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Abstract
We study the capabilities of small-scale transformer models in symbolic reasoning, focusing on the NP-hard
algebraic task of multivariate polynomial decomposition, with widespread applications in science and engineering.
Our approach includes a fine-grained synthetic data generation pipeline, supervised pretraining, beam search,
evaluations for scaling behavior and generalizability, and a novel rank-aware reinforcement learning method called
Beam Grouped Relative Policy Optimization (BGRPO), which improves accuracy while reducing inference com-
pute by up to 75%. Additionally, our model demonstrates competitive performance in polynomial simplification,
outperforming Mathematica in various cases.

1. Introduction
Transformers, initially developed for natural language processing (Vaswani et al., 2017), have shown remarkable versatility
across diverse domains such as vision (Dosovitskiy et al., 2020) and protein folding (Jumper et al., 2021). More recently,
their applications in formal reasoning, symbolic mathematics and algorithmic tasks start to gain traction. Several works have
showcased transformer-based architectures’ ability to tackle highly structured problems, including theorem proving (Polu &
Sutskever, 2020; Trinh et al., 2024), integration (Lample & Charton, 2020), matrix multiplication (Fawzi et al., 2022) and
equation solving (Drori et al., 2022).

In this work, we investigate the transformer’s capacity for non-linear latent pattern discovery in the context of functional
decomposition, i.e. decomposing a complex function as the composition of simpler sub-functions. In contrast to step-by-step
logical deduction, or pattern recognition in data analysis, functional decomposition poses significant new challenges to
the transformer, because the forms of the sub-functions that we try to discover can be totally hidden or obscured in the
final compact form of the original function. Furthermore, it requires extreme precision without any margin of error. Unlike
more forgiving classification tasks, the decomposition problem admits only a sparse set of correct solutions: even minor
deviations in signs or coefficients can render outputs completely invalid.

Beyond its theoretical interest, functional decomposition has ubiquitous applications in software engineering (Tempero et al.,
2024), systems biology (Mori et al., 2023), mechanical design (She et al., 2024), systems engineering (Hernandez et al.,
2024) and digital logic design (Adamski et al., 2005; Lin et al., 2008), where capturing hidden substructures within high-
dimensional functions leads to more tractable and efficient models. However, identifying a function’s latent compositional
structure requires models to look past surface-level correlations, attending instead to deep algebraic symmetries and
invariants.

A particularly rich case of functional decomposition arises in multivariate polynomial functions. The polynomial decompo-
sition problem over a ring k seeks to decompose a given polynomial f ∈ k[x1, . . . , xn] into polynomials g ∈ k[y1, . . . , ym]
and h1, . . . , hm ∈ k[x1, . . . , xn] such that

f(x1, . . . , xn) = g
(
h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)

)
. (1)
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It has wide-ranging applications from cryptography (Patarin & Goubin, 1997) to dynamical modeling (Dang & Testylier,
2012), signal processing (Demirtas et al., 2012) and robotics (Elias & Wen, 2025; Manocha & Canny, 1992).

The multivariate polynomial decomposition problem has been proved to be NP-hard by Dickerson (Dickerson, 1987; 1993),
although efficient algorithms for various special cases are discussed in (Gathen et al., 2003; Von Zur Gathen, 1990a;b;
Faugère & Perret, 2009a;b; Zhao et al., 2012). To illustrate the difficulty of the problem for the models, let us consider the
following expression
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It has a hidden O(3)-symmetry, which can be revealed by decomposing f = g ◦ h, with g(y) = y2 + 2(4 + y)3 and
h = a1b1 + a2b2 + a3b3. This is a highly nontrivial task to identify the inner function h directly from the expanded form
of f , as its structure becomes completely obscured after polynomial substitution, expansion and simplification. Even in
this relatively constrained case where g is univariate, discovering the decomposition requires recognizing non-linear latent
patterns across dozens of terms. When g becomes multivariate, the complexity increases substantially, making the problem
even more challenging.

To tackle the polynomial decomposition problem, we develop a systematic approach with four key components. First, we
create a backward synthetic data generation pipeline that allows fine-grained control over polynomial complexity involving
range of coefficients, degree, and number of variables. Second, we train lightweight transformer models on these synthetic
datasets using supervised learning and analyze how performance scales across four axes (performance complexity scaling,
architecture scaling, distribution adaptation, search strategy analysis). Third, we discover that both multi-sampling and
greedy search methods struggle with the sparse solution space of the polynomial decomposition problem, and we implement
a beam search strategy to effectively extract the models’ capabilities. Finally, to address the computational intensity
of beam search, we develop a rank-aware variant of the Grouped Relative Policy Optimization (GRPO) reinforcement
learning algorithm called BGRPO, which encodes rank information directly in the reward function. Fine-tuning with
BGRPO improves accuracy while reducing beam search width by up to 50%, resulting in 75% lower computational
requirements during inference. Additionally, our model demonstrates competitive performance in polynomial simplification,
outperforming Mathematica in various cases. This underscores the potential of transformer models to complement and
extend classical symbolic computation systems.

2. Method
2.1. Backward Synthetic Data Generation

We generate synthetic data for supervised learning using a backward approach, starting from the decomposed form. First,
we generate the inner functions (h1, . . . , hm in Eq. (1)) and the outer function (g in Eq. (1)) with random monomial terms
of bounded degree and random coefficients within a given range. Then, we obtain the composed function (f in Eq. (1)) via
substitution, expansion, and term collection. See Appendix A for the detailed algorithm. For each generated instance, we
create a training pair consisting of the expanded polynomial f as input and its decomposed components {g, h1, . . . , hvouter}
as the target output. The model is trained to minimize the standard negative log-likelihood loss function.

2.2. Beam Search

Beam search is a breadth-first search algorithm that approximates optimal decoding by keeping track of the k most probable
sequences at each step (Freitag & Al-Onaizan, 2017). For each of the k current sequences, the algorithm considers the top-k
token extensions per sequence. These k2 candidate continuations are then ranked by the sum of log probabilities of all
tokens in the sequence, and only the top-k sequences with the highest cumulative log probability are retained for the next
step. In this paper, we refer to k as the beam width, and to the position (1st, 2nd, etc.) of an output in the final beam as its
rank.

Our analysis across all model outputs identified a specific error pattern in polynomial decomposition: the model achieves
approximately 90% accuracy for predicting non-sign tokens (operators, numbers, variables), but exhibits near-random
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performance for deciding between positive and negative signs. This creates a unique inference challenge where exploration
needs to be constrained for high-confidence structural elements while simultaneously expanded for uncertain sign choices.

Beam search is particularly well-suited for this situation as it maintains the high-confidence structural backbone while
systematically exploring variations in the uncertain components. Our experiments demonstrate that beam search significantly
outperforms greedy decoding and random sampling for polynomial decomposition tasks. See Appendix G for a detailed
error analysis and an explanation of beam search effectiveness for this task.

2.3. BGRPO : Reinforcement Learning Method Enhancing Beam Search Efficiency

The computational cost of beam search scales quadratically with beam width. There would be a significant computational
advantage if we could improve the ranks of correct outputs. To address this, we introduce Beam Grouped Relative Policy
Optimization (BGRPO), a reinforcement learning method that extends GRPO, uniquely taking into account rankings in the
beam search, specifically designed for improving beam search inference efficiency.

Reinforcement learning enables models to explore solution spaces more effectively than supervised learning alone, enhancing
the model’s capabilities by addressing specific weaknesses through a reward mechanism. This approach encourages correct
answers while discouraging incorrect ones based on an advantage function—the difference between a solution’s reward
and a baseline reward. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) estimates this baseline for each
question by sampling a group of outputs, and has shown promising results for reinforcement learning in language generation
tasks due to its sample efficiency and stability (DeepSeek-AI, 2025). We chose GRPO over traditional Proximal Policy
Optimization (PPO) (Schulman et al., 2017) because it eliminates the need for a separate value network or reward model,
reducing training complexity while improving stability, and its group-wise baseline calculation naturally fits tasks with a
clear binary reward structure like polynomial decomposition.

Our proposed Beam Grouped Relative Policy Optimization (BGRPO) extends this approach by using beam search rather
than independent sampling for generating the group of outputs. While this significantly alters the distribution of outputs,
making their average reward less suitable as a traditional baseline, it still provides valid training signals by reinforcing
correct answers and penalizing incorrect ones. BGRPO is particularly effective for our task because beam search generates
outputs with identical structure that differ only in the confusing elements (signs), creating a focused learning signal.

Additionally, BGRPO incorporates rank information directly into the reward function by applying an exponential decay
factor based on the position in the beam. This incentivizes correct answers to appear at earlier positions in the beam search,
effectively pushing correct solutions toward the top of the beam ranking.

Training Objective For a prompt x, let B(x) = {y1, . . . , yw} be the set of beam search outputs with beam width w
generated by the old policy πθold . Each output sequence yi receives a reward ri, where ri = 0 for incorrect polynomial
decomposition and ri = 1 for correct decomposition. In BGRPO, we incorporate rank information by scaling the reward for
correct decompositions using an exponential decay function e−rank/w. We optimize the policy model πθ for µ iterations by
maximizing the following objective:

JBGRPO(θ) =
1

w

w∑
i=1

(
min

(
πθ(yi|x)

πθold(yi|x)
Ai, clip

(
πθ(yi|x)

πθold(yi|x)
, 1− ε, 1 + ε

)
Ai

)
− βDKL(πθ||πref)

)
, (2)

where ε is the clipping parameter that constrains policy updates and β controls the KL divergence regularization term:

DKL(πθ||πref) =
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1. (3)

Here, πref is the reference policy, which is the initial model before BGRPO training. The advantage function Ai is computed
without normalization as Ai = ri −mean({r1, r2, · · · , rw}), following the approach in (Liu et al., 2025).

2.4. Evaluation Axes

To systematically analyze our models’ capabilities for the polynomial decomposition problem, we consider four key
evaluation dimensions: Problem Complexity Scaling (D1), Architecture Scaling (D2), Distribution Adaptation (D3) and
Search Strategy Analysis (D4). We refer to Appendix B for the details.
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3. Selected Experimental Results
We refer to Appendix C for the details of our experimental setup, and to Appendix D for the complete results across the four
evaluation axes mentioned above. Here we focus on the results of the first evaluation axis(D1) and BGRPO. Additionally,
we have a brief comparison with Mathematica.

3.1. Problem Complexity Scaling (D1)

In the first part of D1, we examine how model performance varies with the degrees of inner and outer polynomials. The
result is shown in Figure 1. We use greedy search for the inference. Regardless of the degrees of the polynomials, our model
achieves a remarkable single-output accuracy. Notably, when using beam search with a width of 10, the model’s accuracy
reaches 100% for these configurations.

Our analysis reveals a pattern: performance remains invariant to increases in the outer polynomial’s degree, while decreasing
when the inner polynomial’s degree increases. This demonstrates that the transformer’s decomposition capability is primarily
limited by the complexity of the inner polynomial rather than that of the outer polynomial.

In the second part of D1, we investigate how the performance scales with vinner and vouter, the number of variables in the
inner and outer polynomials. Figures 2 and 3 present these results.

Figure 1. Performance across different dinner, douter
Figure 2. Performance across differ-
ent vouter

Figure 3. Performance across differ-
ent vinner

Given the challenging nature of multivariate polynomial decomposition, we evaluate the model’s performance using beam
search with a width of 30, considering a prediction correct if at least one of the 30 candidate outputs is correct decomposition.

Our results reveal two trends: performance decreases dramatically as vouter increases, yet counter-intuitively improves as
vinner increases. This observation aligns with the following heuristic understanding: higher vouter creates an information
bottleneck, requiring the model to simultaneously resolve multiple interdependent inner functions. In contrast, higher vinner
provides more dimensions of input variation with additional structural indicators that can guide the decomposition process.

3.2. BGRPO Results

We evaluated BGRPO across models of varying sizes from our architecture scaling experiments(D2), implementing versions
both with and without rank signal. Fig 4 illustrates these results.

BGRPO consistently improved accuracy across all beam widths regardless of model size. Without rank signal, BGRPO gives
average accuracy increases of 34.0%, 17.8%, and 12.4% for 6-layer models with dimension 256, 512, and 768 respectively.
Including rank signal in BGRPO produces even more improvements, with average accuracy increases of 46.6%, 28.4%, and
30.2%.

These improvements translate to significant computational efficiency gains. For instance, the dimension-256 model initially
achieved 26.1% accuracy with beam width 30. After applying BGRPO with rank signal, comparable accuracy (26.0%)
was achieved with just beam width 16. This effectively halves the required beam width for equivalent performance. Since
beam search computation scales quadratically with beam width, this improvement reduces beam search computation by
approximately 75% while maintaining equivalent performance.

On average, BGRPO without rank signal reduced the required beam width by 31.3%, 14.9%, and 11.4% for 6-layer models
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with dimension 256, 512, and 768 respectively. When incorporating rank signal, BGRPO reduced required beam width even
further, by 38.9%, 22.0%, and 26.5%.
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Figure 4. Accuracies on experiments with different dimension. Each experiment we have finetuned model with 2M data and models
trained with BGRPO with and without rank signal on top of that.

3.3. Simplification Comparison with Mathematica

While polynomial simplification and polynomial decomposition represent two distinct mathematical objectives, simplification
frequently arises as a consequence of decomposition, since decomposed forms generally exhibit reduced algebraic complexity
compared to the original expression. In this subsection, we briefly explore the capabilities of our models for this related
problem, and benchmark against the most powerful symbolic computation engine Mathematica. Despite our lightweight
parameter budgets and the absence of any explicit simplification objective in our training, the models were able to reduce
the leaf count (Wolfram Research, Inc., 1996) of complex expressions, with performance on par with — and in two of five
complexity regimes surpassing —Mathematica’s state-of-the-art FullSimplify function (see Appendix E).

Software and Data
Our code and data are publicly available at https://github.com/Jaeha0526/PolynomialDecomposition.
The repository contains: (1) our synthetic data generation code for creating polynomial decomposition datasets with
controlled complexity parameters; (2) the complete implementation of transformer-based polynomial decomposition models,
including training pipelines built on minGPT; (3) evaluation scripts for all four experimental axes presented in the paper;
(4) our Beam Grouped Relative Policy Optimization (BGRPO) algorithm implementation; and (5) scripts to reproduce
all experiments from the paper. Additionally, we provide an example Jupyter notebook demonstrating our methods at
https://github.com/abhishekpanigrahi1996/MOSS/submission-72. The codebase is designed to be
modular and extensible, allowing researchers to easily experiment with different architectural configurations, data generation
parameters, and search strategies.
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Potapenko, A., et al. Highly accurate protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Kaplan, J., McCandlish, S., Henighan, T., and Brown, T. B. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

6

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
http://dx.doi.org/10.18653/v1/W17-3207
https://arxiv.org/abs/1809.00069


Submission and Formatting Instructions for MOSS@ICML2025

Karpathy, A. mingpt. https://github.com/karpathy/minGPT, 2020.

Lample, G. and Charton, F. Deep learning for symbolic mathematics. arXiv preprint arXiv:2006.02974, 2020.

Lin, H.-P., Jiang, J.-H. R., and Lee, R.-R. To sat or not to sat: Ashenhurst decomposition in a large scale. In 2008 IEEE/ACM
International Conference on Computer-Aided Design, pp. 32–37. IEEE, 2008.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee, W. S., and Lin, M. Understanding r1-zero-like training: A critical
perspective, 2025. URL https://arxiv.org/abs/2503.20783.

Manocha, D. and Canny, J. F. Real time inverse kinematics for general 6r manipulators. In ICRA, pp. 383–389, 1992.

Mori, M., Cheng, C., Taylor, B. R., Okano, H., and Hwa, T. Functional decomposition of metabolism allows a system-level
quantification of fluxes and protein allocation towards specific metabolic functions. Nature Communications, 14(1):4161,
2023.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen, A.,
Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J., Lovitt, L.,
Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J., McCandlish, S., and Olah, C. In-context learning and induction
heads. Transformer Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

Patarin, J. and Goubin, L. Asymmetric cryptography with s-boxes is it easier than expected to design efficient asymmetric
cryptosystems? In International Conference on Information and Communications Security, pp. 369–380. Springer, 1997.

Polu, S. and Sutskever, I. Generative language modeling for automated theorem proving. arXiv preprint arXiv:2009.03393,
2020.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. Sequence level training with recurrent neural networks, 2016. URL
https://arxiv.org/abs/1511.06732.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms, 2017. URL
https://arxiv.org/abs/1707.06347.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo, D. Deepseekmath:
Pushing the limits of mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

She, J., Belanger, E., and Bartels, C. Evaluating the effectiveness of functional decomposition in early-stage design:
development and application of problem space exploration metrics. Research in Engineering Design, 35(3):311–327,
2024.

Tempero, E., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Kirk, D., Leinonen, J., Shakil, A., Sheehan, R., Tizard, J.,
Tu, Y.-C., et al. On the comprehensibility of functional decomposition: An empirical study. In Proceedings of the 32nd
IEEE/ACM International Conference on Program Comprehension, pp. 214–224, 2024.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solving olympiad geometry without human demonstrations. Nature,
625(7995):476–482, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all
you need. Advances in neural information processing systems, 30, 2017.

von Werra, L., Belkada, Y., Tunstall, L., Beeching, E., Thrush, T., Lambert, N., Huang, S., Rasul, K., and Gallouédec, Q.
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A. Backward Synthetic Data Generation Details
Our synthetic data generation process provides fine-grained control over problem complexity through eight parameters:
Cinner (coefficient range for inner polynomials), dinner (maximum degree of inner polynomials), vinner (number of variables
in inner polynomials), tinner (maximum number of terms in inner polynomials), and similarly Couter, douter, vouter, and
touter for the outer polynomial.

Algorithm 1 Backward Generation of Synthetic Training Data

Require: Coefficient range Cinner, Couter; maximal degrees dinner, douter; variable counts vinner, vouter; term limits tinner,
touter.

1: Generate outer polynomial g with vouter variables, coefficients ∈ Couter, degree = douter, and no more than touter
monomial terms.

2: Generate vouter inner polynomials h1, . . . , hvouter , where each hi has vinner variables, coefficients ∈ Cinner, degree
= dinner, and no more than tinner monomial terms.

3: f ← g(h1, . . . , hvouter), i.e. substitute h1, . . . , hvouter into g, expand and collect the monomial terms.
4: return (f, g, h1, . . . , hvouter

)

B. Evaluation Axes Details
To systematically analyze our models’ capabilities for the polynomial decomposition problem, we consider four key
evaluation dimensions.

Problem Complexity Scaling (D1). We analyze how the model performance varies with respect to changes in the
complexity parameters for synthetic data generation. We vary the number of variables vinner, vouter, and the maximum
degrees dinner, douter for both the inner and outer polynomials.

Architecture Scaling (D2). We investigate how model performance scales with key architectural hyperparameters of the
transformer. In particular, we measure P(M(d, l, a)), the performance of models with embedding dimension d, number
of layers l, and number of attention heads a. Our goal is to characterize how these hyperparameters influence model
capabilities.

Distribution Adaptation (D3). A practical challenge in applying transformers to symbolic computation is their sensitivity
to the numerical ranges present in the training data. For example, models trained on specific coefficient ranges tend to
struggle with polynomials outside these ranges. On the other hand, we found that models can rapidly adapt to new coefficient
distributions with minimal additional training, suggesting that they manage to learn generalizable pattern recognition rather
than merely memorizing specific numerical relationships.

To quantify the model’s ability to transfer its polynomial decomposition skills to numerically distinct but structurally
identical problems, we prepare the model Mn

C1→C2
. This model is initially trained on 1M polynomial decomposition

examples with Couter = C1 and then fine-tuned with n examples with Couter = C2 where C1 ∩ C2 = ∅. We measure the
performance of model Mn

C1→C2
on a test set of polynomial decomposition problems with Couter = C2:

G(n) = P
(
Mn

C1→C2
, test set with Couter = C2

)
(4)

Search Strategy Analysis (D4). We investigate how beam search enhances model performance on polynomial decomposi-
tion tasks, analyzing its effectiveness across different model architectures and levels of problem complexity.

C. Experimental Setup
C.1. Synthetic Dataset Setup

For the axis D1 of the problem complexity scaling, we first examine degree scaling by training a model on 2M polynomial
decomposition examples with different inner and outer degrees as described in Table 1. We then evaluate this model on
separate test datasets with the same configuration parameters, each corresponding to one of nine different (dinner, douter)
pairs to assess performance across varying problem complexities.

9
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For the second part of the D1 axis, we train a model for each combination of vinner and vouter varying from 2 to 4 while
fixing the other parameter at 3. For each combination, we use 1M examples to train the model.

For the axis D2 of architecture scaling, we train multiple models with varying architectural configurations, all using the
same dataset of 2M examples with polynomial parameters as described in Table 1.

For the axis D3 of distribution adaptation, we train initial models on 1M examples with Couter = C1 = [−5, 5] and then
adapt them to examples with Couter = C2 = [−10,−6] ∪ [6, 10]. Other parameters are the same across both datasets as
described in Table 1.

For the second part of D1 (Variable Scaling) and D2, we set tinner = touter = 3 to prevent expressions from becoming too
long. We describe our tokenization in Appendix F.

Table 1. Synthetic Dataset Configuration Across Evaluation Axes

Evaluation Axis Inner Coeff. Outer Coeff. Inner Degrees Outer Degrees Inner Vars Outer Vars

D1 (Degree Scaling) [−20, 20] [−20, 20] {2, 3, 4} {2, 3, 4} 1 1
D1 (Variable Scaling) [−5, 5] [−5, 5] 3 3 {2, 3, 4} {2, 3, 4}
D2 (Architecture) [−5, 5] [−5, 5] 3 3 3 3

D3 (Adaptation) [−20, 20] C1 = [−5, 5] {1, 2} {1, 2, 3, 4} 1 1
[−20, 20] C2 = [−10,−6] ∪ [6, 10] {1, 2} {1, 2, 3, 4} 1 1

C.2. Architecture Configuration

We employ a decoder-only transformer architecture following standard design principles (Vaswani et al., 2017). Table 2
summarizes our task-specific configurations across all experimental axes. For lightweight and effective training, we
developed our own model and training pipeline based on minGPT (Karpathy, 2020).

Table 2. Transformer Model Configuration Across Experiments
Experiment Context Window Embedding Dim. Layers Heads

D1 (Degree Scaling) 256 512 6 8
D1 (Variable Scaling) 850 512 6 8

D2 (Architecture) 850 {256, 512, 768} {4, 6} 8
D2 (Attention Heads) 850 512 6 {4, 8, 16}
D3 (Distribution) 256 512 4 8

Common settings: GELU activation, learned positional embeddings, multi-head attention with causal masking, MLP hidden dimension =
4× embedding dimension.

C.3. Supervised Learning Details

We train our models using the Adam optimizer with an initial learning rate of 6× 10−4, incorporating a 10% warmup period
followed by cosine decay. Each configuration initially trains on 1M instances, with additional 1M training examples added
incrementally until performance saturation. We use a batch size of 200 throughout training. We train models with enough
epochs until it saturates with the given dataset.

C.4. BGRPO Implementation

For the BGRPO reinforcement learning phase, we generate candidate solutions using beam search with a width of 32 and
temperature of 1.0. We implement our approach using the GRPO functionality from the trl library (von Werra et al., 2020).
The training process consists of 5 policy update iterations after sampling outputs for 8 distinct polynomial decomposition
problems. We set the PPO clipping parameter ε to 0.2 and the KL divergence coefficient β to 0.01. The learning rate during
BGRPO training is 1× 10−5. We train models from D2 on a dataset of 200 non-repeating problems, saving checkpoints
every 5 iterations and selecting the best model based on performance with beam width 7.

10
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D. Experimental Results Across Four Evaluation Axes
Here we presents complete experiment results.

D.1. Architecture Scaling (D2)

Figure 5. Accuracies on different number
of layer and dimension.

In D2, we examine how model performance varies with architectural parameters:
embedding dimension, number of layers, and number of attention heads. When
varying the number of heads, we maintain a constant total embedding dimension,
meaning that models with more heads have smaller per-head embedding dimen-
sions. We use the dataset described in Section C.1 and evaluate using beam search
with a width of 30.

Figure 5 reveals the scaling behavior (Kaplan et al., 2020) of transformer architec-
tures on polynomial decomposition. As model capacity increases through higher
embedding dimensions and additional layers, performance consistently improves.

Notably, our results demonstrate the presence of a data-dependent scaling threshold.
With limited training data (1M examples), larger models initially underperform
their simpler counterparts, particularly evident in the 6-layer configurations with

higher embedding dimensions. However, this pattern reverses completely with additional training data, confirming that
larger models possess superior capacity for mathematical pattern recognition when provided with sufficient examples to
leverage their parametric advantage.

InD2, we also examine model performance with different numbers of attention heads. Our experiments reveal that increasing
the number of attention heads while maintaining constant total embedding dimension leads to progressively deteriorating
performance on polynomial decomposition tasks. Models with 4 heads achieved 32.0% accuracy, while those with 8 and
16 heads reached only 28.0% and 25.0% accuracy, respectively. This suggests that for our specific task of mathematical
pattern recognition, fewer, more expressive attention heads with larger per-head dimensions provide better performance than
numerous specialized heads with smaller dimensions.

D.2. Distribution Adaptation (D3)

We evaluate G(n) as defined in Eq. 4, which measures how quickly models adapt to new coefficient distributions as a
function of adaptation sample size n. For this experiment, we train a model with 4 layers and 512 embedding dimension on
the dataset described in Section C.1. The initial training used 1M examples with outer polynomial coefficient range C1,
followed by fine-tuning on n examples with coefficient range C2 for a single epoch. We report the variance in accuracy
based on three independent trials.

Figure 6. Performance recovery when
adapting to a new coefficient distribution

Models trained exclusively on the first dataset achieve only 5.67% accuracy on
the new distribution, despite reaching nearly 100% accuracy on the original distri-
bution. Figure 6 illustrates how performance recovers during adaptation. Notably,
despite using only ≈ 2% of the original training data size, the model rapidly
recovers its accuracy from single digits to over 90%. This rapid adaptation indi-
cates successful transfer learning, suggesting that the model develops a general
mathematical understanding of polynomial substructures rather than memorizing
specific numerical relationships.

We further investigate whether alternative data representations could enhance this
adaptation capability. We propose ”split” representation of polynomials, where we

randomly select terms from the expanded form and split their coefficients. For example:

fnon-split(a) = −63 + 23a− 71a2 − 11a3 − 14a4 − 12a5 − 2a6

fsplit(a) = −63 + 23a− 4a2 − 67a2 − 8a3 − 3a3 − 7a4 − 7a4 − 12a5 − a6 − a6
(5)

In Figure 6, the red line demonstrates G(n) of the model trained on data with both normal and split representation. Models
trained on this mixed data including split representation demonstrate significantly faster adaptation, requiring only 70% of
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the additional training examples to reach equivalent performance on the new distribution.

This enhanced generalization likely stems from the model being forced to recognize mathematically equivalent but differently
represented polynomials, compelling it to develop a deeper understanding of polynomial structure rather than memorizing
specific patterns.

D.3. Search Strategy Analysis (D4)

We evaluate how search strategies impact model performance on polynomial decomposition tasks, with a particular focus on
beam search efficiency. Figure 7 and 8 illustrate the accuracy achieved across different beam widths for polynomials with
varying numbers of variables.

Figure 7. Beam width scaling with varying vouter
(vinner = 3)

Figure 8. Beam width scaling with varying vinner
(vouter = 3)

Our results reveal an unusually dramatic impact of beam search for polynomial decomposition compared to typical NLP
tasks. For two-variable polynomials, accuracy improves from 11% with greedy search to 69% with a beam width of 30—a
remarkable 6.3× improvement. This stands in stark contrast to standard neural machine translation applications, where beam
search typically yields BLEU score improvements of only 2-4 points (Huang et al., 2018; Ranzato et al., 2016). Even more
telling, most NMT systems show diminishing returns with beam widths beyond 5-10 (Freitag & Al-Onaizan, 2017).

E. Leaf Count Comparison with Mathematica
We compare the leaf counts of polynomial decompositions produced by our models with those generated by Mathematica’s
FullSimplify function.

Table 3. Average leaf count comparison (Beam width = 30)
Problem Complexity Leaf Count (mean)

vO vS Transformer Mathematica ∆

2 3 27.28 30.03 -2.75
3 3 22.85 22.12 0.73
4 3 22.52 20.00 2.52
3 2 17.27 17.10 0.17
3 4 26.04 27.56 -1.52

F. Tokenization
We encode polynomials using prefix notation, with separate tokens for operators, digits, and variables. Each number includes
its sign, so we only use addition, multiplication, and power operators. Subtraction is represented as addition with a negative
sign. Each input sequence consists of the tokenized expanded polynomial f followed by a question mark token ’?’. The
target output format depends on the number of outer variables: for vouter = 1, the target output is simply the tokenized inner
polynomial h; for vouter > 1, the target output begins with the tokenized outer polynomial g followed by each tokenized
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inner polynomial h1, . . . , hvouter
, with all polynomials separated by a delimiter token ’&’.

Below is an example of a tokenized training input ’x’ and target output ’y’:

x : + ∗ P 9 0 a + ∗ N 3 1 9 ˆ a P 2 + ∗ N 3 6 ˆ a P 3 ∗ N 1 ˆ a P 4 ? +N 5 + ∗ P 1 8 a ˆ a P 2 □ . . .
y :□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□+ N 5 + ∗ P 1 8 a ˆ a P 2□□ . . .

This example shows a training pair where the outer polynomial is 90a− 319a2 − 36a3 − a4 and the target inner polynomial
is −5 + 18a+ a2. The □ symbol represents a padding token which is excluded from the log-likelihood loss calculation.

G. Example Ouput Logits and Effectiveness of the Beam Search
Figure 9 shows example top-3 probabilities for each token position in the answer sequence at temperature 1, using the layer-6,
embedding dimension 512 model from our D2 experiments. Correct answers are highlighted in red. The visualization
clearly illustrates that the model’s primary source of confusion occurs in sign decisions, while it confidently predicts most of
the other token types.

Table 4 quantifies this observation by showing the probability and accuracy statistics for different token types across our
model architectures from D2. These statistics were computed using a test set of 1000 polynomial decomposition problems
at temperature 1.

Table 4. Token Type Analysis Across Different Model Architectures

Token Type Metric 4 Layers 6 Layers

256 dim 512 dim 768 dim 256 dim 512 dim 768 dim

Sign Probability 0.489± 0.001 0.489± 0.001 0.493± 0.001 0.491± 0.001 0.490± 0.001 0.490± 0.001
Accuracy 0.519± 0.006 0.531± 0.006 0.530± 0.006 0.522± 0.006 0.523± 0.006 0.521± 0.006

Operator Probability 0.920± 0.002 0.915± 0.002 0.919± 0.002 0.927± 0.002 0.925± 0.002 0.925± 0.002
Accuracy 0.937± 0.002 0.934± 0.002 0.935± 0.002 0.943± 0.002 0.941± 0.002 0.942± 0.002

Number Probability 0.880± 0.002 0.870± 0.002 0.878± 0.002 0.890± 0.002 0.885± 0.002 0.884± 0.002
Accuracy 0.901± 0.002 0.893± 0.003 0.897± 0.002 0.911± 0.002 0.905± 0.002 0.903± 0.002

Table 4. Note: Values shown as mean ± standard error of the mean. The sign token probabilities are near-random, while operators and
numbers show high confidence and accuracy.

As discussed in Section 2.2, our models achieve approximately 90% accuracy when predicting non-sign tokens, but exhibit
near-random performance when choosing between positive and negative signs. This specific error pattern makes beam
search particularly effective for our task.

The effectiveness of beam search stems from its ability to explore multiple sign configurations while preserving the high-
confidence structural tokens. In probability terms, selecting a token with 0.1 probability instead of one with 0.9 probability
is equivalent to making approximately 11 consecutive choices of a 0.45 probability token over a 0.55 probability token.
Since our polynomial expressions typically contain fewer than 10 sign decisions, beam search with a width of approximately
30 can efficiently cover most viable sign permutations while maintaining the correct monomial structure identified with high
confidence.

H. Attention Score Analysis: Monomial Heads
Attention mechanism analysis has provided valuable insights into transformer model behaviors, with studies identifying
specialized attention heads that serve specific functions. For example, (Olsson et al., 2022) identified ”Induction Heads” that
play a crucial role in in-context learning, while (Wang et al., 2022) provided a comprehensive understanding of indirect
object identification in GPT-2 Small.

In our analysis of attention patterns in polynomial decomposition models, we identified specialized attention heads that
recognize the structure of polynomials, particularly focusing on monomial identification. We call these ”Monomial Heads,”
and they appear consistently across all model sizes in our architecture scaling experiments (D2).
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Figure 9. Top-3 probability for each token position in the answer sequence where

Answer: + * N 5 ˆ b1 P 3 + * N 4 * b0 ˆ b2 P 2 * N 5 ˆ b2 P 3 & + * P 2 * ˆ a0 P 2 a2 * N 2 * a0 * a1 a2 & + * N 5 ˆ a0
P 3 + * P 4 * ˆ a0 P 2 a2 * N 5 * a0 * a1 a2 & + * P 4 * a0 * a1 a2 * P 2 * a1 ˆ a2 P 2

Question: + * P 6 2 5 ˆ a0 P 9 + * N 1 5 0 0 * ˆ a0 P 8 a2 + * P 1 8 7 5 * ˆ a0 P 7 * a1 a2 + * P 1 2 0 0 * ˆ a0 P 7 ˆ a2 P
2 + * N 3 0 0 0 * ˆ a0 P 6 * a1 ˆ a2 P 2 + * P 1 8 7 5 * ˆ a0 P 5 * ˆ a1 P 2 ˆ a2 P 2 + * N 3 2 0 * ˆ a0 P 6 ˆ a2 P 3 + * P 1 2 0 0 * ˆ a0 P 5 *
a1 ˆ a2 P 3 + * N 1 6 2 8 * ˆ a0 P 4 * ˆ a1 P 2 ˆ a2 P 3 + * P 4 3 3 * ˆ a0 P 3 * ˆ a1 P 3 ˆ a2 P 3 + * N 1 2 8 * ˆ a0 P 3 * ˆ a1 P 2 ˆ a2 P 4 + *
N 3 5 2 * ˆ a0 P 2 * ˆ a1 P 3 ˆ a2 P 4 + * N 3 2 * ˆ a0 P 2 * ˆ a1 P 2 ˆ a2 P 5 + * N 2 0 8 * a0 * ˆ a1 P 3 ˆ a2 P 5 * N 4 0 * ˆ a1 P 3 ˆ a2 P 6 ?
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Monomial Heads manifest in two distinct patterns in our models. First, in layer 0, several attention heads consistently attend
to tokens 1-5 positions behind the current position, as shown in the leftmost plot of Figure 10. Second, in layer 1, we observe
specialized behavior where certain heads focus attention on specific tokens within each monomial of the input polynomial
(middle plot), while others specifically attend to delimiter tokens in the decomposition output (rightmost plot).

We hypothesize that this represents a two-stage process: in the first layer, the model identifies key tokens that serve as
indicators for each monomial by examining local context (1-5 tokens behind). In the second layer, tokens within each
monomial attend to these indicator tokens to establish their monomial membership. While this pattern is most clear in the
encoding of the input polynomial, the decomposition output shows evidence of boundary recognition, particularly at the
transitions between inner functions marked by delimiter tokens.

Figure 10. Attention score visualization of selected attention heads from our 6-layer transformer model with embedding dimension 768.
The visualization shows attention patterns for a tokenized polynomial sequence and its decomposition.

Input polynomial: + ∗ P 2 5 6 ∧ a0 P 9 + ∗ N 1 9 2 ∗ ∧ a0 P 8 a1 + ∗ P 4 8 ∗ ∧ a0 P 7 ∧ a1 P 2 + ∗ N 4 ∗ ∧ a0 P 6 ∧
a1 P 3 + ∗ N 6 4 ∗ ∧ a0 P 3 ∧ a1 P 6 + ∗ P 1 6 ∗ ∧ a0 P 2 ∧ a1 P 7 ∗ P 6 4 ∧ a1 P 9 ?

Model’s decomposition output: + ∗ N 4 ∧ b0 P 3 + ∗ b0 ∧ b2 P 2 ∗ N 1 ∧ b2 P 3 & + ∗ N 4 ∧ a0 P 3 ∗ ∧ a0 P 2 a1 &
+ ∗ N 3 ∧ a1 P 3 + ∗ N 2 ∗ a1 ∧ a2 P 2 ∗ N 4 ∧ a2 P 3 & ∗ N 4 ∧ a1 P 3 The visualization reveals how different attention heads focus on

specific structural elements when decomposing polynomials.
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