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Abstract

There is growing interest in using machine learning (ML) to support clinical diag-
nosis, but most approaches rely on static, fully observed datasets and fail to reflect
the sequential, resource-aware reasoning clinicians use in practice. Diagnosis
remains complex and error prone, especially in high-pressure or resource-limited
settings, underscoring the need for frameworks that help clinicians make timely
and cost-effective decisions. We propose ACTMED (Adaptive Clinical Test selection
via Model-based Experimental Design), a diagnostic framework that integrates
Bayesian Experimental Design (BED) with large language models (LLMs) to better
emulate real-world diagnostic reasoning. At each step, ACTMED selects the test
expected to yield the greatest reduction in diagnostic uncertainty for a given patient.
LLMs act as flexible simulators, generating plausible patient state distributions
and supporting belief updates without requiring structured, task-specific training
data. Clinicians can remain in the loop; reviewing test suggestions, interpreting
intermediate outputs, and applying clinical judgment throughout. We evaluate
ACTMED on real-world datasets and show it can optimize test selection to improve
diagnostic accuracy, interpretability, and resource use. This represents a step to-
ward transparent, adaptive, and clinician-aligned diagnostic systems that generalize
across settings with reduced reliance on domain-specific data.

1 Introduction

Clinical diagnosis is a fundamental step in modern medical practice [1], providing the framework
for future investigations and guiding treatment decisions, often determining patient outcomes. Yet it
remains complex and error-prone, especially in fast-paced or resource-limited settings [2], where
delays, misdiagnoses, and over-testing pose persistent global challenges [3], [4]. Additionally, the
WHO projects a global shortage of more than 12 million qualified health professionals by 2035 [5].
Machine learning (ML) has emerged as a promising tool to support clinicians by improving diagnostic
accuracy, optimizing test selection, and enabling earlier disease detection [6]–[9]. However, many
current ML models operate under unrealistic assumptions, such as complete data availability [10],
and fail to reflect the iterative, context-aware decision-making used by human clinicians [11].

Clinical diagnosis. Clinical diagnosis has traditionally followed local or national guidelines based
on clinical trials and expert consensus [12], [13]. Although such guidelines improve outcomes by
standardizing care, they are population-based and often inefficient at the individual level, with an
estimated 40 to 60% of diagnostic tests being unnecessary [14]. Resource constraints further hinder
access; for example, around 15% of clinician-ordered genetic tests go unperformed due to financial
barriers [15]. In response, machine learning (ML) models have been proposed to support more
personalized and efficient test ordering [16]. However, for these models to gain trust and adoption,
they must be transparent and aligned with clinicians’ reasoning processes [17], [18].
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Current models for diagnosis. The diagnostic process is inherently sequential, involving stepwise
information gathering from patient examinations and tests [19]. Clinicians aim to achieve accurate
early diagnoses while minimizing diagnostic costs, as timely intervention can significantly improve
outcomes [20]–[22]. Prior models for early diagnosis often target a single disease and rely on
specific modalities such as blood tests or imaging [23]–[25], which typically require large training
data sets and assume full availability of modality [26]. In reality, this assumption rarely holds, and
while imputation methods can handle missing data, they often introduce bias [10]. Additionally,
many models treat diagnosis as a static classification task, overlooking the inherently dynamic and
progressive nature of disease development and clinical reasoning. State-space models have been
developed to capture disease trajectories [27]–[29], but they also require extensive retraining and
struggle with balancing information acquisition costs [30]. Consequently, there remains a gap for
generalizable frameworks that can reason dynamically under uncertainty and resource constraints
[22], [31].

LLMs for clinical diagnosis. Recent advances in large language models (LLMs) have sparked
interest in their use as general-purpose tools for medical decision-making [32], [33]. LLMs perform
well on medical licensing exams [18], [34], [35] and are particularly effective in zero-shot settings
[36], [37]. However, their direct deployment in clinical contexts faces challenges, including limited
transparency and interpretability [38]. While chain-of-thought prompting improves interpretability
[39], LLMs often deviate from the probabilistic optimum, although fine-tuning can improve their
probabilistic reasoning [40]. Furthermore, recent work shows that LLM explanations often do not
reflect their true internal reasoning processes, raising concerns about the faithfulness of chain-of-
thought outputs [41]. It has also been shown that LLMs can approximate structured decision-making
tasks, such as Bayesian optimization or decision tree induction, by leveraging latent inductive biases
learned from large-scale text corpora [42]–[44]. Additionally, shifting LLM reasoning to the natural
language solution space has been shown to enhance decision quality [45].

Contributions. 1 We motivate and formalize a transparent, stepwise diagnostic framework
that aligns with clinical reasoning. 2 We propose ACTMED, a probabilistic approach to timely
diagnosis that uses Bayesian Experimental Design with LLMs to adaptively select tests based
on their expected diagnostic utility. 3 We show that shifting reasoning from the LLM to the
natural language output space can improve clinical decision-making. 4 We validate ACTMED on
real-world datasets, demonstrating its ability to optimize test selection and improve diagnostic
accuracy, interpretability, and resource use. This framework ultimately contributes to more
transparent, adaptive, and clinician-aligned diagnostic processes.

2 Problem formalism

Agent-based diagnosis model. Let T = {1, 2, . . . , Tmax} denote the discrete time horizon repre-
senting stages in the decision process. The space of natural language is denoted by Σ, and S ∈ Σ
represents the natural language instructions provided to the agent at each stage. The agent must return
a diagnosis dt ∈ Dt ⊂ Σ, where Dt is the set of possible diagnoses at time t. We assume that a
patient may present with a subset of all possible diagnoses Dtrue,t ⊂ Dt. The agent independently
estimates the posterior probability P (ydt

= 1 | Kt) for each diagnosis dt ∈ Dt, where Kt is the
information available at time t, and the belief is updated dynamically as new information is acquired.

At each time step t ∈ T , the agent observes a subset Kt ⊂ Xt of ground truth information Xt ⊂ Σ,
and may request additional information U ′

t ∈ Ut from an external source, with Ut = Xt \Kt. Here,
U ′
t denotes the random variable corresponding to the requested test, while its realized outcome is

written u′
t. The agent’s objective is to minimize diagnostic error while penalizing costly information

acquisition through a joint Lagrangian objective:

L(y, ut, λ) =
∑
t

I[y ̸= ydt
] + λ

∑
t

c(ut), (1)

where c(ut) denotes the cost of the requested information and λ is a weighting parameter controlling
the trade-off between diagnostic accuracy and test cost.

Optimal diagnostic test selection. The challenge of optimal diagnostic test selection within
Bayesian Experimental Design (BED) is to identify the test, U (i)

t , that provides the greatest informa-
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Figure 1: Illustration of KL divergence-based diagnostic test selection. (A) The agent begins with an
initial prior belief about the likelihood of each diagnosis (blue), which represents current uncertainty,
and seeks to approximate the unobserved true posterior (black dashed). (B) For each candidate
diagnostic test, the agent uses a surrogate model to simulate possible posterior distributions (gray)
conditioned on hypothetical outcomes, and computes the Kullback–Leibler (KL) divergence between
each simulated posterior and the prior. (C) The test whose expected KL divergence is greatest (green)
is selected, as it is expected to yield the largest information gain. After the test result is observed, the
agent updates its belief to a new posterior distribution (orange).

tional utility regarding a diagnostic label, ydt
. We consider a binary classification (e.g., sick/not sick),

though this framework extends to multiple diagnoses by independent simultaneous application. The
core objective is to select tests that maximally reduce epistemic uncertainty, the uncertainty stemming
from our limited knowledge or model imperfections, which is reducible with new data, as opposed to
aleatoric uncertainty, which is inherent system randomness.

To model the impact of potential information U
(i)
t , we employ a surrogate model to draw M

hypothetical realizations u
(i,j)
t ∼ P (U

(i)
t ). For binary classification, we assume the posterior

distribution P (ydt = 1 | Kt, u
(i,j)
t ) follows a Bernoulli distribution B(pi), where pi ∈ [0, 1] is

the success probability. In clinical practice, a test’s value lies not just in reducing uncertainty, but
in meaningfully shifting the probability of disease presence, especially across decision thresholds
relevant to treatment decisions. While entropy-based formulations can be used, they may sometimes
prioritize tests that reinforce confident but incorrect predictions. For instance, when a patient is
initially assigned a very low disease probability, a truly informative test may increase this belief
substantially. However, a test with no real diagnostic value might keep the prediction near zero,
deceptively minimizing entropy (see Appendix B).

The information gain can also be expressed as the difference in KL divergence between the posterior
and prior distributions of ydt . Maximizing this expectation ensures the selection of tests whose
outcomes, on average, induce the most significant and diagnostically meaningful shifts in belief.
This aligns with the core BED principle of maximizing information gain and directly addresses the
clinical need to understand how a test will alter diagnostic probabilities, especially concerning critical
decision thresholds. Given the unknown nature of these prior and posterior distributions, we utilize
our surrogate model to generate samples j representing hypothetical test results. Let pprior represent
the prior, and ppost the posterior probability distribution: p

(j)
prior ∼ P (ydt

= 1 | Kt), p
(j)
post ∼

P (ydt
= 1 | Kt, u

(i,j)
t ). The expected KL divergence is then computed as the average KL divergence

over the M samples from both distributions:

E[KL(B(ppost) ∥ B(pprior))] =
1

M

M∑
j=1

p
(j)
post log

(
p
(j)
post

p
(j)
prior

)
+
(
1− p

(j)
post

)
log

(
1− p

(j)
post

1− p
(j)
prior

)
. (2)

The optimal test U
(i∗)
t is the one that maximizes this expected KL divergence, i.e. i∗ =

argmaxi E[KL(B(ppost) ∥ B(pprior))]. The process of KL-guided diagnostic test selection and belief
updating is illustrated in Figure 1. A full derivation is included in Appendix B.

Example 1: An agent is tasked with diagnosing chronic kidney disease (CKD), aiming to
establish the correct diagnosis dt as early as possible while minimizing additional diagnostic
evaluations U (i)

t due to budget constraints and test delays. At each time point t, the agent has
access to clinical information Kt, including demographics and previous test results, and can
request further information U

(i)
t , such as lab tests or imaging, to refine the diagnosis dt.
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Figure 2: Overview of ACTMED. A clinician queries the system (Step 1), prompting the agent to
estimate prior disease risk. The agent simulates test outcomes (Step 2), updates beliefs (Step 3), and
computes expected KL divergence to select the most informative test (Step 4). The clinician reviews
and conducts the test (Steps 5–6), updates the context (Step 7), and the process repeats iteratively.

3 ACTMED: Probabilistic reasoning for clinical diagnosis

Surrogate model sampling. ACTMED estimates the expected utility of potential diagnostic tests
by evaluating their hypothetical impact on posterior diagnostic beliefs. At each time step, for every
candidate test U (i)

t ∈ Ut, the agent draws a set of plausible outcomes u(i,j)
t ∼ P (U

(i)
t | Kt), where

Kt denotes the current patient knowledge base. Each hypothetical outcome u
(i,j)
t induces a posterior

probability P (ydt = 1 | Kt, u
(i,j)
t ), allowing estimation of the expected information gain associated

with performing that test.

This process requires a reliable mechanism for approximating the conditional outcome distribution
P (U

(i)
t | Kt)—that is, for predicting what values a test might realistically produce given the

patient’s current profile. In well-characterized physical systems, such distributions can be modeled
mechanistically, and Bayesian Experimental Design (BED) has been successfully applied in domains
such as engineering [46], physics [47], and neuroscience [48]. In clinical and biomedical contexts,
however, the underlying dynamics are rarely known in closed form: interactions among physiological,
biochemical, and behavioral variables are nonlinear, high-dimensional, and only partially observable
[49]. This renders direct physical modeling infeasible and motivates the use of data-driven surrogates
capable of capturing complex empirical relationships between tests and patient states.

LLM-driven sampling for ACTMED. To overcome the absence of explicit mechanistic models, we
introduce Large Language Models (LLMs) as flexible generative surrogates that encode prior medical
knowledge learned from large-scale clinical and biomedical corpora. When prompted with structured
patient information Kt, an LLM acts as a conditional sampler from an implicit joint distribution over
diagnostic variables. In this setup, the model generates plausible realizations u(i,j)

t for unobserved
tests U (i)

t , effectively approximating P (U
(i)
t | Kt) without requiring explicit mechanistic equations

or task-specific fine-tuning. These generated samples allow ACTMED to simulate how new evidence
would alter diagnostic beliefs and, consequently, to compute the expected information gain before
any real test is performed. Prior studies have demonstrated that LLMs can anticipate clinical test
outcomes and model disease trajectories with high fidelity [50], suggesting that they encode inductive
biases suitable for probabilistic reasoning in diagnostic decision-making. Figure 2 illustrates how
ACTMED supports clinician-driven diagnostic reasoning.

We quantify the diagnostic value of each candidate test using an information-theoretic cost–benefit
criterion. Let I(U (i)

t ) := E[KL(B(ppost) ∥ B(pprior))] denote the expected information gain obtained
from performing test U (i)

t . To account for practical constraints such as test invasiveness, financial cost,
and time delay, we include a cost term c(U

(i)
t ) in the decision objective. Relaxing the Lagrangian

formulation in Eq. (1) and assuming logarithmic scaling of cost, c(U (i)
t ) = log c∗(U

(i)
t ), we define

4



the normalized utility:

F(U
(i)
t ) =

I(U
(i)
t )

c(U
(i)
t )

.

This formulation prioritizes tests that maximally reduce epistemic uncertainty relative to their expected
cost, enabling efficient, interpretable, and resource-aware diagnostic reasoning.

ACTMED selects the next diagnostic test at each time step t as follows:

1. Initialize the prior belief pprior = P (ydt = 1 | Kt) based on current knowledge Kt.

2. For each candidate test U (i)
t , sample M possible outcomes {u(i,j)

t }Mj=1 ∼ P (U
(i)
t ).

3. Compute posterior beliefs p(i,j)post = P (ydt = 1 | Kt, u
(i,j)
t ).

4. Estimate expected information gain E[KL(B(ppost) ∥ B(pprior))] and define utility F(U (i)
t ).

5. Select the most informative test U (i∗)
t = argmaxi F(U (i)

t ) and observe outcome û
(i∗)
t .

6. Update the knowledge base: Kt+1 ← Kt ∪ {û(i∗)
t }.

Deciding when to stop information acquisition. Our KL divergence-based criterion naturally supports
adaptive test acquisition by recommending a new test only when it is expected to significantly update the current
belief. At each step, the agent maintains a disease belief pprior ∈ [0, 1]. Diagnosis proceeds until this belief is
sufficiently confident, measured relative to a decision threshold θ = 0.5, regardless of the expected results of any
further tests. We define the confidence gap as δ = |pprior − θ|, and set a target posterior belief qtarget = θ ± γδ,
where 0 ≤ γ ≤ 1 is a hyperparameter that controls the desired confidence margin before stopping. The sign is
chosen to move the target posterior toward the decision boundary θ; the hyperparameter γ controls how much of
that distance is required to justify acquiring the test. A test is acquired only if the expected KL divergence from
the current belief to the candidate posterior satisfies: E[KL(B(ppost) ∥ B(pprior))] ≥ E[KL(B(qtarget) ∥ B(pprior))].
Further tests are acquired only if at least one remaining test is expected to meaningfully shift the current belief;
otherwise, the model is sufficiently confident that no additional information, regardless of outcome, would alter
the prediction.

Mitigating LLM hallucinations. We utilize LLMs as surrogate models for BED, employing structured
prompts with three components: 1 Context specification: A brief description of the clinical scenario and
disease. 2 Known information (Kt): Clinical observations and test results available at time t formatted in
a clinical vignette (see Appendix C). 3 Task-specific instruction: Directives for the model’s output, such
as predicting test outcomes u(i,j)

t ∼ P (ui
t), diagnosis probabilities P (ydt = 1 | Kt), or selecting the most

informative next test. Full prompt examples are given in Appendix D.

Encouraging diverse test result sampling. We enhance model robustness and capture diagnostic uncer-
tainty with three strategies: 1 Avoiding population averages: The model is prompted to sample from a broader
distribution of possible outcomes. 2 Increased sampling temperature: This introduces greater randomness,
reflecting higher uncertainty and improving prediction diversity. 3 Sampling both disease presence and
absence: The model is instructed to sample outcomes under both conditions to ensure balanced and varied
predictions.

4 Experiments

We evaluate two central hypotheses derived from the discussions in the previous sections:

• H1) Large Language Models (LLMs) can accurately approximate the distributions of diagnostic test
outcomes based on available patient information.

• H2) Incorporating LLM-based Bayesian Experimental Design (BED) enables more accurate and
efficient diagnosis through adaptive, information-driven test selection.

To examine these hypotheses, we design experiments spanning three progressively challenging diagnostic tasks,
each corresponding to a distinct and clinically relevant disease context.

Chronic Kidney Disease (CKD) affects over 700 million people worldwide and is responsible for more than 3
million deaths annually. Early detection is essential for slowing disease progression and preventing renal failure
[51]. Hepatitis C infects approximately 57 million people and causes around 300,000 deaths each year. Its
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diagnosis is often delayed because it relies on specialized confirmatory tests, underscoring the need for surrogate
blood-based indicators [52], [53]. Diabetes, which affects roughly 500 million individuals globally, remains a
leading cause of cardiovascular disease and premature mortality. These three single-condition datasets provide
controlled environments to assess ACTMED’s diagnostic reasoning, and test-selection efficiency across patient
cohorts. They allow fine-grained comparison of how well LLM-driven surrogate sampling aligns with empirical
data and whether adaptive BED reasoning leads to more efficient diagnostic strategies.

To evaluate generalization beyond these controlled settings, we further introduce a custom OSCE-style (Objective
Structured Clinical Examination) dataset derived from AgentClinic [54]. This dataset comprises diverse, multi-
condition clinical cases designed to mimic real-world diagnostic encounters, where the agent must reason across
varying clinical contexts. It serves as a robust stress test for zero-shot diagnostic generalization, assessing
whether the proposed framework can transfer its reasoning beyond narrowly defined single-disease tasks.

4.1 LLMs accurately predict distributions of diagnostic tests

Table 1: Normalized distribution matching
metrics (lower is better). Average Wasser-
stein and Energy Distance (mean ± std).
Dataset Model Wasserstein Energy

Diabetes GPT-4o 0.110 ± 0.038 0.256 ± 0.079
GPT-4o-mini 0.117 ± 0.046 0.269 ± 0.094

Hepatitis GPT-4o 0.130 ± 0.157 0.265 ± 0.191
GPT-4o-mini 0.173 ± 0.237 0.330 ± 0.254

Kidney GPT-4o 0.082 ± 0.055 0.203 ± 0.102
GPT-4o-mini 0.082 ± 0.057 0.203 ± 0.104

Surrogate sampling evaluation. The fidelity of surro-
gate samples generated by LLMs is critical for the reliability
of our Bayesian diagnostic framework. For each patient, the
model was tasked with sampling ten plausible outcomes for
every missing laboratory feature, conditioned on the available
clinical context. The resulting synthetic feature distributions
were then compared to the empirical distributions observed
in the real datasets. Table 1 reports normalized Wasserstein
and Energy distances between LLM-generated and empirical
feature distributions, providing quantitative measures of dis-
tributional alignment. Across all datasets, GPT-4o achieved
the lowest average distances, indicating strong agreement
with real-world feature distributions. GPT-4o-mini showed slightly higher divergence, consistent with its smaller
model capacity. These results confirm that both models generate physiologically coherent and statistically
realistic samples suitable for surrogate-based Bayesian Experimental Design. Feature-level deviations are
visualized in Fig. 3, which illustrates per-test mean absolute error (MAE) across five random seeds, highlighting
that most biomarkers are reproduced with high fidelity, with slightly higher errors observed for high-variance
biochemical markers. The complete distributions produced during the sampling are shown in Appendix E.

4.2 LLM-based BED improves diagnostic accuracy and efficiency
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Figure 3: Feature sampling performance.
Heatmap showing the best MAE percentage
for each test averaged across 5 seeds.

Timely diagnosis under resource constraints. We
evaluate diagnostic accuracy under the constraint of acquir-
ing only three clinical tests per patient, simulating real-
world limitations such as acquisition delays and resource
costs. Although our framework can accommodate arbitrary
test cost functions, we use uniform costs across tasks to
maintain consistency, as defining task-specific costs would
require expert clinical input. Importantly, ACTMED is model-
agnostic: its performance depends on the quality of the
underlying surrogate model rather than any specific LLM
architecture. We validate this by applying it across models
of varying capacity; GPT-4o-mini and GPT-4o. Details for
all datasets are given in Appendix C. We also provide a de-
tailed failure analysis of ACTMED when using less powerful
models that do not produce accurate samples in Appendix
E.

We benchmark ACTMED against the following baselines that
use the same models and risk prediction prompts to show
how our approach can improve the performance of specific
models:

➢ LLM classifier: No three-feature constraint; uses all features for direct classification.
➢ Random selection: Picks three features randomly as a stochastic baseline.
➢ Global best fixed subset: Selects a predefined set of three features prior to observing individual patient

data for the task, mimicking diagnostic guidelines.
➢ Implicit selection: Selects three features actively using LLM reasoning at each step without Bayesian

modelling.
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Figure 4: Model accuracy across methods and datasets. Bars show mean accuracy over five seeds;
error bars indicate standard deviation.

Chronic Kidney Disease (CKD). Chronic kidney disease is typically diagnosed using biomarkers such as
serum creatinine or glomerular filtration rate (GFR), with well-established clinical thresholds [51]. As a result,
this represents a relatively straightforward classification task. Both models achieved near-perfect accuracy, even
under feature selection constraints, indicating that LLMs possess strong prior knowledge of CKD’s clinical
presentation. This highlights their potential to support diagnostic decision-making in settings where key features
are well understood. Consequently, we focus subsequent analysis on more challenging tasks, such as hepatitis
and diabetes, where diagnostic ambiguity is higher and performance depends more heavily on effective test
selection. Full performance metrics for all datasets and feature selection evaluation are provided in Appendix E.
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Figure 5: Sequential diagnosis refinement.
Accuracy improves as additional tests are ac-
quired; error bars show standard deviation
across datasets.

Hepatitis. This task focuses on diagnosing hepatitis C
using liver function tests [52]. Unlike CKD, hepatitis C
often produces subtle and non-specific alterations in blood
biomarkers, which can also be influenced by a range of
other conditions. In our experiments, ACTMED consistently
outperformed other feature selection methods across all
model types (see Figure 4). Small improvements in GPT-4o
compared to GPT-4o-mini are also noted. Interestingly, it
even surpassed the full-information baseline, indicating that
the targeted selection of informative features can improve
diagnostic precision. This effect is visualized in Figure 5,
which shows a clear increase in the average diagnostic
accuracy across all datasets using ACTMED as additional
features are acquired sequentially.

Diabetes. Diagnosing diabetes is the most challenging
of the three tasks, as no single definitive test is available in
the datasets. Instead, diagnosis must be inferred by synthesizing multiple indirect indicators; such as blood
glucose, body mass index (BMI), and blood pressure; to estimate overall disease risk [55]. Across both models,
ACTMED consistently outperformed all other baselines, including the full-information setting. Performance further
improved with the more capable GPT-4o model, highlighting the benefit of stronger underlying surrogate models.
These results suggest that deliberate, targeted test acquisition not only enhances diagnostic accuracy but also
improves generalization by reducing the influence of irrelevant or misleading features [56].

4.3 Implicit Selection Lacks Personalization

For the datasets where the baseline feature selection by the model performed notably worse than ACTMED, we
further analysed the tests selected by each method by evaluating how frequently models chose features identified
as globally optimal prior to observing any patient-specific data (see Figure 6). Random selection serves as a
stochastic baseline. Across all model-dataset pairs, implicit selection methods showed a strong bias toward
globally optimal features, significantly more so than ACTMED. This effect was especially pronounced in the
diabetes dataset, where both models almost exclusively selected globally optimal features, despite ACTMED
achieving higher predictive accuracy. These findings suggest that LLM-based implicit selection may struggle
to capture patient-specific uncertainty and adaptively personalize test acquisition, relying instead on prior
knowledge about general test utility. A more detailed feature selection analysis is performed in Appendix E.
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4.4 KL-Based Stopping Minimizes Redundant Testing
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Figure 6: Feature selection analysis. Average se-
lection frequency and variability across five ran-
dom seeds are compared against the three globally
optimal features. The implicit model consistently
favours these global features with low variability,
indicating limited personalization across patients.

ACTMED not only provides greater transparency than
implicit feature selection methods by generating in-
termediate outputs and utilizing Bayesian test selec-
tion, but also introduces a principled stopping crite-
rion for diagnostic testing based on the expected shift
in the posterior distribution, measured by KL diver-
gence. A representative example in Table 2 shows
that KL divergence consistently decreases across se-
lection rounds, naturally allowing the stopping crite-
rion to trigger when the expected informational gain
becomes negligible. We evaluated this criterion us-
ing thresholds γ ∈ {0.3, 0.5, 0.7}, which represent
varying levels of evidence required to continue test-
ing. Baselines based on implicitly selected features
or global optima did not allow early stopping and
had access to all three selected tests. Our KL-based
stopping method achieved superior accuracy with sig-
nificantly fewer diagnostic steps (see Figure 7). As
expected, higher values of γ reduce the number of
diagnostic tests selected. At the conservative threshold (γ = 0.6), it reduced the average number of tests to
under two across all datasets and models, except for the hepatitis dataset with GPT-4o. The method reduces
overall diagnostic burden by nearly 50% while providing comparable or superior accuracy compared to baseline
feature selection (see Table 3).

4.5 Clinician-in-the-loop evaluation

Table 2: Representative fea-
ture selection rounds from the
Hepatitis C dataset. Darker
blue indicates higher KL diver-
gence.
Selection 1 Selection 2 Selection 3

ALB: 0.066 ALB: 0.014 ALB: 0.016

ALP: 0.041 ALP: 0.028 —

ALT: 0.172 ALT: 0.014 ALT: 0.019

AST: 0.316 — —

BIL: 0.191 BIL: 0.025 BIL: 0.012

CHE: 0.137 CHE: 0.016 CHE: 0.015

CHOL: 0.124 CHOL: 0.020 CHOL: 0.016

CREA: 0.084 CREA: 0.021 CREA: 0.016

GGT: 0.138 GGT: 0.006 GGT: 0.018

PROT: 0.126 PROT: 0.020 PROT: 0.020

We conducted a clinician-in-the-loop evaluation involving three experi-
enced clinicians and two senior medical students, assessing a total of 450
diagnostic test decisions (10 simulated diagnostic traces across the three
datasets, each reviewed by five evaluators with three decisions per trace).
Experts judged ACTMED’s test selections and resulting risk adjustments as
clinically reasonable in 94.5± 1.4% of cases, underscoring its reliability
as a decision-support tool. Clinicians emphasized that they would be reluc-
tant to trust diagnostic suggestions from a purely black-box LLM without
transparent reasoning. In contrast, ACTMED’s step-by-step decision process
was repeatedly praised for fostering confidence in the system’s reasoning.

Several clinicians remarked that ACTMED’s Bayesian decision framework
closely reflects their own reasoning process when selecting diagnostic tests
under uncertainty, particularly in situations lacking explicit clinical guide-
lines. They also noted instances where real-world practice departs from a
purely Bayesian rationale—for example, when standardized protocols pre-
scribe a specific test (such as PCR for COVID-19 diagnosis) or when certain
screening procedures are routinely performed despite limited diagnostic
yield (e.g., broad cancer panels). Nonetheless, participants emphasized that
decision-support systems are most valuable in non-trivial clinical scenarios,
where genuine uncertainty exists and no clear diagnostic pathway is defined.

4.6 OSCE-style evaluation

The three datasets discussed above each represent a single-diagnosis task. While this setting is well-suited to
analyze ACTMED’s behaviour in controlled diagnostic contexts such as test selection, it does not fully capture the
diversity of clinical reasoning required in practice. To evaluate ACTMED’s performance in a more realistic scenario,
we constructed a custom OSCE-style dataset based on cases from the AgentClinic framework [54]. We selected
114 representative cases with sufficiently rich test results and generated corresponding synthetic negatives
by adjusting laboratory values toward physiological ranges that make the diagnosis unlikely. This allowed us
to assess both diagnostic discrimination and generalization under realistic clinical variability. Across these
multi-diagnosis settings, ACTMED continued to outperform baseline methods, maintaining superior calibration
and diagnostic accuracy (see Figure 4). These results suggest that ACTMED’s sequential Bayesian reasoning
scales effectively to diverse and complex diagnostic tasks, further supporting its potential for integration into
clinical assessment frameworks such as OSCEs.
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5 Discussion
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Figure 7: KL-based early stopping criterion eval-
uation. Bars represent the mean accuracy across
5 seeds, with error bars indicating standard devia-
tion.

BED improves LLM-based clinical diagno-
sis. ACTMED, integrating Bayesian Experimental
Design (BED) decision-making with large language
models (LLMs), outperforms naive LLM-based fea-
ture selection methods in accuracy, cost-awareness,
personalization, and interpretability across several
datasets. In the hepatitis and diabetes datasets it
even surpasses the baseline model that uses all avail-
able features. While this may seem counter-intuitive,
it aligns with traditional machine learning findings
where feature selection reduces noise and over-fitting
[57]. Implicit sequential and global selection strate-
gies provide strong baselines but occasionally fail
to identify the most informative features. We hy-
pothesize this arises from the model’s difficulty in
accurately representing how test results influence di-
agnostic risk due to limited domain-specific data. By
shifting reasoning from the input space to the solution space, our framework enables better probabilistic inference
for test selection, improving decision-making under resource constraints and leveraging LLMs’ strength in
contextual prediction while compensating for their limitations in Bayesian reasoning.

Comparisons to other diagnostic frameworks. Conventional clinical diagnosis relies on rule-based,
population-derived guidelines that generalize well but often lack personalization and may delay detection,
especially in asymptomatic patients [58]. While machine learning (ML) and deep learning (DL) approaches
promise earlier detection, they are typically task-specific, lack individualized reasoning, and offer limited
transparency. Even interpretability techniques such as attention maps fall short in addressing the broader need for
explainable and collaborative decision-making. Recent efforts have begun applying LLMs to clinical diagnosis,
but naive implementations have proven inadequate [38], particularly in our study, where LLMs struggled with
personalization and had limited ability to assess the effectiveness of candidate tests. Our framework addresses
these challenges by leveraging the generative strengths of LLMs within a BED framework. This enables explicit
reasoning under uncertainty, personalized diagnostic pathways, and principled test selection based on expected
information gain. Importantly, it also supports transparency by incorporating clinicians in the process [39]. A
summary comparison of capabilities is presented in Table 4.

Table 3: Average number of tests selected under KL-based
termination for varying γ values. Higher γ requires stronger
evidence to continue testing. Results are reported as mean ± stan-
dard deviation across five random seeds.

Model γ Hepatitis Diabetes Kidney

GPT-4O-MINI
0.3 2.36± 0.68 2.45± 0.71 1.60± 0.75
0.5 1.87± 0.77 2.09± 0.75 1.48± 0.68
0.7 1.48± 0.73 1.90± 0.74 1.28± 0.52

GPT-4O
0.3 2.67± 0.60 2.27± 0.84 1.35± 0.64
0.5 2.41± 0.67 1.90± 0.89 1.09± 0.35
0.7 2.27± 0.65 1.69± 0.84 1.04± 0.24

Clinical relevance. Our frame-
work’s key advantage over standard
end-to-end classifiers is its ability
to involve clinicians directly in the
diagnostic process. At each deci-
sion step, clinicians can review sim-
ulated test outcomes and assess their
impact on diagnostic probabilities
(see Appendix E). The framework
issues test recommendations rather
than fixed decisions, allowing clini-
cians to override suggestions based
on context and re-query with alter-
native test results. While capable of
providing a final disease prediction, the model serves primarily as a decision-support tool, leaving diagnostic
judgment to the clinician. By highlighting the most informative tests, it streamlines clinical reasoning and
reduces cognitive burden. We emphasize that current LLMs are not yet ready for direct autonomous diagnosis
but may be better suited as decision-support tools, assisting clinicians in structuring and refining the diagnostic
process. Importantly, safety can be enhanced by constraining the model to recommend only tests that are
clinically approved for the suspected conditions, ensuring alignment with established diagnostic pathways and
regulatory guidelines.

Limitations. Our evaluation is currently constrained by dataset scale and scope. The combined sample size
across all datasets is approximately 1,000 patients, with a limited number of covariates per condition. Each
task is framed as a binary diagnostic decision, though the framework is applied across multiple distinct diseases
rather than within a single multi-label setting. Extending ACTMED to larger, more heterogeneous datasets with
richer feature spaces and overlapping comorbidities would better reflect the complexity of real-world clinical
diagnosis.
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Table 4: Capability matrix for clinical reasoning approaches. Only our proposed framework
satisfies all key criteria for transparent, timely diagnosis under resource constraints.

Method Timely Diagnosis Personalized Reasoning Resource-Constrained Zero-Shot Generalization Unstructured Data Transparent Explanations

Rule-Based Systems ✗ ✗ ✓ ✓ ✗ ✓

Classical ML ✓ ✗ ✗ ✗ ✗ ~
Deep Learning ✓ ✗ ✗ ✗ ✗ ✗

Naïve LLM ✓ ✗ ✗ ✓ ✓ ✗

Ours (ACTMED) ✓ ✓ ✓ ✓ ✓ ✓

Our framework is also currently limited to binary classification. Future work should extend evaluation to
multi-label datasets and co-morbidities for broader clinical applicability. The diagnostic process considers
only categorical and numerical features, with free-text outputs (e.g., imaging or pathology reports) not yet
incorporated, though structured representations could be included. While LLMs can interpret free-text, this adds
complexity beyond our current structured setting. Additionally, our method requires more LLM queries than
simpler heuristics, which may pose challenges in resource-constrained environments. However, in high-stakes
domains such as healthcare, the added computational cost is justified by improved decision-making, reduced
uncertainty, and fewer unnecessary tests.

ACTMED also depends on strong, high-capacity LLMs to generate physiologically coherent feature distributions
and uncertainty-aware predictions. Simpler models fail to reproduce accurate surrogate samples or stable
posterior estimates, underscoring the current reliance on foundation-scale models. LLMs are often criticized for
their black-box nature and susceptibility to hallucinations. While these issues persist, our framework mitigates
them by generating interpretable intermediate outputs, such as sampled feature distributions and uncertainty-
calibrated diagnostic probabilities, thereby improving transparency in the reasoning process. Biases in model
behavior also remain a concern, particularly for under-represented patient subgroups. By explicitly exposing
how test results influence posterior diagnostic beliefs, clinicians can better identify and assess such biases in real
time, enabling oversight and corrective action when needed.

Clinical diagnosis generally follows a two-step process [19]: (1) an initial assessment, where the clinician
formulates a primary diagnosis and a list of differential diagnoses, and (2) a targeted testing phase to confirm or
refute these hypotheses. Our implementation of ACTMED addresses the second step by optimizing test selection
across individual diseases, independent of how the differential list is generated. This one-vs-all formulation
mirrors established clinical reasoning practices such as the Wells score for deep vein thrombosis [59] and
the CHA2DS2-VASc score for atrial fibrillation-related stroke [60] where each disease likelihood is evaluated
separately. While ACTMED can in principle be extended to sequentially handle multiple conditions, our present
experiments focus exclusively on binary disease-specific tasks and do not include multi-label datasets.

Conclusions and Impact. We present ACTMED, a probabilistic framework for clinical diagnosis that uses
sequential, information-theoretic decision-making to refine beliefs about disease states. Unlike traditional
diagnostic models, our approach actively selects and interprets tests to inform decision-making, with LLMs
serving as flexible surrogate simulators that predict test outcomes and update beliefs without task-specific
training. The framework is model-agnostic: its performance depends on the fidelity of the surrogate model
rather than any particular LLM architecture. Beyond improving diagnostic accuracy, ACTMED demonstrates how
probabilistic reasoning and large-scale language models can be integrated to support data-efficient, uncertainty-
aware clinical decision-making. As LLMs and generative models continue to advance, frameworks like ACTMED
could enable clinician-in-the-loop systems that optimize diagnostic efficiency, improve interpretability, and
mitigate resource constraints in healthcare. Future research should benchmark a range of model architectures
and training paradigms to quantify their impact on diagnostic reasoning, extend the framework to multimodal
and longitudinal data.
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Supplementary Material

A Extended related works

LLMs and Reinforcement Learning for Clinical Diagnosis. There has been growing interest in
validating large language models (LLMs) on clinical diagnosis tasks, alongside efforts to fine-tune these models
for biomedical datasets. Interestingly, recent work has shown that general-purpose LLMs can sometimes
outperform specialized models even on domain-specific benchmarks [61]. To improve clinical reasoning, some
approaches have involved training LLMs on medical dialogues [62], while others have incorporated structured
knowledge sources such as medical knowledge graphs, particularly for tasks resembling medical licensing exams
[63]. Beyond static evaluation, researchers have explored interactive diagnostic frameworks that allow LLMs to
collaborate with clinicians. For instance, agentic networks of LLMs have been shown to enhance diagnostic
reasoning compared to individual models, though their effectiveness strongly depends on the quality of the
underlying language model [41]. Conversely, simply providing clinicians with access to unrefined LLMs has not
yielded significant improvements in diagnostic performance [64].

Reinforcement learning (RL) has also been proposed as a way to teach models clinically grounded decision-
making behaviours. Early work by Ling et al. demonstrated how deep reinforcement learning can be used
to learn diagnostic reasoning directly from clinical narratives [65]. Subsequent studies have extended this
paradigm to cost-sensitive and hierarchical frameworks, where the model learns to balance diagnostic accuracy
against the cost of additional tests or procedures [66], [67]. Such approaches typically require substantial
task-specific training and supervision, which can limit generalization to new diagnostic settings. In contrast,
ACTMED combines Bayesian Experimental Design with LLM-based generative priors to simulate plausible test
outcomes at inference time. This enables it to operate without any task-specific retraining, while still providing
adaptive and interpretable test selection. We therefore view DRL-based diagnostic agents as complementary to
our approach.

Bayesian methods in medicine

Bayesian methods have long been influential in clinical research, particularly for optimizing trial
design, such as adaptive patient allocation and dose-finding strategies in early-phase drug de-
velopment [68], [69]. In medical imaging, Bayesian active learning approaches have been
used to strategically acquire informative data points, improving model efficiency and performance
[70]. More broadly, the diagnostic process itself is naturally aligned with Bayesian reasoning,
where clinical evidence incrementally updates probabilistic beliefs about possible conditions [71].

A 46-year-old male presents with suspected
CKD. What test should I order to confirm the

diagnosis?

The most informative test for this
patient is serum creatinine.

Serum creatinine is 1.3 mg/dL. 
What should I do next?

Based on the result and
clinical context, measuring

hemoglobin concentration is
advised.

Figure 8: Example of a ML assistant
guiding a clinician through sequential
diagnostic refinement for a suspected
chronic kidney disease (CKD) case. The
agent recommends the most informative
next test and iteratively updates its sug-
gestions as new results arrive.

In diagnostic settings, Bayesian approaches have been specifi-
cally applied to optimize test selection by leveraging the known
sensitivity and specificity of various diagnostic tools [72]. Early
foundational work in this domain illustrated the potential of step-
wise Bayesian integration of test results, where each successive
diagnostic query is strategically chosen based on its expected di-
agnostic value [73]. These methods effectively utilize probabilis-
tic reasoning over potential test outcomes, exploiting the inherent
accuracy profiles of available tests to make efficient decisions.
Furthermore, prior work on the development of timely diagnosis
tools has shown significant benefits in applying structured ap-
proaches to population-based screening efforts [74], [75]. Such
diagnosis of asymptomatic patients is critical as it enables ear-
lier intervention, which has been consistently shown to improve
treatment outcomes for various diseases [22], [76]. Machine
learning approaches have further enhanced the effectiveness of
this screening in specific diseases, including breast and lung
cancer [25], [77].

Despite these valuable applications and advances, a unified Bayesian framework that fully supports the entire
sequential decision-making process inherent in clinical diagnosis, from the initial formation of hypotheses to the
targeted acquisition and sophisticated integration of heterogeneous clinical data, remains largely underdeveloped.
Our current work directly addresses this critical gap by demonstrating how large language models (LLMs)
can effectively serve as powerful surrogates for Bayesian Experimental Design, thereby providing a novel

16



computational approach to support and improve real-world diagnostic tasks by facilitating this comprehensive
sequential reasoning and data integration process.

Active learning in medicine

Active learning is a subfield of machine learning in which models strategically select the most informative
data points to observe, thereby minimizing the need for costly human labelling [78]. It has been successfully
applied in both unsupervised settings to identify informative features [79] and in conjunction with deep learning
architectures to improve data efficiency [80]. Central to active learning is the definition of acquisition functions
or utility metrics that quantify the expected benefit of observing new data. Large language models (LLMs)
have recently been explored as surrogate models for guiding such selection, particularly in settings where data
acquisition is expensive or sparse [81]. In biomedicine, active learning has been applied to optimize test ordering
and experimental design, where the cost of procedures is often a limiting factor. For example, in pharmacology,
it has been used to prioritize compound testing [82], and in clinical treatment planning, active feature selection
methods have enabled more efficient personalization of care [83]. Despite these advances, the use of LLMs
for active test selection in the context of sequential clinical diagnosis remains unexplored. Figure 8 illustrates
how such an ML-based framework can support clinicians by optimizing the selection of diagnostic tests to
sequentially refine the diagnosis.

B Extended works

Summary of formalism

A summary of the mathematical formalism introduced is given in Table 5.

Table 5: Summary of notation used in the agent-based diagnosis and Bayesian experimental design
framework.

Symbol Definition
Σ Space of natural language strings
S ∈ Σ Natural language input or instruction to the agent
Dt ⊂ Σ Set of all possible diagnoses at time t
Dtrue,t ⊂ Dt Subset of true diagnoses for a patient at time t
dt ∈ Dt Single diagnosis considered at time t
T = {1, 2, . . . , Tmax} Discrete time horizon for the decision process
Xt ⊂ Σ Ground-truth information available at time t
Kt ⊂ Xt Known (observed) information at time t
Ut = Xt \Kt Unknown (unobserved) information at time t

U
(i)
t Random variable representing candidate diagnostic test i at time t

u
(i,j)
t ∼ P (U

(i)
t ) Sampled realization j from candidate test i

û
(i)
t Observed (true) outcome of test i at time t

P (ydt
= 1 | Kt) Posterior belief over diagnosis dt given current knowledge Kt

H[P (·)] Shannon entropy of a probability distribution
EIG(U

(i)
t ) Expected information gain of test i

pprior Prior belief distribution before test observation
ppost Posterior belief distribution after observing test result
KL(q ∥ p) Kullback–Leibler divergence between two distributions q and p
M Number of Monte Carlo samples used to estimate expectations
F(U

(i)
t ) Utility or information-theoretic value of diagnostic test i

c(U
(i)
t ) Cost associated with performing test U (i)

t
λ Trade-off parameter weighting diagnostic accuracy vs. test cost
L(y, ut, λ) Lagrangian objective combining diagnostic error and cumulative test cost
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Formulation of the Bayesian Experimental Design (BED) Objective using KL Divergence

Epistemic vs. Aleatoric Uncertainty in Active Learning. In standard Active Learning (AL), which
represents a common instance of BED, the goal is to reduce epistemic uncertainty by querying the label of the
most informative observation xo. The expected information gain can be written as

I(Y ;Z | xo, d)︸ ︷︷ ︸
epistemic

= H(Y | d, xo)−H(Y | Z, d, xo)︸ ︷︷ ︸
aleatoric

, (3)

where Z is a random variable representing the latent hypothesis or model parameters, d denotes the currently
observed data, H(·) is Shannon entropy, and I(·) denotes mutual information.

The first term quantifies the total predictive uncertainty, while the second term captures the irreducible (aleatoric)
uncertainty given the true latent model. Their difference isolates the epistemic component:

Epistemic = Predictive− Aleatoric.

Active Feature Acquisition (AFA). Our clinical test selection setting is more closely related to Active
Feature Acquisition (AFA), where the agent selects the next feature or diagnostic test Fj to maximally reduce
uncertainty about the disease label Y . The corresponding mutual information criterion is

I(Y ;Fj) = H(Y )−H(Y | Fj). (4)

Since H(Y ) is constant across candidate features, maximizing I(Y ;Fj) is equivalent to minimizing H(Y | Fj);
thus, the most informative test is the one that most reduces predictive entropy.

KL-Based Expected Information Gain. Information gain can be equivalently expressed in entropy or
KL-divergence space. Equation (2) in the main text evaluates the expected divergence between posterior and
prior predictive distributions as

E[KL] = −H(Y | Fj) + CE
(
Y, Yprior

)
, (5)

where CE denotes cross-entropy between the posterior predictive distribution and an uninformative prior.

Interpretation.

• Term A (−H(Y | Fj)): corresponds to the entropy-reduction term in AFA, rewarding features that
reduce predictive uncertainty.

• Term B (CE(Y, Yprior)): encourages divergence from the prior, preventing redundant queries by
favoring features that meaningfully update prior beliefs.

Note on notation. The prior probability pprior is constant and no longer indexed by j, a correction applied in the
current manuscript revision.

Concrete Derivation For a single Monte Carlo sample, the KL divergence between the posterior and prior
disease probabilities is computed as

KL(ppost∥pprior) = ppost log
ppost

pprior
+ (1− ppost) log

1− ppost

1− pprior
. (6)

Rearranging terms yields

KL(ppost∥pprior) =
[
ppost log ppost + (1− ppost) log(1− ppost)

]︸ ︷︷ ︸
Term A: −H(Y |Fj)

−
[
ppost log pprior + (1− ppost) log(1− pprior)

]︸ ︷︷ ︸
Term B: CE(Y,Yprior)

. (7)

Averaging over M Monte Carlo samples gives the final expected value used in Eq. (2):

EM
m=1

[
KL(p

(m)
post ∥pprior)

]
. (8)
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This formulation provides a principled Bayesian information-gain objective that decomposes into uncertainty
reduction and prior divergence terms, bridging the entropy-based and KL-based views of active test selection.

Directly calculating the EIG from entropy

The information gain (IG) from an additional piece of information u
(i,j)
t is defined as:

IG(u
(i)
t ) := H[P (yd = 1 | Kt)]−H[P (yd = 1 | Kt, u

(i,j)
t )]. (9)

where H denotes Shannon entropy. The first term represents the uncertainty about the diagnosis Dt given the
current knowledge Kt, while the second term represents the uncertainty after observing the additional piece of
information u

(i)
t . Since this quantity is difficult to compute directly, we approximate it using an expectation over

samples to obtain the Expected Information Gain (EIG):

EIG(u
(i)
t ) = H[P (yd = 1 | Kt)]− E

u
(i,j)
t ∼P (ui

t)

[
H[P (yd = 1 | Kt, u

(i,j)
t )]

]
. (10)

While it is possible to directly estimate the expected information gain (EIG) using changes in entropy, this
approach can sometimes favour diagnostic tests that are not truly informative. For binary classification tasks, we
model the posterior distribution P (yd = 1 | Kt, u

(i)
t ) as a Bernoulli distribution B(pi) with success probability

pi ∈ [0, 1]. The entropy of a Bernoulli distribution is given by:

H[B(pi)] = −pi log(pi)− (1− pi) log(1− pi). (11)

We approximate the expected entropy using samples u(i,j)
t ∼ P (Ut) and the corresponding posterior probabilities

pi,j = P (yd = 1 | Kt, u
(i,j)
t ):

EIG(u
(i)
t ) ≈ H[P (yd = 1 | Kt)]−

1

M

M∑
j=1

(−pi,j log pi,j − (1− pi,j) log(1− pi,j)) . (12)

Finally, the optimal piece of information to query is:

i∗ = argmax
i

EIG(u
(i)
t ). (13)

Table 6: KL vs. entropy selection. Mean accuracy
(± std) across datasets.

Model Dataset KL-based Entropy-based

GPT-4o-mini Diabetes 0.593 ± 0.039 0.572 ± 0.005
GPT-4o-mini Kidney 0.992 ± 0.006 0.972 ± 0.010
GPT-4o-mini Hepatitis 0.825 ± 0.013 0.770 ± 0.010

GPT-4o Diabetes 0.682 ± 0.012 0.673 ± 0.011
GPT-4o Kidney 0.999 ± 0.003 0.994 ± 0.000
GPT-4o Hepatitis 0.839 ± 0.013 0.770 ± 0.017

However, entropy-based selection can inadvertently
prefer tests that preserve an already confident be-
lief—even when that belief is wrong—over tests that
challenge it. Consider a patient with an initial dis-
ease probability of 0.1. A truly informative test might
raise this probability to 0.6, while an uninformative
test would leave it at 0.1 regardless of outcome. Be-
cause entropy is low near the extremes, an entropy-
based EIG can assign little value to the informative
test (which moves the belief away from a low-entropy
region) and may instead tolerate the non-informative
one that keeps the posterior near 0.1. In contrast, an
expected Kullback–Leibler (KL) divergence criterion explicitly measures the magnitude of change in the predic-
tive distribution and thus correctly prioritizes the test that meaningfully shifts beliefs. Empirically, our KL-based
selection outperforms the entropy-based variant across datasets (Table 6).

C Experimental details

Datasets

We evaluated the performance of our model on three clinical datasets of varying complexity:

Chronic Kidney Disease. The first task involves the prediction of chronic kidney disease (CKD) from
symptoms and laboratory results [84]. The model is provided with demographic variables such as age and
gender, as well as signs observable on physical examination (e.g., oedema). It is then tasked with diagnosing
CKD by selectively ordering lab tests such as serum albumin or serum creatinine. We filtered the dataset to
retain only instances without missing values, resulting in a total of 157 patients. Categorical lab tests lacking a
clear clinical interpretation, such as Pus Cells: Abnormal, were excluded. The dataset is available from the UCI
Machine Learning Repository under a CC BY 4.0 license: https://archive.ics.uci.edu/dataset/336/
chronic+kidney+disease.
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Hepatitis. The second task requires the model to diagnose Hepatitis C virus (HCV) infection using liver
function test results [85]. Age and sex were provided as known demographic features, while laboratory tests (e.g.,
ALT, AST, GGT) could be queried by the model. We included all 56 patients with confirmed HCV and selected
a random subset of 56 healthy individuals to form a balanced dataset. The dataset is publicly available from the
UCI Repository under a CC BY 4.0 license: https://archive.ics.uci.edu/dataset/571/hcv+data.

Diabetes. The third task uses a random subset of 100 patients from the Pima Indians Diabetes dataset,
originally collected by the National Institute of Diabetes and Digestive and Kidney Diseases [86]. The model
is asked to predict the presence of diabetes based on clinical measurements. All individuals are female, at
least 21 years old, and of Pima Indian heritage. Age is treated as a known feature; the remaining features are
unknown and can be selectively queried. The dataset is available on Kaggle under a CC0 Public Domain license:
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database.

OSCE. We construct a custom OSCE-style dataset derived from AgentClinic [54] to evaluate zero-shot
generalization in a multi-condition setting. The cohort comprises 114 clinically diverse cases spanning a range of
presentations and diseases. To align with our focus on sequential test acquisition, we retain only laboratory-style
diagnostic features and the ground-truth diagnosis. The model is tasked with predicting the primary diagnosis
given limited initial context (demographics and brief presentation), while remaining lab tests are unknown
and can be selectively queried. For each case, we additionally create a matched synthetic counterpart by
replacing disease-indicative labs with clinically normal values that point away from the true diagnosis, yielding
case–control pairs for evaluating test selection policies. We release the modified OSCE dataset alongside our
code to facilitate replication and comparison.

Input data formatting

LLMs have been shown to struggle interpreting tabular clinical data accurately [38]. To mitigate this limitation,
we converted all available clinical information from structured tabular form into concise natural language
vignettes. Each vignette integrates demographic information, diagnostic test results, and measurement units
where appropriate, providing a more interpretable and context-rich format for the model. Table 7 presents
an example of the raw tabular input used for diagnosing chronic kidney disease. This input is automatically
converted into a clinical vignette using a rule-based preprocessing script (see Clinical Vignette 1).

Clinical Vignette 1

The patient is 63 years old. The patient’s diastolic blood pressure is 70 mm/Hg. The patient has a poor
appetite. The patient has pedal oedema. The patient has hypertension. The patient has diabetes mellitus.
The patient does not have coronary artery disease. The patient does not have anaemia. Specific gravity was
measured at 1.01. Albumin levels in urine was measured at 3.0. Sugar levels in urine was measured at 0.0.
Blood glucose random was measured at 380.0 mg/dL. Blood urea was measured at 60.0 mg/dL. Serum
creatinine was measured at 2.7 mg/dL. Sodium levels was measured at 131.0 mEq/L. Potassium levels was
measured at 4.2 mEq/L. Haemoglobin levels was measured at 10.8 g/dL. Packed cell volume was measured
at 32.0.

Experiment

For each patient in a preprocessed dataset subset, we evaluated risk predictions using all features, as well as
under four feature selection strategies: Bayesian, Random, Global Best (predefined), and Implicit. At each
iteration, one additional feature from the unknown set was revealed, and corresponding risks were computed.
Pseudocode for the Bayesian selection using the KL-divergence is given in Algorithm 1. Importantly, the risk
prediction prompt remained unchanged between feature selection methods other than the clinical information
added at the end. All experiments were implemented using GPT-4o (Version 2024-11-20) and GPT-4o-mini
(Version 2024-07-18) as provided on the Azure OpenAI Service. To ensure robustness, each experiment was run
across 5 different random seeds. Opens-source experiments were run suing Biomistral-7B and Llama70B version
3.3 as provided on HuggingFace using vLLM. For all experiments, we set the number of sampled test outcomes
or risk probability distributions to 10. To ensure the sampling produced a more diverse set of responses, we used
a temperature of 1 and specifically instructed the model in the prompts to simulate randomness. Performance
metrics were averaged across runs with their corresponding standard deviation.

D LLM Prompts

For each dataset, we use four distinct prompt types. The first prompt, shared across all methods, is used for risk
prediction based on known patient data, ensuring consistency in evaluation. The second prompt is issued at the
start of the experiment, before observing any patient-specific information, to identify globally optimal features.
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Table 7: Structured clinical data for an example patient prior to natural language transformation and
inclusion of appropriate units.

Category Test Name Result

Demographics Age 63

Vital Signs Blood Pressure 70

Urine Tests

Specific Gravity 1.010

Albumin 3

Sugar 0

Red Blood Cells Abnormal

Pus Cells Abnormal

Clumps Present

Bacteria Not Present

Blood Tests

Blood Glucose 380

Blood Urea 60

Creatinine 2.7

Haemoglobin 10.8

PCV 32

WBC Count 4500

RBC Count 3.8

Electrolytes
Sodium 131

Potassium 4.2

Symptoms
Appetite Poor

Pedal Edema Yes

Anemia No

Comorbidities
Hypertension Yes

Diabetes Mellitus Yes

Coronary Artery Disease No

Algorithm 1 KL-guided Diagnostic Test Selection

Require: Initial knowledge Kt, unknowns {u(i)
t }Ni=1, number of samples M

1: Sample M draws from P (ydt = 1 | Kt): {p(j)prior}Mj=1

2: for i = 1 to N do
3: for j = 1 to M do
4: Sample u

(i,j)
t ∼ P (u

(i)
t )

5: Compute posterior: p(j)posterior = P (ydt = 1 | Kt, u
(i,j)
t )

6: Compute KL(j) = p
(j)
prior log

p
(j)
prior

p
(j)
posterior

+ (1− p
(j)
prior) log

1−p
(j)
prior

1−p
(j)
posterior

7: end for
8: E[KL(u(i)

t )] = 1
M

∑M
j=1 KL(j)

9: end for
10: i∗ = argmaxi E[KL(u(i)

t )]

11: Request û(i∗)
t and update Kt+1 = Kt ∪ {û(i∗)

t }
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The third prompt is used in the implicit selection baseline, where the model is queried at each decision step
to choose the most suitable test based on the information observed so far. The final prompt is specific to the
Bayesian Experimental Design setting and is used to sample a plausible outcome for a candidate diagnostic test,
conditioned on the currently available patient data.

Risk Prediction Prompt: CKD

You are an expert nephrologist. Based on the following clinical data and the patient’s history, provide an
estimate of the patient having chronic kidney disease as a single number between 0 and 1. Consider key
laboratory markers and other pertinent values. When these values indicate kidney disease or damage—assign
a number closer to 1, indicating a higher probability of chronic kidney disease. If the laboratory values are
within normal ranges, assign a value closer to 0. Return only the number that can be converted to a Python
float, without any additional commentary.
$known_info

Global Feature Selection Prompt: CKD

You are an expert nephrologist. Based on the following list of features: $all_features, please indicate
which $n features you believe are the most informative and critical for diagnosing chronic kidney disease.
Return your answer as a Python list of exactly $n feature names.
For example: if n is 1, return [’age’]; if n is 2, return [’age’, ’bp’].
Do not include any additional commentary.

Feature Selection Prompt: CKD (Implicit)

You are an expert nephrologist. Based solely on the following known clinical data, determine which
additional feature from the list below would be the most informative to sample next for diagnosing chronic
kidney disease.
Known Data: $known_data
Unknown Features: $unknown_features
Return only the name of the feature strictly in the form shown in the list as a string, without any additional
commentary.

Sampling Prompt: CKD Lab Test Simulation

You are an expert nephrologist. Based on the following clinical data and the patient’s history, please simulate
a random draw from the full range of clinically plausible values for $feature_to_sample.
The value should not simply be the average or a central tendency, but should vary as if sampled at random
from a realistic distribution. Consider the following description: $ref_info.
Avoid returning the same value repeatedly across multiple draws, and ensure the value varies as if sampled
from a plausible distribution. Introduce randomness by considering edge cases, typical values, and outliers
within the plausible range.
Return your answer as a single numeric value that can be parsed into a float in Python, with no additional
commentary or units.
IMPORTANT: Assume that the patient may or may not have chronic kidney disease, and your sampling
should reflect that uncertainty.
$known_info
IMPORTANT: Under NO circumstances provide explanations, commentary, or text beyond the single
numeric float or string requested. The response MUST be parseable strictly as a float, e.g., 0.512, with no
extra words. If a string is requested no float is required.

Risk Prediction Prompt: Hepatitis C

You are an expert hepatologist. Based on the following clinical data and the patient’s history, please provide
an estimate of the patient’s risk of being infected with hepatitis C as a single number between 0 and 1.
Consider key laboratory markers and other pertinent values. When these values indicate liver inflammation
or damage — assign a number closer to 1, indicating a higher probability of hepatitis C infection. If the
laboratory values are within normal ranges, assign a value closer to 0. Return only the number that can be
converted to a Python float, without any additional commentary.
$known_info
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Global Feature Importance Prompt: Hepatitis C

You are an expert hepatologist. Based on the following list of features: $all_features, please indicate
which $n features you believe are the most informative and critical for diagnosing hepatitis.
Return your answer as a Python list of exactly $n feature names (for example, if n is 1, return [’ALT’]; if n
is 2, return [’ALT’, ’AST’]), without any additional commentary.
$known_info

Feature Selection Prompt: Hepatitis C (Implicit)

You are an expert hepatologist. Based solely on the following known clinical data, determine which
additional feature from the list below would be the most informative to sample next for diagnosing hepatitis.
Known Data: $known_data
Unknown Features: $unknown_features
Return only the name of the feature as a string, without any additional commentary.

Sampling Prompt: Hepatitis C Lab Test Simulation

You are an expert hepatologist. Based on the following clinical data and the patient’s history, please simulate
a random draw from the full range of clinically plausible values for $feature_to_sample.
Consider the possible range as described: $ref_info. Ensure that the value you return is realistic and
reflects clinical variability. Avoid returning the same value repeatedly across multiple draws, and ensure the
value varies as if sampled from a plausible distribution. Introduce randomness by considering edge cases,
typical values, and outliers within the plausible range.
Return your answer as a single numeric value that can be converted to a Python float, without any additional
commentary.
IMPORTANT: Assume that the patient may or may not have hepatitis C, and your sampling should reflect
that uncertainty.
$known_info
IMPORTANT: Under NO circumstances provide explanations, commentary, or text beyond the single
numeric float or string requested. The response MUST be parseable strictly as a float, e.g., 0.512, with no
extra words. If a string is requested no float is required.

Risk Prediction Prompt: Diabetes

You are an expert endocrinologist. Based on the following clinical data and the patient’s history, provide an
estimate of the patient’s risk of diabetes as a single number between 0 and 1.
It is known that all patients are females at least 21 years old of Pima Indian heritage. Focus on key markers.
Assign a value closer to 1 if the data indicate high risk, and closer to 0 if within normal limits. Return only
the number, without any additional commentary.
$known_info

Global Feature Importance Prompt: Diabetes

You are an expert endocrinologist. Based on the following list of features: $all_features, please indicate
which $n features you believe are the most informative and critical for diagnosing diabetes.
Return your answer as a Python list of exactly $n feature names (for example, if n is 1, return [’Glucose’];
if n is 2, return [’Glucose’, ’BMI’]), without any additional commentary.

Feature Selection Prompt: Diabetes (Implicit)

You are an expert endocrinologist. Based solely on the following known clinical data, determine which
additional feature from the list below would be the most informative to sample next for diagnosing diabetes.
Known Data: $known_data
Unknown Features: $unknown_features
Return only the name of the feature as a string, without any additional commentary.
$known_info
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Sampling Prompt: Diabetes Lab Test Simulation

You are an expert endocrinologist. Based on the following clinical data and the patient’s history, please
simulate a random draw from the full range of clinically plausible values for $feature_to_sample.
Consider the following unit for the sampled value: $ref_info. Ensure that the value you return is realistic
and reflects clinical variability. Avoid returning the same value repeatedly across multiple draws, and ensure
the value varies as if sampled from a plausible distribution. Introduce randomness by considering edge cases,
typical values, and outliers within the plausible range.
Return your answer as a single numeric value that can be converted to a Python float with no units or
additional commentary.
IMPORTANT: Assume that the patient may or may not have diabetes, and your sampling should reflect
that uncertainty.
$known_info
IMPORTANT: Under NO circumstances provide explanations, commentary, or text beyond the single
numeric float or string requested. The response MUST be parseable strictly as a float, e.g., 0.512, with no
extra words. If a string is requested no float is required.

Risk Prediction Prompt: OSCE

You are an expert clinician. Given the following case details, estimate a realistic and conservative probability
of the suspected diagnosis of $potential_diagnosis as a single number between 0 and 1. Return only
the number that can be converted to a Python float, without any additional commentary.
$known_info

Global Feature Importance Prompt: OSCE

You are a clinical assistant. Given these case details: $known_data. Which additional feature
from the list $unknown_features would be most informative next for the suspected diagnosis of
$potential_diagnosis? Return only the feature name without commentary.

Feature Selection Prompt: OSCE (Implicit)

You are a clinical assistant. Given these case details: $known_data, which feature from the list
$unknown_features would provide the most information next? Return only the feature name without
commentary."

Sampling Prompt: OSCE Lab Test Simulation

You are a expert clinician. Based on the following case details, simulate a plausible value for
$feature_to_sample Return only the value without explanation."
IMPORTANT: Assume that the patient may or may not have diabetes, and your sampling should reflect
that uncertainty.
$known_info
IMPORTANT: Under NO circumstances provide explanations, commentary, or text beyond the single
numeric float or string requested. The response MUST be parseable strictly as a float, e.g., 0.512, with no
extra words. If a string is requested no float is required.

E Extended results

Predicting plausible test outcome distributions

To evaluate model performance, we analyzed how the mean absolute error (MAE) changed with increasing
numbers of generated samples. For computational efficiency, we limited the number of samples to 10 per query.
As shown in Figure 9, we observe a consistent decrease in MAE as more features are acquired, indicating that the
model is producing a diverse set of samples, some of which closely approximate the ground truth. Furthermore,
the larger GPT-4o model outperformed the smaller GPT-4o-mini variant across all three datasets, highlighting
the benefits of scale in both predictive accuracy and sample quality.

To assess the ability of large language models (LLMs) to generate diverse samples from hypothetical test outcome
distributions, we analysed the generated values for all numerical features across the three datasets. Categorical
features were excluded from this analysis. For numerical features, the LLM produced non-deterministic outputs
that varied meaningfully between samples, rather than issuing static or averaged responses. This behaviour
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Figure 9: Increasing sample size improves the MAE. Model performances are averaged across 5
different seeds and are shown with their corresponding standard deviations.

indicates that the model is capable of representing distributional uncertainty in a clinically meaningful way. This
behaviour was consistent across all three datasets, as illustrated in Figures 10, 11 and 12.
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Figure 10: Sample variability of LLM predictions in the diabetes dataset. Each bar chart displays the
distribution of values sampled for numerical features. The heterogeneity across samples indicates the
model’s capacity to avoid mode collapse and to reflect uncertainty consistent with clinical variation.

Diagnostic Performance Evaluation

We evaluate ACTMED against multiple baselines using accuracy, precision, recall, F1 score, and ROC-AUC (see
Tables 8 and 9). Performance improves across all metrics when moving from GPT-4o-mini to the more capable
GPT-4o. On the kidney dataset, differences between models are minimal, suggesting both models perform
reliably. In contrast, on the hepatitis and diabetes datasets, ACTMED consistently outperforms baseline feature
selection methods and the full-feature classifier, demonstrating its ability to adaptively select informative subsets.

We further assess ACTMED under varying feature budget constraints (Table 10), controlled via the stopping
threshold γ. Across all datasets and both models, diagnostic accuracy remains stable even as γ varies. However,
stricter thresholds (higher γ) lead to more conservative test acquisition and substantially fewer tests. For example,
on the kidney dataset, both models typically require only 1–2 tests per patient when using the stopping criterion.
At a conservative threshold of γ = 0.7, GPT-4o achieves near-perfect accuracy while querying just one test in
nearly all cases.

Feature selection impact on performance

This section investigates the impact of feature selection frameworks on diagnostic performance by analysing
the features most frequently selected and their empirical informativeness. Using a random baseline to mitigate
confounding, we first identified empirically informative features based on their accuracy when selected among
three features. For GPT-4o-mini, the most informative features were GGT, AST, and ALT for hepatitis;
BloodPressure, Pregnancies, and Insulin for diabetes; and Random Blood Glucose, Potassium Levels, and Serum
Creatinine for CKD. For GPT-4o, BIL, CHE, and GGT were most informative for hepatitis; BloodPressure, Skin
Thickness, and Insulin for diabetes; and Blood Glucose, Red Blood Cell Count, and Potassium Levels for CKD.
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Figure 11: Sampled feature distributions in the chronic kidney disease (CKD) dataset. The LLM
produces diverse and physiologically grounded value ranges across all features. This supports its
utility as a surrogate model in capturing uncertainty for Bayesian evidence diagnostics.

Table 8: Performance metrics (mean ± std) for GPT-4o-mini across datasets. Best-performing
methods are in bold; if All Features is best, the second-best is also indicated.

Dataset Method AUC Accuracy F1 Precision Recall

Kidney

All Features 0.9997 ± 0.0002 0.975 ± 0.006 0.956 ± 0.009 0.915 ± 0.017 1.000 ± 0.000
ACTMED (ours) 0.9999 ± 0.0001 0.992 ± 0.006 0.986 ± 0.011 0.978 ± 0.020 0.995 ± 0.009
Random 0.9990 ± 0.0002 0.981 ± 0.004 0.966 ± 0.007 0.947 ± 0.021 0.986 ± 0.011
Global Best 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Implicit 1.000 ± 0.000 0.997 ± 0.005 0.995 ± 0.009 0.991 ± 0.018 1.000 ± 0.000

Hepatitis

All Features 0.874 ± 0.002 0.793 ± 0.009 0.758 ± 0.011 0.910 ± 0.012 0.650 ± 0.014
ACTMED (ours) 0.891 ± 0.006 0.825 ± 0.013 0.806 ± 0.015 0.903 ± 0.017 0.729 ± 0.017
Random 0.743 ± 0.018 0.670 ± 0.020 0.558 ± 0.031 0.843 ± 0.045 0.418 ± 0.029
Global Best 0.824 ± 0.007 0.718 ± 0.018 0.668 ± 0.022 0.812 ± 0.031 0.568 ± 0.021
Implicit 0.856 ± 0.016 0.770 ± 0.007 0.743 ± 0.005 0.843 ± 0.023 0.664 ± 0.013

Diabetes

All Features 0.727 ± 0.011 0.417 ± 0.006 0.545 ± 0.003 0.374 ± 0.003 1.000 ± 0.000
ACTMED (ours) 0.743 ± 0.009 0.569 ± 0.004 0.601 ± 0.002 0.444 ± 0.002 0.930 ± 0.005
Random 0.663 ± 0.008 0.493 ± 0.008 0.560 ± 0.005 0.402 ± 0.004 0.923 ± 0.004
Global Best 0.725 ± 0.006 0.462 ± 0.003 0.563 ± 0.001 0.393 ± 0.001 0.992 ± 0.001
Implicit 0.733 ± 0.004 0.460 ± 0.002 0.562 ± 0.001 0.392 ± 0.001 0.993 ± 0.000

OSCE

All Features 0.755 ± 0.009 0.684 ± 0.015 0.744 ± 0.012 0.625 ± 0.010 0.919 ± 0.018
ACTMED (ours) 0.755 ± 0.028 0.705 ± 0.016 0.760 ± 0.014 0.641 ± 0.011 0.933 ± 0.023
Random 0.653 ± 0.019 0.604 ± 0.020 0.670 ± 0.013 0.575 ± 0.018 0.804 ± 0.026
Global Best 0.756 ± 0.018 0.667 ± 0.021 0.735 ± 0.017 0.610 ± 0.014 0.923 ± 0.024
Implicit 0.727 ± 0.026 0.665 ± 0.007 0.732 ± 0.006 0.610 ± 0.004 0.916 ± 0.013

We also identified globally optimal features selected by both models as Glucose, BMI, and Insulin for diabetes,
ALT, AST, and BIL for hepatitis, and BloodPressure, Serum Creatinine, and Haemoglobin for CKD.

We then examined the feature selection patterns of ACTMED and the implicit baseline. The random baseline
served as a control, showing no significant selection bias. For hepatitis, ACTMED with GPT-4o-mini preferentially
selected ALT, AST, and GGT, while with GPT-4o it favoured AST, GGT, and BIL. The implicit method selected
ALT, AST, and GGT for GPT-4o-mini and ALT, AST, and BIL for GPT-4o. On the diabetes dataset, GPT-4o-
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Figure 12: Distributions of LLM-generated samples for numerical features in the hepatitis dataset. Bar
plots show the spread of sampled values for each feature, illustrating the model’s ability to represent
plausible clinical variability. The distributions vary across features, reflecting both physiological
ranges and disease-specific uncertainty.

mini with ACTMED selected Glucose, Blood Pressure, and Skin Thickness, whereas GPT-4o preferred Glucose,
Diabetes Pedigree Function, and BMI. The implicit method consistently selected BMI, Glucose, and Insulin
across both models. For the CKD dataset, GPT-4o-mini with ACTMED selected Red Blood Cell Count, Blood
Pressure, and Creatinine, while GPT-4o selected Blood Urea, Creatinine, and Blood Pressure. The implicit
method selected Serum Creatinine, Blood Urea, and Blood Pressure for GPT-4o-mini, and Serum Creatinine,
Blood Urea, and Haemoglobin for GPT-4o.

Collectively, these results indicate that neither ACTMED nor the implicit method consistently selects a fixed set
of features that are empirically superior across all scenarios. The observed performance advantage of ACTMED
likely stems not from identifying a universally optimal feature subset, but rather from its ability to perform more
varied and potentially better-personalized test selections compared to the more constrained implicit or global
methods, thereby optimizing the diagnostic process for individual cases.

Importance of LLM quality for ACTMED

ACTMED is inherently model-agnostic, as the framework only requires access to a simulator capable of generating
test outcomes and corresponding risk distributions. Our contribution is a test-time computational improvement
— selecting tests to maximize information gain — rather than a modification of the underlying language model.
Consequently, the primary consideration is not whether the model is open-source or closed-source, but whether
it is capable of generating sufficiently accurate and diverse outcome distributions. To assess the impact of model
quality, we evaluated two smaller open-source models, BioMistral-7B and LLaMA-70B, as representative
lower-bound baselines.
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Table 9: Performance metrics (mean ± std) for GPT-4o across datasets. Best-performing methods
are in bold; if All Features is best, the second-best is also indicated.

Dataset Method AUC Accuracy F1 Precision Recall

Kidney

All Features 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
ACTMED (ours) 1.000 ± 0.000 0.999 ± 0.003 0.998 ± 0.005 1.000 ± 0.000 0.995 ± 0.009
Random 0.999 ± 0.001 0.995 ± 0.003 0.991 ± 0.005 1.000 ± 0.000 0.981 ± 0.009
Global Best 1.000 ± 0.000 0.999 ± 0.003 0.998 ± 0.005 1.000 ± 0.000 0.995 ± 0.009
Implicit 1.000 ± 0.000 0.999 ± 0.003 0.998 ± 0.005 1.000 ± 0.000 0.995 ± 0.009

Hepatitis

All Features 0.876 ± 0.014 0.807 ± 0.004 0.771 ± 0.006 0.948 ± 0.001 0.650 ± 0.009
ACTMED (ours) 0.917 ± 0.013 0.839 ± 0.013 0.814 ± 0.016 0.966 ± 0.012 0.704 ± 0.021
Random 0.728 ± 0.039 0.657 ± 0.018 0.507 ± 0.036 0.904 ± 0.052 0.354 ± 0.035
Global Best 0.799 ± 0.013 0.757 ± 0.007 0.699 ± 0.009 0.919 ± 0.011 0.564 ± 0.009
Implicit 0.805 ± 0.013 0.729 ± 0.016 0.646 ± 0.030 0.927 ± 0.008 0.496 ± 0.036

Diabetes

All Features 0.815 ± 0.004 0.592 ± 0.004 0.623 ± 0.003 0.460 ± 0.003 0.967 ± 0.005
ACTMED (ours) 0.803 ± 0.009 0.668 ± 0.009 0.648 ± 0.008 0.514 ± 0.008 0.878 ± 0.012
Random 0.703 ± 0.011 0.581 ± 0.010 0.593 ± 0.007 0.448 ± 0.007 0.875 ± 0.014
Global Best 0.781 ± 0.004 0.548 ± 0.005 0.599 ± 0.003 0.434 ± 0.003 0.969 ± 0.005
Implicit 0.783 ± 0.003 0.550 ± 0.006 0.601 ± 0.003 0.435 ± 0.003 0.971 ± 0.003

OSCE

All Features 0.805 ± 0.006 0.719 ± 0.008 0.772 ± 0.007 0.650 ± 0.006 0.951 ± 0.013
ACTMED (ours) 0.791 ± 0.015 0.746 ± 0.006 0.785 ± 0.008 0.680 ± 0.006 0.930 ± 0.029
Random 0.696 ± 0.024 0.640 ± 0.021 0.701 ± 0.021 0.600 ± 0.015 0.842 ± 0.035
Global Best 0.838 ± 0.011 0.723 ± 0.012 0.771 ± 0.010 0.657 ± 0.010 0.933 ± 0.020
Implicit 0.730 ± 0.026 0.681 ± 0.016 0.736 ± 0.013 0.627 ± 0.012 0.891 ± 0.017

Table 10: Average number of tests selected and accuracy (mean ± standard deviation) under KL-
based termination for varying γ values. Higher γ requires stronger evidence to continue testing.
Results are reported across five random seeds.

Model γ Hepatitis Diabetes Kidney

Tests Accuracy Tests Accuracy Tests Accuracy

GPT-4O-MINI
0.3 2.36 ± 0.68 0.832 ± 0.374 2.45 ± 0.71 0.560 ± 0.496 1.60 ± 0.75 0.997 ± 0.050
0.5 1.87 ± 0.77 0.841 ± 0.366 2.09 ± 0.75 0.554 ± 0.497 1.48 ± 0.68 0.999 ± 0.036
0.7 1.48 ± 0.73 0.845 ± 0.363 1.90 ± 0.74 0.542 ± 0.498 1.28 ± 0.52 0.997 ± 0.050

GPT-4O
0.3 2.67 ± 0.60 0.839 ± 0.368 2.27 ± 0.84 0.674 ± 0.469 1.35 ± 0.64 0.999 ± 0.036
0.5 2.41 ± 0.67 0.827 ± 0.379 1.90 ± 0.89 0.683 ± 0.465 1.09 ± 0.35 0.996 ± 0.062
0.7 2.27 ± 0.65 0.816 ± 0.388 1.69 ± 0.84 0.684 ± 0.465 1.04 ± 0.24 0.996 ± 0.062

Table 11: Accuracy versus number of sequentially added tests. Values denote mean ± standard
deviation of predictive accuracy across evaluation folds.

Dataset Model 1 Test 3 Tests 5 Tests All Tests

Kidney
GPT-4o 0.994 ± 0.004 0.995 ± 0.003 0.995 ± 0.003 1.000 ± 0.000
GPT-4o-mini 0.975 ± 0.011 0.983 ± 0.005 0.990 ± 0.010 0.972 ± 0.006

Hepatitis
GPT-4o 0.589 ± 0.023 0.679 ± 0.022 0.718 ± 0.013 0.796 ± 0.010
GPT-4o-mini 0.588 ± 0.030 0.698 ± 0.022 0.732 ± 0.010 0.798 ± 0.011

Diabetes
GPT-4o 0.730 ± 0.138 0.662 ± 0.170 0.664 ± 0.170 0.678 ± 0.161
GPT-4o-mini 0.546 ± 0.015 0.524 ± 0.025 0.528 ± 0.016 0.458 ± 0.007

Failure to generate accurate samples. The BioMistral-7B model frequently fails to generate realistic
outcome samples, often producing implausible outcomes such as non-integer values for the number of previous
pregnancies. As a result, the observed Wasserstein distances between the model-generated and empirical
distributions are substantially higher compared to GPT-4o and GPT-4o-mini (see Table 13).

Failure to perform BED accurately. The LLaMA-70B model also fails to achieve accuracy comparable
to the closed-source GPT models, though its degradation arises from a different failure mode. While its
Wasserstein distance is not substantially worse than GPT-4, inspection of the predicted outcome distributions
reveals that the model often collapses to deterministic outputs, producing the same value across all Monte
Carlo samples even when increasing the sampling temperature beyond 1. This lack of distributional diversity
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Table 12: Impact of additional tests on risk estimation. Mean ± standard deviation of normalized
risk estimates as the number of tests increases. Lower values indicate better calibration.

Dataset Model 1 Test 3 Tests 5 Tests All Features

Kidney
GPT-4o 0.259 ± 0.007 0.267 ± 0.003 0.273 ± 0.004 0.274 ± 0.002
GPT-4o-mini 0.292 ± 0.007 0.330 ± 0.010 0.349 ± 0.009 0.377 ± 0.003

Hepatitis
GPT-4o 0.209 ± 0.012 0.255 ± 0.008 0.285 ± 0.018 0.326 ± 0.005
GPT-4o-mini 0.275 ± 0.019 0.307 ± 0.009 0.323 ± 0.015 0.374 ± 0.003

Diabetes
GPT-4o 0.575 ± 0.062 0.638 ± 0.013 0.698 ± 0.096 0.687 ± 0.082
GPT-4o-mini 0.606 ± 0.014 0.696 ± 0.018 0.725 ± 0.013 0.768 ± 0.004
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Figure 13: Feature performance. Mean accuracy per feature, measured across multiple seeds, for two
models (gpt-4o-mini and gpt-4o) on three datasets. Bars represent mean accuracy (0–1), and black
error bars denote ±1 standard deviation. Features are ranked in descending order of mean accuracy.

Table 13: Wasserstein distance between true empirical and model-generated test outcome distribu-
tions. Reported as mean ± standard deviation (lower is better).

Dataset Model Avg. Wasserstein (Mean ± Std)

Diabetes
GPT-4o 0.110 ± 0.038
GPT-4o-mini 0.117 ± 0.046
BioMistral-7B 0.125 ± 0.048

Hepatitis
GPT-4o 0.130 ± 0.157
GPT-4o-mini 0.173 ± 0.237
BioMistral-7B 0.425 ± 0.453

Kidney
GPT-4o 0.082 ± 0.055
GPT-4o-mini 0.082 ± 0.057
BioMistral-7B 0.215 ± 0.225

prevents the model from capturing uncertainty in test outcomes. Consequently, Bayesian Experimental Design
(BED) provides no measurable performance improvement, and the overall diagnostic accuracy remains low (see
Table 14).
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Figure 14: Feature selection by method. Heatmaps of feature-selection frequencies (0–100%) across
three datasets (hepatitis, diabetes, and kidney) and three selection methods (ACTMED , Implicit,
Random). Columns represent GPT-4O-Mini and GPT-4O. Each cell shows how often a feature was
included across all seeds

Table 14: Accuracy of different models on the Hepatitis, Diabetes, and Chronic Kidney Disease
datasets using all features and ACTMED-selected features. Results are reported as mean ± standard
deviation.

Dataset Model ACTMED (Mean ± Std) All Features (Mean ± Std)

Diabetes

GPT-4o 0.682 ± 0.012 0.584 ± 0.011

GPT-4o-mini 0.593 ± 0.039 0.451 ± 0.062

Biomistral-7B 0.529 ± 0.025 0.450 ± 0.008

LLaMA-70B 0.540 ± 0.013 0.474 ± 0.012

Kidney

GPT-4o 0.999 ± 0.003 1.000 ± 0.000

GPT-4o-mini 0.992 ± 0.006 0.975 ± 0.006

Biomistral-7B 0.657 ± 0.021 0.564 ± 0.033

LLaMA-70B 0.984 ± 0.003 0.986 ± 0.000

Hepatitis

GPT-4o 0.839 ± 0.013 0.807 ± 0.004

GPT-4o-mini 0.825 ± 0.013 0.793 ± 0.009

Biomistral-7B 0.489 ± 0.029 0.511 ± 0.027

LLaMA-70B 0.699 ± 0.023 0.793 ± 0.010

Bayesian bootstrap

To quantify uncertainty in diagnostic predictions, we performed 10 independent diagnostic trials per patient for
each model and dataset. The resulting prediction accuracies were aggregated using Bayesian bootstrapping [87],
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which provides non-parametric estimates of posterior distributions over mean accuracy values and corresponding
95% credible intervals. This approach captures both inter-patient and intra-model variability and enables
estimation of worst-case performance bounds. Table 15 reports the mean and standard deviation of predicted
risk probabilities, together with lower and upper bounds of the 95% Bayesian bootstrap credible intervals, for
each dataset, model, and true disease label. GPT-4o and GPT-4o-mini both show strong stratification between
positive and negative classes, with narrower credible intervals in GPT-4o-mini for highly separable diseases (e.g.,
chronic kidney disease).

Table 15: Average model prediction accuracy across the Hepatitis, Diabetes, and CKD (Kidney)
datasets. Values show the mean and standard deviation of predicted risk with 95% Bayesian bootstrap
credible intervals, stratified by true disease label.

Dataset Model Label Mean Avg. Risk Std. Avg. Risk 95% CI [Lower, Upper]

Diabetes

GPT-4o 0 0.548 0.275 [0.512, 0.583]
GPT-4o 1 0.799 0.143 [0.782, 0.815]
GPT-4o-mini 0 0.716 0.223 [0.686, 0.744]
GPT-4o-mini 1 0.856 0.039 [0.836, 0.875]

Hepatitis

GPT-4o 0 0.093 0.129 [0.081, 0.106]
GPT-4o 1 0.561 0.320 [0.539, 0.583]
GPT-4o-mini 0 0.167 0.147 [0.157, 0.178]
GPT-4o-mini 1 0.581 0.289 [0.555, 0.605]

Kidney (CKD)

GPT-4o 0 0.039 0.033 [0.029, 0.051]
GPT-4o 1 0.907 0.060 [0.898, 0.916]
GPT-4o-mini 0 0.179 0.119 [0.161, 0.197]
GPT-4o-mini 1 0.908 0.061 [0.897, 0.917]

Example of ACTMED’s Test Evaluation Process with Clinician-in-the-Loop

To illustrate ACTMED’s information-theoretic test selection process, we present a simplified synthetic binary
diagnostic task involving chronic kidney disease (CKD) with two tests. At each step, ACTMED supports clinician
decision-making by maintaining transparency over test evaluations and allowing human review.

Step 1: Prior Belief. The system starts with a diagnostic prior based on available information:

P (ydt = 1 | Kt) = B(pprior), where pprior = 0.20

Clinician role: The clinician can inspect the current risk estimate and adjust the prior based on additional context
not currently captured in the structured data.

Step 2: Candidate Test Outcomes. ACTMED considers two candidate tests and simulates plausible results using
a surrogate model:

• Creatinine (high) : 2.3,mg/dL

• Creatinine (normal) : 1.0,mg/dL

• Sodium (normal) : 140mmol/L

• Sodium (low) : 130mmol/L

Clinician role: The clinician may review the simulated outcomes for plausibility, reject irrelevant or infeasible
tests, and flag preferred tests based on domain knowledge or patient-specific factors.

Step 3: Posterior Beliefs. ACTMED computes updated diagnostic beliefs for each hypothetical outcome:

• Creatinine
– high: P (ydt = 1 | Kt, high) = 0.65

– normal: P (ydt = 1 | Kt, normal) = 0.22

• Sodium
– low: P (ydt = 1 | Kt, low) = 0.45

– normal: P (ydt = 1 | Kt, normal) = 0.18
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Clinician role: The clinician can examine the impact of each test result on the diagnostic belief, and assess
whether these posterior shifts are clinically meaningful or likely to influence treatment decisions.

Step 4: Utility of Each Test. We compute the expected information gain from each test using the KL divergence
between posterior and prior diagnostic beliefs. This utility is expressed as:

F(ucrea
t ) = E[KL(P (ydt = 1 | Kt, u

crea
t ) ∥ P (ydt = 1 | Kt))] = 0.134,

F(usod
t ) = E[KL(P (ydt = 1 | Kt, u

sod
t ) ∥ P (ydt = 1 | Kt))] = 0.056.

Since F(ucrea
t ) > F(usod

t ), ACTMED selects the serum creatinine test as it provides higher expected diagnostic
value.

Clinician role: Before confirming the selected test, the clinician may override the choice if the utility estimate
contradicts clinical judgment, safety concerns, or logistical constraints.

Once a test is acquired, the diagnostic process iteratively continues until a diagnosis is achieved. Figure 15
details how the model supports this by generating intermediate outputs that clinicians can review throughout the
process.

1. Generating prior
distributions

4. Selecting test with
the highest utility

3. Generating
posteriors

distributions

2. Generating
hypothetical test

outcomes 2

1 3

4

Review prior risk
samples

Review sampled test
outcomes

Review posterior risk
samples

Review and
potentially update

suggested test

Figure 15: Illustrative example of ACTMED ’s diagnostic reasoning. The current belief (prior) about
CKD is updated based on hypothetical outcomes for two candidate tests (serum creatinine and
sodium). Posterior probabilities differ for each outcome, and the expected KL divergence determines
which test offers the greatest diagnostic value. Serum creatinine yields higher expected information
gain and is selected.

F Computational Cost Analysis

Our framework relies on repeatedly querying a LLM to simulate plausible estimates for candidate diagnostic test
results and estimate disease posteriors. Consequently, the computational cost is dominated by the number of
LLM queries required per patient episode.
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At each decision step t, the agent evaluates a set of candidate diagnostic tests Ut ⊂ Ut, where |Ut| denotes the
number of available tests. For each candidate test u(i)

t ∈ Ut, the agent samples M possible outcomes and the
resulting hypothetical posterior probability from the LLM to approximate the expected KL divergence. Thus,
the computational cost per decision step is O(|Ut|M) LLM queries.

Let T denote the maximum number of decision steps per patient before either termination or diagnosis. Then,
the total computational cost per patient is:

C = O

(
T∑

t=1

|Ut|M

)
. (14)

In the worst case, where no early termination occurs and all tests are considered at every step, the complexity
simplifies to:

C = O(TNM), (15)

where N is the total number of possible diagnostic tests. In practice, N may already be quite small as there will
only be a subset of all available tests that can be ordered for diagnosing conditions due to existing guidelines
and the model only needs to determine which of those offers the highest utility. Table 16 summarizes the
asymptotic computational complexity of our method compared to baseline approaches. While our method incurs
higher per-patient computational cost compared to static classifiers, this is justified in domains like clinical
medicine where information acquisition is expensive and decision quality is paramount. Inference time depends
primarily on LLM latency and hardware availability. In our setup, estimating the expected value of a single
diagnostic test takes approximately 20 seconds using either GPT-4o or GPT-4o-mini. Running the full suite of
experiments across five random seed, parallelized under a shared API key for each model, takes roughly 60
hours. In deployment, inference time could be significantly reduced through parallelization of the independent
API requests. This cost and time delay is negligible relative to the clinical and financial burden of unnecessary
or delayed testing. Furthermore, computational demands can be significantly reduced by training lightweight
surrogate models specialized for predicting test outcomes, as demonstrated in prior work [88].

Table 16: Comparison of per-patient computational complexity across methods.
Method Complexity Description
Static classifier O(1) Single forward pass using all features
Stochastic feature acquisition O(1) Random subset of all features selected
Greedy feature acquisition O(T ) Selects top-k features in static order
BED with KL divergence (ours) O(TNM) Actively selects using KL divergence
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We introduce and formalize a framework for timely diagnosis using BED and LLMs in
Sections 2 & 3. We validate the performance of our model on real-world medical datasets in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations of the model are discussed in Section 5. Computational cost is discussed in
Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: The assumptions underlying the Bayesian Experimental Design are discussed in Section
2. The paper does not include novel theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided detailed information on the publicly available datasets as well as the
prompts, pseudocode for the KL divergence based test selection and specific models used to run the
experiment. Source code to reproduce the main findings can be found under https://github.com/
Sr933/actmed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The datasets are all open access, with details provided in Section C. The experiments
and prompts used are also described. Source code and the datasets to reproduce the main findings can
be found under https://github.com/Sr933/actmed.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Details on the datasets used and the LLM setup are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We performed all experiment across 5 different random seeds and report all results as the
mean of the runs with the corresponding standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
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Justification: The bulk of the experiments other than the API calls was performed on the Azure Open
AI services, as detailed in Appendix C & F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss how our approach may lead to more rational test selection through personal-
ization in Section 5. We also acknowledge limitations of directly deploying LLMs in clinical practice
and highlight that our model maintains a human-in-the-loop approach and clinicians can override test
suggestion and review the models outputs at each step.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?
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Answer: [NA]

Justification: We do not release any pretrained language models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators of the datasets as well as the licenses under which these are available are
provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We do not create novel datasets or pretrained models. Source code and the exact datasets
used to reproduce the main findings can be found under https://github.com/Sr933/actmed

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
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• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]

Justification: The use of LLMs as generative models for Bayesian Experimental Design is described in
Section 3.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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