µn(
1
nK̃>k) + γn

, where Σ̃ = A2Σβ .

Assumptions on feature map is essential to obtain various concentration inequalities, typically
sub-Gaussian assumptions on feature map is needed to obtain concentration results. However, this
does not hold for many common kernels. Following recent work Barzilai & Shamir (2023), we only
require mild condition on features i.e. αk, βk = Θ(1) which is applicable in many common kernels
(weakest assumption in the literature as far as the authors know), without imposing sub-Gaussian
assumptions, but our bound in the interpolation case can be tighter with the sub-Gaussian assumption
in Theorem 4.2, where in that case ρk,n = Θ(1).
Assumption 3.3 (Well-behaved features). Given k ∈ N, we define αk, βk as follows.

αk := inf
x

min

{∑
i>k p

a
i λ

b
iψi(x)

2∑
i>k p

a
i λ

b
i

: finite choices of a, b

}
,

βk := sup
x

max

{∑k
i=1 ψi(x)

2

k
,

∑
i>k p

a
i λ

b
iψi(x)

2∑
i>k p

a
i λ

b
i

: finite choices of a, b

}
,
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(a, b) is picked in our proof of Lemma B.3 in the Appendix. Since inf ≤ E ≤ sup, one always
has 0 ≤ αk ≤ 1 ≤ βk. We assume that αk, βk = Θ(1).

Remark 3. For each term in these definitions, the denominator is the expected value of the numerator,
so αk and βk quantify how much the features behave as they are ”supposed to”. Note that αk and βk
are Θ(1) in many common kernels. We here give several examples (Barzilai & Shamir (2023))that
satisfies the assumptions, includes

• Kernels With Bounded Eigenfunctions If ψ2
i (x) < M uniformly holds for ∀i, x then As-

sumption 3.4 trivially holds that βk ≤ M for any k ∈ N. Analogously, if ψ2
i ≥ M ′ then

αk ≥ M ′. This may be weakened to the the training set such that only a high probability
lower bound is needed. Kernels satisfies this assumption includes RBF and shift-invariant
kernels (Steinwart et al., 2006, Theorem 3.7) and Kernels on the Hypercube {0, 1}d of form
h
(

⟨x,x′⟩
∥x∥∥x′∥ ,

∥x∥2

d , ∥x
′∥2

d

)
Yang & Salman (2019).

• Dot-Product Kernels on Sd Follows the computation in (Barzilai & Shamir, 2023, Appendix
G), one can know dot-product Kernels on Sd satisfies Assumption 3.4. This examples
includes Neural Tangent kernel (Jacot et al., 2018) on sphere.

Similar to Barzilai & Shamir (2023), we require regularity condition on βk to overcome technical
difficulty in extending to infinite dimension in Lemma C.5:

Assumption 3.4 (Regularity assumption on βk). There exists some sequence of natural numbers
(ki)

∞
i=1 ⊂ N with ki −→

i→∞
∞ s.t. βki tr(Σ̃>ki) −→

i→∞
0.

We can know Σ̃>ki
is still transformed trace class, so one always has tr(Σ̃>ki

) −→
i→∞

0. As such,

Assumption 3.4 simply states that for infinitely many choices of k ∈ N, βk does not increase too
quickly. This is of course satisfied by the previous examples of kernels with βk = Θ(1).

3.2 EXCESS RISK AND EIGENSPECTRUM OF SPECTRALLY TRANSFORMED KERNEL K̃
We evaluate excess risk in a certain Sobolev space Hβ′

with β′ ∈ [0, β]. The selection of
β′ is independent of certain learning algorithms on source and capacity conditions, but de-
pends on the downstream applications of learned inverse problem solution. We denote f̂ :=

AΣβ−1Ŝ∗
n(ŜnA2Σβ−1Ŝ∗

n + nγI)−1y as f̂(y) to highlight its dependence on y ∈ Rn. Recall
the data generation process, y = ŜnAf∗ + ε, we consider ŜnAf∗ and ε in bias and variance
separately. The excess risk R(f̂(y)) := ∥f̂ − f∗∥2Hβ′ has the following bias-variance decomposition.

∥f̂ − PHβ′ f∗∥2
Hβ′ = ∥f̂(ŜnAf∗)− f∗∥2Hβ′︸ ︷︷ ︸

bias: B

+Eε[∥f̂(ε)∥2Hβ′ ]︸ ︷︷ ︸
variance:V

.
(4)

Following benign overfitting literature (Barzilai & Shamir, 2023; Bartlett et al., 2020b; Cheng
et al., 2024), we perform the analysis on "low dimensional" (≤ k) and "high dimensional" (> k)
components respectively. Therefore, we define K̃≤k as ŜnA2

≤kΣ
β−1
≤k Ŝ∗

n, and K̃γ
≤k as K̃≤k + nγnI ,

similarly we can define K̃>k and K̃γ
>k respectively. We can also have K̃ = K̃≤k + K̃>k (proved in

Appendix A.1). To bound the excess risk of minimum norm interpolation kernel estimator, we need
to show the ”high dimensional” part of the Kernel matrix K̃>k can behave as a self-regularization.
To show this, we present here the concentration bounds of eigenvalues with proof given in Appendix
C.1.
Theorem 3.5 (Eigenspectrum of spectrally transformed kernel K̃). Suppose Assumption 3.4 holds,
and eigenvalues of Σ̃ are given in non-increasing order (i.e. 2p + βλ > 0). There exists absolute
constant c, C, c1, c2 > 0 s.t. for any k ≤ k′ ∈ [n] and δ > 0, it holds w.p. at least 1 − δ −
4 rk
k4 exp(− c

βk

n
rk
)− 2 exp(− c

βk
max

(
n
k , log(k)

)
) that

µk

(
1

n
K̃

)
≤ c1βk

(1 +
k log(k)

n

)
λ
β
k
p
2
k + log(k + 1)

tr
(
Σ̃>k

)
n

 , µk

(
1

n
K̃

)
≥ c2Ik,nλ

β
k
p
2
k+αk

1 −
1

δ

√√√√ n2

tr(Σ̃>k′ )2/ tr(Σ̃2
>k′ )

 tr
(
Σ̃>k′

)
n

,

where µk is the k-th largest eigenvalue of 1
nK̃, Σ̃ := A2Σβ , rk := tr(Σ̃>k)/(p

2
k+1λ

β
k+1), and

Ik,n =

{
1, if Cβkk log(k) ≤ n

0, otherwise
.
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3.3 MAIN RESULTS

In this section, we state our main results on the bias and variance of the kernel estimator. The
following theorem is the main result for upper bounds of the bias and variance with the proof details
given in Appendix D.2 for bounding the variance and Appendix E.3 for bounding the bias.

Theorem 3.6 (Bound on Variance). Let k ∈ N, σ2
ε is the noise variance and ρk,n is defined follows

Definition 3.2, then w.h.p. the variance can be bounded by

V ≤ σ2
ερ

2
k,n ·

( tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

+

effective rank︷ ︸︸ ︷
tr(Ŝnψ

∗
>kΛ

>k

A2Σ−β′+2β
ψ>kŜ

∗
n)

n2∥Σ̃>k∥2
)
. (5)

Remark 4. The variance bound is decomposed into two parts, the ≤ k part which characterize the
variance of learning the "low dimension" components and ≥ k part characterizing the variance of
learning "high dimension" components. We implement similar analysis for the bias as follows.

Theorem 3.7 (Bound on Bias). Let k ∈ N, and ρk,n is defined follows Definition 3.2, then there exists
C2, c, c

′ > 0 s.t. for any k with cβkk log(k) ≤ n, every δ > 0, then w.p. at least 1−δ−8 exp(− c′

β2
k

n
k )

the bias can be bounded by

B ≲ ρ3k,n
1

δ

[ ∥ϕ>kA>kf>k∥2Λ>k
Σ

p2kλ
β′

k

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′︸ ︷︷ ︸
bias on high frequency components, i.e. >k parts

+

(
γn +

βk tr(Σ̃>k)

n

)2 ∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

p2kλ
β′

k︸ ︷︷ ︸
bias on low frequency components, i.e. ≤k parts

]
.

(6)

4 APPLICATIONS

Our main results can provide bounds for both the regularized (Yang et al., 2021; Lu et al., 2022)
and unregularized cases (Chen et al., 2021a) with the same tools. In this section, we present the
implication of our results for both regularized regression and minimum norm interpolation kernel
estimators.

4.1 REGULARIZED REGRESSION

In this section, we demonstrate the implication of our derive bounds for the classical setup where the
regularization γn is relatively large. We consider regularized least square estimator with regularization
strength γn = Θ(n−γ). By selecting k as ⌈n

γ
2p+βλ ⌉ in Theorem 3.6 and Theorem 3.7, we obtain

ρk,n = Θ(1) and get a bound that matches Lu et al. (2022), which indicates the corectness and
tightness of our results.

Theorem 4.1 (Bias and Variance for Regularized Regression). Let the kernel and target
function satisfies Assumption 2.2, 3.3 and 3.4, γn = Θ(n−γ), and suppose 2p+ λβ > γ >
0, 2p+ λr > 0, and r > β′, then for any δ > 0, it holds w.p. at least 1− δ −O( 1n ) that

V ≤ σ2
εO(nmax{ γ(1+2p+λβ′)

2p+λβ ,0}−1), B ≤ 1

δ
·O(n

γ
2p+βλ (max{λ(β′−r),−2p+λ(β′−2β)})).

Remark 5. Once proper regularization norm is selected, i.e. λβ ≥ λr
2 − p, with optimally selected

γ = 2p+λβ
(2p+λ+2r) which balance the variance n

γ(1+2p+λβ′)
2p+λβ −1 and the bias n

γ(λ(β′−r))
2p+βλ , our bound can

achieve final bound: n
λ(β′−r)
2p+λr+1 matches with the convergence rate build in the literature (Knapik et al.,

2011; Lu et al., 2022)

4.2 MIN-NORM INTERPOLATION FROM BENIGN OVERFITTING TO TEMPERED OVERFITTING

We now shift our attention to the overparameterized interpolating kernel estimators. Recently,
Mallinar et al. (2022) distinguished between three regimes: one where the risk explodes to infinity
(called catastrophic overfitting), another where the risk remains bounded (called tempered overfitting),
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and a third regime involving consistent estimators whose risk goes to zero (called benign overfitting).
These regimes are significantly different. In the tempered overfitting regime, when the noise is small,
estimator can still achieve a low risk despite overfitting. This means that the bias goes to zero, and the
variance cannot diverge too quickly. Recent work (Rakhlin & Zhai, 2019b; Cui et al., 2021; Barzilai
& Shamir, 2023; Cheng et al., 2024) showed that minimum (kernel) norm interpolators are nearly
tempered over-fitting. However, as shown in Theorem 4.2, the PDE operator in the inverse problem
can stabilize the variance term and make the min-norm interpolation (kernel) estimators benign
over-fitting even in fixed-dimension setting.

Theorem 4.2 (Bias and Variance for Interpolators). Let the kernel and target function satisfies
Assumption 2.2, 3.3 and 3.4, and suppose 2p + λmin{r, β} > 0 and r > β′, then for any
δ > 0 it holds w.p. at least 1− δ −O( 1

log(n) ) that

V ≤ σ2
ερ

2
k,nÕ(nmax{2p+λβ′,−1}), B ≤

ρ3k,n
δ
Õ(nmax{λ(β′−r),−2p+λ(β′−2β)}}).

Remark 6. For well-behaved sub-Gaussian features, the concentration coefficients ρk,n = Θ(1)

Barzilai & Shamir (2023) and in the worst case ρk,n can become Õ(n2p+βλ−1) which is shown
in the Appendix F.2. Our bound can recover the results in Barzilai & Shamir (2023) by setting
p = 0, β = 1, β′ = 0 and recover the results in Cui et al. (2021) when σϵ = 0, β′ = 0 and ρk,n = 1.
Remark 7. Since the p considered for PDE inverse problems is a negative number (See Assumption
2.2), our bound showed that the structure of PDE inverse problem made benign over-fitting possible
even in the fixed dimesional setting. This result differs the behavior of regression with inverse problem
when large over-parameterized model is applied. The more negative p leads to smaller bound over the
variance which indicates Sobolev training is more stable to noise, matches with empirical evidence
(Son et al., 2021; Yu et al., 2021; Lu et al., 2022).

4.3 IMPLICATION OF OUR RESULTS
Selection of Inductive Bias: As demonstrated in Theorem 4.1 and Theorem 4.2, variance is
independent of the inductive bias (i.e., β) and the only dependency is appeared in bounding the bias.
At the same time, the upper bound for the bias is a maximum of the orange part and the blue part.
The orange part is independent of the inductive bias and only depend on the inverse problem (i.e., r
and λ) and evaluation metric (i.e., β′), while the blue part is the only part depending on the inductive
bias used in the regularization. With properly selected inductive bias β, one can achieve the best
possible convergence rate which only depends on the orange part. When the inductive bias does
not focus much on the low frequency eigenfunctions (i.e., λβ ≥ λr

2 − p), that means, regularized
with kernel which is not smooth enough, the rate is dominated by the blue part and is potential
sub-optimal. Under the function estimation setting, the selection matches the empirical understanding
in semi-supervised learning (Zhou & Burges, 2008; Zhou & Belkin, 2011; Smola & Kondor, 2003;
Chapelle et al., 2002; Dong et al., 2020; Zhai et al., 2024b;a) and theoretically surprisingly matches
the smoothness requirement determined in the Bayesian inverse problem literature (Knapik et al.,
2011; Szabó et al., 2013).
Takeaway to Practitioners: Our theory demonstrated that to attain optimal performance in physics-
informed machine learning, incorporating sufficiently smooth inductive biases is necessary. For
PINNs applied to higher-order PDEs, one needs smoother activation functions. This is because the
value of p for higher-order PDEs is a negative number with a larger absolute value, thus making the
term λr

2 − p larger. A larger value of λr
2 − p necessitates the use of smoother activation functions

Bietti & Bach (2020); Chen & Xu (2020) to ensure the solution satisfies the required smoothness
conditions imposed by the higher-order PDE. Another implication of the theory is the variance
stabilization effects as mentioned before brought about by the PDE operator in the inverse problem.
Higher-order PDEs would benefit from more substantial stabilization effects. This motivates the idea
that Sobolev training (Son et al., 2021; Yu et al., 2021) may not only aid optimization (Lu et al.,
2022) but also contribute to improved generalization error for overparameterized models. However,
as previously demonstrated, utilizing a neural network with smoother activations is necessary to
leverage these benefits.

5 EXPERIMENTS
We conducted additional experiments on neural network to validate our theory as well as the-
oretical findings beyond kernel methods. To be specific, we consider the Poisson equation
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Figure 1: We verified our finding beyond kernel estimators. For all the plotted figure, we learn
two dimensional Poisson equation. (Left) We examine the impact of smooth inductive bias on
convergence. Our findings demonstrate that when the activation function is sufficiently smooth,
the inductive bias has a limited effect on improving convergence, which aligns with our theoretical
predictions. (Middle) Noise profile of Physics-informed interpolator and regression Interpolator. The
physics-informed interpolator exhibits benign overfitting, unlike the regression interpolator. (Right)
Visualization of the ground truth and the learned solutions for f and u = ∆f . The learned solution
for f effectively smooths out the high-frequency components in the error of ∆f .
u = ∆f on Ω = [0, 2]2 with Dirichlet boundary condition on ∂Ω, where the ground truth
f(x1, x2) = sin(πx1) sin(πx2), where the data points {(xi, yi)}ni=1 are sampled uniformly from Ω,
and yi = ∆f(xi) + ε with ε ∼ N (0, σ2). Our experiments are able to illustrate our theory from the
following three aspects, and more experimental details can be found on Appendix G.
Effect of Smoothness of the Inductive Bias To validate our finding on the necessity of using
smoother activation function, we use activation function ReLU, ReLU2, ReLU3, respectively, fix
noise level variance σ2 = 0.1, and vary number of samples as 50, 100, 500, 1000 and plot the test
error against number of samples. The result in Figure 1(Left) verifies our finding that when the
inductive bias is not smooth enough, the convergence will benefit from smoother activation function.
However, by comparing convergence rate of ReLU3 and ReLU4 in Figure 1(Left), when the activation
function is smooth enough, the convergence behavior would not be affected too much. This result
verifies our theoretical findings beyond kernel methods.
Benign Over-fitting of Physics-Informed Interpolator Following Benning & Burger (2018),
we verify the benign overfitting behavior by plotting the noise profiles of the Physics-Informed
interpolator. A noise profile characterizes the sensitivity of a learning procedure to noise in the
training set, specifically how the asymptotic risk varies with the variance of additive Gaussian noise.
We plot the noise profiles of both the regression interpolator and the Physics-Informed interpolator
in Figure 1(Middle). We can see that, the standard regression interpolator performs worse under
stronger noise level. Instead, the test risk of the Physics-Informed interpolator does not change too
much at various noise levels. This supports our theory that Physics-Informed interpolator can still
generalize well over noisy data, i.e., benign overfitting.
The Noise Stabilization Effect We also plotted the final output of the neural network in Figure 1.
The intuition behind our theory of benign overfitting in inverse problems differs from that of standard
regression because we predict ∆−1u rather than u in the regression setting. The operator ∆−1

functions as a kernel smoothing mechanism, where the Green’s function serves as the kernel. This
smoothing process attenuates high-frequency components, which are the dominant contributors to
the prediction error, and thus effectively alleviates their impact. For general PDEs governing physical
laws, most behave like differential operators, where the forward problem amplifies high-frequency
components. Consequently, solving the inverse problem tends to attenuate these high-frequency
components, resulting in a similar noise stabilization effect.

6 CONCLUSIONS
In conclusion, we study the behavior of kernel ridge and ridgeless regression methods for linear
inverse problems governed by elliptic partial differential equations (PDEs). Our asymptotic analysis
reveals that the PDE operator can stabilize the variance and even lead to benign overfitting in fixed-
dimensional problems, exhibiting distinct behavior compared to regression problems. Another key
focus of our investigation was the impact of different inductive biases introduced by minimizing
various Sobolev norms as a form of (implicit) regularization. Interestingly, we found that the final
convergence rate is independent of the choice of smooth enough inductive bias for both ridge and
ridgeless regression methods. For the regularized least-squares estimator, our results demonstrate
that all considered inductive biases can achieve the minimax optimal convergence rate, provided the
regularization parameter is appropriately chosen. Notably, our analysis recovered the smoothness
condition found by Empirical Bayes in the function regression setting and extended it to the minimum
norm interpolation and inverse problem settings.
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A ADDITIONAL NOTATIONS AND SOME USEFUL LEMMAS

For brevity, we denote simplified notation for ≤ k and > k, for function f ∈ H, we define
f≤k := ϕ∗≤kϕ≤kf , for operator A : H → H, we also define A≤k : f≤k 7→ ϕ∗≤kϕ≤kAf≤k.
We denote µn(M) as the n-th largest eigenvalue of some matrix M . We also define id≤k and id>k.
We denote [n] as integers between 1 and n.

ϕ≤kŜ
∗
n is the map from Rn → Rk, therefore, we can consider it as k × n matrix, where each

column is the top k features of the data points. Ŝ∗
nϕ≤k is the map from Rk → Rn, therefore, we can

consider it n× k matrix, and (ϕ≤kŜ
∗
n)

T = Ŝ∗
nϕ≤k. Similar reasoning holds for > k case.

Note that for simplicity, we always convert to using ψ for convenient computation, by using
the following: ϕ≤k = Λ≤k

Σ1/2ψ≤k and ϕ∗≤k = ψ∗
≤kΛ

≤k
Σ1/2 , also similar for > k. This is because

E([Ŝnψ
∗
>k]

2
ji) = 1 by Lemma A.5.

Next we deliver several useful lemmas.
The following lemma justifies our < k and ≥ k decomposition.

Lemma A.1 (Decomposition lemma). The following holds:
1. For any function f ∈ H, f = f≤k + f>k;
2. For any operator A : H → H, A = A≤k +A>k;
3. For the spectrally transformed kernel matrix K̃, K̃ = K̃≤k + K̃>k.

Proof. We first prove (1),

f≤k + f>k = ϕ∗≤k

⟨f, ϕ1⟩H
⟨f, ϕ2⟩H

· · ·
⟨f, ϕk⟩H

+ ϕ∗>k

(⟨f, ϕk+1⟩H
⟨f, ϕk+2⟩H

· · ·

)
=

k∑
i=1

⟨f, ϕi⟩Hϕi +
∞∑

i=k+1

⟨f, ϕi⟩Hϕi

=

∞∑
i=1

⟨f, ϕi⟩Hϕi = f.

Then we move on to (2), for any f ∈ H, we have

(A≤k +A>k)f = (Af)≤k + (Af)>k = Af. (By (1))

Finally we prove the statement (3) , this is because

K̃ = ŜnA2Σβ−1Ŝ∗
n = Ŝn(A2

≤kΣ
β−1
≤k +A2

>kΣ
β−1
>k )Ŝ∗

n = ŜnA2
≤kΣ

β−1
≤k Ŝ∗

n + ŜnA2
>kΣ

β−1
>k Ŝ∗

n = K̃≤k + K̃>k.

In the following lemma modified from Barzilai & Shamir (2023), we give a lemma which is useful
for bounding f̂(y)≤k’s norm in bounding bias and variance in D.3, E.1.

Lemma A.2. Denote f̂(y) := AΣβ−1Ŝ∗
n(K̃

γ)−1y (highlight its dependence on y), we have

ϕ≤kf̂(y)≤k︸ ︷︷ ︸
k×1

+ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n︸ ︷︷ ︸
k×n

(K̃γ
>k)

−1︸ ︷︷ ︸
n×n

ŜnA≤kf̂(y)≤k︸ ︷︷ ︸
n×1

= ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n︸ ︷︷ ︸
k×n

(K̃γ
>k)

−1︸ ︷︷ ︸
n×n

y︸︷︷︸
n×1

,

where K̃γ
>k is the regularized version of spectrally transformed matrix, defined as ŜnA2

>kΣ
β−1
>k Ŝ∗

n +
nγnI .

Proof. First we discuss the ridgeless case i.e. γn = 0, where f̂ is the minimum norm solution, then
f̂>k is also the minimum norm solution to ŜnA>kf̂>k = y − ŜnA≤kf̂≤k, then similar to 3 we can
write

f̂>k = AΣβ−1Ŝ∗
n(ŜnA2

>kΣ
β−1
>k Ŝ∗

n)
−1(y − ŜnA≤kf̂≤k).

Therefore,

ϕ>kf̂>k = Λ>k
AΣβ−1ϕ>kŜ

∗
n(ŜnA2

>kΣ
β−1
>k Ŝ∗

n)
−1(y − Ŝnϕ

∗
≤kΛ

≤k
A ϕ≤kf̂≤k).

As such, we obtain min norm interpolator is the the minimizer of following

ϕf̂(y) = argmin
f̂≤k

v(ϕ≤kf̂≤k)

:=[(ϕ≤kf̂≤k)
T , (y − Ŝnϕ

∗
≤kΛ

≤k
A ϕ≤kf̂≤k)

T (ŜnA2
>kΣ

β−1
>k Ŝ∗

n)
−1(ϕ>kŜ

∗
n)

TΛ>k
AΣβ−1 ].

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The vector ϕf̂(y) gives minimum norm if for any additional vector η≤k ∈ Rk we have
v(ϕ≤kf̂≤k(y)) ⊥ v(ϕ≤kf̂≤k(y) + η≤k)− v(ϕ≤kf̂≤k(y)) in Hβ norm.

We first write out the second vector

v(ϕ≤kf̂≤k(y)+η≤k)−v(ϕ≤kf̂≤k(y)) = [ηT≤k,−ηT≤kΛ
≤k
A (Ŝnϕ

∗
≤k)

T (ŜnA2
>kΣ

β−1
>k Ŝ∗

n)
−1(ϕ>kŜ

∗
n)

TΛ>k
AΣβ−1 ].

Then we compute the inner product w.r.t. Hβ norm, by A.3 we have:

ηT≤kΛ
≤k
Σ1−β (ϕ≤kf̂≤k)

−ηT≤kΛ
≤k
A (Ŝnϕ

∗
≤k)

T (ŜnA2
>kΣ

β−1
>k Ŝ∗

n)
−1︸ ︷︷ ︸

(1)

(ϕ>kŜ
∗
n)

TΛ>k
AΣβ−1Λ

>k
Σ1−βΛ

>k
AΣβ−1(ϕ>kŜ

∗
n)︸ ︷︷ ︸

(2)

(ŜnA2
>kΣ

β−1
>k Ŝ∗

n)
−1(y − Ŝnϕ

∗
≤kΛ

≤k
A ϕ≤kf̂≤k) = 0.

Note that (1) and (2) cancel out, and since the equality above holds for any η≤k, we have:

Λ≤k
Σ1−β (ϕ≤kf̂≤k)− Λ≤k

A (Ŝnϕ
∗
≤k)

T (ŜnA2
>kΣ

β−1
>k Ŝ∗

n)
−1(y − Ŝnϕ

∗
≤kΛ

≤k
A ϕ≤kf̂≤k) = 0.

Therefore,
ϕ≤kf̂≤k − Λ≤k

AΣβ−1ϕ≤kŜ
∗
n(K̃

γ
>k)

−1(y − ŜnAf̂≤k) = 0.

With some simple algebraic manipulation we can obtain the required identity

ϕ≤kf̂≤k + ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnAf̂≤k = ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1y.

This finishes our discussion on ridgeless case.
For the regularized case i.e. γn > 0, first we prove

f̂(y)≤k +A≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnA≤kf̂(y)≤k = A≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1y.

We know by A.1 K̃γ = K̃ + nγI = (K̃>k + nγI) + K̃≤k = K̃γ
>k + K̃≤k, we split K̃γ into two

parts: K̃γ
>k and K̃≤k. Accordingly, f̂(y)≤k can be represented as

f̂(y)≤k = ϕ∗≤kϕ≤kf̂(y) = ϕ∗≤kϕ≤kAΣβ−1Ŝ∗
n(K̃

γ)−1y

= A≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k + K̃≤k)

−1y .

Therefore, taking it back to LHS, we have

f̂(y)≤k +A≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnA≤kf̂(y)≤k (LHS)

= A≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k + K̃≤k)

−1y

+ A≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1 ŜnA≤kA≤kΣ
β−1
≤k Ŝ∗

n︸ ︷︷ ︸
equals to K̃≤k

(K̃γ
>k + K̃≤k)

−1y (Expand f̂(y)≤k)

= A≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1(K̃γ
>k + K̃≤k)(K̃

γ
>k + K̃≤k)

−1y

= A≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1y (RHS) .

We project LHS and RHS back to Rk for convenient usage in D.3, E.1, we project the functions in H
back to Rk so we use ϕk in both two sides and we obtain

ϕ≤kf̂(y)≤k + ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnA≤kf̂(y)≤k = ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1y,

which concludes the proof.

This lemma justifies we can switch between using Sobolev norm and matrix norm by using ϕ.

Lemma A.3 (Equivalence between Sobolev norm and Matrix norm). For any function f ∈ Hβ′
, we

have
∥f∥2Hβ′ = ∥ϕf∥2Λ

Σ1−β′ .

And additionally, ∥f≤k∥2Hβ′ = ∥ϕ≤kf≤k∥2
Λ

≤k

Σ1−β′
, ∥f>k∥2Hβ′ = ∥ϕ>kf>k∥2Λ>k

Σ1−β′
.
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Proof. According to the definition of Sobolev norm, we have

LHS = ∥Σ
1−β′

2 f∥2H
= ∥ϕΣ(1−β′)/2f∥2 (by isometry i.e. ∥f∥H = ∥ϕf∥2)

= ∥ΛΣ(1−β′)/2ϕf∥2 (by ϕϕ∗ = id : ℓ∞2 → ℓ∞2 )

= ∥ϕf∥2Λ
Σ1−β′ = RHS.

Then for the ≤ k case, we have

∥f≤k∥Hβ′ = ∥ϕf≤k∥2Λ
Σ1−β′

Since (ϕf≤k)≤k = ϕ≤kf≤k, all its > k entries are zero, then

∥ϕf≤k∥2Λ
Σ1−β′ = (ϕf≤k)

TΛΣ1−β′ (ϕf≤k) = (ϕf≤k)
TΛ≤k

Σ1−β′ (ϕf≤k) = ∥ϕ≤kf≤k∥2Λ≤k

Σ1−β′
.

The proof above works similarly for the > k case.

Lemma A.4 (Separation of < k and > k case). For any function f ∈ Hβ′
, then

∥f∥2Hβ′ = ∥f≤k∥2Hβ′ + ∥f>k∥2Hβ′ .

Proof.

∥f∥2Hβ′ = ∥ϕΣ(1−β′)/2f∥2

=

∞∑
i=1

[ϕΣ(1−β′)/2f ]2i =

k∑
i=1

[ϕΣ(1−β′)/2f ]2i +

∞∑
i=k+1

[ϕΣ(1−β′)/2f ]2i

= ∥ϕ≤kΣ
(1−β′)/2
≤k f≤k∥2 + ∥ϕ>kΣ

(1−β′)/2
>k f>k∥2

= ∥f≤k∥2Hβ′ + ∥f>k∥2Hβ′ .

Lemma A.5. E([Ŝnψ
∗
>k]

2
ji) = 1 holds for any i > k, j ∈ [n].

Proof.

E([Ŝnψ
∗
>k]

2
ji) = E([⟨ψi,Kxj

⟩2H]) = E(ψi(xj)
2) = 1.

Last we present a lemma which is useful in > k case in deriving bias’s bound.

Lemma A.6.
(A+ UCV )−1U = A−1U(I + CV A−1U)−1.

Proof. By Sherman-Morrison-Woodbury formula we have

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

Therefore,

(A+ UCV )−1U = A−1U −A−1U(C−1 + V A−1U)−1V A−1U

= A−1U(I − (C−1 + V A−1U)−1V A−1U)

= A−1U(I − (C−1 + V A−1U)−1(C−1 + V A−1U) + (C−1 + V A−1U)−1C−1)

= A−1U(I − I + (C(C−1 + V A−1U))−1)

=A−1U(I + CV A−1U)−1.

18
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A.1 PROOF OF LEMMA 3
Proof. As mentioned in Definition 2.1, we have ∥f∥Hβ = ∥Σ

1−β
2 f∥H thus we can rewrite the

objective function (3) as

f̂γ = argmin
1

n
∥ŜnAf−y∥2+γn∥Σ

1−β
2 f∥H ⇔ Σ

1−β
2 f̂γ = argmin

1

n
∥ŜnAΣ

β−1
2 g−y∥2+γn∥g∥H.

By representer theorem for inverse problem (Unser, 2021), the solution of the optimization
problem gγ = argmin 1

n∥ŜnAΣ
β−1
2 g − y∥2 + γn∥g∥H have the finite dimensional representation

that gγ = AΣ
β−1
2 Ŝ∗

nθ̂n for some θ̂n ∈ Rn. Then we know the f̂γ = Σ
β−1
2 gγ = AΣβ−1Ŝ∗

nθ̂n, for
some θ̂n ∈ Rn. Plug the finite dimensional representation of f̂γ to objective function (3) thus we
have

θ̂n = argmin
θn∈Rn

1

n
∥ŜnA2Σβ−1Ŝ∗

nθ̂n − y∥2 + γn∥Σ
1−β
2 AΣβ−1Ŝ∗

nθn∥2H.

Thus we have θ̂n = (ŜnA2Σβ−1Ŝ∗
nŜnA2Σβ−1Ŝ∗

n + γnŜnA2Σβ−1Ŝ∗
n)

−1(ŜnA2Σβ−1Ŝ∗
n)y =

(ŜnA2Σβ−1Ŝ∗
n + nγnI)

−1y. (For A is self-adjoint and co-diagonalizable with Σ.)

B CONCENTRATION LEMMAS

Here we present several lemmas for bounding several quantities in D, E.
Lemma B.1. Let k ∈ [n], a be the power of A, and b be the power of Σ, we bound the trace of this

n× n matrix, w.p. at least 1− 2 exp(− 1

2β2
k

n) we have

1

2
n
∑
i>k

pai λ
b
i ≤ tr(Ŝnψ

∗
>kΛ

>k
AaΣbψ>kŜ

∗
n) ≤

3

2
n
∑
i>k

pai λ
b
i .

Proof. Note that Λ>k
AaΣb is a diagonal matrix with entry pai λ

b
i (i > k).

tr(Ŝnψ
∗
>kΛ

>k
AaΣbψ>kŜ

∗
n) =

n∑
j=1

[(Ŝnψ
∗
>k)(Λ

>k
AaΣb)(ψ>kŜ

∗
n))]jj =

n∑
j=1

∞∑
i=k+1

pai λ
b
i [Ŝnψ

∗
>k]ji

2

︸ ︷︷ ︸
vj

.

Here we denote the term inside j summation as vj , then by A.5, the expectation of the trace is

n
∑
i>k

pai λ
b
i .

We also know that vj is lower bounded by 0 and by def. of βk 3.3, it can be upper bounded by

vj =

∞∑
i=k+1

pai λ
b
iψi(xj)

2 ≤ βk

∞∑
i=k+1

pai λ
b
i︸ ︷︷ ︸

denoted as M

.

Then we have 0 ≤ vj ≤M for all j and vj is independent, we can apply the Hoeffding’s inequality
to bound

∑n
j=1 vj :

P(|
n∑

j=1

vj − n
∑
i>k

pai λ
b
i | ≥ t) ≤ 2 exp

(
−2t2

nM2

)
.

We then pick t := n
2

∑
i>k p

a
i λ

b
i , and we get

−2t2

nM2
= − 1

2β2
k

n, and we know the trace value exactly

corresponds to
∑n

j=1 vj .

Therefore, w.p.at least 1− 2 exp(− 1

2β2
k

n),

1

2
n
∑
i>k

pai λ
b
i ≤ tr(Ŝnψ

∗
>kΛ

>k
AaΣbψ>kŜ

∗
n) ≤

3

2
n
∑
i>k

pai λ
b
i .
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Here we present the modified version of Lemma 2 in Barzilai & Shamir (2023), we rewrite it to
fit into our framework for completeness.
Lemma B.2. For any k ∈ [n] there exists some absolute constant c′, c2 > 0 s.t. the following hold
simultaneously w.p. at least 1− 2 exp(− c′

βk
max{n

k , log(k)})

1. µk(ψ≤kŜ
∗
nŜnψ

∗
≤k︸ ︷︷ ︸

k×k

) ≥ max{
√
n−

√
1
2 max{n, βk(1 + 1

c′ k log(k))}, 0}
2;

2. µ1(ψ≤kŜ
∗
nŜnψ

∗
≤k︸ ︷︷ ︸

k×k

) ≤ c2 max{n, βkk log(k)}.

Moreover, there exists some c > 0 s.t. if cβkk log(k) ≤ n then w.p. at least 1− 2 exp(− c′

βk

n
k ) and

some absolute constant c1 > 0 it holds that

c1n ≤ µk(ψ≤kŜ
∗
nŜnψ

∗
≤k) ≤ µ1(ψ≤kŜ

∗
nŜnψ

∗
≤k) ≤ c2n.

Proof. We will bound the singular values σi(Ŝnψ
∗
≤k︸ ︷︷ ︸

n×k

) since σi(A)2 = µi(A
TA) for any matrix A.

We know rows of this matrix are independent isotropic random vectors in Rk, where randomness
is over the choice of x, where by the definition of βk 3.3 the rows are heavy-tailed having norm
bounded by

∥each row of Ŝnψ
∗
≤k∥ ≤

√
kβk.

Here we can use Vershynin (2011)[Theorem 5.41] which is applicable for heavy-tailed rows,
there is some absolute constant c′ > 0 s.t. for every t ≥ 0, one has that w.p. at least 1 −
2k exp(−2c′t2)

√
n− t

√
kβk ≤ σk(Ŝnψ

∗
≤k) ≤ σ1(Ŝnψ

∗
≤k) ≤

√
n+ t

√
kβk.

We pick t =
√

1
2βk

max{n
k , log(k)}+

log(k)
2c′ , then w.p. at least 1− 2 exp(−c′

βk
max{n

k , log(k)}) it
holds that

σ1

(
Ŝnψ

∗
≤k

)2
≤

(
√
n+

√
1

2
max(n, k log(k)) + k log(k)

βk
2c′

)2

≤

(
√
n+

1√
2

√
n+

(
1 +

βk
c′

)
k log(k)

)2

≤ 3n+

(
1 +

βk
c′

)
k log(k),

where the last inequality followed from the fact that (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R. Since

βk ≥ 1 3.3, we obtain σ1
(
Ŝnψ

∗
≤k

)2
≤ c2 max{n, βkk log(k)} for a suitable c2 > 0, proving (2).

For the lower bound, we simultaneously have

σk

(
Ŝnψ

∗
≤k

)
≥

√
n− 1√

2

√
1

2
max(n, k log(k)) + k log(k)

βk
2c′

≥
√
n−

√
1

2
max

(
n, βk

(
1 +

1

c′

)
k log(k)

)
.

Since the singular values are non-negative, the above implies

σk

(
Ŝnψ

∗
≤k

)
≥ max{

√
n−

√
1

2
max

(
n, βk

(
1 +

1

c′

)
k log(k)

)
, 0}2

which proves (1).
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Next we move on to prove the moreover part, taking c = (1 + 1
c′ ) we now have by assumption

that n
k ≥ cβk log(k) ≥ log(k) (where we used the fact that c ≥ 1 and βk ≥ 1), the probability that

(1) and (2) hold is 1− 2 exp(− c′

βk

n
k ). Furthermore, plugging cβkk log(k) ≤ n into the lower bound

(1) obtains the following

µk

(
ψ≤kŜ

∗
nŜnψ

∗
≤k

)
≥ max

(
√
n−

√
1

2
max (n, cβkk log(k)), 0

)2

≥
(√

n−
√
n

2

)2

=

(
1− 1√

2

)2

n.

Similarly since βkk log(k) ≤ n, the upper bound (2) becomes

µ1

(
ψ≤kŜ

∗
nŜnψ

∗
≤k

)
≤ c2n.

Lemma B.3. There exists some constant c, c′, c1, c2 > 0 s.t. for any k ∈ N with cβkk log(k) ≤ n, it
holds w.p. at least 1− 8 exp(− c′

β2
k

n
k ), the following hold simultaneously

1. c1n
∑

i>k p
−2
i λ−β′

i ≤ tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n) ≤ c2n

∑
i>k p

−2
i λ−β′

i ;

2. c1n
∑

i>k p
2
iλ

−β′+2β
i tr(Ŝnψ

∗
≤kΛ

≤k

A2Σ−β′+2βψ≤kŜ
∗
n) ≤ c2n

∑
i>k p

2
iλ

−β′+2β
i ;

3. µk(ψ≤kŜ
∗
nŜnψ

∗
≤k) ≥ c1n;

4. µ1(ψ≤kŜ
∗
nŜnψ

∗
≤k) ≤ c2n.

Proof. By Lemma B.1, (1) and (2) each hold w.p. at least 1− 2 exp(− 1
2β2

k
n), so the probability of

they both hold is at least (1− 2 exp(− 1
2β2

k
n))2. And by Lemma B.2, (3), (4) simultaneously holds

with probability at least 1− 2 exp(− c′

βk

n
k ). Therefore, the probability of all four statements hold is at

least

(1− 2 exp(− 1

2β2
k

n))2(1− 2 exp(− c′

βk

n

k
))

≥ 1− 8 exp(−min{ 1

2β2
k

n,
c′

βk

n

k
})

≥ 1− 8 exp{−min(
1

2β2
k

,
c′

βk
}n
k
).

Since we know βk ≥ 1 3.3, then we replace c′ with min{ 1
2 , c

′} results in the desired bound holding
w.p. at least 1− 8 exp(− c′

β2
k

n
k ).

Lemma B.4 (Concentration bounds on ∥ŜnA>kf
∗
>k∥2 in E.1). For any k ∈ [n] and δ > 0, it holds

w.p. at least 1− δ that

∥ŜnA>kf
∗
>k∥2 ≤ 1

δ
n∥ϕ>kA>kf

∗
>k∥2Σ>k

.
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Proof. Let vj := ⟨A>kf
∗
>k,Kxj

⟩2H, then LHS is equal to
∑n

j=1 vj . Since xj is independent, it holds
that vj are independent random variables with mean

E[vj ] = E[⟨ϕ∗>kϕ>kA>kf
∗
>k,

∞∑
i=1

ϕi(xj)ϕi⟩2H]

= E[⟨
∞∑

i=k+1

[ϕ>kA>kf
∗
>k]iϕi,

∞∑
i=1

ϕi(xj)ϕi⟩2H]

= E[(
∞∑

i=k+1

[ϕ>kA>kf
∗
>k]iϕi(xj))

2]

=
∑
i>k

∑
l>k

√
λi
√
λl[ϕ>kA>kf

∗
>k]i[ϕ>kA>kf

∗
>k]l Exj

ψi(xj)ψl(xj)︸ ︷︷ ︸
=1 if i=l;0 otherwise

=
∑
i>k

λi[ϕ>kA>kf
∗
>k]

2
i = ∥ϕ>kA>kf

∗
>k∥2Λ>k

Σ
.

Then we can apply Markov’s inequality:

P(
n∑

j=1

vj ≥
1

δ
n∥ϕ>kA>kf

∗
>k∥2Σ>k

) ≤ δ.

C BOUNDS ON EIGENVALUES

Theorem C.1. Suppose Assumption 3.4 holds, and eigenvalues of Σ̃ are given in non-increasing
order (i.e. 2p + βλ > 0). There exists absolute constant c, C, c1, c2 > 0 s.t. for any k ≤ k′ ∈ [n]
and δ > 0, it holds w.p. at least 1− δ − 4 rk

k4 exp(− c
βk

n
rk
)− 2 exp(− c

βk
max

(
n
k , log(k)

)
) that

µk

(
1

n
K̃

)
≤ c1βk

(1 + k log(k)

n

)
λβkp

2
k + log(k + 1)

tr
(
Σ̃>k

)
n



µk

(
1

n
K̃

)
≥ c2Ik,nλβkp

2
k + αk

(
1− 1

δ

√
n2

tr(Σ̃>k′)2/ tr(Σ̃2
>k′)

)
tr
(
Σ̃>k′

)
n

,

where µk is the k-th largest eigenvalue of K̃, Σ̃ := A2Σβ , rk := tr(Σ̃>k)/(p
2
k+1λ

β
k+1), and

Ik,n =

{
1, if Cβkk log(k) ≤ n

0, otherwise
.

Proof. We hereby give the proof of Theorem 3.5. From Lemma C.3, we have that

λβi+k−min(n,k)p
2
i+k−min(n,k)µmin(n,k)(Dk)+µn(

1

n
K̃>k) ≤ µi(

1

n
K̃) ≤ λβi p

2
iµ1(Dk)+µ1(

1

n
K̃>k),

where Dk is as defined in the lemma.
We bound the two terms at the RHS seperately. From Lemma C.6, it holds w.p. at least

1− 4 rk
k4 exp(− c′

βk

n
rk
) that for some absolute constants c′, c′1 > 0,

µ1(
1

n
K̃>k) ≤ c′1

(
p2k+1λ

β
k+1 + βk log(k + 1)

tr(Σ̃>k)

n

)
.

For the other term, because µi(Dk) = µi(
1
n (ŜnΣ

−1/2
≤k )(ŜnΣ

−1/2
≤k )T ) = µi(

1
nψ≤kŜ

∗
nŜnψ

∗
≤k), by

B.2 ther exists some absolute constants c′′, c′′1 > 0, s.t. w.p. at least 1− 2 exp(− c′′

βk
max{n

k , log(k)})

λβi p
2
iµ1(Dk) ≤ c′′1

1

n
max{n, βkk log(k)}λβi p

2
i ≤ c′′1βk

(
1 +

k log(k)

n

)
λβi p

2
i ,
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where the last inequality uses the fact that βk ≥ 1.
Therefore, by taking c = max(c′, c′′), both events hold w.p. at least 1− δ−4 rk

k4 exp(− c
βk

n
rk
)−

2 exp(− c
βk

max
(
n
k , log(k)

)
) and the upper bound of µi(

1
nK̃) now becomes

µk

(
1

n
K̃

)
≤ c1βk

(1 + k log(k)

n

)
λβkp

2
k + log(k + 1)

tr
(
Σ̃>k

)
n


for some suitable absolute constant c1 = max(c′1, c

′′
1) > 0.

The other equation of this theorem is proved similarly as the "moreover" part in Lemma B.2,
which states that µk(Dk) ≥ c2 if Cβkk log(k) ≤ n, and from the lower bound of Lemma C.6, it
holds w.p. at least 1− δ.

Lemma C.2 (Extension of Ostrowski’s theorem). We present the abstract matrix version here and
we can obtain the bounds by substituting inside, let i, k ∈ N satisfy 1 ≤ i ≤ min(k, n) and a
matrix Xk ∈ Rn×k. Let Dk := 1

nXkX
T
k ∈ Rn×n. Suppose that the eigenvalues of Σ are given in

non-increasing order λ1 ≥ λ2 ≥ . . . then

λi+k−min(n,k)µmin(n,k)(Dk) ≤ µi

(
1

n
XkΣ≤kX

⊤
k

)
≤ λiµ1(Dk).

Proof. We extends Ostrowski’s theorem to the non-square case, where the proof is similar to Lemma
5 in Barzilai & Shamir (2023). Let π1 denote the number of positive eigenvalues of 1

nXkΣ≤kX
T
k , it

follows from Dancis (1986)[Theorem 1.5, Ostrowski’s theorem] that for 1 ≤ i ≤ π1,

λi+k−min(n,k)µmin(n,k)(Dk) ≤ µi(
1

n
XkΣ≤kX

T
k ) ≤ λiµ1(Dk).

Now we’ll only have to consider the case where πi < i. By definition of π1 there are some
orthonormal eigenvectors of XkΣ≤kX

T
k , vπ1+1, . . . , vn with eigenvalues 0. Since Σ ⪰ 0, for each

such 0 eigenvector v,
0 = (XT

k v)
TΣ≤k(X

T
k v) ⇒ XT

k v = 0.

In particular, Dk has vπ1+1, . . . , vn as 0 eigenvectors and since Dk ⪰ 0, we have that
µπ1+1(Dk), . . . , µn(Dk) = 0. So for i > π1 we have

λi+k−min(n,k)µmin(n,k)(Dk) ≤ µi(
1

n
XkΣ≤kX

T
k ) ≤ λiµ1(Dk).

Lemma C.3 (Symmetric Bound on eigenvalues of 1
nK̃). Let i, k ∈ N satisfy 1 ≤ i ≤ n and i ≤ k,

let Dk = 1
n ŜnΣ

−1
≤kŜ

∗
n = 1

n (ŜnΣ
−1/2
≤k )(ŜnΣ

−1/2
≤k )T , and eigenvalues of Σ̃ is non-increasing i.e.

2p+ λβ > 0, then

λβi+k−min(n,k)p
2
i+k−min(n,k)µmin(n,k)(Dk)+µn(

1

n
K̃>k) ≤ µi(

1

n
K̃) ≤ λβi p

2
iµ1(Dk)+µ1(

1

n
K̃>k).

In particular

λβi+k−min(n,k)p
2
i+k−min(n,k)µmin(n,k)(Dk) ≤ µi(

1

n
K̃) ≤ λβi p

2
iµ1(Dk) + µ1(

1

n
K̃>k).

Proof. We can decompose K̃ into the sum of two hermitian matrices K̃≤k and K̃>k. Then we can
use Weyl’s theorem Horn & Johnson (1985)[Corollary 4.3.15] to bound the eigenvalues of K̃ as

µi(K̃≤k) + µn(K̃>k) ≤ µi(K̃) ≤ µi(K̃≤k) + µ1(K̃>k).

Then since K̃≤k = (ŜnΣ
−1/2
≤k )A2Σβ(ŜnΣ

−1/2
≤k )T , we use the extension of Ostrowski’s theorem

derived at Lemma C.2 to obtain the bound:

λβi+k−min(n,k)p
2
i+k−min(n,k)µmin(n,k)(Dk) ≤ µi(

1

n
K̃≤k) ≤ λiµ1(Dk).

Therefore, by combining the two results, it yields:

λβi+k−min(n,k)p
2
i+k−min(n,k)µmin(n,k)(Dk)+µn(

1

n
K̃>k) ≤ µi(

1

n
K̃) ≤ λβi p

2
iµ1(Dk)+µ1(

1

n
K̃>k).

The "in particular" part follows from µn(
1
nK̃>k) ≥ 0.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lemma C.4 (Symmetric Bound on eigenvalues of 1
nK̃>k). For any δ > 0, it holds w.p. at least

1− δ that for all i ∈ [n],

αk
1

n
tr(Σ̃>k)

(
1− 1

δ

√
n2

tr(Σ̃>k)2/ tr(Σ̃2
>k)

)
≤ µi(

1

n
K̃>k) ≤ βk

1

n
tr(Σ̃>k)

(
1 +

1

δ

√
n2

tr(Σ̃>k)2/ tr(Σ̃2
>k)

)
where Σ̃ := A2Σβ .

Proof. We decompose the matrix into the diagonal component and non-diagonal component and
bound them respectively, we denote diagonal component as diag( 1nK̃>k) and ∆>k := 1

nK̃>k −
diag( 1nK̃

γ
>k).

Recall that K̃>k := ŜnA2
>kΣ

β−1
>k Ŝ∗

n, and for any i ∈ [n],

[
1

n
K̃>k]ii =

1

n
⟨Kxi ,A2

>kΣ
β−1
>k Kxi⟩H

=
1

n
⟨

∞∑
l=1

ϕl(xi)ϕl,

∞∑
l=k+1

p2l λ
β−1
l ϕl(xi)ϕl⟩H

=
1

n

∞∑
l=k+1

p2l λ
β
l ψl(xi)

2.

Therefore, by definition of αk and βk, we have

αk
1

n
tr(A2

>kΣ
β
>k) ≤ [

1

n
K̃>k]ii ≤ βk

1

n
tr(A2

>kΣ
β
>k).

Therefore,

αk
1

n
tr(A2

>kΣ
β
>k)I ⪯ diag(

1

n
K̃>k) ⪯ βk

1

n
tr(A2

>kΣ
β
>k)I.

Then by Weyl’s theorem Horn & Johnson (1985)[Corollary 4.3.15], we can bound the eigenvalues of
1
nK̃>k as

αk
1

n
tr(A2

>kΣ
β
>k) + µn(∆>k) ≤ µi(

1

n
K̃>k) ≤ βk

1

n
tr(A2

>kΣ
β
>k) + µ1(∆>k).

It remains to bound the eigenvalues of ∆>k, we first bound the expectation of the matrix norm using

E[∥∆>k∥] ≤ E[∥∆>k∥2F ]1/2 =

√√√√ n∑
i,j=1,i̸=j

E[(
1

n

∑
l>k

p2l λ
β
l ψl(xi)ψl(xj))2]

=

√
n(n− 1)

n2
tr(A4

>kΣ
2β
>k) ≤

√
tr(A4

>kΣ
2β
>k) =

1

n
tr(Σ̃>k)

√
n2

tr(Σ̃>k)2/ tr(Σ̃2
>k)

.

By Markov’s inequality,

P(∥∆>k∥ ≥ 1

δ
E[∥∆>k∥]) ≤ δ.

So w.p. at least 1− δ it holds that

∥∆>k∥ ≤ 1

δ
E[∥∆>k∥] ≤

1

nδ
tr(Σ̃>k)

√
n2

tr(Σ̃>k)2/ tr(Σ̃2
>k)

.

Lemma C.5 (Upper bound of largest eigenvalue). Suppose Assumption 3.4 holds, and eigenvalues of
Σ̃ are given in non-increasing order (i.e. 2p+ βλ > 0). There exists absolute constant c, c′ > 0 s.t.
it holds w.p. at least 1− 4 rk

k4 exp(− c′

βk

n
rk
) that

µ1

(
1

n
ŜnA2Σβ−1Ŝ∗

n

)
≤ c

(
p2k+1λ

β
k+1 + βk log(k + 1)

tr(Σ̃>k)

n

)
.

where Σ̃ := A2Σβ , rk := tr(Σ̃>k)

p2
k+1λ

β
k+1

.
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Proof. Letmk = µ1(
1
nK̃>k ), K̃k+1:p = ŜnA2

k+1:pΣ
β−1
k+1:pŜ

∗
n, the meaning of the footnote k+1 : p

follows similar rule as the footnote > k, and let Σ̃ = A2Σβ , ˆ̃Σ>k = 1
nA>kΣ

β−1
2

>k Ŝ∗
nŜnΣ

β−1
2

>k A>k =

A>kΣ
β−1
2

>k Σ̂Σ
β−1
2

>k A>k. Observe thatmk = || ˆ̃Σ>k||, we would like to bound || ˆ̃Σ>k|| using the matrix
Chernoff inequality with intrinsic dimension. Tropp (2015)[Theorem 7.2.1]. However, this inequality
was proved for finite matrices, so we’ll approximate the infinite matrix with finite ones. mk can be
bounded as:

mk = || 1
n
K̃k+1:p′ +

1

n
K̃>p′ || ≤ || 1

n
K̃k+1:p′ ||+ || 1

n
K̃>p′ || = || ˆ̃Σk+1:p′ ||+mp′ .

Furthermore, m′
p can be bounded as

mp′ ≤ 1

n
tr(K̃>p′) =

1

n

n∑
j=1

∑
i>p′

p2iλ
β
i ψi(xj)

2 ≤ βp′

∑
i>p′

p2iλ
β
i ≤ βp′ tr(Σ̃>p′).

If p is finite, we can take p = p′ and m′
p = 0. Otherwise, p is infinite, and mp′ ≤ βp′ tr(Σ>p′).

By assumption 3.4:
∀ϵ > 0,∃p′ ∈ N s.t. mp′ < ϵ.

We define Sj
k+1:p′ := 1

nAk+1:p′Σ
β−1
2

k+1:p′ Ŝj∗ŜjΣ
β−1
2

k+1:p′Ak+1:p′ , where Ŝjf =
〈
f,Kxj

〉
H and

Ŝj∗θ = θjKxj
. Then we will have ˆ̃Σk+1:p′ =

∑n
j=1 S

j
k+1:p′ . We need a bound on both µ1(S

j
k+1:p′)

and µ1(E ˆ̃Σk+1:p′). For the first,

µ1(S
j
k+1:p′) =

1

n

p′∑
i=k+1

p2iλ
β
i ψi(xj)

2 ≤ 1

n

∞∑
i=k+1

p2iλ
β
i ψi(xj)

2 ≤ βk
n

tr(Σ̃>k).

Let L := βk

n tr(Σ̃>k) denoting the RHS. For the second item, E ˆ̃Σk+1:p′ = Σ̃k+1:p′ =

diag(p2k+1λ
β
k+1, . . . , p

2
p′λ

β
p′). Thus, E ˆ̃Σk+1:p′ = p2k+1λ

β
k+1.

Now the conditions of Tropp (2015)[Theorem 7.2.1] are satisfied. So, for rk:p′ :=
tr(Σ̃k+1:p′ )

p2
k+1λ

β
k+1

and any t ≥ 1 + L

p2
k+1λ

β
k+1

= 1 + βkrk
n ,

P(|| ˆ̃Σk+1:p′ || ≥ tp2k+1λ
β
k+1) ≤ 2rk:p′

(
et−1

tt

)p2
k+1λ

β
k+1/L

.

Using the fact that p2k+1λ
β
k+1/L = n/βkrk and et−1 ≤ et, rk:p′ ≤ rk,

P(mk −mp′ ≥ tp2k+1λ
β
k+1) ≤ P(|| ˆ̃Σk+1:p′ || ≥ tp2k+1λ

β
k+1) ≤ 2rk

(e
t

)nt/βkrk
.

Now pick t = e3 + 2βkrk
n ln(k + 1), then

P(mk −mp′ ≥ tp2k+1λ
β
k+1) ≤ 2

rk
(k + 1)4

exp

(
−2

e3

βk

n

rk

)
.

As a result, we obtain that for c′ = 2e3, c = e3, the inequality holds w.p. at least 1−4 rk
k4 exp(− c′

βk

n
rk
)

that

mk ≤ c

(
p2k+1λ

β
k+1 + βk log(k + 1)

tr(Σ̃>k)

n

)
+mp′ .

As p′ tends to ∞ in some sequence determined by Assumption 1, m′
p tends to 0. Therefore, we obtain

the desired result.

In the following we present an important lemma for bounding largest and smallest eigenvalues
of unregularized spectrally transformed matrix. This lemma would be useful to bound concentration
coefficient ρk,n in the interpolation case.
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Lemma C.6 (Bounds on µ1(
1
nK̃>k) and µn(

1
nK̃>k′)). Suppose Assumption 3.4 holds, then there

exists absolute constant c, c′ > 0 s.t. it holds w.p. at least 1− 4 rk
k4 exp(− c′

βk

n
rk
) that

µ1(
1

n
K̃>k) ≤ c

(
p2k+1λ

β
k+1 + βk log(k + 1)

tr(Σ̃>k)

n

)
.

And for any k′ ∈ N with k′ > k , and any δ > 0 it holds w.p. at least 1− δ − 4 rk
k4 exp(− c′

βk

n
rk
) that

αk′

(
1− 1

δ

√
n2

tr(Σ̃>k′)2/ tr(Σ̃2
>k′)

)
≤ µn(

1

n
K̃>k′),

where Σ̃ := A2Σβ , rk := tr(Σ̃>k)

p2
k+1λ

β
k+1

.

Proof. By Weyl’s theorem Horn & Johnson (1985)[Corollary 4.3.15], for any k′ ≥ k we have
µn(K̃≥k) ≥ µn(K̃≥k′) + µn(K̃k:k′) ≥ µn(K̃≥k′). So the lower bound comes from C.4(with k′)
and the upper bound directly comes from C.5.

D UPPER BOUND FOR THE VARIANCE

Lemma D.1 (Upper bound for variance). We define the variance of the noise be σ2
ε and evaluate

variance in Hβ′
norm, If for some k ∈ N, K̃γ

>k is positive-definite then

V ≤σ2
ε ·
[
(µ1(K̃

γ
>k)

−1)2

(µn(K̃
γ
>k)

−1)2

tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

+(µ1(K̃
γ
>k)

−1)2 tr(Ŝnψ
∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n)

]
.

Proof. Recall V = Eε[∥f̂(ε)∥2Hβ′ ], we can split the variance into ∥f̂(ε)≤k∥2Hβ′ and ∥f̂(ε)>k∥2Hβ′

according to Lemma A.4. To bound these, by Lemma A.3 we could bound ∥ϕ≤kf̂(ε)≤k∥2Λ
Σ
1−β′
≤k

,

∥ϕ>kf̂(ε)>k∥2Λ
Σ
1−β′
>k

respectively using matrix inequalities.

First we handle ∥ϕ≤kf̂(ε)≤k∥2Λ
Σ
1−β′
≤k

, using Lemma A.2 while substituting y with ε, we have

ϕ≤kf̂(ε)≤k + ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnA≤kf̂(ε)≤k = ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ε.

We multiply by (ϕ≤kf̂(ε)≤k)
TΛ≤k

A−2Σ−β+(1−β′) ∈ R1×k, on two sides respectively (note that the
motivation of multiplying an additional diagonal matrix term here is to make the µk term only have
µk(ψ≤kŜ

∗
nŜnψ

∗
≤k)), and this would not affect the polynomial bound.

Then since ∥ϕ≤kf̂(ε)≤k∥2
Λ

≤k

A−2Σ−β+(1−β′)
≥ 0, we have

(ϕ≤kf̂(ε)≤k)
TΛ≤k

A−2Σ−β+(1−β′)ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnA≤kf̂(ε)≤k︸ ︷︷ ︸
Quadratic term w.r.t. ϕ≤kf̂(ε)≤k

≤ (ϕ≤kf̂(ε)≤k)
TΛ≤k

A−2Σ−β+(1−β′)ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ε︸ ︷︷ ︸
Linear term w.r.t. ϕ≤kf̂(ε)≤k

.
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Then we lower bound the quadratic term and upper bound the linear term respectively, first we lower
bound the quadratic term:

(ϕ≤kf̂(ε)≤k)
TΛ≤k

A−2Σ−β+(1−β′)ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnA≤kf̂(ε)≤k

Diagonalize the operators,

= (ϕ≤kf̂(ε)≤k)
TΛ≤k

A−2Σ−β+(1−β′)ϕ≤k(ϕ
∗
≤kΛ

≤k
AΣβ−1ϕ≤k)Ŝ

∗
n(K̃

γ
>k)

−1Ŝn(ϕ
∗
≤kΛ

≤k
A ϕ≤k)f̂(ε)≤k

= (ϕ≤kf̂(ε)≤k)
TΛ≤k

A−1Σ−β′ϕ≤kŜ
∗
n(K̃

γ
>k)

−1Ŝnϕ
∗
≤kΛ

≤k
A (ϕ≤kf̂(ε)≤k) (ϕ≤kϕ

∗
≤k = id≤k)

By ϕ≤k = Λ≤k
Σ1/2ψ≤k and ϕ∗≤k = ψ∗

≤kΛ
≤k
Σ1/2 ,

= (ϕ≤kf̂(ε)≤k)
T︸ ︷︷ ︸

1×k

Λ≤k

A−1Σ1/2−β′︸ ︷︷ ︸
k×k

ψ≤kŜ
∗
n︸ ︷︷ ︸

k×n

(K̃γ
>k)

−1︸ ︷︷ ︸
n×n

Ŝnψ
∗
≤k︸ ︷︷ ︸

n×k

Λ≤k
AΣ1/2(ϕ≤kf̂(ε)≤k)︸ ︷︷ ︸

k×1

≥ µn((K̃
γ
>k)

−1) µk(ψ≤kŜ
∗
nŜnψ

∗
≤k) (ϕ≤kf̂(ε)≤k)

TΛ≤k

Σ1−β′ (ϕ≤kf̂(ε)≤k).

The last inequality is because µk(AB) = µk(BA) for k× k matrix A,B by (Horn & Johnson, 1985,
Theorem 1.3.20).
We continue to derive the bound

µn((K̃
γ
>k)

−1) µk(ψ≤kŜ
∗
nŜnψ

∗
≤k) (ϕ≤kf̂(ε)≤k)

TΛ≤k

Σ1−β′ (ϕ≤kf̂(ε)≤k)

= ∥ϕ≤kf̂(ε)≤k∥2Λ≤k

Σ1−β′
µn((K̃

γ
>k)

−1) µk(ψ≤kŜ
∗
nŜnψ

∗
≤k)

= ∥f̂(ε)≤k∥2Hβ′ µn((K̃
γ
>k)

−1) µk(ψ≤kŜ
∗
nŜnψ

∗
≤k).

This finishes lower bound of the quadratic term, we continue to upper bound the linear term

(ϕ≤kf̂(ε)≤k)
TΛ≤k

A−2Σ−β+(1−β′)ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ε

= (ϕ≤kf̂(ε)≤k)
TΛ≤k

A−2Σ−β+(1−β′)ϕ≤kϕ
∗
≤kΛ

≤k
AΣβ−1ϕ≤kŜ

∗
n(K̃

γ
>k)

−1ε

= (ϕ≤kf̂(ε)≤k)
TΛ≤k

A−1Σ1/2−β′︸ ︷︷ ︸
1×k

ψ≤kŜ
∗
n(K̃

γ
>k)

−1ε︸ ︷︷ ︸
k×1

(By ϕ≤kϕ
∗
≤k = id≤k and ϕ≤k = Λ≤k

Σ1/2ψ≤k)

= (ϕ≤kf̂(ε)≤k)
TΛ≤k

Σ(1−β′)/2︸ ︷︷ ︸
1×k

Λ≤k

A−1Σ−β′/2ψ≤kŜ
∗
n(K̃

γ
>k)

−1ε︸ ︷︷ ︸
k×1

≤ ∥ϕ≤kf̂(ε)≤k∥Λ≤k

Σ1−β′
∥Λ≤k

A−1Σ−β′/2ψ≤kŜ
∗
n(K̃

γ
>k)

−1ε∥

= ∥f̂(ε)≤k∥Hβ′∥Λ≤k

A−1Σ−β′/2ψ≤kŜ
∗
n(K̃

γ
>k)

−1ε∥.

Therefore, we obtain

∥f̂(ε)≤k∥2Hβ′ µn((K̃
γ
>k)

−1) µk(ψ≤kŜ
∗
nŜnψ

∗
≤k) ≤ ∥f̂(ε)≤k∥Hβ′∥Λ≤k

A−1Σ−β′/2ψ≤kŜ
∗
n(K̃

γ
>k)

−1ε∥.

Therefore,

∥f̂(ε)≤k∥2Hβ′ ≤
εT (K̃γ

>k)
−1Ŝnψ

∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n(K̃

γ
>k)

−1ε

µn((K̃
γ
>k)

−1)2 µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

.

Then we take expectation w.r.t ε we have

Eε∥f̂(ε)≤k∥2Hβ′ ≤ σ2
ε ·

tr(

n×n︷ ︸︸ ︷
(K̃γ

>k)
−1

n×n︷ ︸︸ ︷
Ŝnψ

∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n

n×n︷ ︸︸ ︷
(K̃γ

>k)
−1)

µn((K̃
γ
>k)

−1)2 µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

≤ σ2
ε ·

µ1((K̃
γ
>k)

−1)2

µn((K̃
γ
>k)

−1)2

tr(

n×n︷ ︸︸ ︷
Ŝnψ

∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ
∗
nŜnψ

∗
≤k︸ ︷︷ ︸

k×k

)2
,

where the last inequality is by using the fact that tr(MM ′M) ≤ µ1(M)2 tr(M ′) for positive-definite
matrix M,M ′.
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Now we move on to bound the > k components ∥ϕ>kf̂(ε)>k∥2Λ>k

Σ1−β′

∥ϕ>kf̂(ε)>k∥2Λ>k

Σ1−β′

= ∥ϕ>kA>kΣ
β−1
>k Ŝ∗

n(K̃
γ)−1ε∥2

Λ>k

Σ1−β′

= εT (K̃γ)−1ŜnΣ
β−1
>k A>kϕ

∗
>kΛ

>k
Σ1−β′ϕ>kA>kΣ

β−1
>k Ŝ∗

n(K̃
γ)−1ε

= εT (K̃γ)−1Ŝnϕ
∗
>kΛ

>k
A2Σ(−β′+2β−1)ϕ>kŜ

∗
n(K̃

γ)−1ε (By 2(β − 1) + (1− β′) = −β′ + 2β − 1).

We take expectation over ε

Eε∥ϕ>kf̂(ε)>k∥2ΛA2Σβ
≤σ2

εµ1((K̃
γ)−1)2 tr(Ŝnϕ

∗
>kΛ

>k
A2Σ(−β′+2β−1)ϕ>kŜ

∗
n)

≤σ2
εµ1((K̃

γ
>k)

−1)2 tr(Ŝnϕ
∗
>kΛ

>k
A2Σ(−β′+2β−1)ϕ>kŜ

∗
n︸ ︷︷ ︸

n×n

)

=σ2
εµ1((K̃

γ
>k)

−1)2 tr(Ŝnψ
∗
>kΛ

>k
A2Σ(−β′+2β)ψ>kŜ

∗
n︸ ︷︷ ︸

n×n

),

where the second last inequality is still using the fact that tr(MM ′M) ≤ µ1(M)2 tr(M ′) for
positive-definite matrix M,M ′, and the last inequality is using K̃γ ⪰ K̃γ

>k to infer µ1((K̃
γ)−1) ≤

µ1((K̃
γ
>k)

−1).

Theorem D.2 (Bound on Variance with concentration coefficient). Following previous Theorem
D.1’s assumptions, we can express the bound of variance using concentration coefficient ρn,k

V ≤ σ2
ερ

2
k,n ·

( tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

+

effective rank︷ ︸︸ ︷
tr(Ŝnψ

∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n)

n2∥Σ̃>k∥2
)
.

Proof. By D.1 we have

V ≤σ2
ε ·
( (µ1(K̃

γ
>k)

−1)2

(µn(K̃
γ
>k)

−1)2

tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

+(µ1(K̃
γ
>k)

−1)2 tr(Ŝnψ
∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n)
)
.

Then by µ1(K̃
γ
>k)

−1 =
1

nµn(
1
nK̃

γ
>k)

, µn(K̃
γ
>k)

−1 =
1

nµ1(
1
nK̃

γ
>k)

, we have

(µ1(K̃
γ
>k)

−1)2

(µn(K̃
γ
>k)

−1)2
=
µ1(K̃

γ
>k)

2

µn(K̃
γ
>k)

2
≤ (µ1(K̃>k) + γ)2

(µn(K̃>k) + γ)2
≤ ρ2k,n.

And

(µ1(K̃
γ
>k)

−1)2

≤ 1

n2
1

µn(
1
nK̃

γ
>k)

2

=
1

n2
∥Σ̃>k∥2

µn(
1
nK̃

γ
>k)

2

1

∥Σ̃>k∥2

≤
ρ2k,n
n2

1

∥Σ̃>k∥2
.
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Therefore,

V ≤ σ2
ε ·
( (µ1(K̃

γ
>k)

−1)2

(µn(K̃
γ
>k)

−1)2

tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

+ (µ1(K̃
γ
>k)

−1)2 tr(Ŝnψ
∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n)
)

≤ σ2
ε ·
(
ρ2k,n

tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

+
ρ2k,n
n2

1

∥Σ̃>k∥2
tr(Ŝnψ

∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n)
)

≤σ2
ερ

2
k,n ·

( tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

+

effective rank︷ ︸︸ ︷
tr(Ŝnψ

∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n)

n2∥Σ̃>k∥2
)
.

Lemma D.3 (Simplified Upper bound for variance using concentration). There exists some absolute
constant c, c′, C1 > 0 s.t. for any k ∈ N with cβkk log(k) ≤ n, it holds w.p. at least 1−8 exp(−c′

β2
k

n
k ),

the variance can be upper bounded as:

V ≤ C1σ
2
ερ

2
k,n

(∑
i≤k p

−2
i λ−β′

i

n
+

∑
i>k p

2
iλ

−β′+2β
i

n∥Σ̃>k∥2
)
.

Proof. By Theorem D.2, we have

V ≤ σ2
ερ

2
k,n ·

( tr(Ŝnψ
∗
≤kΛ

≤k

A−2Σ−β′ψ≤kŜ
∗
n)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2

+

effective rank︷ ︸︸ ︷
tr(Ŝnψ

∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n)

n2∥Σ̃>k∥2
)
.

Then we can apply concentration inequalities, by Lemma B.3, it holds w.p. at least 1− 8 exp(−c′

β2
k

n
k )

that

V ≤ σ2
ερ

2
k,n ·

(c2n∑i≤k p
−2
i λ−β′

i

c21n
2

+
c2n

∑
i>k p

2
iλ

−β′+2β
i

n2∥Σ̃>k∥2
)

≤ σ2
ερ

2
k,n max{c2

c21
, c2}

(∑
i≤k p

−2
i λ−β′

i

n
+

∑
i>k p

2
iλ

−β′+2β
i

n∥Σ̃>k∥2
)
.

Then we take C1 to be max{ c2
c21
, c2} to obtain the desired bound.

E UPPER BOUND FOR THE BIAS

Lemma E.1 (Upper bound for bias). Suppose that for some k < n, the matrix K̃γ
>k is positive-definite,

then

B ≤ 3

(
µ1((K̃

γ
>k)

−1)2

µn((K̃
γ
>k)

−1)2

µ1(ψ≤kŜ
∗
nŜnψ

∗
≤k)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2µk(Λ

≤k

A2Σβ′ )
∥ŜnA>kf

∗
>k∥2

+

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

µn((K̃
γ
>k)

−1)2µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2µk(Λ

≤k

A2Σβ′ )

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′

+ ∥Λ>k
Σ1−β′∥ µ1[(K̃

γ
>k)

−1]2∥ŜnA>kf>k∥2µ1(Ŝnψ
∗
>kΛ

>k
A2Σ2β−1ψ>kŜ

∗
n︸ ︷︷ ︸

n×n

)

+∥Λ>k
Σ−β′+β∥

µ1((K̃
γ
>k)

−1)

µn((K̃
γ
>k)

−1)2

µ1(ψ≤kŜ
∗
nŜnψ

∗
≤k)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2
∥ϕ≤kf

∗
≤k∥Λ≤k

A−2Σ1−2β

)
.
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Proof. Similar as variance, by lemma A.4 we can bound ≤ k and > k separately, for brevity we
define the error vector ξ := ϕ(f̂(ŜnAf∗) − f∗) ∈ ℓ∞2 , by lemma A.3 we can bound ∥ξ≤k∥Σ1−β′

and ∥ξ>k∥Σ1−β′ separately.
We first discuss ∥ξ≤k∥Σ1−β′ , by lemma A.2, we have

ϕ≤kf̂(ŜnAf∗) + ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnAf̂(ŜnAf∗)≤k = ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1ŜnAf∗.
(7)

By definition of ξ, we have ξ≤k = ϕ≤k(f̂ − f∗) = ϕ≤kf̂≤k − ϕ≤kf
∗
≤k, so we have ϕ≤kf̂ =

ξ≤k + ϕ≤kf
∗
≤k.

LHS of (7) = ξ≤k + ϕ≤kf
∗
≤k + ϕ≤kA≤kΣ

β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
≤kΛ

≤k
A (ξ≤k + ϕ≤kf

∗
≤k)

= ξ≤k + ϕ≤kf
∗
≤k + ϕ≤kA≤kΣ

β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
≤kΛ

≤k
A ξ≤k

+ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
≤kΛ

≤k
A ϕ≤kf

∗
≤k︸ ︷︷ ︸

(*)

.

And

RHS of (7) = ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝn(ϕ
∗
≤kΛ

≤k
A ϕ≤kf

∗
≤k + ϕ∗>kΛ

>k
A ϕ>kf

∗
>k)

= ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
≤kΛ

≤k
A ϕ≤kf

∗
≤k︸ ︷︷ ︸

(*)

+ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
>kΛ

>k
A ϕ>kf

∗
>k.

The two (*) terms get cancelled out, therefore

ξ≤k + ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
≤kΛ

≤k
A ξ≤k

= ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
>kΛ

>k
A ϕ>kf

∗
>k − ϕ≤kf

∗
≤k.

We multiply ξT≤kΛ
≤k

A−1Σ1−β−β′/2 in both sides and since ∥ξ≤k∥2
Λ

≤k

A−1Σ1−β−β′/2
≥ 0,

ξT≤kΛ
≤k

A−1Σ1−β−β′/2ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
≤kΛ

≤k
A ξ≤k

≤ ξT≤kΛ
≤k

A−1Σ1−β−β′/2ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
>kΛ

>k
A ϕ>kf

∗
>k − ξT≤kΛ

≤k

A−1Σ1−β−β′/2ϕ≤kf
∗
≤k.

LHS is the quadratic term w.r.t. ξ≤k and RHS is the linear term w.r.t. ξ≤k, similar to Variance case,
we lower bound LHS and upper bound RHS respectively.

LHS =

1×k︷︸︸︷
ξT≤k

k×k︷ ︸︸ ︷
Λ≤k

Σ−β′/2

k×n︷ ︸︸ ︷
ϕ≤kŜ

∗
n

n×n︷ ︸︸ ︷
(K̃γ

>k)
−1

n×k︷ ︸︸ ︷
Ŝnϕ

∗
≤k

k×k︷︸︸︷
Λ≤k
A

k×1︷︸︸︷
ξ≤k

= ξT≤kΛ
≤k

Σ(1−β′)/2ψ≤kŜ
∗
n(K̃

γ
>k)

−1Ŝnψ
∗
≤kΛ

≤k
AΣ1/2ξ≤k.

Since (1− β′) + β′/2 = (1− β′)/2 + 1/2, it can be lower bounded by

µn((K̃
γ
>k)

−1) (ξT≤kΛ
≤k

Σ1−β′ ξ≤k)µk

(
ψ≤kŜ

∗
nŜnψ

∗
≤k

)
µk

(
Λ≤k

AΣβ′/2

)
= ∥ξ≤k∥2Λ≤k

Σ1−β′
µn((K̃

γ
>k)

−1)µk

(
ψ≤kŜ

∗
nŜnψ

∗
≤k

)
µk

(
Λ≤k

AΣβ′/2

)
.

Next we upper bound RHS, first we bound the first term in RHS

First term in RHS = ξT≤kΛ
≤k

A−1Σ1−β−β′/2ϕ≤kA≤kΣ
β−1
≤k Ŝ∗

n(K̃
γ
>k)

−1Ŝnϕ
∗
>kΛ

>k
A ϕ>kf

∗
>k

= ξT≤kΛ
≤k

Σ−β′/2ϕ≤kŜ
∗
n(K̃

γ
>k)

−1Ŝnϕ
∗
>kΛ

>k
A ϕ>kf

∗
>k.
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Since (1− β′)/2− 1/2 = −β′/2, it equals to

ξT≤kΛ
≤k

Σ(1−β′)/2Λ
≤k
Σ−1/2ϕ≤kŜ

∗
n(K̃

γ
>k)

−1ŜnA>kf
∗
>k

= ξT≤kΛ
≤k

Σ(1−β′)/2ψ≤kŜ
∗
n(K̃

γ
>k)

−1ŜnA>kf
∗
>k

≤ ∥ξ≤k∥Λ≤k

Σ(1−β′)
µ1((K̃

γ
>k)

−1)
√
µ1(ψ≤kŜ

∗
nŜnψ

∗
≤k︸ ︷︷ ︸

k×k

)∥ŜnA>kf
∗
>k∥.

Then we bound the second term in RHS.
Second term in RHS = ξT≤kΛ

≤k

A−1Σ1−β−β′/2ϕ≤kf
∗
≤k = ξT≤kΛ

≤k

Σ(1−β′)/2Λ
≤k
A−1Σ1/2−βϕ≤kf

∗
≤k

≤ ∥ξ≤k∥Λ≤k

Σ1−β′
∥ϕ≤kf

∗
≤k∥Λ≤k

A−2Σ1−2β
.

Therefore, gather the terms we have

∥ξ≤k∥2Λ≤k

Σ1−β′
µn((K̃

γ
>k)

−1)µk

(
Λ≤k

A1/2Σβ′/4ψ≤kŜ
∗
n(K̃

γ
>k)

−1Ŝnψ
∗
≤kΛ

≤k

A1/2Σβ′/4

)
≤ ∥ξ≤k∥Λ≤k

Σ(1−β′)
µ1((K̃

γ
>k)

−1)
√
µ1(ψ≤kŜ

∗
nŜnψ

∗
≤k︸ ︷︷ ︸

k×k

)∥ŜnA>kf
∗
>k∥

+ ∥ξ≤k∥Λ≤k

Σ1−β′
∥ϕ≤kf

∗
≤k∥Λ≤k

A−2Σ1−2β
.

So

∥ξ≤k∥Λ≤k

Σ1−β′
≤
µ1((K̃

γ
>k)

−1)

µn((K̃
γ
>k)

−1)

√
µ1(ψ≤kŜ∗

nŜnψ∗
≤k)

µk

(
ψ≤kŜ∗

nŜnψ∗
≤k

)
µk

(
Λ≤k

AΣβ′/2

)∥ŜnA>kf
∗
>k∥

+
∥ϕ≤kf

∗
≤k∥Λ≤k

A−2Σ1−2β

µn((K̃
γ
>k)

−1)µk

(
ψ≤kŜ∗

nŜnψ∗
≤k

)
µk

(
Λ≤k

AΣβ′/2

) .
By ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2), we can bound ∥ξ≤k∥2Σ1−β′ by

2

(
µ1((K̃

γ
>k)

−1)2

µn((K̃
γ
>k)

−1)2

µ1(

k×k︷ ︸︸ ︷
ψ≤kŜ

∗
nŜnψ

∗
≤k)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2µk(Λ

≤k

A2Σβ′ )
∥ŜnA>kf

∗
>k∥2

+

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2µk(Λ

≤k

A2Σβ′ )

)
.

Now we discuss the > k case, which is more complicated, we bound it by three quantities by the fact
that (A+B + C)2 ≤ 3(A2 +B2 + C2) and bound them respectively as follows

∥ϕ>kf
∗
>k − ϕ>kA>kΣ

β−1
>k Ŝ∗

n(K̃
γ)−1ŜnAf∗∥2Λ>k

Σ1−β′

≤3(∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′
+ ∥ϕ>kA>kΣ

β−1
>k Ŝ∗

n(K̃
γ)−1ŜnA>kf

∗
>k∥2Λ>k

Σ1−β′
+ ∥ϕ>kA>kΣ

β−1
>k Ŝ∗

n(K̃
γ)−1ŜnA≤kf

∗
≤k∥2Λ>k

Σ1−β′
).

We first bound the second term
∥ϕ>kA>kΣ

β−1
>k Ŝ∗

n(K̃
γ)−1ŜnA>kf

∗
>k∥2Λ>k

Σ1−β′

≤ ∥Λ>k
Σ1−β′∥ ∥ϕ>kA>kΣ

β−1
>k Ŝ∗

n(K̃
γ)−1ŜnA>kf

∗
>k∥2

= ∥Λ>k
Σ1−β′∥ ∥Λ>k

AΣβ−1ϕ>kŜ
∗
n(K̃

γ)−1Ŝnϕ
∗
>kΛ

>k
A ϕ>kf

∗
>k∥2

≤ ∥Λ>k
Σ1−β′∥ µ1[(K̃

γ)−1]2∥ŜnA>kf
∗
>k∥2µ1(Ŝnϕ

∗
>kΛ

>k
A2Σ2(β−1)ϕ>kŜ

∗
n︸ ︷︷ ︸

n×n

)

≤ ∥Λ>k
Σ1−β′∥ µ1[(K̃

γ
>k)

−1]2∥ŜnA>kf
∗
>k∥2µ1(Ŝnϕ

∗
>kΛ

>k
A2Σ2(β−1)ϕ>kŜ

∗
n︸ ︷︷ ︸

n×n

).
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The last inequality is by µ1((K̃
γ
>k)

−1) ≥ µ1((K̃
γ)−1).

Then we move on to bound the third term, that is, we want to bound

∥ϕ>kA>kΣ
β−1
>k Ŝ∗

n(K̃
γ)−1ŜnA≤kf

∗
≤k∥2Λ>k

Σ1−β′

= ∥Λ>k
AΣβ−1ϕ>kŜ

∗
n(K̃

γ)−1Ŝnϕ
∗
≤kΛ

≤k
A ϕ≤kf

∗
≤k∥2Λ>k

Σ1−β′
.

First we deal with (K̃γ)−1(Ŝnϕ
∗
≤k) first, we can write it as

(K̃γ)−1(Ŝnϕ
∗
≤k) = (K̃γ

>k + (Ŝnϕ
∗
≤k)Λ

≤k
A2Σβ−1(ϕ≤kŜ

∗
n))

−1(Ŝnϕ
∗
≤k),

then apply A.6 with A = K̃γ
>k, U = Ŝnϕ

∗
≤k, C = Λ≤k

A2Σβ−1 , V = ϕ≤kŜ
∗
n, we have it equal to

(K̃γ
>k)

−1(Ŝnϕ
∗
≤k)(Ik + Λ≤k

A2Σβ−1(ϕ≤kŜ
∗
n)(K̃

γ
>k)

−1(Ŝnϕ
∗
≤k))

−1.

Then we sub. the identity above to obtain

∥Λ>k
AΣβ−1ϕ>kŜ

∗
n(K̃

γ)−1Ŝnϕ
∗
≤kΛ

≤k
A ϕ≤kf≤k∥2Λ>k

Σ1−β′

= ∥Λ>k
Σ(1−β′)/2Λ

>k
AΣβ−1ϕ>kŜn(K̃

γ
>k)

−1Ŝnϕ
∗
≤k(Ik + Λ≤k

A2Σβ−1ϕ≤kŜ
∗
n(K̃

γ
>k)

−1Ŝnϕ
∗
≤k)

−1Λ≤k
A ϕ≤kf

∗
≤k∥2

= ∥Λ>k
AΣ(−β′+2β−1)/2ϕ>kŜ

∗
n(K̃

γ
>k)

−1Ŝnϕ
∗
≤k(Λ

≤k
A2Σβ−1/2(Λ

≤k
A−2Σ−β + ψ≤kŜ

∗
n(K̃

γ
>k)

−1Ŝnψ
∗
≤k)Λ

≤k
Σ1/2)

−1Λ≤k
A ϕ≤kf

∗
≤k∥2

= ∥Λ>k
AΣ(−β′+2β−1)/2ϕ>kŜ

∗
n(K̃

γ
>k)

−1Ŝnϕ
∗
≤kΛ

≤k
Σ−1/2(Λ

≤k
A−2Σ−β + ψ≤kŜ

∗
n(K̃

γ
>k)

−1Ŝnψ
∗
≤k)

−1Λ≤k
A−2Σ1/2−βΛ

≤k
A ϕ≤kf

∗
≤k∥2

= ∥Λ>k
AΣ(−β′+2β)/2ψ>kŜ

∗
n(K̃

γ
>k)

−1/2︸ ︷︷ ︸
(1)

(K̃γ
>k)

−1/2︸ ︷︷ ︸
(2)

Ŝnψ
∗
≤k︸ ︷︷ ︸

(3)

(Λ≤k
A−2Σ−β + ψ≤kŜ

∗
n(K̃

γ
>k)

−1Ŝnψ
∗
≤k)

−1︸ ︷︷ ︸
(4)

Λ≤k
A−1Σ1/2−βϕ≤kf

∗
≤k︸ ︷︷ ︸

(5)

∥2.

Above can be bounded by

∥(K̃γ
>k)

−1/2Ŝnψ
∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n(K̃

γ
>k)

−1/2∥︸ ︷︷ ︸
(1)

µ1((K̃
γ
>k)

−1)︸ ︷︷ ︸
(2)

µ1(ψ≤kŜ
∗
nŜnψ

∗
≤k)︸ ︷︷ ︸

(3)

µ1((ψ≤kŜ
∗
n(K̃

γ
>k)

−1Ŝnψ
∗
≤k)

−1)2︸ ︷︷ ︸
(4)

∥ϕ≤kf
∗
≤k∥Λ≤k

A−2Σ1−2β︸ ︷︷ ︸
(5)

.

For (1) it can be upper bounded by

∥(K̃γ
>k)

−1/2Ŝnψ
∗
>kΛ

>k
A2Σ−β′+2βψ>kŜ

∗
n(K̃

γ
>k)

−1/2∥

≤∥Λ>k
Σ−β′+β∥∥In − nγn(K̃

γ
>k)

−1∥

≤∥Λ>k
Σ−β′+β∥,

where the last transition is by the fact that In − nγn(K̃
γ
>k)

−1 is PSD matrix with norm bounded by 1
for γn ≥ 0.

For (4), it can be upper bounded by

µ1((ψ≤kŜ
∗
n(K̃

γ
>k)

−1Ŝnψ
∗
≤k)

−1)2

=
1

µk((ψ≤kŜ∗
n(K̃

γ
>k)

−1Ŝnψ∗
≤k))

2

≤ 1

µk((ψ≤kŜ∗
nŜnψ∗

≤k))
2µn((K̃

γ
>k)

−1)2
.

Therefore, the third term overall can be bounded by

∥Λ>k
Σ−β′+β∥

µ1((K̃
γ
>k)

−1)

µn((K̃
γ
>k)

−1)2

µ1(ψ≤kŜ
∗
nŜnψ

∗
≤k)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2
∥ϕ≤kf

∗
≤k∥Λ≤k

A−2Σ1−2β
.

We gather all the terms then we get the desired bound.
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Lemma E.2 (Simplified Upper bound for bias using concentration). There exists some absolute
constant c, c′, C2 > 0 s.t. for any k ∈ N with cβkk log(k) ≤ n, it holds w.p. at least 1 − δ −
8 exp(− c′

β2
k

n
k ), the bias can be upper bounded as:

B ≤ C2

(µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

2

1

p2kλ
β′

k

(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)

+

µ1(
1
nK̃

γ
>k)

2∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

p2kλ
β′

k

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′

+ ∥Λ>k
Σ1−β′∥

1

µn(
1
nK̃

γ
>k)

2
(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)(p2k+1λ

2β−1
k+1 )

+ ∥Λ>k
Σ−β′+β∥

µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

)
.

Proof. Recall that from E.1 we have

B ≤ 3

(
µ1((K̃

γ
>k)

−1)2

µn((K̃
γ
>k)

−1)2

µ1(ψ≤kŜ
∗
nŜnψ

∗
≤k)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2µk(Λ

≤k

A2Σβ′ )
∥ŜnA>kf

∗
>k∥2

+

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

µn((K̃
γ
>k)

−1)2µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2µk(Λ

≤k

A2Σβ′ )

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′

+ ∥Λ>k
Σ1−β′∥ µ1[(K̃

γ
>k)

−1]2∥ŜnA>kf>k∥2µ1(Ŝnψ
∗
>kΛ

>k
A2Σ2β−1ψ>kŜ

∗
n︸ ︷︷ ︸

n×n

)

+∥Λ>k
Σ−β′+β∥

µ1((K̃
γ
>k)

−1)

µn((K̃
γ
>k)

−1)2

µ1(ψ≤kŜ
∗
nŜnψ

∗
≤k)

µk(ψ≤kŜ∗
nŜnψ∗

≤k)
2
∥ϕ≤kf

∗
≤k∥Λ≤k

A−2Σ1−2β

)
.

We first apply µ1((K̃
γ
>k)

−1) = 1
nµn(

1
n K̃γ

>k)
and µn((K̃

γ
>k)

−1) = 1
nµ1(

1
n K̃γ

>k)
, also apply con-

centration inequalities using Lemma B.3, Lemma B.4 and Lemma C.2 , then w.p. at least
1− δ − 8 exp(− c

β2
k

n
k ), we can obtain bound like this

(µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

2

c1n

c22n
2p2kλ

β′

k

(
1

δ
n∥ϕ>kA>kf>k∥2Λ>k

Σ
)

+

µ1(
1
nK̃

γ
>k)

2∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

c21p
2
kλ

β′

k

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′

+ ∥Λ>k
Σ1−β′∥

1

n2µn(
1
nK̃

γ
>k)

2
(
1

δ
n∥ϕ>kA>kf>k∥2Λ>k

Σ
)(np2k+1λ

2β−1
k+1 )

+ ∥Λ>k
−β′+β∥

n2µ1(
1
nK̃

γ
>k)

2

nµn(
1
nK̃

γ
>k)

c2n

c21n
2
∥ϕ≤kf

∗
≤k∥2Λ≤k

A−2Σ1−2β

)
.
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This can be upper bounded by

C2

(µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

2

1

p2kλ
β′

k

(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)

+

µ1(
1
nK̃

γ
>k)

2∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

p2kλ
β′

k

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′

+ ∥Λ>k
Σ1−β′∥

1

µn(
1
nK̃

γ
>k)

2
(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)(p2k+1λ

2β−1
k+1 )

+ ∥Λ>k
−β′+β∥

µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

)
where C2 > 0 is some constant only depends on c1, c2.

Theorem E.3 (Bound on bias). There exists some absolute constant C2, c, c
′ > 0 s.t. for any k ∈ N

with cβkk log(k) ≤ n, it holds w.p. at least 1− δ − 8 exp(− c′

β2
k

n
k ), the bias can be further bounded

as

B ≤C2

ρ3k,n
δ

(∥ϕ>kA>kf>k∥2Λ>k
Σ

1

p2kλ
β′

k

+ ∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

(γn +
βk tr(Σ̃>k)

n
)2

1

p2kλ
β′

k

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′
).

Proof. We refer result from previous lemma E.2.

B ≤ C2

(µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

2

1

p2kλ
β′

k

(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)

+

µ1(
1
nK̃

γ
>k)

2∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

p2kλ
β′

k

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′

+ ∥Λ>k
Σ1−β′∥

1

µn(
1
nK̃

γ
>k)

2
(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)(p2k+1λ

2β−1
k+1 )

+ ∥Λ>k
Σ−β′+β∥

µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

)
.

Note that by definition of ρk,n (refer to Definition 3.2), we have a following estimations:

µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

2
=

(µ1(
1
nK̃>k) + γn)

2

(µn(
1
nK̃>k) + γn)2

≤ ρ2k,n,

µ1(
1

n
K̃γ

>k)
2 =

µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

2
µn(

1

n
K̃γ

>k)
2

≤ρ2k,n(
1

n
tr(

1

n
K̃γ

>k))
2 ≤ ρ2k,n(γn +

1

n

n∑
j=1

∑
i>k

λβi p
2
iψi(xj)

2)2

≤ρ2k,n(γn +
βk tr(Σ̃>k)

n
)2,

∥Λ>k
A2Σβ∥

µn(
1
nK̃>k)

≤ ρk,n
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and

∥Λ>k
Σ−β′+β∥

µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

=
∥Λ>k

A2Σβ∥
µn(

1
nK̃>k)

∥Λ>k
A−2Σ−β′∥µ1(

1

n
K̃γ

>k)
2

≤ρ3k,n(γn +
βk tr(Σ̃>k)

n
)2∥Λ>k

A−2Σ−β′∥.

We bound first and forth term first

µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

2

1

p2kλ
β′

k

(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
) + ∥Λ>k

Σ1−β′∥
1

µn(
1
nK̃

γ
>k)

2
(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)(p2k+1λ

2β−1
k+1 )

≤(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)(ρ2k,n

1

p2kλ
β′

k

+
∥Λ>k

A4Σ2β∥
µn(

1
nK̃

γ
>k)

2
p2k+1λ

2β−1
k+1 ∥Λ>k

A−4Σ1−β′−2β∥)

≤ρ2k,n(
1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)(

1

p2kλ
β′

k

+ p2k+1λ
2β−1
k+1 ∥Λ>k

A−4Σ1−β′−2β∥).

Since two terms here have the same order, we can just bound it by

c1ρ
2
k,n(

1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)

1

p2kλ
β′

k

where c1 is some constant.
Next we bound the second and fifth term

µ1(
1
nK̃

γ
>k)

2∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

p2kλ
β′

k

+ ∥Λ>k
Σ−β′+β∥

µ1(
1
nK̃

γ
>k)

2

µn(
1
nK̃

γ
>k)

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

≤∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

(
1

p2kλ
β′

k

ρ2k,n(γn +
βk tr(Σ̃>k)

n
)2 + ρ3k,n(γn +

βk tr(Σ̃>k)

n
)2∥Λ>k

A−2Σ−β′∥).

We know 1

p2
kλ

β′
k

and ∥Λ>k
A−2Σ−β′∥ are of the same order, and ρk,n ≥ 1 by its definition, therefore, the

second term would be dominated by the fifth term. So we can bound it by

c2ρ
3
k,n∥ϕ≤kf

∗
≤k∥2Λ≤k

A−2Σ1−2β

(γn +
βk tr(Σ̃>k)

n
)2

1

p2kλ
β′

k

.

Therefore, the final bound becomes

C2(c1ρ
2
k,n(

1

δ
∥ϕ>kA>kf>k∥2Λ>k

Σ
)

1

p2kλ
β′

k

+ c2ρ
3
k,n∥ϕ≤kf

∗
≤k∥2Λ≤k

A−2Σ1−2β

(γn +
βk tr(Σ̃>k)

n
)2

1

p2kλ
β′

k

+∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′
)

≤C ′
2

ρ3k,n
δ

(∥ϕ>kA>kf>k∥2Λ>k
Σ

1

p2kλ
β′

k

+ ∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

(γn +
βk tr(Σ̃>k)

n
)2

1

p2kλ
β′

k

+∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′
),

C ′
2 is w.r.t. C2, c1, c2, and we finally just take C2 = C ′

2 to finish the proof.

F APPLICATIONS

F.1 REGULARIZED CASE

Theorem F.1 (Regularized case, Proof of Theorem 4.1). Let the kernel and target function satisfies
Assumption 2.2, γn = Θ(n−γ), and γ < 2p+ βλ, 2p+ λr > 0 and r > β′ then for any δ > 0, it
holds w.p. 1− δ −O( 1

log(n) ) that

V = σ2
εO(nmax{ γ(1+2p+λβ′)

2p+λβ ,0}−1), B ≤ 1

δ
· Õn(n

γ
2p+βλ (max{λ(β′−r),−2p+λ(β′−2β)})).
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Proof. We use the two lemmas D.3, E.3 for upper bounding bias and variance in this proof, there
exists some absolute constants c, c′ > 0, first we need to pick k s.t. cβkk log(k) ≤ n, then the
two lemmas will simultaneously hold w.p. at least 1 − δ − 16 exp(− c′

β2
k

n
k ). With regularization,

we can pick k large enough s.t. the concentration coefficient ρk,n = o(1), to achieve so, we want
µ1(

1
nK̃>k) = O(γn). By Lemma F.6, we can show w.p. at least 1− 4 rk

k4 exp(− c′

βk

n
rk
)

µ1(
1

n
K̃>k) = On(p

2
k+1λ

β
k+1) = On(k

−2p−βλ) = On(γn) = On(n
−γ). (8)

This can be achieved by setting k(n) = ⌈n
γ

2p+βλ ⌉, note that we have γ
2p+βλ < 1, therefore,

k(n) = O( n
log(n) ) and the lemmas can be used for sufficient large n.

We combine the probability of both D.3, E.3 and 8 hold:

1− δ − 16 exp
(
− c′

β2
k

n

k

)
−O(

1

k3
) exp(−Ω(

n

k
)) = 1− δ −O(

1

n
)

where we use the fact that c′

β2
k

n
k = Ω(log(n)) since k(n) = O( n

log(n) ).
Then now we can assume D.3, E.3 and 8 hold, and we provide the bound on variance and bias

respectively.
By Theorem D.3 and we sub. pi = Θ(i−p), λi = Θ(i−λ), ∥Σ>k∥ = p2k+1λ

β
k+1 = Θ((k +

1)−βλ−2p) = Θ(k−βλ−2p),

V ≤C1σ
2
ερ

2
k,n

(∑
i≤k p

−2
i λ−β′

i

n
+

∑
i>k p

2
iλ

−β′+2β
i

n∥Σ̃>k∥2
)

=σ2
εO(1)O(

max{k1+2p+λβ′
, 1}

n
,
k1−2p+λ(β′−2β)

nk−2βλ−4p
) = σ2

εÕ(
max{k1+2p+λβ′

, 1}
n

).

We substitute k with ⌈n
γ

2p+βλ ⌉ to obtain the final bound

V = σ2
εO(nmax{ γ(1+2p+λβ′)

2p+λβ ,0}−1).

For bias, recall that by Theorem E.3, we have

B ≤C2

ρ3k,n
δ

(∥ϕ>kA>kf>k∥2Λ>k
Σ

1

p2kλ
β′

k

+ ∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

(γn +
βk tr(Σ̃>k)

n
)2

1

p2kλ
β′

k

+ ∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′
).

By tr(Σ̃>k) =
∑

i>k p
2
iλ

β
i = O(kλβkp

2
k) = O(kγn), then

(γn +
βk tr(Σ̃>k)

n
)2 = O((γn +

n

k
γn)

2) = O(γ2n) = O(k−4p−2λβ)

Recall that
∥ϕ≤kf

∗
≤k∥2Λ≤k

A−2Σ1−2β

p2kλ
β′

k

= Õ(kmax{1+4p−λ(1−β′−2β)−2r′,2p+λβ′}).

Therefore, the second term’s bound is

O(kmax{1−2r−λ(1−β′),−2p+λ(β′−2β)}).

Since 2p+ λr > 0 and r > β′, we have 2p+ 2r′ + λ > 1, and 2r′ + (1− β′)λ > 1, We can quote
Lemma F.5 for the remaining terms, so the third term’s bound is

O(k1−2r′−(1−β′)λ).
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First term’s bound is the same as the second

O(kmax{1−2r′−λ(1−β′),−2p+λ(β′−2β)}).

So we sub. k = ⌈n
γ

2p+βλ ⌉ to obtain

B ≤ 1

δ
· Õn(n

γ
2p+βλ (max{1−2r′−λ(1−β′),−2p+λ(β′−2β)})).

And we substitute r′ = 1−λ(1−r)
2 to obtain the final bound

B = O(n
γ

2p+βλ (max{λ(β′−r),−2p+λ(β′−2β)})).

F.2 INTERPOLATION CASE

Theorem F.2 (Interpolation case, proof of Theorem 4.2). Let the kernel and target function satisfies
Assumption 2.2, 2p + βλ > 0, 2p + λr > 0 and r > β′, then for any δ > 0 it holds w.p. at least
1− δ −O( 1

log(n) ) that

V ≤ σ2
ερ

2
k,nÕ(nmax{2p+λβ′,−1}), B ≤

ρ3k,n
δ
Õ(nmax{λ(β′−r),−2p+λ(β′−2β)}}),

where ρk,n = Õ(n2p+βλ−1), when features are well-behaved i.e. subGaussian it can be improved to
ρk,n = o(1).

Proof. Same as regularized case, we use the two theorems D.3, E.3 for upper bounding bias and
variance in this proof, there exists some absolute constants c, c′ > 0, first we need to pick k s.t.
cβkk log(k) ≤ n, then the two lemmas will simultaneously hold w.p. at least 1− δ− 16 exp(− c′

β2
k

n
k ).

Since βk = o(1) we know it can be upper bounded by C0 for some C0 > 0. Similar to Barzilai &
Shamir (2023), we let k := k(n) := n

max{cC0,1} logn and we also let k′ := k′(n) = n2 log4(n). So
the probability of those theorems hold become 1− δ −O( 1n ).

In this case, ρk,n cannot be regularized to o(1) if the features are not well-behaved, we compute
its bound first, which requires bounding µ1(

1
nK̃>k) and µn(

1
nK̃>k) respectively.

We apply Lemma C.6 by setting δ = log n, then w.p. 1− 1
log(n) we have

µn(
1

n
K̃>k) ≥αk(1−

1

log n

√
n2

tr(Σ̃>k′)2/ tr(Σ̃2
>k′)

)
tr(Σ̃>k′)

n

= Ω((1− log n

√
1

log4 n
)
tr(Σ̃>k′)

n
)

= Ω(
(k′)1−2p−βλ

n
)

= Ω(
(n2 log4 n)1−2p−βλ

n
)

= Ω̃(n1−4p−2βλ).

Note that the first equality is because we have tr(Σ̃>k′)2/ tr(Σ̃2
>k′) =

(
∑

i>k′ p
2
iλ

β
i )

2∑
i>k′ p4

iλ
2β
i

= k′2−2p−λβ

k′1−2p−λβ =

k′ = n2 log4(n), Ω̃ means we neglect logarithmic terms.
For µ1(

1
nK̃>k) term by Lemma F.6, we have w.p. 1−O( 1

k3 ) exp(−Ω(nk ))

µ1(
1

n
K̃>k) = O(p2k+1λ

β
k+1) = O(k−2p−βλ) = Õ(n−2p−βλ). (9)

Using the bound of µ1(
1
nK̃>k) and µn(

1
nK̃>k),we have ρk,n = Õ(n2p+βλ−1).

At the same time, we have Eq. 9, Lemma C.6, Theorem D.3, E.3 all hold simultaneously hold
with probability 1− δ −O( 1

log(n) ).
Recall from Lemma D.3 that
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V ≤ C1σ
2
ερ

2
k,n

(∑
i≤k p

−2
i λ−β′

i

n
+

∑
i>k p

2
iλ

−β′+2β
i

n∥Σ̃>k∥2
)

= σ2
ερ

2
k,nO(

max{k1+2p+λβ′
, 1}

n
+
k1−2p+λ(β′−2β)

nk−2βλ−4p
)

= σ2
ερ

2
k,nÕ(

max{k1+2p+λβ′
, 1}

n
).

So we sub. k = Θ̃(n) and the final bound of variance is

V ≤ σ2
ερ

2
k,nÕ(nmax{2p+λβ′,−1}).

For bias, similar to the regularized case, the bound is
1

δ
ρ3k,nO(kmax{1−2r′−λ(1−β′),−2p+λ(β′−2β)}).

The main difference is the choice of k, since k = Θ̃(n), the final bound is

1

δ
ρ3k,nO(nmax{1−2r′−λ(1−β′),−2p+λ(β′−2β)}).

Note that if the features are well-behaved, then ρk,n can be improved to o(1).

F.3 LEMMAS FOR SUBSTITUTING POLYNOMIAL DECAY

Lemma F.3. Let a ∈ R, 1 < k ∈ N, then

∑
i≤k

i−a ≤


1 + 1

1−ak
1−a a < 1

1 + log(k) a = 1

1 + 1
a−1 a > 1.

Therefore,
∑

i≤k i
−a = Õ(max{k−a+1, 1})

Proof. We know that, for a < 1∑
i≤k

i−a ≤ 1 +

∫ k

1

x−a dx = 1 +
1

1− a
(k1−a − 1) ≤ 1 +

1

1− a
k1−a.

For a = 1 ∑
i≤k

i−a ≤ 1 +

∫ k

1

x−a dx = 1 + log(k).

For a > 1 ∑
i≤k

i−a ≤ 1 +

∫ ∞

1

x−a dx = 1 +
1

a− 1
.

Lemma F.4. Let a ∈ R, 1 < k ∈ N, then∑
i>k

i−a ∈

{
∞ a ≤ 1

[ 1
a−1 (k + 1)−a+1, (k + 1)−a + 1

a−1 (k + 1)−a+1] a > 1.

Therefore,
∑

i>k i
−a is O(k−a+1) if a > 1, otherwise it diverges to infinity

Proof. We know that, ∫ ∞

k+1

x−a dx ≤
∑
i>k

i−a ≤ (k + 1)−a +

∫ ∞

k+1

x−a dx.

If a < 1 then
∫∞
k+1

x−a = ∞ which implies the series diverge, otherwise,
∫∞
k+1

x−a = 1
a+1 (k +

1)−a+1
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Lemma F.5. Assume [ϕf∗]i = Θ(i−r′), Σ’s polynomial decaying eigenvalues satisfy λi = Θ(i−λ)
(λ > 0), and A’s eigenvalue is Θ(i−p) (p < 0), then

∥ϕ>kA>kf
∗
>k∥2Λ>k

Σ
= Θ

(
1

k2p+2r′+λ−1

)
if 2p+ 2r′ + λ > 1;

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

= Õ(max{k1+2p−λ(1−2β)−2r′ , 1});

∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′
= Θ

(
1

k2r′+(1−β′)λ−1

)
if 2r′ + (1− β′)λ > 1,

where r′ = 1−λ(1−r)
2 .

Proof. We know from F.4 that,

∥ϕ>kA>kf
∗
>k∥2Λ>k

Σ
=
∑
i>k

[ϕf∗]2i ·p2iλi =
∑
i>k

Θ

(
1

i2p+2r′+λ

)
= Θ

(
1

k2p+2r′+λ−1

)
if 2p+2r′+λ > 1.

Similarly, using F.3

∥ϕ≤kf
∗
≤k∥2Λ≤k

A−2Σ1−2β

=
∑
i≤k

[ϕf∗]2i ·p2iλ
1−2β
i =

∑
i≤k

Θ

(
1

i2r′−2p+λ(2β−1)

)
= Õ(max{k1+2p−λ(1−2β)−2r′ , 1}).

Using F.4 again, we’ll have

∥ϕ>kf
∗
>k∥2Λ>k

Σ1−β′
=
∑
i>k

[ϕf∗]2i ·λ
β′−1
i =

∑
i>k

Θ

(
1

i2r′+(1−β′)λ

)
= Θ

(
1

k2r′+(1−β′)λ−1

)
if 2r′+(1−β′)λ > 1.

Lemma F.6. Assume Σ’s polynomial decaying eigenvalues satisfy λi = Θ(i−λ) (λ > 0), and A’s
eigenvalue is Θ(i−p). And we suppose βkk log(k)

n = o(1), βk = o(1).
Then it holds w.p. at least 1−O( 1

k3 ) exp(−Ω(nk )) that

µ1(
1

n
K̃>k) = O(λβk+1p

2
k+1) = O(k−2p−βλ).

Proof. We use C.6 then there exists absolute constant c, c′ > 0 s.t. it holds w.p. at least 1 −
4 rk
k4 exp(− c′

βk

n
rk
) that

µ1(
1

n
K̃>k) ≤c(λβk+1p

2
k+1 + βk log(k + 1)

tr(Σ̃>k)

n
)

= O(λβk+1p
2
k+1(1 + βk log(k + 1)

k

n
))

=O(λβk+1p
2
k+1),

where Σ̃ := A2Σβ , rk := tr(Σ̃>k)

p2
k+1λ

β
k+1

.

The last inequality is because k log(k+1)
n = o(1).

Now we bound the probability of this holds, we can derive rk = k1−2p−λβ

(k+1)−2p−λβ = Θ(k), 1 −
4 rk
k4 exp(

−c′

βk

n
rk
) = 1−O( 1

k3 ) exp(−Ω(nk )).

G IMPLEMENTATION DETAILS OF EXPERIMENTS

we consider the Poisson equation u = ∆f on Ω = [0, 2]2 with Dirichlet boundary condition on
∂Ω, where the ground truth f(x1, x2) = sin(πx1) sin(πx2), where the data points {(xi, yi)}ni=1
are sampled uniformly from Ω, and yi = ∆f(xi) + ε with ε ∼ N (0, σ2). The training loss
function is minθ L̂(θ) :=

1
n

∑n
i=1 (∆f̂(xi; θ)− yi)

2. To satisfy the boundary condition, we enforce
f̂(x) = x1(x1−2)x2(x2−2)fNN(x), where fNN is the neural network (Liang et al., 2021). For clean
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Figure 2: We again verified our findings using PDE with solution of low regularity at the origin.
The noise profile of Physics-informed interpolator exhibits benign overfitting, unlike the regression
interpolator.
test loss, we use 1

n

∑n
i=1(f̂(xi, θ)− f(xi))

2 to match the definition of excess risk, where {(xi, yi)}
is re-sampled from Ω.

In all experiments, we use Adam optimizer with learning rate 5e-3 for regression problem, and
1e-4 for PINN problem where both are optimally tuned. Weight decay is set as 1e-4, and learning
rate schedule is StepLR with step size 3000 and gamma 0.8. In both experiments we train for 100000
iterations to allow convergence. All models considered are sufficiently over-parametrized.

For the experiment verifying the effect of smoothness of the inductive bias, we uses the one-layer
wide neural network with width 10000 (we choose one-layer here to avoid explosion of output due to
ReLU4), and vary different activation functions ReLU,ReLU2,ReLU3 and ReLU4. Noise level σ2

is set as 0.1. We vary sample size 50, 100, 500, 1000 and plot the convergence rate using different
activation functions.

For the experiment verifying benign over-fitting of Physics-Informed interpolator, we train
sufficient iterations to ensure interpolation into the noise. The used learning model here is a two-layer
wide neural network with hidden size 1024, with sample size 500, using ReLU as activation function.
We vary noise variance 1e-1, 3e-1, 5e-1, 1e+0, 3e+0, 5e+0, and plot the clean test loss against noise
variance.

For the figure of visualizing landscape, we use a two-layer wide neural network with hidden
size 1024, with sample size 500, using ReLU as activation function and with noise variance 5 and
train it until it interpolates into the noise. We using the 100x100 grid on [0, 2]2 to display landscape
of ground truth f and model output f̂ , also we display ∆f and ∆f̂ , where red dots are the training
set points.

Verifying the Benign Overfitting Beyond Co-diagonalization Assumption We provide additional
experiments on the PDE

−∇ · (|x|∇u) = f for x ∈ Ω and u = 0 for x ∈ ∂Ω

where the commutative assumption no longer holds. Our result demonstrates that it still verifies our
two findings. Here we consider solving a solution u(x) = sin(2π(1 − |x|)) defined on Ω = {x :
|x| < 1}. û(x; θ) = (1− |x|) uNN(x; θ) to automatically satisfy the boundary condition, where uNN
is the neural network. We maintain the same configurations as previous experiments.
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