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ABSTRACT

Hierarchical coding offers distinct advantages for learned image compression by
capturing multi-scale representations to support scale-wise modeling and enable
flexible quality scalability, making it a promising alternative to single-scale mod-
els. However, its practical performance remains limited. Through spectral anal-
ysis of training dynamics, we reveal that existing hierarchical image coding ap-
proaches suffer from cross-scale energy dispersion and spectral aliasing, resulting
in optimization inefficiency and performance bottlenecks. To address this, we
propose explicit spectral regularization schemes for hierarchical image coding,
consisting of (i) intra-scale frequency regularization, which encourages a smooth
low-to-high frequency buildup as scales increase, and (ii) inter-scale similarity
regularization, which suppresses spectral aliasing across scales. Both regularizers
are applied only during training and impose no overhead at inference. Extensive
experiments demonstrate that our method accelerates the training of the vanilla
model by 2.3×, delivers an average 20.65% rate–distortion gain over the latest
VTM-22.0 on public datasets, and outperforms existing single-scale approaches,
thereby setting a new state of the art in learned image compression.

1 INTRODUCTION

Learned image compression (LIC) (Chen et al., 2021; Lu et al., 2021; He et al., 2022; Duan et al.,
2023a; Liu et al., 2023; Li et al., 2023; Qin et al., 2024; Fu et al., 2024; Li et al., 2025c; Zeng et al.,
2025; Jiang et al., 2025) has recently surpassed traditional hand-crafted codecs (Wallace, 1991;
Bellard, 2015; Bross et al., 2021) in compression performance, largely benefiting from statistical
learning and end-to-end optimization. Most existing LIC frameworks are built upon single-scale
variational autoencoder (VAE) architectures, where the reconstruction relies on a single-scale la-
tent representation and auxiliary variables (e.g., hyperpriors (Ballé et al., 2018)) are primarily used
for entropy modeling. Within this paradigm, progress has been driven by powerful transformation
networks (Lu et al., 2021; Liu et al., 2023; Qin et al., 2024; Zeng et al., 2025) and advanced con-
text modeling (Ballé et al., 2018; Minnen et al., 2018; Cheng et al., 2020). While this design has
proven highly effective, its performance is approaching saturation, particularly in high-bitrate and
high-resolution scenarios.

To overcome the performance plateau of single-scale architectures, recent efforts have turned to hi-
erarchical VAE (HVAE) designs (Duan et al., 2023b;a; Lu et al., 2024; Zhang et al., 2025a), which
extend the single-scale processing to multiple scales. Such hierarchical representations are in prin-
ciple well-suited for compression: they provide multi-scale signal descriptions, enable scale-wise
autoregressive modeling, and support flexible quality scalability (Wallace, 1991; Schwarz et al.,
2007; Boyce et al., 2015). However, their empirical performance has not yet matched these theoreti-
cal advantages. For instance, QARV (Duan et al., 2023a), one of the most representative hierarchical
schemes, requires nearly 10 days of training on a single NVIDIA RTX 3090 GPU and still under-
performs lighter single-scale models such as ELIC (He et al., 2022) in a certain bitrate range. These
limitations suggest that the potential of hierarchical coding remains far from fully exploited.

We identify that the challenge lies in the naive optimization approach, which overlooks the intended
information allocation across scales. In hierarchical architectures, higher scales are expected to
capture low-frequency global structures, whereas lower scales should represent high-frequency de-
tails (Sønderby et al., 2016; Vahdat & Kautz, 2020). However, naive training fails to respect this
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(a) Training dynamics w/ naive end-to-end optimization.
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(b) Training dynamics w/ proposed spectral regularization.
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(c) Illustration of the spec-
trum problem in (a) (zoomed-
in views at scale 1 and 2).

Figure 1: Spectral energy dynamics during hierarchical compression training. (a) naive train-
ing—exhibits spectral dispersion, noise, and aliasing issues; (b) regularized training—shows clear
and decoupled coarse-to-fine structure; (c) zoomed-in illustration of these spectral issues. More im-
plementation details and plotting scripts can be found in Appendix A.2

information hierarchy: it optimizes all scales over the full frequency spectrum, leading to undesir-
able outcomes as illustrated in Fig. 1a. Specifically, (i) the energy of each scale becomes dispersed
across frequencies, hampering its compact representation and convergence speed; and (ii) different
scales exhibit severe spectral aliasing, resulting in the encoding of redundant frequency components.
Both factors contribute to the reduced compression performance observed.

This observation naturally raises a question: Can hierarchical models be explicitly trained toward
frequency-stratified representations to fully exploit their potential? In this context, prior works
have suggested a frequency principle (Rahaman et al., 2019; Ronen et al., 2019; Xu & Zhou, 2021;
Xu et al., 2025), indicating that different network layers exhibit distinct sensitivities to different
frequency bands. In a well-trained model, each layer tends to concentrate on a characteristic subset
of frequencies. Motivated by this insight, we analyze the training dynamics of hierarchical models
and introduce two plug-and-play regularization strategies:

1. Intra-scale frequency regularization: a progressive spectral truncation scheme that guides
each scale to specialize in its target frequency band, enabling a natural low-to-high fre-
quency transition.

2. Inter-scale latent regularization: a similarity-based penalty in latent space that mitigates
spectral aliasing across scales.

These regularizers operate only during training and impose no extra complexity at inference. This
design effectively alleviates spectral dispersion and aliasing, leading to faster convergence and im-
proved compression efficiency, i.e., 2.3× faster convergence and an additional 9.49% rate–distortion
improvement over our baseline hierarchical model trained without regularization.

Our main contributions are threefold:

1. We conduct a spectral analysis of training dynamics in hierarchical image coding, reveal-
ing frequency dispersion, interference, and aliasing as the primary obstacles that hinder
optimization efficiency and compression performance.

2. We propose two lightweight regularization strategies—spectral truncation for intra-scale
specialization and similarity penalties for inter-scale coordination—that effectively miti-
gate these spectral issues.
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3. We develop a compact hierarchical architecture which, combined with the proposed train-
ing scheme, achieves a 20.65% bitrate savings over VTM-22.0, surpassing both learned
and traditional codecs and establishing a new state of the art in learned image compression.

2 PRELIMINARIES

2.1 SINGLE-SCALE IMAGE CODING

The single-scale VAE-based image codec can be generally divided into two key components. First,
various nonlinear networks such as CNNs (Ballé et al., 2018; Minnen et al., 2018; Cheng et al.,
2020; He et al., 2022), Transformers (Lu et al., 2021; Liu et al., 2023) or Mamba (Qin et al., 2024;
Zeng et al., 2025), are employed to perform encoding and decoding transformations from input
image x to latent y and from decoded ŷ to reconstruction x̂, namely y = ga(x) and x̂ = gs(ŷ).
These networks exploit the spatial and channel-wise correlations of the image, aiming to extract the
most compact latent representations. Second, deliberate probabilistic modeling processes are used to
estimate the distribution of the latent variables, such as Hyperprior (Ballé et al., 2018) which further
extracts abstract representations z from y to estimate the probability distribution of ŷ, expressed as
z = ha(y) and ŷ = hs(ẑ), and various context models (Cheng et al., 2020; He et al., 2022; Liu
et al., 2023), which enable autoregressively modeling the distribution of latent variables in sequence.

𝒚

ෝ𝒙𝒙

E
n
c

D
e
c

Figure 2: Diagram of
single-scale codecs.

For this single-scale structure, constrained rate-distortion optimization with
a Lagrangian multiplier λ is applied to train it in an end-to-end way, i.e.,

Lsingle = R(y) +R(z) + λ ·D(x, x̂), (1)

where R is the bitrate consumption of encoding latent y or hyperprior z
(if any), and D is the distortion term between the reconstruction x̂ and the
input image x. The final goal of such single-scale codecs is to eliminate
redundant information that has less impact on the loss function, ultimately extracting the most com-
pact single-scale representation, under a preset rate-distortion trade-off. However, recent studies
show that training single-scale coding frameworks is hampered by conflicting rate–distortion objec-
tives and unstable parameter updates. These problems induce inefficient training and limited perfor-
mance. Consequently, recent studies have begun to examine the training dynamics of single-scale
image codecs and propose solutions such as gradient modulation (Zhang et al., 2025c), improved
optimizers (Li et al., 2025a; Zhang et al., 2025b), and auxiliary training networks (Li et al., 2025b).

2.2 HIERARCHICAL IMAGE CODING

Figure 3: Diagram of
hierarchical codecs.

Hierarchical image codecs (Hu et al., 2020; 2021; Ryder et al., 2022; Duan
et al., 2023b;a; Lu et al., 2024; Zhang et al., 2025a) extend single-scale
models into a multi-scale framework, in which an image is represented
through a hierarchy of latent variables at different resolutions. Each scale
captures complementary information: higher-scale latents encode abstract,
global structures, while lower-scale latents represent fine-grained, high-
frequency details (Sønderby et al., 2016; Vahdat & Kautz, 2020). Dur-
ing compression, these latent variables are progressively predicted and
entropy-coded, allowing for flexible rate allocation and efficient recon-
struction. Formally, an L-scale hierarchy is optimized by minimizing the
sum of scale-wise bitrate costs and the final reconstruction distortion, i.e.,

Lhier =

L∑
l=1

R(zl) + λ ·D(x, x̂). (2)

From a theoretical perspective, hierarchical coding naturally aligns with the frequency principle (Ra-
haman et al., 2019; Ronen et al., 2019; Xu & Zhou, 2021; Xu et al., 2025). Specifically, global im-
age content, which is more efficiently captured at higher scales, predominantly lies in low-frequency
components, whereas local details at lower scales correspond to high-frequency components. This
coarse-to-fine decomposition mirrors the frequency-dependent convergence dynamics observed in
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neural networks: deeper layers tend to model low-frequency components faster, while shallower lay-
ers capture high-frequency components gradually. Hence, hierarchical image coding can be viewed
as a structural embodiment of the frequency principle, with each scale specializing in a specific
spectral range, enabling efficient multiscale representation and progressive reconstruction.

However, in practice, this ideal frequency-aligned decomposition is not always perfectly realized.
Latent variables at different scales may become entangled, and competing gradients during opti-
mization can lead to overlapping spectral representations across scales. As a result, some scales
may partially encode information outside their intended frequency range, and the hierarchical allo-
cation of coarse-to-fine information may be disrupted. Understanding this deviation is crucial for
analyzing hierarchical training dynamics and explaining why naive optimization sometimes fails to
fully exploit the theoretical advantages of multiscale latent structures.

3 METHODOLOGY

3.1 SPECTRAL ANALYSIS OF HIERARCHICAL TRAINING DYNAMICS

To investigate hierarchical training dynamics through spectral analysis, we quantify the scale-wise
contributions to the final reconstruction (see implementation details in Appendix A.2) and compute
their spectral overlap with the input image. Tracking the evolution of this overlap across training
epochs with a heatmap (Fig. 1) reveals a two-stage pattern:

Early Stage: Different scales converge to their respective frequency bands at different rates. Higher
scales are more sensitive to low-frequency content and converge faster, whereas lower scales focus
on high-frequency details and converge more slowly.

Later Stage: As training progresses, each scale stabilizes within a certain spectral range. At this
point, the scales separate their spectra from one another, forming a decoupled low-to-high frequency
distribution (Maaløe et al., 2019; Vahdat & Kautz, 2020).

Overall, the training process broadly follows the frequency principle. However, several localized
issues still disrupt this progression. As illustrated in Fig. 1a and 1c:

Intra-scale interference: Spectral components become entangled with high-frequency noise and
low-frequency interference. Worse still, these artifacts propagate through the hierarchy, causing the
spectrum of the last scale to exhibit severe dispersion.

Inter-scale aliasing: Overlapping frequency bands persist across scales—for example, the second
scale contains an abnormal low-frequency band that overlaps with the first, while the last scale
almost entirely covers the third.

We argue that these violations of the frequency principle lead to ill-structured information hierar-
chies, resulting in training instability and limited performance (see Fig. 7 and 8). This observation
naturally motivates the question: Can we design explicit guidance based on the frequency principle
to promote spectral convergence and decoupling, thereby mitigating interference and aliasing?

To address this, we propose an intra-scale regularization in the early training (e.g., the first 100
epochs) to stabilize scale-wise frequency band convergence. Then we switch to an inter-scale regu-
larization in later stages to mitigate spectral aliasing, more details are described below.

3.2 INTRA-SCALE FREQUENCY REGULARIZATION

Figure 4: Pipeline of proposed
intra-scale regularization.

To ensure that each scale converges quickly and accurately to
its assigned frequency band in early training without mixing in
abnormal frequency components, we design a Discrete Cosine
Transform (DCT) based spectral truncation scheme. Specifi-
cally, at first, only the low-frequency components of the input
are fed into the entire model, and then higher frequencies can
gradually be added. This allows the topmost scale (with largest
receptive field) z1 rapidly and fully capture low-frequency in-
formation, avoiding delegating low-frequency responsibility to
subsequent scales. Later scales can then focus on their as-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

signed high-frequency contents, avoiding interference of high-
frequency noise across scales. The overall pipeline is illustrated in Fig. 4.

In implementation, the training data x ∈ RB×C×H×W is first transformed into frequency domain
F ∈ RB×C×H×W through 2D-DCT as equation 3, where B,C,H,W are the batch size, channel
numbers, height and width, respectively.

F = PH xP⊤
W , where

(PH)u,x = αH(u) cos
(

π(2x+1)u
2H

)
,

(PW )v,y = αW (v) cos
(

π(2y+1)v
2W

)
,

αK(k) =


√

1
K , k = 0,√
2
K , k ≥ 1,

(3)

where PH ∈ RH×H and PW ∈ RW×W are the orthonormal bases along the vertical and horizontal
dimensions of DCT, respectively. u ∈ [0, H − 1] and v ∈ [0,W − 1] are the frequency indices, and
the normalization term αK(k) is employed to guarantee orthogonality, with K ∈ {H,W}.

Then, a time-varying soft radial mask M(u, v; t) ∈ [0, 1] is used for spectral truncation, defined as:

M(u, v; t) = max
(
0,

τ(t)−
√

( u
H )2 + ( v

W )2

τ(t)

)
, (4)

where the term
√
(u/H)2 + (v/W )2 represents the normalized frequency radius, and τ(t) is a

scheduling function of epochs t that controls the cutoff radius, it typically increases from a small
initial value (e.g., τ(0) = 0.05 in our scheme) to 1 in a linear manner during training. Then the
original spectrum F can be truncated to F̃ = F ·M(u, v; t).

Finally, the truncated spectrum F̃ will be transformed back to the pixel domain via 2D-IDCT, yield-
ing images that retain only a subset of frequency components x̃ for model training. More details
about the implementation of 2D-DCT can be found in Appendix A.2.

x̃ = PT
H · F̃ · PW . (5)

This low-to-high frequency learning strategy enables an incremental optimization from high to low
scales: high scales fully encode the low-frequency information without leaking it to subsequent
scales, while high-frequency information is gradually incorporated in lower scales on the basis of
low-frequency representations. Such a schedule accounts for the varying convergence rates and sen-
sitivities to different frequency bands across scales, as dictated by the frequency principle, thereby
avoiding abnormal frequency within each scale.

3.3 INTER-SCALE LATENT REGULARIZATION

Figure 5: Pipeline of proposed
inter-scale regularization.

Then, as training processes, each scale’s approximate spectral
range is largely fixed. At this stage, our goal is to prevent spec-
tral overlap between scales and to organize inter-scale informa-
tion effectively. To achieve this, we introduce a regularization
based on latent variables’ similarity across adjacent scales, which
encourages the features of neighboring scales to remain as dis-
tant as possible. This ensures that subsequent scales allocate bi-
trate only to frequency components not represented by preceding
scales, thereby saving bitrate. The pipeline is illustrated in Fig. 5.

In practice, we insert a convolutional downsampling module based on the Discrete Wavelet Trans-
form (DWT) between consecutive latent variables only during training (disabled when inference).
The lower-scale latent variable zl is downsampled via DWT, which decomposes it into frequency
sub-bands. We then apply a 1×1 convolution across channels to linearly map and recompose fre-
quency sub-bands so they align with the frequency channels of higher scale latent zl−1. The feature
regularization distances are measured by L2 loss and weighted into the loss for end-to-end optimiza-
tion. For the topmost scale, the latent variable will be compared to the initial learnable bias prior
obtained from training. In this way, the model’s training loss in equation 2 is re-formulated as:

Lhier regu =

L∑
l=1

R(zl) + λ ·D(x, x̂)− δ ·
L∑

l=1

L2(zl−1, Conv1×1(DWT (zl))), (6)
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where δ is a weight parameter, it is fixed to 0.1 in our implementation. More details such as the
implementation of DWT and different choices of δ, can be found in Appendix A.2 and A.4.

By integrating such inter-scale regularization, an inter-scale penalty mechanism is established to
discourage the aligned lower latent from predicting the same low-frequency content in the higher
latent. Hence, the model can carefully avoid spending bitrate to encode redundant or overlapping
spectral information. This guides the model to explore a more decoupled and efficient information
distribution across scales, thereby saving overall bitrate cost.

4 EXPERIMENTS

4.1 SETUP

Base Model Design: To thoroughly investigate the training dynamics of hierarchical coding, we
design a lightweight 4-scale hierarchical image codec, DHIC (Deep Hierarchical Image Coding).
Unlike prior approaches (Duan et al., 2023b;a; Lu et al., 2024; Zhang et al., 2025a), our base model,
a.k.a. DHIC-Base, adopts only a single latent block per scale and replaces heavy backbones (e.g.,
Transformer or Mamba (Gu & Dao, 2023)) with simple CNNs. This design eliminates performance
confounds introduced by complex architectures, allowing us to focus purely on the effect of training
with and without regularization as mentioned above. We refer to the DHIC model trained with the
proposed regularization schemes as the DHIC-Regu. Network details are provided in Appendix A.2.

Training Settings: We train our models, e.g., DHIC-Base, and DHIC-Regu, on the mixed dataset in-
troduced in Jiang et al. (2025), which comprises images selected from Flickr20K (Lim et al., 2017),
DIV2K (Agustsson & Timofte, 2017), COCO2017 (Lin et al., 2014), and ImageNet (Deng et al.,
2009). During pretraining, images are randomly cropped into 256×256 patches with a batch size of
32, while finetuning is performed on 512× 512 crops with a batch size of 4. The training procedure
is conducted on a single NVIDIA RTX 4090 GPU using PyTorch and the Adam optimizer. The
learning rate is initialized at 1e−4 and gradually reduced to 1e−5 via a ReduceLROnPlateau
scheduler during pretraining, and further decreased to 1e−6 in the finetuning stage. In addition, our
codec supports variable bitrate, with the Lagrangian factor λ ranging from 64 to 4096.

Test Settings: We conduct tests on three widely used test datasets: the Kodak dataset (Eastman
Kodak Company, 1993), which consists of 24 images with a resolution of 512×768 (or 768×512);
the CLIC professional Valid dataset (Toderici et al., 2020), which contains 41 high-quality images
of varying resolutions; and the Tecnick dataset (Asuni et al., 2014), which contains 100 images at
a resolution of 1200×1200. For rate–distortion evaluation, we report bitrate in BPP and distortion
using either PSNR or MS-SSIM (Wang et al., 2004). In addition, we adopt the Bjøntegaard Delta
Rate (BD-Rate) (Bjontegaard, 2001) to measure gains to the anchor codec. Tests using 4K or 1080p
images are provided in the Appendix A.4.

We also report the model’s parameter size (M), computational complexity in terms of KMACs/pixel
(kilo multiply–accumulate operations per pixel), and the encoding/decoding time (ms) to assess
the complexity of the codecs. All evaluations are performed on a platform equipped with a single
NVIDIA RTX 3090 GPU and an Intel Xeon Gold 6430 CPU.

4.2 EVALUATION RESULTS

Compression Performance: We comprehensively evaluate the proposed DHIC-Regu, DHIC-Base,
a series of state-of-the-art single-scale learned codecs (He et al., 2022; Liu et al., 2023; Li et al.,
2023; Qin et al., 2024; Fu et al., 2024; Li et al., 2025c; Zeng et al., 2025; Jiang et al., 2025), and
the representative hierarchical image codec QARV (Duan et al., 2023a). As summarized in Table 1,
and using VTM-22.0 as the anchor baseline, DHIC-Regu achieves the best BD-Rate performance
across all three datasets, i.e., –19.73%, –18.13%, and –24.09%. Notably, our method demonstrates
even greater advantages on high-resolution images compared to the latest single-scale codec HPCM-
Large (Li et al., 2025c), as detailed in Appendix A.4. Moreover, compared to DHIC-Base without
regularization, DHIC-Regu achieves an additional 9.49% bitrate reduction over VTM-22.0, with-
out introducing any extra testing complexity. This clearly demonstrates the effectiveness of our
regularization design. We also validate its effectiveness on QARV, as reported in Appendix A.4.
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Table 1: Compression performance and complexity comparison of learned image codecs across
multiple datasets (Anchor: VTM-22.0).

Model Enc. Time Dec. Time KMACs Params Kodak CLIC Pro Tecnick Avg.
(ms) (ms) (/pixel) (M) (%) (%) (%) (%)

ELIC (CVPR’22) 43.78 48.15 573.88 36.93 -3.22 -3.89 -4.57 -3.89
TCM-Large (CVPR’23) 153.57 142.83 1823.58 76.57 -9.97 -9.65 -13.24 -10.95
MLIC++ (NCW ICML’23) 191.46 186.08 1282.81 116.72 -11.83 -12.18 -17.25 -13.75
FLIC (ICLR’24) > 1000 > 1000 1096.04 70.97 -12.97 -10.53 -15.82 -13.11
WeConvene (ECCV’24) 333.45 227.41 2343.13 107.15 -6.98 -8.54 -10.81 -8.78
MambaVC (Arxiv’24) 137.88 124.95 813.80 53.32 -8.72 -5.66 -8.63 -7.67
MambaIC (CVPR’25) 156.82 113.07 1284.86 75.78 -15.12 -9.98 -13.65 -12.92
HPCM-Large (ICCV’25) 117.40 112.27 1261.29 89.71 -19.19 -18.37 -22.20 -19.92

QARV (TPAMI’24) 158.42 71.61 718.96 93.4 -5.81 -6.91 -8.88 -7.20
DHIC-Base (Ours) 102.46 68.48 977.73 106.93 -9.62 -10.79 -13.06 -11.16
DHIC-Regu (Ours) 102.46 68.48 977.73 106.93 -19.73 -18.13 -24.09 -20.65

Complexity: We first examine the training complexity. With the proposed regularization, DHIC-
Regu converges within approximately 3.8 days, which is highly competitive compared to both
single-scale codecs (e.g., TCM (Liu et al., 2023)) and hierarchical codecs (e.g., QARV), each of
which typically requires nearly 10 days to complete training.

For testing complexity, we compute the time overhead, computational cost, and parameter counts for
each codec, as shown in Table 1. For fairness, these metrics are re-evaluated on the same platform
with open-source implementations whenever available, while reported data from original papers are
adopted otherwise. As observed, our hierarchical codec achieves lower complexity than the recent
performance-leading methods, such as MLIC++ (Jiang et al., 2025) and HPCM-Large (Li et al.,
2025c), while also offering superior performance. This benefits from both our lightweight network
design and training-only regularizers. Furthermore, the hierarchical codec naturally provides a more
efficient context in both spatial and frequency domains, thereby reducing the overhead of complex
autoregressive contexts and achieving the fastest decoding speed at similar complexity.

(a) The input.

0 40 80 120 160 200 240 280
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S4

(b) Vanilla naive training.

0 40 80 120 160 200 240 280
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S2

S3

S4

(c) Regularized training.

Figure 6: Visualization of scale-wise latent variables during two different training processes.
The source image is Kodak002.png (Eastman Kodak Company, 1993). The horizontal axis denotes
the training epochs, while the vertical axis corresponds to the hierarchical scales.

Qualitative Results: To intuitively validate the effectiveness of our proposed regularization, we
visualize the hierarchical information structure under naive and regularized training via scale-wise
latent variables (Fig. 6). The results show that: (a) Under naive training, latent variables across
scales remain entangled and indistinct. Higher scales (e.g., S1) fail to capture global semantics,
while lower scales (e.g., S4) cannot effectively represent high-frequency structures, instead showing
scattered, noisy patterns. The model also exhibits grid-like artifacts and central blur, and structured
features emerge only after the 120th epoch, without achieving clear scale decoupling. (b) In con-
trast, with regularized training, distinct latent variables emerge as early as the 40th epoch. These
representations are progressively refined and naturally decoupled, resulting in a clear coarse-to-fine
information hierarchy.

Overall, the visualizations confirm that the proposed regularization mitigates spectral issues such
as dispersion, noise, and aliasing, thereby promoting the emergence of well-structured multiscale
representations and fully unlocking the capacity of hierarchical coding architectures.
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4.3 DEEP DIVE
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Figure 7: Loss vs. training epochs.

Intra-Scale Training Dynamics: According to the frequency
principle, models tend to learn low-frequency information first
during training, as it reduces loss more effectively at lower bi-
trate cost. However, in the absence of explicit low-frequency
constraints, each scale attempts to capture information across
the full frequency spectrum in a naive manner. This mixing
of frequencies prevents scales from specializing in their most
relevant bands. For example, higher scales often attempt to en-
code high-frequency details that they are ill-suited for, leading
to misrepresentation that propagates backward and ultimately
degrades both training stability and reconstruction quality. To illustrate this effect, we visualize the
training loss curve in Fig. 7, which shows large fluctuations without substantial loss reduction during
the first 100 epochs. By contrast, when explicit low-to-high frequency guidance is introduced, each
scale quickly concentrates on its assigned frequency range, resulting in faster convergence (Fig. 1b)
and effectively mitigating the instability and inefficiency in naive training.
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(a) Scale-wise bitrate (measured with Bits Per Pixel (BPP)) variation during training.
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(b) Scale-wise distortion (measured with Mean Squared Error (MSE)) variation during training.

Figure 8: Scale-wise rate-distortion change during training. The light-colored curves represent
the naive training, while the dark-colored curves show the regularized one. Differences in layer-wise
bitrate and distortion are marked with dashed lines and text annotations in each subplot.

Inter-Scale Training Dynamics: Due to the inherent dependencies across scales in hierarchical
architectures, latent variables at higher scales are conditioned on those from earlier ones, leading
to mutual interference in scale-wise rate–distortion optimization. As a result, naive optimization
following equation 2 struggles to establish an efficient hierarchical information structure. From a
spectral perspective, this manifests as spectral aliasing (Fig. 1), where multiple scales redundantly
encode overlapping frequency components. Such redundancy wastes additional bitrate and ulti-
mately limits the achievable rate–distortion performance.

To further examine the effect on training dynamics, we visualize the scale-wise rate and distortion
curves in Fig. 8. The results reveal that, during training, the model persistently reallocates bitrate
across scales, preventing the scale-wise bitrate from steadily increasing or stabilizing. Instead, it
undergoes frequent fluctuations and abrupt shifts. In parallel, scale-wise distortion also exhibits
pronounced oscillations. These instabilities intensify at deeper scales, ultimately causing excessive
bitrate consumption and higher distortion. Such behavior validates that inter-scale spectral aliasing
severely disrupts training and degrades performance. In contrast, when inter-scale regularization is
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introduced, this aliasing is largely mitigated (see Fig. 1b), resulting in markedly improved training
stability and superior rate–distortion performance.

4.4 ABLATION STUDIES

The separate effects of two regularization methods: Although both of the proposed regularization
methods aim to address the issues observed in spectral analysis, their effects differ. Table 2 presents
the individual impact of each method on accelerating training and improving performance. It can
be observed that applying intra-scale regularization solely in the early stages of training primarily
accelerates model training but does not significantly improve the rate-distortion performance after
full training. On the other hand, applying inter-scale regularization solely in the subsequent stages
will somewhat slow down convergence but provide a substantial performance boost. Furthermore,

Table 2: Ablation study of the sepa-
rate effects of two regularizers (Base-
line: the naive optimized model).

Regularization Acceleration BD-Rate (%)

Intra-Scale 1.84× -1.07
Inter-Scale 0.91× -7.66
Both 2.30× -10.11

both of these regularizers are essentially designed to
guide hierarchical optimization to better follow the fre-
quency principles, so they can complement each other to
some extent. When both regularization methods are com-
bined, the model achieves a synergistic effect, resulting in
faster convergence and improved final performance.

In addition, we also examine the separate effects of the
two regularizers on QARV (Duan et al., 2023a) and obtain
similar conclusions. The detailed results are provided in
Appendix A.4.

The effect of different regularization implementation settings: We conduct ablation studies to
compare the effects of different implementations of two regularization methods. Specifically:

1. The scheduler during the early-stage DCT truncation: In our implementation, the high-
frequency components are linearly increased from 0.05 to 1.0 during the first 100 epochs.
We further explore alternative scheduling strategies, including different initialization values
and exponential growth modes, as reported in Table 3a. Empirically, the proposed linear
schedule yields the best trade-off between training efficiency and final performance.

2. Inter-scale latent regularization during subsequent training: In our approach, latent
variables from lower scales are downsampled using a convolutional layer combined with
wavelet transformation, followed by L2 alignment with the preceding scale. We also in-
vestigate alternative strategies, including standard strided convolution, downsampling fol-
lowed by convolution, and feature alignment using L1 loss or cosine similarity, as sum-
marized in Table 3b. Empirically, the proposed scheme achieves the best performance.
Theoretical analysis of such superiority can be found in Appendix A.4.

Table 3: Ablation studies of intra-scale and inter-scale regularization implementations (Base-
line: the naive trained model, best implementation approaches are marked in blue color).

(a) Intra-scale regularization (First 100 epochs).

Implementation Acceleration BD-Rate (%)
0.025→1.0 (linear) 1.62× -1.01
0.05→1.0 (linear) 1.84× -1.07
0.1→1.0 (linear) 1.77× -1.05

0.025→1.0 (exp) 1.49× -0.93
0.05→1.0 (exp) 1.60× -0.98
0.1→1.0 (exp) 1.53× -1.02

(b) Inter-scale regularization (Remaining epochs).

Implementation Acceleration BD-Rate (%)
Conv w/ Stride 0.87× -5.49
Down + Conv 0.90× -5.22
DWT + Conv 0.91× -7.66

L1 0.82× -7.07
L2 0.91× -7.66
Cos Similarity 0.85× -6.55

More ablation studies on regularization setups and modules design, are detailed in Appendix A.4.

5 CONCLUSION

In this work, we tackle the fundamental optimization challenges inherent in hierarchical image com-
pression by diagnosing and countering spectral dispersion and aliasing phenomena that arise during
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training. Our spectral analysis reveals that these issues lead to inefficient training and degraded
rate-distortion performance. To address these issues, we introduce two complementary regulariza-
tion strategies: a low-to-high frequency-aware truncation mechanism that guides each intra-scale
toward its intended spectral band, and an inter-scale similarity constraint that prevents the encoding
of redundant frequency information across scales. These training-only techniques yield a model that
converges 2.3× faster and achieves an additional 9.49% improvement in rate-distortion performance
over VTM-22.0, culminating in an average 20.65% bitrate savings over VTM-22.0—setting a new
state-of-the-art in learned image compression. Our approach not only demonstrates the untapped po-
tential of hierarchical architectures but also provides a principled spectral perspective for optimizing
multi-scale latent models, opening avenues for future research in efficient neural compression.

ETHICS STATEMENT

This work focuses on hierarchical image compression with the goal of improving compression
efficiency from a spectral regularization perspective. All experiments are performed using pub-
licly available datasets—including MLIC-Train-100k, UVG, CLIC professional Valid, Tecnick, and
LIU4K-v2—which consist of non-sensitive and openly accessible data. We acknowledge that com-
pression algorithms inevitably introduce distortions, which could affect the reliability of image in-
terpretation in safety-critical applications such as medical imaging or autonomous systems. We
therefore emphasize the importance of responsible deployment of the proposed method, particularly
in high-stakes domains where inaccuracies may carry significant consequences.

REPRODUCIBILITY STATEMENT

To support reproducibility, we include detailed descriptions of the model architectures, training
configurations, and evaluation protocols. All experiments were conducted under controlled settings
with fixed random seeds and hardware platform. Furthermore, we are committed to releasing the
complete source code publicly upon acceptance of the paper to facilitate replication and encourage
further research in this direction.

REFERENCES

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition workshops, pp. 126–135, 2017.

Nicola Asuni, Andrea Giachetti, et al. Testimages: a large-scale archive for testing visual devices
and basic image processing algorithms. In STAG, pp. 63–70, 2014.
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A APPENDIX

A.1 PRELIMINARY OF FREQUENCY PRINCIPLE

In this section, we supplement more prior works on spectrum bias, frequency principle and hierar-
chical architecture related to spectrum analysis and training dynamics to further help understand the
theoretical basis of our work.

Frequency principle, also referred to as the spectral bias theory, denotes the empirically observed
tendency of deep neural networks to learn low-frequency components of a target function earlier
and faster than high-frequency components. This phenomenon was first systematically identified by
(Rahaman et al., 2019), which demonstrated—via Fourier-domain analyses on synthetic sinusoidal
targets and examinations of manifold geometry—that low-frequency components not only converge
more quickly but are also more robust to parameter perturbations, thereby providing an empirical
account of networks’ implicit smoothing behavior. Subsequent works formalized and generalized
this observation, including Xu et al. (2019); Xu & Zhou (2021); Xu et al. (2025) proposed that the
same low-to-high frequency learning order appears across multiple architectures and standard vision
benchmarks, arguing that the smoothness properties of common activations help explain the bias and
its implications for generalization. From a theoretical perspective, the Neural Tangent Kernel (NTK)
regime (Cao et al., 2021) proves that, considering the infinite-width linearization of training, training
dynamics admit a spectral decomposition in which the kernel’s eigenvalues determine convergence
rates: directions associated with large eigenvalues (often low-frequency components) are learned
rapidly, whereas directions associated with small eigenvalues (often high frequencies) are learned
slowly.

Motivated by these insights, subsequent works began to regular the training process of deep neural
network. For instance, Tancik et al. (2020) demonstrated that mapping low-dimensional inputs into a
higher-dimensional sinusoidal feature space yields an effective kernel with controllable bandwidth,
substantially improving MLPs’ ability to fit high-frequency functions and underpinning the success
of positional encodings in implicit-representation systems (Xie et al., 2023; Liu et al., 2024; Shi
et al., 2024; 2025).

Our spectrum analysis and regularization methods are also based on the above strong conclu-
sion—Different scales converge to different frequency bands at different rates, which has been
widely proven in prior works, specifically including:

1. Studies on neural network spectral bias or spectral principles Rahaman et al. (2019); Xu
et al. (2019); Xu & Zhou (2021); Xu et al. (2025) have shown that networks exhibit a
preference for low-frequency functions during training. Low frequencies are learned earlier
and faster than high frequencies in deeper module of the network. Mapping this finding to
our network structure can explain why different scales exhibit different convergence speeds
for different frequency bands.

2. Existing HVAE Sønderby et al. (2016); Vahdat & Kautz (2020) and hierarchical coding
works Duan et al. (2023b;a) both indicate that different hierarchical scales tend to capture
information at different frequencies: low-resolution scales capture more abstract global in-
formation (typically low-frequency structures), whereas high-resolution scales handle local
details and residual information (typically high-frequency).

Furthermore, our existing experiments can also support the conclusion. For instance, Figure 1 shows
that scale 1 has essentially converged to its corresponding spectral position (and no longer increases)
at around epoch 30; subsequently, scale 2 converges at around epoch 50, scale 3 at around epoch 80,
and scale 4 at around epoch 100. The original training loss curves in Fig. 8 also roughly follow this
trend, which validates the above claim.

Taken together, these theoretical analysis and visualizations demonstrate, in our hierarchical struc-
ture, different scales will converge to different frequency bands at different rates: deeper, lower-
resolution scales converge faster to low-frequency regions, and shallower, higher-resolution scales
then gradually converge to their corresponding high-frequency positions on that basis.
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A.2 MORE IMPLEMENTATION DETAILS

In this section, we provide additional implementation details of our methods and experiments, in-
cluding network design, benchmark implementation, and testing commands. The details are pre-
sented as follows.

Network Design: Fig. 9 shows the Architecture of our hierarchical image codec used in this
work. It consists of four scales (L = 4), specifically including a bottom-up encoding pathway and
a top-down entropy model, plus a decoding pathway. Given an input x, we first apply Patchify
operations to reorganize the feature channels and spatiality. Then the reorganized feature will be
fed into four cascaded encoder stages that downsample and extract features gradually, producing
encoded features r1:L at 1/8, 1/16, 1/32, and 1/64 resolution levels of input x. Each encoder stage
is formed by two branches: a main cascaded convolutional branch and a single-scale, wavelet-
based convolutional branch. The two branches are summed to better capture multi-scale and multi-
frequency components. At the end of the encoding pathway, a convolutional block will produce two
1/64-resolution bias features, Em bias and Dec bias. These features seed the subsequent entropy
models and decoders and are directly quantized and entropy-coded into the bitstream.

Starting from the Em bias and Dec bias, each level is processed by its entropy model branch in
sequence first. The entropy model conditions on the entropy-decoded features from the previous
level el−1 (for the first scale, it is Em bias) as prior pl to estimate the posterior distribution ql of
the current level’s encoded features rl. Then we compute the KL divergence between the posterior
and the prior DKL(ql ∥ pl), yielding the scale-wise rate term Rl. We then sample the latent zl
from posterior ql. Adding the sampled zl to the previous level’s entropy-decoded features el−1 pro-
duces the current level’s entropy-decoded features el. Next, the decoder at each level concatenates
the previous level’s decoded features dl−1 (for level one this is Dec bias) with the current level’s
entropy-decoded features el and fuses them to produce the level’s decoding features dl. At the end
of each level, the entropy-decoded features el and decoding features dl are upsampled and refined,
then passed to the next level. After four levels, the final decoding features dL are Un-Patchified
to produce the final reconstructed image.

To focus on the training dynamics of the hierarchical structure, we adopt a simple CNN backbone
and design the Basicblock shown in Fig. 9. Each Basicblock consists of a re-parameterized
convolution, a SiLU activation, and a Feed-Forward Neural Network (FFN) module in cascade, with
a residual shortcut. The block is lightweight and compact, which preserves basic feature-expressive
ability while keeping inference efficient.

Progressive Decoding: The hierarchical structure naturally supports a progressive decoding func-
tion, which enables independent decoding with scale-wise latent. We can leverage this characteristic
to quantify scale-wise contribution to the final reconstruction. Specifically, for scale l, we decode
normally for previous scales ≤ l. For subsequent scales > l, we replace their posteriors q>l with
the mean of priors p>l, so no information from the bitstream of those scales is leveraged. Then a
scale-wise progressively decoded reconstruction xp

l can be obtained. In this case, we can define the
residual xp

l − xp
l−1 as the contribution of the latent variable at the l-th scale, denoted as Ipl . Next,

we transform Ipl and the input image x to the frequency domain with the discrete cosine transform
(DCT). We then compute their spectral overlap and plot it as a heatmap, as illustrated in Fig. 1.

Implementation Details of DCT and DWT: For the intra-scale regularization, we adopt the stan-
dard orthogonal DCT-II basis with a full-image size. After computing the DCT coefficients, a fre-
quency mask is applied that preserves only a subset of low-frequency components while zeroing out
the others. The mask is progressively expanded during training: in the linear schedule, the retained
frequency ratio grows linearly from 0.05 to 1.0 over the first 100 epochs; in the exponential sched-
ule, the ratio follows r(t) = r0 + (1.0− r0) · 1−exp(−0.02×t)

1−exp(−0.02×100) such that r(t) initializes to r0 (i.e.,
0.05) and approaches 1.0 at epoch 100.

For the inter-scale regularization, we employ a Haar wavelet downsampling block (only retain and
concatenate LL, LH, and HL components), followed by an 1 × 1 convolution to align feature reso-
lutions before computing similarity. We also experimented with alternative implementations (e.g.,
stride-2 convolution, downsample followed by convolution), and found that the combination of Haar
wavelet and 1× 1 convolution provided the best performance gain.
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Figure 9: Our proposed lightweight hierarchical image codec architecture. The above is the
overall network framework, where the three rows from top to bottom are the encoding pathway,
entropy model pathway, and decoding pathway. And the shaded area represents the FSP module,
which has been proven to be unnecessary in Appendix A.4. The lower left corner shows the network
structure of the latent block in the entropy model, while the bottom right corner shows the structure
of the basic model employed in our whole architecture.

Further explanation of the inter-scale regularization: We perform an explicit frequency-aware
alignment by applying a DWT-based transform to the lower latent, which decomposes it into fre-
quency sub-bands. We then apply a 1×1 convolution across channels to linearly map and recompose
frequency sub-bands so they align with the higher-scale latent’s frequency channels. The inter-scale
penalty then discourages the aligned coarser latent from predicting the same low-frequency con-
tent in the higher latent. Thus, the higher-scale latent retains the difficult-to-predict high-frequency
components while redundant low-frequency parts are suppressed, alleviating spectral aliasing.

Implementation Details of Fig. 1: Figure 1 is a heatmap that measures the degree of spectral over-
lap between the scale-wise latent and the original image during training (in practice, this is reflected
through the progressive decoded reconstruction of each scale). The horizontal axis represents the
number of training epochs, and the vertical axis represents the normalized frequency range. A point
at (epoch, frequency position) indicates the spectral-overlap intensity between the latent of a certain
scale and the original image at that frequency when training reaches the current epoch. The specific
implementation steps are as follows:

1. Using progressive decoding, obtain x̂l, which is normally decoded up to layer l, while the
remaining L− l layers directly use the mean value of prior;

2. Define Il = x̂l − x̂l−1(I0 = x̂0) as the mutual information between the reconstruction
using only the latent of scale l and the original image;

3. Apply a 2D-DCT transform to the original image x and each layer’s mutual information Il
to obtain their spectra Fx and Fl;

4. Perform radial binning on the 2D spectrum and convert it into a 1D form;
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5. Normalize the frequency range and compute the spectral-overlap degree between the mu-

tual information Il and the original image x in each bin: E =
∑bi+1

bi

F
bi
l

F
bi
x

;

6. Finally, use the matplotlib plotting script to generate the heatmap for each scale.

Besides, We also add the matplotlib plotting script for Figure 1 as follow.

import numpy as np
import matplotlib.pyplot as plt
from numpy.linalg import norm

data = np.load(’spectra_epochxxx.npz’)
P = data[’P’]
freq_axis = data[’freq’]

epochs, layers, bins = P.shape

fraction = P / (P.sum(axis=1, keepdims=True) + 1e-12)

centroids = np.zeros((epochs, layers))
leakage = np.zeros((epochs, layers))
r_cut = 0.3
for e in range(epochs):

for k in range(layers):
Pk = P[e, k, :]
centroids[e, k] = (freq_axis * Pk).sum() / (Pk.sum() + 1e-12)
leakage[e, k] = Pk[freq_axis > r_cut].sum() / (Pk.sum() + 1e-12)

similarity = np.zeros((epochs, layers, layers))
for e in range(epochs):

for i in range(layers):
for j in range(layers):

vi = P[e, i, :]
vj = P[e, j, :]
denom = (norm(vi) * norm(vj) + 1e-12)
similarity[e, i, j] = np.dot(vi, vj) / denom

fig, axes = plt.subplots(1, min(4, layers), figsize=(12, 4), sharey=True)
for k in range(min(4, layers)):

data = fraction[:, k, :].T
im = axes[k].imshow(data, aspect=’auto’, origin=’lower’, vmin=data.
↪→ min(), vmax=data.max(),

extent=[0, epochs - 1, freq_axis[0], freq_axis
↪→ [-1]])
axes[k].set_xlabel(’Epoch’, fontsize=10)
if k == 0:

axes[k].set_ylabel(’Normalized Radial Freq.’, fontsize=10)
axes[k].set_title(f’Scale {k+1}’, fontsize=10)
axes[k].tick_params(axis=’both’, labelsize=8)

cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.tight_layout(rect=[0, 0, 0.9, 1])
plt.savefig(’./fig2a.pdf’, bbox_inches=’tight’, transparent=False,

↪→ pad_inches=0.04)
plt.close(fig)

Benchmarks: For the traditional image codecs, VTM-22.0, We directly employ its open-source
standard testing software https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftward_
VTM, and the testing commands are illustrated as follows:� �
# Convert RGB image to YUV444 format
ffmpeg -i [input_file] \
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-s [width]x[height] \
-pix_fmt yuv444p \
[output_file]� �� �
# Encode
VVCSoftware_VTM/bin/EncodecAppStatic -i [input_file] \
-c [config_file] \
-q [quality] \
-o [output_path] \
-b [bitstream_file] \
-wdt [image_width] \
-hpt [image_height] \
-fr 1 \
-f 1 \
--InputChromaFormat=444 \
--InputBitDepth=8 \
--ConformanceWindowMode=1 \� �� �
# Decode
VVCSoftware_VTM/bin/DecodecAppStatic -b [bitstream_file] \
-o [output_file] \
-d 8� �

For the other learned image codecs, whenever possible, we use the open-source code to conduct
evaluation under the same setups.

A.3 MORE RESULTS

In this section, we present additional comparisons on both objective and subjective quality, including
rate–distortion curves optimized with MSE and MS-SSIM, respectively, as well as visual compar-
isons of reconstructions from different codecs. We also provide progressive decoding results at each
scale before and after applying the proposed regularization. The results are as follows.
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Figure 10: Rate-Distortion curves on Kodak dataset, all models are optimized with MSE.
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Figure 11: Rate-Distortion curves on CLIC Professional Valid dataset, all models are optimized with
MSE.
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Figure 12: Rate-Distortion curves on Tecnick dataset, all models are optimized with MSE.
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Figure 13: Rate-Distortion curves on Kodak dataset, all models are optimized with MS-SSIM.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4 0.5
BPP

15

16

17

18

19

20

21
M

S-
SS

IM
CLIC Pro Valid Set

HPCM-Large
MLIC++
FTIC
QARV
DHIC

Figure 14: Rate-Distortion curves on CLIC Professional Valid dataset, all models are optimized with
MS-SSIM.
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Figure 15: Rate-Distortion curves on Tecnick dataset, all models are optimized with MS-SSIM.
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Figure 16: Subjective quality visualization of decoded reconstruction of various image codecs
(Zoom in for more details).

A.4 MORE ANALYSIS

In this section, we supplement more analysis and experiments of our regularization method to in-
vestigate the principles and effectiveness of it. Besides, based on this, we further explore the fun-
damental advantages and characteristics of hierarchical image codec, especially with regularized
optimization, compared to the vanilla hierarchical model with naive training approach and the best
single-scale paradigm (e.g., HPCM-Large (Li et al., 2025c)). The details are presented as follows.

Ablation study on the basic network design: Compared to the previous hierarchical coding archi-
tectures (Duan et al., 2023b), our basic model has integrated some module improvements to further
enhance its performance as shown in Fig. 9, including introducing a skip connection like FSP mod-
ule between scales and using reparameterization design in the Basicblock. To further quantify
their effects, we have supplemented relevant ablation studies here. Moreover, it is worth empha-
sizing that these designs are only aimed at improving the basic structure, which are not related to
the main contribution of this paper—the spectral analysis and regularization training of hierarchical
architectures.

The FSP module is consist of a DWT module, followed by a conv 1x1 operation and finally
transformed back to feature domain via an IDWT, serving as a skip-like component between scales
in our hierarchical coding architecture. In practice, we integrate the FSP module only during the
finetuning stage after the main regularization training, and get about 0.68% bitrate savings. However,
further experiments reveal that this gain primarily resulted from more complete finetuning under an
adjusted LR scheduler setup (i.e., ReduceLROnPlateau patience increase from 2 to 5), not from
the FSP itself. Equivalent finetuning schedules without FSP can still produce similar rate-distortion
gains, and adding FSP do not produce noticeable training speedups, too. Therefore, FSP is not
necessary for our hierarchical architecture. The ablation results are reported in Table 4

Table 4: Ablation study on the FSPmodule. (Baseline anchor for BD-Rate: VTM-22.0, Test dataset:
Kodak)

Metrics w/o FSP+wrong setup w/ FSP+full training w/o FSP+full training

BD-Rate (%) -19.05 -19.73 -19.70
Numbers of finetuning epochs (%) 46 78 74

Besides, we re-parameterize the original DWconv 3x3 of BasicBlock into a three-branch
structure, DWconv 3×3, DWconv 1×1, and identity during training. At test time these
branches are fused into a single convolution. This training-time multi-branch design effectively ex-
pands model capacity. To quantify its effect, we re-train a network without this re-parameterization
and compare R-D performance and training speed; the results are summarized in Table 5.
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Table 5: Ablation study on the re-parameterization (abbreviated as Rep.) design. (Baseline anchor
for BD-Rate: VTM-22.0, Test dataset: Kodak)

Metrics w/o Rep. w/ Rep. w/Rep. but keep similar KMACs

BD-Rate (%) -16.45 -19.73 -18.10
Numbers of full training epochs (%) 350 380 500

Why L2 distance is preferable in inter-scale regularization: In general, the gaussian distribu-
tion assumption used by the L2 loss aligns more closely with the conditional probability modeling
process p(zl | zl−1) under the gaussian approximate prior in the hierarchical structure. Using the
L2 loss can directly and effectively minimize the negative log-likelihood between zl−1 and zl (i.e.,
maximize the log-likelihood), forming a more effective mechanism in which the preceding layer
predicts the subsequent one.

The detailed derivation is as follows. We already know that in our hierarchical coding architecture,
the distribution of the prior p(z1:L) can be expressed as

p(z1:L) = p(z0)

L∏
l=1

p(zl|zl−1), (7)

where p(z0) is the probability distribution of the initial learnable bias and can be temporarily ig-
nored, while the conditional distribution p(zl | zl−1) is typically regarded as a gaussian distribution
of the form N (f(zl−1), τ

2I) in hierarchical coding or HVAE.

Its negative log-likelihood can be written as:

− log p(zl|zl−1) =
1

2τ2
||zl − f(zl−1)||2 + C, (8)

where the first term is exactly an L2 loss form. Therefore, the L2 loss is maximizing the negative
log-likelihood between the two latent layers zl−1 and zl, meaning that zl−1 can better help predict zl.
Note that our final objective is to maximize the L2 loss, namely to avoid excessive similarity between
the two latent scales, which would lead to spectral aliasing and redundant bitrate. In addition, the
ablation study in Table 3 also empirically demonstrates that the alignment effect of the L2 loss is
superior to other methods (such as L1 loss or cosine similarity).

Ablation study on different choices of the weight parameter δ: We conduct a series of training
with different values of δ to explore the optimal weight parameter. We find that setting δ too large
or too small leads to a decline in rate–distortion performance; therefore, we ultimately set δ = 0.1,
as detailed in Table 6.

Table 6: Ablation study on different choices of the weight parameter δ (Baseline: Our proposed
hierarchical architecture without integrating regularization).

Values of δ BD-Rate (%)

0.05 -7.15
0.1 -11.50
0.2 -8.68

Compression performance with respect to image resolution: Test images used in the main
text have relatively small spatial resolutions. Yet, high-definition or even ultra-high-definition im-
ages are increasingly prevalent in our daily lives, as imaging devices have advanced significantly
in recent years. We thus conduct ablation studies to evaluate the compression performance with
high-definition images. We compared the performance and complexity of the proposed hierarchical
coding model with regularization (”DHIC-Regu”), the base model without regularization (”DHIC-
Base”), as well as the latest single-scale model, HPCM-Large (Li et al., 2025c).

In practice, we utilized the LIU4K-v2 valid dataset (Liu et al., 2020), which comprises many high-
resolution, complex, and visually high-quality 4K-resolution images. Samples are downsampled
multiple times to a testing dataset with images at different resolutions. We then test the rate-
distortion performance, decoding time changes, as shown in Table 7.
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As resolution increases, the hierarchical coding structure yields larger performance gains while its
decoding time grows more slowly than that of the single-scale baseline. With additional regulariza-
tion, decoding speed remains effectively constant and performance improves further. These results
highlight the hierarchical codec’s scaling efficiency, making it well-suited to emerging real-time,
high-resolution applications.

Table 7: Compression performance and decoding complexity for images with various resolutions
(Baseline anchor for BD-Rate: VTM-22.0). The best method at each resolution is marked in blue.

Resolution Method BD-Rate (%) Decoding Time (ms)

DHIC-Base -3.27 56.59
480×270 DHIC-Regu -3.98 56.59

HPCM-Large -4.12 72.80

DHIC-Base -6.01 88.14
960×540 DHIC-Regu -7.58 88.14

HPCM-Large -7.50 189.92

DHIC-Base -10.65 341.18
1920×1080 DHIC-Regu -13.98 341.18

HPCM-Large -10.81 648.40

DHIC-Base -13.66 1297.44
3840×2160 DHIC-Regu -17.19 1297.44

HPCM-Large -12.98 2754.45

Effectiveness of our proposed regularization method at hierarchical codecs with different com-
plexity levels: Under our current network architecture, by adjusting the network width, depth, and
number of cascade modules, we obtain models at different complexity levels; the performance com-
parison is shown in Table 8. It can be observed that our method consistently yields improvements
across models of varying complexity.

Table 8: Effectiveness of our proposed regularization method on hierarchical codecs with different
complexity levels (Baseline: VTM-22.0).

Complexity (KMACs/pix) BD-Rate (%) BD-Rate w/regularization (%) Training Acceleration

356.41 3.38 -1.74 1.8×
683.89 -1.60 -11.22 2.0×
977.73 -9.62 -19.73 2.3×

Effectiveness of the proposed inter-scale regularization method in other HVAE-based frame-
work: To validate the generalizability of our proposed regularization method, we implement the
regularization on an additional, representative hierarchical coding architecture - QARV (Duan et al.,
2023a) and conduct the same experiments. Compared to the hierarchical architecture proposed and
used in the main text, QARV shares a similar pipeline but utilizes more latent blocks in the entropy
model pathway for each scale. As illustrated in Table 9, the results show that our regularization strat-
egy remains effective on QARV, yielding an approximately 1.65× training speed-up and an 8.20%
bitrate savings.

Table 9: Effectiveness of using proposed regularization on QARV (Duan et al., 2023a) (Baseline:
vanilla QARV).

Regularization Setup BD-Rate (%) Training Speed

w/ intra scale -0.42 1.53×
w/ inter scale -6.06 1.02×

w/ both -8.20 1.65×

Applicability to single-scale models with complex context modeling: Although the proposed
regularization method is designed to address the spectral issues observed on multi-scale latents in
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hierarchical structures. But further, we are also curious whether this approach is equally effective on
different slices in the context modeling process of a single-scale structure. To this end, we conduct
experiments on three representative single-scale codecs with different advanced contexts, ELIC (He
et al., 2022), MLIC++ (Jiang et al., 2025), and HPCM (Li et al., 2025c). The results are illustrated
in Table 10 below.

Table 10: Further results of integrating the proposed regularization methods (abbreviated as Regu.)
on three single-scale codec. (Baseline anchor for BD-Rate: VTM-22.0, Test dataset: Kodak)

Codecs Metrics w/o Regu. w/ Regu.

ELIC BD-Rate (%) -3.56 -3.88
Number of epochs 220 205

MLIC++ BD-Rate (%) -9.22 -2.56
Number of epochs 525 490

HPCM BD-Rate (%) -15.55 -7.67
Number of epochs 475 490

It can be seen that integrating the proposed regularization on ELIC (He et al., 2022) can bring slight
performance and training speed gains, but it is not as obvious as our hierarchical structure. In the
context modeling processes of MLIC++ (Jiang et al., 2025) and HPCM (Li et al., 2025c), which
are more complex, performance degradation even occurs. This suggests that additional customized
designs may be needed to adapt to single-scale VAEs, which is also a promising direction for our
future work.

In depth, We analyze the essential differences between hierarchical coding structures and single-
scale ones with various context modeling process.

Hierarchical models perform explicit scale-by-scale transformations that naturally produce multi-
scale latents, where each scale roughly corresponds to a specific frequency band. Finally, it can
conduct scale-wise coding process by using upper-scale latent as a condition to assist in modeling
lower-scale one. Based on this, integrating the proposed intra-scale and inter-scale explicit regu-
larization into this process, essentially corresponds scale-by-scale to the entire pipeline of model
feature transformation, latent modeling, and decoding reconstruction, making it easier to address
issues such as spectral energy dissipation within scales and spectral aliasing between scales.

By contrast, for single-scale models with various context modeling, they rely on powerful condi-
tional modeling capabilities to directly fit the single-scale latent conditional distribution. Essentially,
it is still a conditional probability modeling of the single-scale latent obtained from a single-scale
transformation (the hierarchical design in HPCM Li et al. (2025c) is also a hierarchical conditional
probability modeling of the single-scale latent). There is no explicit multi-scale transformation of
the input signal corresponding to the multi-scale latent design, so it cannot guarantee the natural
frequency decomposition process. In other words, in the context modeling process, it is difficult
to ensure that different slice components of a single-scale latent can be effectively decomposed on
the spectrum and modeled scale by scale. Blindly using such regularization may even disrupt the
original context modeling design.

B THE USE OF LARGE LANGUAGE MODELS

We would like to acknowledge the assistance of AI tools in improving the expression of partial
writing in this paper. All ideas, methods, code implementations, experiments, and the overall con-
ceptualization of this work were independently developed by the authors, with no involvement of
AI.
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