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Abstract

Diffusion probabilistic models (DPMs) have re-
cently demonstrated impressive generative capa-
bilities. There is emerging evidence that their
sample reconstruction ability can yield meaning-
ful representations for recognition tasks. In this
paper, we demonstrate that the objectives under-
lying generation and representation learning are
not perfectly aligned. Through a spectral anal-
ysis, we find that minimizing the mean squared
error (MSE) between the original graph and its
reconstructed counterpart does not necessarily op-
timize representations for downstream tasks. In-
stead, focusing on reconstructing a small subset of
features, specifically those capturing global infor-
mation, proves to be more effective for learning
powerful representations. Motivated by these in-
sights, we propose a novel framework, the Smooth
Diffusion Model for Graphs (SDMG), which in-
troduces a multi-scale smoothing loss and low-
frequency information encoders to promote the
recovery of global, low-frequency details, while
suppressing irrelevant t high-frequency noise. Ex-
tensive experiments validate the effectiveness of
our method, suggesting a promising direction for
advancing diffusion models in graph representa-
tion learning.
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Figure 1. Impact of reconstructing various proportions of low-
frequency components on node classification for Photo. (a) We
sort the frequency components (derived from the graph Laplacian)
in ascending order and reconstruct only the lowest fraction (e.g.,
5%) of the frequency components. This partial reconstruction
already achieves high accuracy, while restoring the full spectrum
(100%) overfits high-frequency noise. (b) Under Gaussian noise,
focusing on a narrow low-frequency band remains robust, whereas
full-spectrum reconstruction collapses in performance.

1. Introduction
Self-supervised learning (SSL) is transforming representa-
tion learning by reducing our reliance on massive labeled
datasets (Yu et al., 2024b; Xiao et al., 2024; Kalantidis et al.,
2020; Zhu et al., 2022). Among its many variants, gen-
erative diffusion probabilistic models (DPMs) (Ho et al.,
2020; Song et al., 2021) have emerged as particularly pow-
erful: by reconstructing clean signals from corrupted inputs,
these models capture rich semantic insights. Recent vision
research shows that stronger diffusion models yield more
expressive embeddings (Hudson et al., 2024; Wang et al.,
2023; Wei et al., 2023). This has also spurred adoption in
more general graph domains. A pioneering example, the
DDM (Yang et al., 2024), deploys directional perturbations
to denoise node features, revealing how diffusion-based
techniques can elegantly handle complex, anisotropic graph
structures.

Despite the growing popularity of diffusion-based graph
representation methods, existing approaches (Yang et al.,
2024) adopt off-the-shelf DPMs tailored for generation (Niu
et al., 2020), leaving open the question of whether the gen-
eration goal to fully reconstruct every detail of a graph truly
enhances the discriminative power of representations. How-
ever, our empirical findings (Figure 1(a)) suggest: focusing
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on reconstructing only a narrow band of low-frequency
information (e.g., 5%) can already yield strong embed-
dings, while attempting to fully restore all features (i.e.,
100%) often proves unnecessary—or, even worse, detrimen-
tal. We push this point further in Figure 1(b) by adding
task-irrelevant Gaussian noise to node features; finding that
reconstructing only low-frequency components preserves
a competitive accuracy even if the data is considerably
perturbed, whereas insisting on reconstructing everything
causes a performance to drop significantly. These observa-
tions highlight a misalignment between generation-oriented
objectives and representation learning. This raises a fun-
damental tension: should we aim to faithfully recover all
graph details, or strategically suppress unnecessary details
to better emphasize semantically meaningful signals for
downstream tasks?

To investigate this, we begin with an empirical study (Sec-
tion 3) by analyzing how different frequency components
affect classification performance. Our analysis reveals
two main insights: (1) aggressively minimizing the MSE-
based generation-reconstruction loss, particularly for high-
frequency details, can undermine downstream accuracy, and
(2) focusing the model on a narrow range of low-frequency
signals results in stronger representations and faster con-
vergence. In fact, reconstructing additional high-frequency
structures introduces distracting noise for downstream tasks,
even though it is necessary and beneficial for generation.
This aligns with established GNN research emphasizing the
predictive power of low-frequency features (Hoang et al.,
2021; Liu et al., 2022). Although one might consider in-
corporating GNNs as low-pass filters into the denoising
encoder, we find that high-frequency components are in-
evitably re-learned and encoded as we continue to minimize
the MSE-based reconstruction objective (demonstrated in
Figure 4 of Section 3). This issue remains challenging, espe-
cially since standard constraints designed for filtering noise
frequency components, like information bottlenecks (Yu
et al., 2024a), rely on labeled supervision, which is not
readily available in our SSL setting.

Motivated by these findings, we propose Smooth Diffusion
Model for Graphs (SDMG), a novel self-supervised frame-
work designed to learn recognition-oriented representa-
tions without labels. SDMG employs two dedicated low-
frequency encoders, one for node features and another
for topology, to distill global, low-frequency signals. To
avoid reintroducing unhelpful high-frequency details, we
propose a new multi-scale smoothing objective. Rather
than strictly enforcing a pointwise reconstruction, our objec-
tive aligns the original and reconstructed graphs at multiple
scales, theoretically encouraging the model to emphasize
low-frequency signals while suppressing high-frequency
noise. This strategy effectively “filters out” distracting de-
tails, allowing the diffusion-based representation learner to

focus on semantically meaningful structures aligned with
downstream recognition tasks. Our key contributions in-
clude:

• We theoretically and empirically uncover that purely
generation-oriented objectives can conflict with recog-
nition goals, revealing how excessive high-frequency
reconstruction reduces the representation quality.

• We propose the Smooth Diffusion Model for Graphs
(SDMG), an approach that explicitly leverages low-
frequency filters and a novel multi-scale smoothing
(MSS) loss to align pre-training reconstruction with
downstream recognition. To the best of our knowledge,
we are the first to address this misalignment between
graph generation and representation.

• Extensive node- and graph-level experiments show that
SDMG achieves state-of-the-art performance, pointing
to a promising direction for diffusion-based graph SSL.

2. Preliminaries
2.1. Notations

Consider a graph G = (V, E) with |V| = N and the adja-
cency matrix A ∈ RN×N , where Aij ∈ {0, 1} indicates
the presence of an edge between nodes i and j, and N de-
notes the number of nodes. Let D = diag(deg1, . . . degN )
denote the degree matrix, where degi =

∑
j∈V Aij . For

convenience, we define the augmented adjacency matrix
Ã = A+ I and its degree matrix D̃ = D+ I. With these,
we construct the normalized adjacency matrix Anorm =
D̃−1/2ÃD̃−1/2. The symmetric normalized Laplacian ma-
trix is L̂ = I − Anorm. Since L̂ is symmetric normal-
ized, its eigen-decomposition is UΛU⊤ , where Λ =
diag(λ̂1, . . . , λ̂N ) and U = [u⊤

1 , . . . ,u
⊤
N] ∈ RN×N are

the eigenvalues and eigenvectors of L̂ , respectively. Each
node vi ∈ V is associated with a feature vector xi ∈ Rd,
and we stack all node features into X = [x1, x2, . . . , xN ] ∈
RN×d. Then, the graph Fourier transform based on L̂ is
represented by X̃ = U⊤D̃1/2X and the inverse transform
is X = D̃−1/2UX̃.

2.2. Diffusion Models

DPMs define a forward-noising process and a corresponding
reverse-time denoising process to generate samples from
complex distributions (Ho et al., 2020; Song et al., 2021;
Cho et al., 2024). Formally, consider a continuous-time
stochastic process {xt}Tt=0 on Rd. The forward process
gradually perturbs an initial data point x0 by noise via:

dxt = f(t)xt dt+ g(t) dwt, (1)

where wt is a standard Wiener process, and f(t), g(t) dic-
tate the drift and diffusion terms, respectively. As t → T ,

2



Smoothing Your Diffusion Models for Powerful Graph Representation Learning

xT converges to a Gaussian distribution independent of the
initial input.

By reversing time, one obtains a reverse SDE:

dxt = [f(t)xt − g2(t)∇x log pt(xt)] dt+ g(t) dw̄t, (2)

where w̄t is a reverse-time Wiener process, and
∇x log pt(xt) is the score function. Approximating this
score enables simulating the reverse dynamics to recover
clean samples from noise.

In practice, a neural network xψ(xt, t) with parameters ψ
approximates the score or directly predicts x0. A com-
mon objective is a weighted mean-squared error between
xψ(xt, t) and x0, known as the denoising score matching
(DSM) loss:

LDSM = Et
{
λ(t)Ex0

Ext|x0

[
∥xψ(xt, t)− x0∥2

]}
. (3)

While DPMs have achieved remarkable success in Euclidean
domains, their application to graph representation learning
is still emerging. DDM (Yang et al., 2024) is the first work
to integrate diffusion into node feature spaces and employ
a denoising decoder (a U-Net architecture) to recover x0

from xt. The latent representations H are then extracted
from intermediate layers of this decoder:

H = hω(xt), (4)

where hω denotes the encoder portion of the denoising net-
work at a chosen intermediate layer. However, we argue that
strictly generative objectives in DDM may not align with
discriminative goals, prompting us to rethink the training
strategy for improved representation learning.
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Figure 2. A case study model illustrates how only the lowest pro-
portions of the frequency components (green boxes) that are ex-
tracted from node features or topology are reconstructed.

3. An Investigation into the Effects of Smooth
Global Signal Reconstruction

We begin by empirically and theoretically examining how
the reconstruction of different frequency components in
graph signals impacts the performance on downstream tasks
(e.g., node classification). Our study uncovers two findings:

Finding 1: Reconstructing Low-Frequency Components
Suffices for High-Quality Representations. We investi-
gate which frequency components most benefit representa-
tion learning by selectively reconstructing only the lower
end of the spectrum (see Figure 2). We first express the
node-feature matrix X in the spectral domain based on the
graph Fourier transform as

X̃ = U⊤ D̃1/2X ∈ RN×d (5)

where U and D̃ are defined in Section 2.1. To retain only
the q smallest eigenvalues (i.e., the lowest-frequency compo-
nents), we conduct a low-frequency truncation. Specifically,
U(q) := [u1, . . . ,uq ] ∈ RN×q denote the sub-matrix
that collects the first q eigenvectors (i.e. the eigenmodes
with the smallest eigenvalues). Projecting onto this sub-
space yields the retained coefficients

X̃(q) = U⊤
(q) D̃

1/2X ∈ Rq×d, (6)

while all higher-frequency rows q + 1:N are discarded. We
then map X̃(q) back to the spatial domain via

Xlow = D̃−1/2 U(q) X̃(q), (7)

thus obtaining a feature matrix Xlow that captures only the
globally smooth, low-frequency signal. Varying q smoothly
controls the amount of high-frequency detail that is re-
moved.

With Xlow in hand, we feed these low-frequency node fea-
tures into a vanilla diffusion-based denoising model without
using any low-frequency encoders (e.g., GNNs) but using
MLPs and extracting intermediate-layer representations for
linear probing in node classification.

Figure 3 shows the results on two real-world datasets. the
accuracy rises sharply when the model reconstructs roughly
the lowest 20 % of the entire frequency spectrum (orange re-
gion). Once components beyond this lowest-frequency band
are added (green region), performance levels off or even
declines. In other words, recovering only the bottom fifth
of the spectrum already captures most of the discriminative
signal, whereas reconstructing additional higher-frequency
components brings little benefit and can be detrimental.

Finding 2: Overemphasizing MSE Minimization Rein-
troduces Irrelevant Details. Simply pushing the MSE
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Figure 3. Node–classification accuracy when we only rebuild the
low-frequency part of the feature matrix X. We keep the first q
Laplacian eigenmodes, reconstruct X from these components, and
plot the ratio q/N on the x-axis (N = total number of modes, so
q/N = 1 means full-spectrum reconstruction). Accuracy peaks for
small q (orange band) and falls as higher-frequency components
are progressively added (green band). “X” denotes node-feature
reconstruction.

as low as possible can unintentionally force the model to
encode high-frequency or noisy features that do not help,
and can even harm, downstream classification. Below, we
first provide theoretical evidence and then empirical results
to support this point.

(a) Classification Performance (b) Spectral Energy of LF components

Figure 4. Performance and spectral energy for three model variants
on Photo datasets. (a) Node classification accuracy for Vanilla
diffusion, SDMG (with low-frequency encoders and MSS loss),
and SDMG-MSE (with low-frequency encoders but MSE loss).
(b) The spectral energy of the lowest 40% frequency components,
where higher values indicate better low-frequency (LF) capture.

Theorem 3.1. Consider an encoding Z of X with a bounded
capacity I(X;Z) ≤ C, where I(·; ·) denotes mutual infor-
mation. Assume that X takes values in the unit ball of
an Euclidean space. Let Y be a target variable to be pre-
dicted from X, and assume X can be decomposed as X =
(Xs,Xr) such that Xr is relevant to Y and Xs is super-
fluous to predicting Y given Xr, that is I(Xs;Y |Xr) = 0.
Then we have:

The minimal mean square error (mmse) for predicting X
from Z is bounded as

mmse(X | Z) ≥ var(X)−1

2

(
I(Z;Xr)+I(Z;Xs | Xr)

)
.

(8)
The information that the encoding Z carries on the variable

Y is bounded by

I(Z;Y ) ≤ C − I(Z;Xs|Xr) (9)

Therefore, optimizing the encoding Z in order to minimize
mmse(X|Z) is partially misaligned with optimizing the
encoding for I(Z;Y ). The former benefits from an increase
in encoded superfluous information, the latter is penalized
by it.

The proof is in Appendix A.1. Theorem 3.1 indicates that as
the portion of the encoder’s capacity allocated to irrelevant
information increases, the model’s ability to encode label-
relevant information diminishes.

Empirically, Figure 4 compares three diffusion variants on
the Photo dataset: (i) Vanilla, trained purely with MSE;
(ii) SDMG-MSE, which adds low-frequency encoders but
still minimizes MSE; (iii) SDMG, our method which em-
ploys low-frequency encoders with our multi-scale smooth-
ing loss. Panel (a) reports classification accuracy, while
panel (b) tracks low-frequency spectral energy. Three obser-
vations stand out:

Observation 1: Vanilla overfits. Without a low-frequency
filter, the model struggles to capture only low-frequency
components, resulting in a substantial performance gap.
Moreover, the MSE objective eventually overfits high-
frequency details, causing an accuracy drop after around
100 epochs.

Observation 2: Low-frequency encoders boost early
gains. By introducing low-frequency GNN encoders,
SDMG-MSE and SDMG quickly captures global signals,
achieving nearly 88% accuracy by epoch 0, far surpassing
the baseline initialization.

Observation 3: Pure MSE reintroduces noise. Despite the
initial gains, SDMG-MSE eventually exhibits the downward
trend of Vanilla in later epochs. Because MSE penalizes
errors in all frequency bands equally, the model eventu-
ally reconstructs high-frequency details, causing a drop in
classification accuracy. This is further demonstrated by Fig-
ure 4(b), which shows that SDMG-MSE converges toward
the same (reduced) low-frequency energy level as Vanilla,
indicating an increased emphasis on reconstructing unhelp-
ful high-frequency signals.

3.1. Broader Implications and Insights

Although high-frequency details may occasionally help (Fig-
ure 3(b)), our results show that low-frequency, global signals
are more crucial for graph tasks. Prioritizing these smooth
components over complete reconstruction is more effective
under limited capacity (Section 4). Future work could ex-
plore frequency-adaptive objectives to focus on relevant
spectral bands for downstream tasks.
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Figure 5. Overview of the SDMG framework. (a) Forward diffusion: Gaussian noise is incrementally added to the original sample X0

to obtain the corrupted version Xt. (b) Standard diffusion model: Xt is input into a denoise U-Net decoder, which reconstructs using
an MSE loss, with activations from specific U-Net layers serving as representations H. (c) SDMG enhancements: Low-frequency
encoders (EA

ϕ ,and Ex
θ ) extract information from node features and graph topology as conditional inputs for the U-Net (Section 4.2), and

a new multi-scale smoothing loss prioritizes the reconstruction of important low-frequency information (Section 4.3). (d) Customized
conditional U-Net architecture designed for diffusion-based graph representation learning (Section 4.3 and Appendix D).

4. Method: Smooth Diffusion Model for
Graph Representation Learning

Current diffusion model-based graph representation learning
faces the challenge of misalignment between generative and
recognition objectives. As shown in Section 3, focusing on
low-frequency components of node features and adjacency
matrices significantly alleviates this misalignment, thereby
improving downstream performance. However, computing
the low-frequency embeddings via graph Fourier transforms
(Equations (6) and (7)) is still computationally expensive,
which makes it impractical for large-scale graphs.

To address this, we propose learnable encoders that effi-
ciently approximate low-frequency embeddings. In Sec-
tion 4.2, we introduce these encoders to extract global
low-frequency information, which enhances an early perfor-
mance. However, despite the presence of these encoders,
we observe that a pure MSE-based reconstruction objective
eventually reintroduces high-frequency noise (evidences in
Figure 4).

To mitigate this, Section 4.3 proposes a new multi-scale loss
that emphasizes low-frequency reconstruction, better align-
ing generation with recognition tasks. Additionally, Sec-
tion 4.1 details the reconstruction objective, and Section 4.3
introduces a denoising decoder. The SDMG framework is
illustrated in Figure 5.

4.1. Reconstruction Objective

Graph data consists of node features and topology, each
providing distinct perspectives for reconstruction. In self-
supervised learning, we need to decide which part of this
signal to reconstruct. Note that in most real-world graphs
the adjacency matrix is extremely sparse. The number of
present edges grows linearly with |V|, whereas the number
of absent edges grows quadratically. This produces a severe
class imbalance if every entry of A is treated as a regres-
sion target. Node features, on the other hand, are typically
dense and directly related to downstream prediction tasks.
We therefore formulate the denoising objective solely with
respect to the clean feature matrix X:

Lrec = Et,x0

[
λ(t) ∥xψ(xt, t, C) − x0∥2

]
, (10)

where xt is the noised input at time t, xψ the denoiser and
C a conditioning term described next.

Although we do not regress the full adjacency, struc-
tural patterns are indispensable for high-quality represen-
tations (HaoChen et al., 2021). Instead of predicting every
edge entry, we distil the global, low-frequency information
of the graph Laplacian and feed it to the denoiser as context:

C =
(
EAϕ (L̂)︸ ︷︷ ︸

topology LF

, EXθ (X)︸ ︷︷ ︸
feature LF

)
,

where EAϕ and EXθ are encoders for graph topology and node
features, respectively, which will be detailed in Seciton 4.2.

5



Smoothing Your Diffusion Models for Powerful Graph Representation Learning

This design lets the model exploit long-range structural
regularities without being overwhelmed by the highly imbal-
anced edge-level target. By defining C as a concatenation
function, our model incorporates the low-frequency compo-
nents of both node features and adjacency matrices as con-
ditioning information during reconstruction, as described in
Section 4.2.

4.2. Low-Frequency Component Encoders

Graph Topology Low-frequency Information Encoder
EAϕ . We aim to approximate the first q eigenvectors of
the normalized Laplacian L̂ using a neural network func-
tion EAϕ . Specifically, the encoder EAϕ , implemented as a
multi-layer perceptron, takes node-level structural features
(e.g. random-walk positional encodings derived from the
adjacency matrix (Rampášek et al., 2022)) and outputs an
embedding matrix A ∈ RN×q. The key insight is that by
minimizing an appropriate loss, we can recover the low-
frequency eigenvectors U(q). The optimization objective
for the encoder is then:

min
A∈RN×q

L(A) :=
∥∥∥L̂−AA⊤

∥∥∥2
F
, (11)

Based on the classical low-rank approximation results
(Eckart–Young–Mirsky theorem (Eckart & Young, 1936)),
this objective ensures that A approximates the smallest q
eigenvectors of the graph Laplacian up to a scaling factor.

Node Feature Low-frequency Information Encoder Exθ .
In contrast to adjacency matrices, feature matrices are typi-
cally much smaller in large networks, making it computa-
tionally feasible to extract low-frequency information from
node features using standard graph neural networks (GNNs).
Previous work (Dwivedi et al., 2023) suggests that the it-
erative application of the normalized adjacency matrix can
serve as a low-pass filter. Inspired by this, we use a Graph
Attention Network (GAT) (Veličković et al., 2018) to model
the low-frequency components of node features, represented
by X = Exθ (G,X).

By extracting these low-frequency components from both
the graph topology (EAϕ ) and node features (Exθ ), we obtain
necessary conditioning information for our diffusion model.
Specifically, these components are concatenated to construct
the loss function, and Equation (3) is rewritten as:

Lmse = Et
[
λ(t)Ex0

Ext|x0

∥∥∥xψ(xt, t, C(EAϕ , Exθ ))− x0

∥∥∥2] (12)

where x̂0 = xψ(xt, t, C(EAϕ , Exθ )) denotes the recon-
structed signal based on the noisy input xt and conditioning
from the low-frequency encoders. C(x, y) represents the
concatenation function, the implementation details are pro-
vided in Appendix D.

Although Equation (12) filters high-frequency information
early in training, the MSE loss still guides the model to-
ward exact element-wise matching, which reintroduces high-
frequency details (Figure 4). This motivates to introduce a
new learning objective to address this issue, which will be
discussed later in Equations (15) and (16).

4.3. Denoise Decoder and the MSS Learning Objective

Denoise Decoder. In standard diffusion models, a denoise
decoder reconstructs a predicted sample x̂0 from a noisy
version xt by minimizing the MSE between x̂0 and the
clean sample x0. While we also use a denoise decoder
for reconstructing clean data, our approach introduces a
new objective that treats different frequency components,
particularly low-frequency structural signals, with varying
priorities.

To implement this, we adopt a U-Net architecture xψ (Li
et al., 2024; Dhariwal & Nichol, 2021), where the recon-
structed output is given by: x̂0 = xψ

(
xt, t, C(EAϕ , Exθ )

)
.

As shown in Figure 5(d), the U-Net consists of multiple
residual blocks and downsampling layers, followed by a
mirrored structure of residual blocks with upsampling lay-
ers. We denote the upsampling portion of the network as
NNup = {NNup

1 ,NNup
2 , . . . ,NNup

l }. The outputs from
these upsampling layers are collected as:

Hup = {H1,H2, . . . ,Hl}, (13)

and concatenated to form the final representation:

H = Concatenation({Hi}li=1). (14)

This multi-scale feature extraction is particularly beneficial
for capturing different levels of structural information across
the graph (Dhariwal & Nichol, 2021). More details on the
U-Net architecture are provided in Appendix D.

Multi-Scale Smoothing Learning Objective. Existing
diffusion models minimize element-wise discrepancies be-
tween the reconstructed x̂0 and the clean signal x0, as-
suming that higher fidelity leads to better representations.
However, as shown in Section 3, this MSE-based objective
often overemphasizes irrelevant high-frequency details for
downstream tasks.

To address this, we introduce the Multi-Scale Smoothing
(MSS) loss, which focuses on preferentially reconstructing
low-frequency, global features. Starting with the MSE-
based objective in Equation (12), we define the MSE loss
as:

RMSE = ∥x̂0 − x0∥2 =
∥∥xψ(xt, t, C(EAϕ , Exθ ))− x0

∥∥2 .
The MSS loss is formulated by focusing on cosine similarity
between feature embeddings at different scales, specifically
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Table 1. Node classification accuracy (%) of various methods. Best and second-best results are bolded and underlined, respectively.

CATEGORY METHOD CORA CITESEER PUBMED OGBN-ARXIV COMPUTER PHOTO

Supervised GCN 81.5±0.5 70.3±0.6 79.0±0.4 71.7±3.0 86.5±0.5 92.4±0.2
GAT 83.0±0.7 72.5±0.5 79.0±0.3 72.1±0.1 86.9±0.3 92.6±0.4

Random Walk NODE2VEC 74.8 52.3 80.3 - 84.39 89.67
DEEPWALK 75.7 50.5 80.5 - 85.68 89.44

Self-Supervised

DGI 82.3±0.6 71.8±0.7 76.8±0.6 70.3±0.2 84.0±0.5 91.6±0.2
MVGRL 83.5±0.6 73.3±0.5 80.1±0.7 70.3±0.5 87.5±0.1 91.7±0.1
BGRL 82.7±0.6 71.1±0.8 79.6±0.5 71.6±0.1 89.7±0.3 92.9±0.3
INFOGCL 83.5±0.3 73.5±0.4 79.1±0.2 71.2±0.2 88.7±0.4 93.1±0.1
CCA-SSG 84.0±0.4 73.1±0.3 81.0±0.4 71.2±0.2 88.7±0.3 93.1±0.1
GPT-GNN 80.1±1.0 68.4±1.6 76.3±0.8 - - -
GRAPHMAE 84.2±0.4 73.4±0.4 81.1±0.4 71.8±0.2 88.6±0.2 93.6±0.2
GRAPHTCM 81.5±0.5 72.8±0.6 77.2±0.5 54.7±0.2 84.9±0.3 92.1±0.2
VGAE 76.3±0.2 66.8±0.2 75.8±0.4 66.4±0.2 85.8±0.3 91.5±0.2
SP-GCL 83.2±0.1 71.9±0.4 79.2±0.7 68.3±0.2 89.7±0.2 92.5±0.3
GRAPHACL 84.2±0.3 73.6±0.2 82.0±0.2 71.7±0.3 89.8±0.3 93.3±0.2
DSSL 83.5±0.4 73.2±0.5 81.3±0.3 69.9±0.4 89.2±0.2 93.1±0.3
DDM 83.1±0.3 72.1±0.4 79.6±0.9 71.3±0.3 89.8±0.2 93.8±0.2

Our SDMG (w/ mask) 84.3±0.5 73.9±0.4 80.0±0.5 72.1±0.3 91.6±0.2 94.7±0.2
SDMG 83.6±0.6 73.2±0.5 80.0±0.4 70.6±0.2 90.4±0.2 94.1±0.2

over multiple hops in the graph. The MSS objective is given
by:

RMSS = S (x0, x̂0)
w1

hop−1∏
k=1

S
(
h
(k)
0 , ĥ

(k)
0

)wk

, (15)

where S(·) denotes cosine similarity, and h
(k)
0 and ĥ

(k)
0 rep-

resent the feature embeddings of the target node v0 aggre-
gated over its k-hop neighborhood. The weight wk controls
the influence of each hop. Specifically, h(k)

0 and ĥ
(k)
0 are

the original and reconstructed feature representations of the
target node v0, aggregated with the features from its k-hop
neighborhood, respectively. This can be formalized as:

H(k) = (Anorm)
k
X, Ĥ(k) = (Anorm)

k
X̂.

Parameter settings and analysis of wk and k are given in
Appendices C.2 and E. This formulation ensures that node
features are progressively aggregated across multiple hops,
capturing multi-scale and smooth structural information.
Thus, the objective in Equation (12) is rewritten as:

Lmss = Et
[
λ(t)Ex0

Ext|x0
RMSS

]
. (16)

The MSS loss leverages two key ideas to enhance repre-
sentation learning. i) First, it uses cosine similarity for a
pairwise reconstruction, aligning feature directions instead
of exact values. This is particularly effective for tasks like
node classification, where the angular similarity between
node representations is more important than precise value-
by-value matching. Nodes belonging to the same class
typically occupy similar directions in feature space, making

cosine similarity a better alignment criterion for downstream
tasks. ii) Second, the MSS loss enforces multi-scale consis-
tency across neighborhood scales. By considering features
aggregated over multiple hops, this approach emphasizes
low-frequency signals that are stable across larger graph
regions and preserve crucial global structural information.
A recent work, GraphMAE, introduces a per-node scaled-
cosine error (SCE) loss (Hou et al., 2022); however, un-
like SCE, MSS aligns representations over multiple hops,
thereby explicitly encouraging global low-frequency struc-
ture.

Mathematically, we show that this multi-scale smoothing
objective preferentially penalizes errors in low-frequency
components, forcing the model to reconstruct global struc-
tural information more effectively:

Theorem 4.1. Minimizing the loss function in Equation (15)
based on X̂ encourages the model to reconstruct more low-
frequency features with a low-pass filter g(λ̂i) = (1− λ̂i)k.

Proof Sketch. See Appendix A.2 for the complete proof.
Intuitively, multi-scale neighborhood consistency empha-
sizes slowly varying, global features (low-frequency com-
ponents), while allowing more flexibility in reconstructing
high-frequency details that contribute less to the aggregated
embeddings over larger neighborhood sizes.

Empirically, we find that MSS leads to a stronger represen-
tation quality and an improved classification accuracy, as
detailed in the experimental Section 5. Together with the
low-frequency encoder loss L(A) in Equation (11) and Lmss
in Equation (16), the final loss is Lloss = L(A) + Lmss.
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Table 2. Graph classification accuracy (%) of various methods. Best and second-best results are bolded and underlined, respectively. “–”
denotes data that is out of memory or not included in the original paper.

CATEGORY METHOD IMDB-B IMDB-M PROTEINS COLLAB MUTAG

Supervised GIN 75.1±5.1 52.3±2.8 76.2±2.8 80.2±1.9 89.4±5.6
DIFFPOOL 72.6±3.9 - 75.1±3.5 78.9±2.3 85.0±10.3

Random Walk
NODE2VEC 50.20±0.90 36.0±0.70 57.49±3.57 - 72.63±10.20
SUB2VEC 55.26±1.54 36.70±0.80 53.03±5.55 - 61.05±15.80
GRAPH2VEC 71.10±0.54 50.44±0.87 73.30±0.05 - 83.15±9.25

Self-supervised

INFOGRAPH 73.03±0.87 49.69±0.53 74.44±0.31 70.65±1.13 89.01±1.13
GRAPHCL 71.14±0.44 48.58±0.67 74.39±0.45 71.36±1.15 86.80±1.34
JOAO 70.21±3.08 49.20±0.77 74.55±0.41 69.50±0.36 87.35±1.02
GCC 72.0 49.4 - 78.9 -
MVGRL 74.20±0.70 51.20±0.50 - - 89.70±1.10
GRAPHMAE 75.52±0.66 51.63±0.52 75.30±0.39 80.32±0.46 88.19±1.26
INFOGCL 75.10±0.90 51.40±0.80 - 80.00±1.30 91.20±1.30
SIMGRACE 71.30±0.77 - 75.35±0.09 71.72±0.82 89.01±1.31
DDM 74.05±0.17 52.02±0.29 71.61±0.56 80.70±0.18 90.15±0.46

Our SDMG 76.03±0.53 52.5±0.42 73.17±0.16 82.23±0.35 91.58±0.28

5. Experiments
5.1. Experimental Setup

Datasets. We evaluate our approach on node-level and
graph-level benchmarks. For node classification, we use
six datasets: three citation networks (Cora, CiteSeer,
PubMed (Sen et al., 2008)), two co-purchase graphs (Photo,
Computer (Shchur et al., 2018)), and the large-scale arXiv
dataset from the Open Graph Benchmark (Hu et al., 2020a).
For graph classification, we use five benchmarks: IMDB-B,
IMDB-M, PROTEINS, COLLAB, and MUTAG (Yanardag
& Vishwanathan, 2015). For graph classification tasks, node
degrees serve as the initial attributes, which are then one-
hot encoded for processing. More details are presented in
Appendix C.3

Baselines and Settings. We compare our method1 with
11 state-of-the-art unsupervised and supervised methods,
using accuracy as the primary metric. Our experiments
are conducted on 4 NVIDIA H100 GPUs. Further details
on baselines, and experimental protocols are provided in
Appendix C, with additional results in Appendix E.

5.2. Node Classification

Masking Strategy for Node Classification. Inspired by
Soft Diffusion (Daras et al., 2022) and Ambient Diffu-
sion (Daras et al., 2024) in computer vision, we introduce a
masking process for node classification tasks. Concretely,
given a masking rate p, we sample each entry of a mask
vector mask ∈ {0, 1}d i.i.d. from a Bernoulli(p) distribu-
tion. Formally, maski ∼ Bernoulli(p), ∀ i = 1, . . . , d,

1Our implementation is available at:
https://github.com/JYZHU03/SDMG.

and apply it to the clean node features x0 via element-wise
multiplication:

x0 ← x0 ⊙ mask. (17)

Here, some feature entries become zero before being fed into
the conditional encoder. Consequently, when the denoising
decoder receives xt, a portion of the features has already
been masked out. Importantly, our training objective still
requires reconstructing the entire node features, including
positions that were masked out and never observed by the
decoder. This compels the model to learn a more holistic
approximation of the data distribution, filling in missing
dimensions even when they are not visible during encoding.

Results. Table 1 shows the performance of SDMG and its
variant SDMG (w/ mask). Specifically, relative to the pio-
neering diffusion model-based graph SSL approach, DDM,
SDMG consistently outperforms it on 5 datasets, highlight-
ing the effectiveness of our framework. In particular, the
masked variant (SDMG w/ mask) achieves slightly higher ac-
curacy on most benchmarks, likely because random feature
masking forces the denoiser to model missing dimensions
and thus learn more robust, holistic node representations,
while reducing over-fitting to spurious details. Moreover,
SDMG demonstrates competitiveness when compared to
fully supervised approaches and advanced self-supervised
methods, highlighting that our diffusion-based perspective
on graph representation learning is effective.

5.3. Graph Classification

To further validate the effectiveness of our approach, we con-
duct extensive experiments on graph classification tasks. As
reported in Table 2, SDMG achieves the best performance
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on four out of five datasets. This result indicates the poten-
tial of our SDMG in driving strong representation learning
performance. Moreover, similar to the node classification
setting observations, SDMG consistently surpasses fully
supervised baselines and self-supervised methods based on
contrastive learning, generative modeling, or random walks,
highlighting our framework’s practical utility and broad
applicability.

5.4. Ablation Study

Table 3. Results of ablation study. Classification accuracy (%) for
models: without low-frequency encoders and MSS loss (w/o both),
without low-frequency encoders (w/o LE), without MSS loss (w/o
MSS), and full model.

Dataset w/o both w/o LE w/o MSS Full

Photo 83.65 87.42 93.46 94.73
Computer 76.42 85.86 89.46 91.64

IMDB-B 74.05 74.53 75.20 76.03
MUTAG 90.15 90.53 90.40 91.58

We perform an ablation study to validate the effectiveness
of our low-frequency encoders (LE) and the proposed multi-
scale smoothing (MSS) loss. Table 3 compares: (i) our full
model, (ii) w/o LE (replacing the low-frequency encoders
with MLPs), (iii) w/o MSS (replacing MSS with MSE), and
(iv) w/o both (removing both).

Our findings show that eliminating either LE or MSS de-
grades the classification accuracy, indicating each module’s
unique contribution. Low-frequency encoders extract global
patterns that enhance downstream performance, and our
MSS loss prevents overfitting high-frequency details. Fur-
thermore, dropping both modules significantly reduces ac-
curacy, highlighting their complementary roles in boosting
representation quality. Although removing MSS causes a
smaller accuracy drop than removing the LF encoders, MSS
still closes a substantial portion of the gap between “w/o
both” and the full model.

6. Conclusion
In this paper, we introduced the Smooth Diffusion Model
for Graph Representation Learning (SDMG), which inte-
grates low-frequency component encoders for node features
and graph topology, along with a novel Multi-Scale Smooth-
ing (MSS) loss. By prioritizing low-frequency information,
SDMG effectively captures the global structure of graphs
and reduces an overemphasis on high-frequency noise, re-
sulting in better graph representation learning. Our experi-
mental results demonstrate that SDMG outperforms existing
methods, particularly in tasks sensitive to structural informa-
tion, such as node classification and graph reconstruction.

This study connects to spectral graph theory and advances in
diffusion models, with much potential for future exploration
of adaptive, frequency-aware objectives in graph diffusion
learning.
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Y., and Hjelm, R. D. Deep graph infomax. In Interna-
tional Conference on Learning Representations, 2019.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Wang, H., Zhang, J., Zhu, Q., Huang, W., Kawaguchi, K.,
and Xiao, X. Single-pass contrastive learning can work
for both homophilic and heterophilic graph. Transactions
on Machine Learning Research, 2024. ISSN 2835-8856.

Wang, Y., Schiff, Y., Gokaslan, A., Pan, W., Wang, F.,
De Sa, C., and Kuleshov, V. Infodiffusion: Represen-
tation learning using information maximizing diffusion
models. In International Conference on Machine Learn-
ing, pp. 36336–36354. PMLR, 2023.

Wei, C., Mangalam, K., Huang, P.-Y., Li, Y., Fan, H., Xu, H.,
Wang, H., Xie, C., Yuille, A., and Feichtenhofer, C. Dif-
fusion models as masked autoencoders. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 16284–16294, 2023.

Wu, Y. and Verdú, S. Functional properties of minimum
mean-square error and mutual information. IEEE Trans-
actions on Information Theory, 58(3):1289–1301, 2011.

Xiang, W., Yang, H., Huang, D., and Wang, Y. Denois-
ing diffusion autoencoders are unified self-supervised
learners. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 15802–15812, 2023.

Xiao, T., Chen, Z., Guo, Z., Zhuang, Z., and Wang, S.
Decoupled self-supervised learning for graphs. Advances
in Neural Information Processing Systems, 35:620–634,
2022.

Xiao, T., Zhu, H., Chen, Z., and Wang, S. Simple and asym-
metric graph contrastive learning without augmentations.
Advances in Neural Information Processing Systems, 36,
2024.

12



Smoothing Your Diffusion Models for Powerful Graph Representation Learning

Xiong, P., Schnake, T., Gastegger, M., Montavon, G.,
Muller, K. R., and Nakajima, S. Relevant walk search for
explaining graph neural networks. In International Con-
ference on Machine Learning, pp. 38301–38324. PMLR,
2023.

Xu, D., Cheng, W., Luo, D., Chen, H., and Zhang, X. In-
fogcl: Information-aware graph contrastive learning. Ad-
vances in Neural Information Processing Systems, 34:
30414–30425, 2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2018.

Yanardag, P. and Vishwanathan, S. Deep graph kernels.
In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
1365–1374, 2015.

Yang, R., Yang, Y., Zhou, F., and Sun, Q. Directional diffu-
sion models for graph representation learning. Advances
in Neural Information Processing Systems, 36, 2024.

Ye, M., Wu, L., and Liu, Q. First hitting diffusion mod-
els for generating manifold, graph and categorical data.
Advances in Neural Information Processing Systems, 35:
27280–27292, 2022.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. Advances in neural informa-
tion processing systems, 31, 2018.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
Graph contrastive learning with augmentations. Advances
in neural information processing systems, 33:5812–5823,
2020.

Yu, J., Xu, T., Rong, Y., Bian, Y., Huang, J., and He, R. Rec-
ognizing predictive substructures with subgraph informa-
tion bottleneck. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(3):1650–1663, 2024a.

Yu, Y., Wang, X., Zhang, M., Liu, N., and Shi, C. Prov-
able training for graph contrastive learning. Advances in
Neural Information Processing Systems, 36, 2024b.

Zhang, H., Wu, Q., Yan, J., Wipf, D., and Yu, P. S. From
canonical correlation analysis to self-supervised graph
neural networks. Advances in Neural Information Pro-
cessing Systems, 34:76–89, 2021.

Zhang, Z., Zhao, Z., and Lin, Z. Unsupervised represen-
tation learning from pre-trained diffusion probabilistic
models. Advances in neural information processing sys-
tems, 35:22117–22130, 2022.

Zhou, C., Wang, X., and Zhang, M. Unifying generation
and prediction on graphs with latent graph diffusion. Ad-
vances in Neural Information Processing Systems, 2024.

Zhu, J., Li, X., Gao, C., Wang, Z., and Kurths, J. Unsuper-
vised community detection in attributed networks based
on mutual information maximization. New Journal of
Physics, 23(11):113016, 2021.

Zhu, J., Wang, C., Gao, C., Zhang, F., Wang, Z., and Li, X.
Community detection in graph: An embedding method.
IEEE Transactions on Network Science and Engineering,
9(2):689–702, 2022.

Zhu, J., Gao, C., Yin, Z., Li, X., and Kurths, J. Propagation
structure-aware graph transformer for robust and inter-
pretable fake news detection. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 4652–4663, 2024.

13



Smoothing Your Diffusion Models for Powerful Graph Representation Learning

A. Proof of Theorems.
A.1. Proof of Theorem 3.1.

Theorem. Consider an encoding Z of X with a bounded capacity I(X;Z) ≤ C, where I(·; ·) denotes mutual information.
Assume that X takes values in the unit ball of an Euclidean space. Let Y be a target variable to be predicted from X, and
assume X can be decomposed as X = (Xs,Xr) such that Xr is relevant to Y and Xs is superfluous to predicting Y given
Xr, that is I(Xs;Y |Xr) = 0. Then we have:

The minimal mean square error (mmse) for predicting X from Z is bounded as

mmse(X|Z) ≥ var(X)− 1

2
I(Z;X) = var(X)− 1

2
(I(Z;Xr) + I(Z;Xs|Xr)) (18)

The information that the encoding Z carries on the variable Y is bounded by

I(Z;Y ) ≤ C − I(Z;Xs|Xr) (19)

Therefore, optimizing the encoding Z in order to minimize mmse(X|Z) is partially misaligned with optimizing the encoding
for I(Z;Y ). The former benefits from an increase in encoded superfluous information, the latter is penalized by it.

Proof. The first equation is Theorem 10 of (Wu & Verdú, 2011) plus the chain rule. For the second, first note that as Z is an
encoding of X, thus I(Z;Y |X) = 0, and Xs is conditionally independent of Y . Then we have by the chain rule that

I(Y ;Z,Xs|Xr) = I(Y ;Xs|Xr) + I(Y ;Z|Xs,Xr) = 0 . (20)

As Y is conditionally independent of Z and Xs, it is also conditionally independent of Z and we have I(Y ;Z|Xr) = 0.
Thus Z→ Xr → Y is a Markov chain, and by the data processing inequality we have:

I(Z;Y ) ≤ I(Z;Xr) = I(Z;Xs,Xr)− I(Z;Xs|Xr) ≤ C − I(Z;Xs|Xr) (21)

A.2. Proof of Theorem 4.1.

Theorem. Minimizing the loss function in Equation (15) based on X̂ encourages the model to reconstruct more low-
frequency features with a low-pass filter g(λ̂i) = (1− λ̂i)k.

Proof. Since L̂ = I−Anorm is symmetric and positive semidefinite, it admits an eigenvalue decomposition:

L̂ = UΛU⊤, (22)

where U ∈ RN×N is an orthogonal matrix of eigenvectors (U⊤U = I), and Λ = diag(λ̂1, λ̂2, . . . , λ̂N ) contains the
eigenvalues 0 ≤ λ̂i ≤ 2.

Therefore, the k-step aggregation becomes:

X̂ = (Anorm)
k
X =

(
I− L̂

)k
X (23)

=
(
I−UΛU⊤)kX (24)

=
(
U(I−Λ)U⊤)kX (25)

= U(I−Λ)kU⊤X (26)

= U(I−Λ)kX̃. (27)
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Here, X̃ = U⊤X denote the graph Fourier transform of X. This expression indicates that each frequency component X̃i is
scaled by g(λ̂i) = (1− λ̂i)k. Since 0 ≤ λ̂i ≤ 2, the magnitude |1− λ̂i| ≤ 1.

For low-frequency components (small λ̂i), (1− λ̂i) is close to 1, so g(λ̂i) remains near 1 even for large k, preserving these
components. For high-frequency components (large λ̂i), |1 − λ̂i| is small, and g(λ̂i) diminishes rapidly as k increases,
attenuating these components.

By minimizing a loss function involving X̂, the model is encouraged to reconstruct the features emphasizing the low-
frequency components of X, effectively acting as a low-pass filter that suppresses high-frequency noise.

B. Related Works
Graphs emerge naturally in a wide range of physical (Zhu et al., 2021), and social phenomena (Zhu et al., 2024). In climate
science, Cai et al. use teleconnection graphs to reveal spatial disparities in Northern Hemisphere heat-wave trends (Cai
et al., 2024a). For spreading processes on large interaction networks (Hou et al., 2025; 2024a;b), Liu et al. propose a
percolation-based algorithm for diffusion-source inference (Liu et al., 2023b), while a subsequent study by the same authors
introduces a minimum-observer strategy that enables faster outbreak sensing (Liu et al., 2024b). Against this backdrop,
learning expressive graph representations has become a central problem in machine learning (Xiong et al., 2023). Below we
review the advances most relevant to our work and explain how our Smooth Diffusion Model for Graphs (SDMG) both
builds on and extends these directions.

B.1. Self-Supervised Graph Learning.

Driven by the goal of removing dependency on labeled data, self-supervised learning (SSL) has rapidly gained traction. Two
predominant strategies emerge:

(i) Contrastive SSL. Contrastive methods seek to learn invariant representations by generating multiple views or aug-
mentations of the input and ensuring that embeddings of positive examples (e.g., different augmented versions of the same
node or subgraph) are similar, while pushing apart representations of negatives (Gao et al., 2023a). Early works such
as DGI (Veličković et al., 2019) and InfoGraph (Xu et al., 2021) rely on mutual-information-based objectives, often
by corrupting node features and graph topology to create challenging negative samples. Subsequent approaches explore
diverse augmentation schemes, ranging from random-walk sampling (Hassani & Khasahmadi, 2020; Qiu et al., 2020)
to feature masking or shuffling (You et al., 2020), to mitigate semantic damage from aggressive perturbations. Recent
methods like BGRL (Thakoor et al., 2021) discard explicit negatives to simplify training, while GraphCL (You et al., 2020)
systematically designs graph-level transformations. (Chen et al., 2024b) proposes effective graph contrastive operations in
the discrete hamming space. Despite promising results, contrastive methods can be sensitive to the choice of augmentations
and sampling strategies, risking suboptimal performance when augmentations are misaligned with downstream tasks.

(ii) Generative SSL. Generative strategies instead learn by masking or corrupting part of the graph data (features or
edges) and reconstructing the masked information. VGAE (Kipf & Welling, 2016b) adopts a variational autoencoder to
recover adjacency signals, while GraphMAE (Hou et al., 2022) implements a masked autoencoder to reconstruct node
features with a noise-robust objective. Other approaches, such as GPT-GNN (Hu et al., 2020b), follow an autoregressive
paradigm analogous to language models, iteratively predicting node or edge attributes in large-scale or heterogeneous graphs.
Although these generative methods effectively capture structural and semantic properties, many give equal priority to all
frequency components of the graph signals, potentially overfitting high-frequency noise. Moreover, they often employ
heuristic corruption strategies that may not align perfectly with subsequent learning objectives, creating opportunities for
improvement in balancing reconstruction fidelity and downstream performance.

B.2. Diffusion Models for Graphs.

Background on Diffusion Models. Diffusion probabilistic models have shown remarkable success in image and text
domains by gradually injecting noise into the data, then learning to reverse this process via a denoising network (Ho et al.,
2020; Song et al., 2021; Dhariwal & Nichol, 2021; Rombach et al., 2022). Most such methods rely on continuous noise
perturbations in the pixel or latent space, enabling high-quality sample generation and powerful representation learning (Tian
et al., 2024; Hudson et al., 2024). Other works, for example (Pan et al., 2023), propose using mask-based strategies to
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learn image representations. However, extending these approaches to graph-structured data poses unique challenges due to
discrete topologies and node attributes that may not align neatly with Gaussian noise models.

Diffusion Models for Graph Generation. Early attempts at graph-focused diffusion primarily address graph generation
rather than representation learning (Niu et al., 2020; Jo et al., 2022; Luo et al., 2024; Zhou et al., 2024; Liu et al., 2023a;
2024a; Chen et al., 2023; Ye et al., 2022; Kong et al., 2023; Fu et al., 2024). For instance, Niu et al. (2020) introduce
score-based methods to create permutation-invariant graphs, while Jo et al. (2022) employ stochastic differential equations
(SDEs) to handle continuous adjacency matrices and node attributes. Yet, these continuous approaches can struggle with
fundamentally discrete structures. To mitigate this, Haefeli et al. (2022) design a discrete diffusion model specific to
unattributed graphs, and Vignac et al. (2022) propose DiGress to progressively add or remove edges and nodes through a
discrete noise schedule. Several recent generators also operate in the spectral domain: SPECTRE Martinkus et al. (2022)
combines GANs with spectral conditioning to model low-frequency structure, while GGSD Minello et al. (2025) applies a
diffusion process to a truncated set of eigenpairs before reconstructing the graph adjacency. Such efforts underscore the
versatility of diffusion processes for generating novel graphs (e.g., molecular or social), but they seldom target downstream
classification or other tasks that require learned representations.

Transition to Representation Learning. While several diffusion models now integrate autoencoder-like architec-
tures (Preechakul et al., 2022; Wang et al., 2023; Zhang et al., 2022; Wei et al., 2023), exploit latent-variable spaces
for more expressive generation (Gao et al., 2023b), or explore decoder-only models (Xiang et al., 2023; Chen et al., 2024a),
their objectives remain rooted in learning high-quality representations of images. Only recently have researchers begun to
explore diffusion models explicitly for graph representation learning. One example is DDM (Yang et al., 2024), which
adapts a denoising framework to node-level encoding and taps intermediate denoising layers for learned embeddings.
Despite this conceptual shift, DDM’s default mean-squared-error objective can overemphasize high-frequency fluctuations,
echoing known pitfalls in graph neural networks (GNNs) (Kipf & Welling, 2016a; Veličković et al., 2018; He et al., 2022)
where low-frequency signals are often most relevant to classification. Additionally, concurrent studies have explored the
potential of diffusion models for graph self-supervised learning in discrete (Chen et al., 2025) or continuous spaces (Cai
et al., 2024b), however, these approaches still face the same challenges as DDM.

In this work, we address the shortcomings of conventional denoising objectives by selectively reconstructing crucial low-
frequency information, thereby aligning the diffusion process with the frequency characteristics of real-world graphs. Our
method, SDMG, bridges the gap between generative diffusion models and task-oriented representation learning, resulting in
embeddings that better capture structurally significant and semantically discriminative features for downstream tasks.

B.3. Frequency Analysis in Graph Learning

A complementary line of work studies the role of graph frequencies in shaping GNN performance (Kipf & Welling, 2016a;
Bo et al., 2021). Low-pass filtering has been identified as a key factor in preserving globally meaningful features (Hoang
et al., 2021). However, prior attempts often rely on architectural choices (Hoang et al., 2021) (e.g., stacking many
convolutional layers) or contrastive learning-based heuristics (Liu et al., 2022) (e.g., adding adjacency-based smoothing)
to approximate low-frequency filtering. In contrast, SDMG explicitly capitalizes on frequency insights, introducing a
novel multi-scale smoothing objective that naturally favors lower-frequency reconstructions. By doing so, our model not
only encourages the diffusion process to ignore irrelevant high-frequency components but also offers a more direct and
theoretically principled route to extract globally consistent features. To the best of our knowledge, this is the first work to
enhance diffusion-model-based graph SSL from a frequency perspective.

C. Experimental setting
C.1. Baselines

We compare our proposed SDMG against a diverse range of representative graph representation learning methods from three
primary categories: supervised learning, random walk-based, and self-supervised learning.

Supervised Methods. These approaches train Graph Neural Networks using labeled data. GCN (Kipf & Welling, 2016a)
and GAT (Veličković et al., 2018) learn node embeddings via spectral filtering and attention mechanisms, respectively.
While they achieve competitive results with sufficient annotations, performance may degrade in large-scale or noisier settings
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with scarce labels. For graph-level classification, GIN (Xu et al., 2018) leverages a sum-based aggregation that is powerful
in graph isomorphism tests, whereas DiffPool (Ying et al., 2018) introduces a differentiable pooling scheme to hierarchically
coarsen graphs. Both methods heavily rely on labeled supervision and are less applicable in unlabeled or weakly labeled
scenarios.

Random Walk-Based Methods. These methods typically generate node sequences via random walks and then learn
embeddings akin to word2vec. Examples include node2vec (Grover & Leskovec, 2016), DeepWalk (Perozzi et al., 2014),
Sub2Vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017). While they are unsupervised and straightforward
to implement, they primarily capture local topological patterns. Higher-order or global dependencies may be overlooked,
limiting their effectiveness in more complex or heterogeneous graphs.

Self-Supervised Methods. To remove the reliance on manually labeled data, a wide spectrum of graph self-supervised
learning approaches has been proposed. We group these methods into three main branches based on their training objectives:

(i) Contrastive Methods. By contrasting positive and negative instances, these models encourage consistent embeddings
under various augmentations or subviews. DGI (Veličković et al., 2019) uses a global–local alignment, MVGRL (Hassani
& Khasahmadi, 2020) fuses information across multiple graph views, BGRL (Thakoor et al., 2021) introduces a bootstrap
strategy under an asymmetric encoder–predictor setup, InfoGCL (Xu et al., 2021) integrates information-theoretic principles
into the contrastive framework, CCA-SSG (Zhang et al., 2021) blends canonical correlation analysis with multi-view graph
augmentations, SP-GCL (Wang et al., 2024) proposes a single-pass solution catering to both homophilic and heterophilic
graphs, GraphACL (Xiao et al., 2024) adopts an augmentation-free scheme with asymmetric contrast, and DSSL (Xiao
et al., 2022) refines the contrastive objective by decoupling representation components.

(ii) Generative Reconstruction. Another line of work uses partial masking or autoencoding strategies to learn robust
graph embeddings. GraphMAE (Hou et al., 2022) extends masked autoencoders to graphs by masking node features,
VGAE (Kipf & Welling, 2016b) leverages a variational autoencoder to reconstruct graph structure, GraphTCM (Fang et al.,
2024) exploits multi-task learning to capture richer correlations among self-supervised objectives, while GPT-GNN (Hu
et al., 2020b) and GCC (Qiu et al., 2020) follow a large-scale pre-training paradigm, showing adaptability in heterogeneous
or complex graph scenarios.

(iii) Diffusion-Based Modeling. Although still in its early stage for graph representation learning, diffusion models show
promise. DDM (Yang et al., 2024) is an initial attempt that leverages a denoising diffusion process in node feature space to
reconstruct the original input; however, it largely focuses on a full-spectrum MSE objective. Such an approach can overfit
high-frequency details that do not necessarily benefit downstream recognition tasks. Our SDMG extends this line of work
by explicitly prioritizing low-frequency information and mitigating irrelevant high-frequency components, aligning the
generative diffusion objective more closely with discriminative goals.

Summary and Key Differences. Our SDMG inherits the generative perspective yet departs from traditional “reconstruct-
everything” paradigms by emphasizing smooth, global (low-frequency) signals that correlate more strongly with downstream
tasks. This targeted design combats the common pitfall of overfitting to high-frequency noise, yielding more discriminative
representations and consistent accuracy gains across a variety of node- and graph-level tasks.

C.2. Hyper-paramter Configurations

The hyperparameters employed in our experiments are detailed in Tables 4 and 5. Note that we did not extensively fine-tune
these hyperparameters, suggesting that further optimization could potentially enhance the experimental results.

C.3. Datasets

In this section, we provide a comprehensive overview of the datasets used in our experiments for both node-level and graph-
level tasks. These benchmarks are widely adopted in the graph representation learning community, and they encompass
diverse domains and scales to thoroughly evaluate the effectiveness and generality of our proposed SDMG framework.

Node-Level Datasets. We employ six standard node classification benchmarks: three citation networks (Cora, CiteSeer,
PubMed (Sen et al., 2008)), two co-purchase graphs (Amazon Photo, Amazon Computer (Shchur et al., 2018)), and the
large-scale arXiv dataset from the Open Graph Benchmark (Hu et al., 2020a).
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Table 4. Statistics and hyper-parameters for graph classification datasets.

Dataset IMDB-B IMDB-M COLLAB PROTEINS MUTAG

Dataset Statistics
# graphs 1000 1500 5000 1113 188
# classes 2 3 3 2 2
Avg. # nodes 19.8 13.0 74.5 13.0 17.9

Hyper-parameters

feat drop 0.4 0.4 0.4 0.2 0.2
attn drop 0.4 0.4 0.4 0.2 0.1
num head 2 4 4 8 4
num hidden 128 512 512 512 512
num hop 5 5 5 5 4
hop weights [0, 3, 3, 1, 1, 1] [1, 1, 1, 1, 1, 1] [1, 2, 2, 1, 1, 1] [1, 2, 2, 1, 1, 1] [1.5, 1, 1, 1, 1]
learning rate 1e−5 1e−5 1e−5 3e−4 3e−4

norm LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm
beta schedule Sigmoid Linear Const Linear Sigmoid

Table 5. Statistics and hyper-parameters for node classification datasets.

Dataset Cora Citeseer PubMed Ogbn-arxiv Computer Photo

Dataset Statistics
# nodes 2708 3327 19717 169343 13752 7650
# edges 5429 4732 44338 1166243 245861 119081
# classes 7 6 3 40 10 8

Hyper-parameters

num hidden 512 1024 1024 512 512 512
learning rate 4e−4 2e−4 2e−4 2e−4 2e−4 4e−4

num hop 2 2 4 4 5 4
hop weights [1, 0.5] [1, 0.5] [1, 1, 1, 1] [1, 1, 1, 1] [1, 1, 1, 1, 1] [1, 2, 2, 1]
norm LayerNorm LayerNorm LayerNorm LayerNorm BatchNorm BatchNorm
beta schedule Sigmoid Linear Const Linear Quad Sigmoid

• Cora, CiteSeer, and PubMed are classical citation networks where each node represents a scientific publication and
edges denote citation relationships. Nodes are assigned bag-of-words features derived from document abstracts, and
class labels correspond to academic topics.

• Amazon Photo and Amazon Computer are co-purchase networks from Amazon, where products (nodes) are linked
if they tend to be purchased together. Node features capture product descriptions and categories, with labels reflecting
product classes.

• OGB-arXiv is a large-scale citation graph from the Open Graph Benchmark. Each node is a paper from arXiv, edges
represent citation relationships, and node features are derived from paper abstracts. The labels correspond to the
primary subject area of the paper (e.g., cs.LG, stat.ML).

These datasets vary in size, average node degrees, and feature sparsity, enabling a comprehensive assessment of how well
our method generalizes across different scales and graph topologies.

Graph-Level Datasets. We further evaluate our method on five widely used benchmarks for graph classification: IMDB-B,
IMDB-M, PROTEINS, COLLAB, and MUTAG (Yanardag & Vishwanathan, 2015).

• IMDB-B and IMDB-M are movie collaboration datasets. Each graph corresponds to an ego-network of actors or
directors, with a classification label indicating a genre or thematic category.

• PROTEINS is a protein interaction dataset, where each graph represents a protein structure. Nodes indicate secondary
structure elements, and edges denote spatial or sequential proximity. Labels characterize protein functions or enzyme
classes.

• COLLAB is derived from collaboration networks in scientific domains. Nodes are authors, edges represent co-
authorship, and graph labels reflect the research field or academic community.
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• MUTAG consists of small molecular graphs, where each node is an atom and edges represent chemical bonds. The
binary classification label indicates mutagenic effect on a given organism.

For these graph-level datasets, node degrees are used as the initial attributes and then one-hot encoded for processing,
following standard protocols in prior studies (Yanardag & Vishwanathan, 2015). For both the node-level and graph-level
benchmarks, we adopt the commonly used public splits to ensure fair comparison with existing baselines (Yang et al., 2024).

D. Architecture of Denoise U-Net
U-Net with Graph-Aware Conditioning. As illustrated in Figure 5(d), our denoising decoder adopts a U-Net-like structure
that combines a contracting (down-sampling) path with an expansive (up-sampling) path. Standard U-Net architectures are
typically designed for Euclidean domains (e.g., images), which can limit their ability to capture topological information in
graphs. To address this, we enhance U-Net by (i) injecting graph-structured conditional information (extracted from our
low-frequency encoders) and (ii) using GNN or MLP layers inside the U-Net to better preserve graph structural patterns.

Implementation for Graph Classification. For graph-level tasks, the contracting path employs GAT layers, which
denoise target node features by aggregating representations from neighboring nodes. This strategy leverages attention
mechanisms to focus on the most relevant parts of the graph during down-sampling. In the expansive path, the final GNN
layers act as the decoder, projecting the denoised node features into latent representation space and further smoothing them
among neighbors. Afterward, we feed these latent features into an MLP to produce reconstructed outputs. In essence, the
decoder’s final representations already integrate the encoder activations through skip connections, allowing a richer synthesis
of local and global graph signals.

Implementation for Node Classification. For node-level tasks, we replace the GNN layers in both the contracting and
expansive pathways with more lightweight MLPs, which reduce computational overhead without compromising performance.
Again, we only use the representations from the decoder side, since the skip connections already channel valuable encoder
activations.

Fusion of Low-Frequency Information. To ensure that low-frequency structural signals are emphasized, we fuse the
noisy data xt with the low-frequency encodings of topology (A) and node features (X ), both derived from our encoders EAϕ
and Exθ . Specifically:

• Graph classification tasks:
h(l+1) = h(l) ∗ A ∗ X , (28)

where ∗ denotes element-wise multiplication.

Rationale. In graph-level tasks, each node representation needs to capture both local and global context that contributes
to the overall graph embedding. Element-wise multiplication, being a stronger gating mechanism, preserves only those
features that consistently appear across h(l), A, and X . This forces the model to highlight global information shared
among the node itself and its low-frequency topology/feature conditioning, making it well-suited for graph classification.

• Node classification tasks:
h(l+1) = h(l) + A + X . (29)

Here, the signals are combined by additive fusion.

Rationale. For node-level tasks, we are more interested in preserving each node’s specific feature contributions, while still
injecting complementary low-frequency topology and feature signals. An additive fusion scheme allows h(l) to retain
node-specific details while gradually incorporating the smoothing effects of A and X in a less restrictive way compared to
element-wise multiplication. This suits node classification, where fine-grained differences at the node level often matter.

These fusion strategies ensure that the model explicitly incorporates the global (low-frequency) graph structure and feature
information into each layer in a manner tailored to the prediction task at hand.

In summary, our enhanced U-Net architecture, combined with carefully designed GNN/MLP layers and the masking process,
substantially improves the denoising capabilities on graph-structured data. By incorporating low-frequency structural priors
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through conditional encoders, our method avoids overfitting high-frequency noise and achieves robust performance in both
node-level and graph-level representation learning tasks.

E. Parameter Analysis: Effect of hop Number
In our Multi-Scale Smoothing (MSS) objective (Equation (15)), the parameter hop controls the maximum neighborhood
distance over which node representations are compared. Intuitively, each increment in hop extends the receptive field of
the similarity terms S(h(k)

0 , ĥ
(k)
0 ), thereby encouraging the denoising model to maintain consistency in increasingly larger

neighborhoods around the target node v0.

To investigate the influence of hop, we conduct node classification experiments on Computer and Photo, varying hop from 0
to 5. The rest of the hyperparameters remain fixed to isolate the effect of hop. When hop =0, the loss reduces to comparing
only the target node features x0 and its denoised counterpart x̂0. As hop increases, higher-order neighborhood embeddings
h
(k)
0 come into play, guided by weights {wk} to emphasize or de-emphasize each scale.

Results and Observations. Figure 6(a) and (b) illustrate how classification accuracy progresses with increasing hop.
We observe a rapid improvement at low hop values: moving from hop=0 to hop=1 or 2 yields a substantial accuracy
jump, indicating that incorporating even limited neighborhood information helps the model suppress high-frequency noise
and maintain local smoothness. As hop grows to 3 or 4, there are stable gains beyond hop 3, suggesting that moderate
expansions to the receptive field further refine denoised embeddings and reinforce valuable low-frequency components.
Finally, we also find potential diminishing returns at hop=5, where performance gains become marginal, especially on
Photo, possibly due to increased redundancy or noisy distant neighbors.

Takeaways. Increasing hop generally benefits the diffusion-based denoising process by capturing richer global information.
However, the optimal setting appears to lie in a sweet spot where neighborhood expansions enhance low-frequency signal
capture without overwhelming the model with uninformative high-frequency details from distant regions. Consequently,
tuning hop can be an effective strategy for balancing the trade-off between local precision and global context in our MSS
objective.

(a) Computer (b) Photo

Figure 6. Classification accuracy versus mask ratio, with each bar presenting accuracy for mask ratios from 0.0 to 0.9.

F. Limitations and Future Work
While SDMG demonstrates strong performance across multiple benchmarks, our current formulation also reveals a few
limitations. First, the framework explicitly prioritizes low-frequency information, potentially underutilizing mid- or high-
frequency components that might prove beneficial in certain tasks (e.g., detecting anomalies or fine-grained community
boundaries). Thus far, we assume that high-frequency signals are predominantly noise rather than a source of discriminative
cues. Extending SDMG to adaptively filter or reconstruct different frequency bands—rather than imposing a strict low-
frequency bias—may further boost representation quality in domains where subtle high-frequency details matter.

Additionally, although our model avoids computing exact graph spectra by using approximate encoders (thereby mitigating
the cubic complexity of full eigendecomposition), some components—such as repeated neighborhood aggregations—could
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still become costly on extremely large or dynamically evolving networks. Investigating scalable or incremental strategies for
updating low-frequency encoders in streaming scenarios would therefore be a natural direction to handle real-time graph
data.

Moving forward, future research could refine the frequency perspective by selectively reconstructing mid- or high-frequency
signals based on task relevance, or by learning which frequency bands are essential in an end-to-end manner. Another
intriguing avenue involves unifying our smoothing objective with other forms of structural priors, such as motif- or
subgraph-level constraints, to capture richer relational information. Finally, incorporating partial or noisy labels—when they
are available—could yield semi-supervised extensions of SDMG that seamlessly balance generation and discrimination,
ultimately leading to more flexible and robust graph representation learning.
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