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Abstract

Keyphrase generation aims to generate topi-
cal phrases from a given text either by copy-
ing from the original text (present keyphrases)
or by producing new keyphrases (absent
keyphrases) that capture the topical and salient
aspects of the text. While many neural mod-
els have been proposed and analyzed for this
task, there is limited analysis of the properties
of their generative distributions at the decod-
ing stage. Particularly, it remains to be known
how well-calibrated or uncertain the confidence
of different models is with empirical success
rate and whether they can express their uncer-
tainty. Here, we study the confidence scores,
perplexity, and expected calibration errors of
five strong keyphrase generation models with
unique characteristics and designs based on
seq2seq recurrent neural networks (ExHiRD),
transformers with no pre-training (Transformer,
Trans2Set), and transformers with pre-training
(BART, and T5). We propose a novel strategy
for keyphrase-level perplexity calculation and
for normalizing sub-word-level perplexity to
gauge model confidence.

1 Introduction

Keyphrase generation is the task of predicting a
set of keyphrases from a given document that cap-
ture the core ideas and topics of the document.
Among these keyphrases, some exist within the
source document (present keyphrases), and some
are absent from the document (absent keyphrases).
Keyphrases are widely used in various applications,
such as document indexing and retrieval (Jones
and Staveley, 1999; Boudin et al., 2020), docu-
ment clustering (Hulth and Megyesi, 2006), topic
classification (Sadat and Caragea, 2022), and text
summarization (Wang and Cardie, 2013; Abu-Jbara
and Radev, 2011). Hence, keyphrase generation is
of great interest to the scientific community.

In recent years, neural encoder-decoder
(seq2seq) models have been adapted to generate

both absent and present keyphrases (Meng et al.,
2017). These approaches (Yuan et al., 2020; Chan
et al., 2019a; Chen et al., 2020) to keyphrase
generation aim at autoregressively decoding a
sequence of concatenated keyphrases from a given
source document. Typically, these models are
equipped with cross-attention (Luong et al., 2015;
Bahdanau et al., 2015) and a copy (or pointer)
mechanism (Gu et al., 2016; See et al., 2017).
Another emerging trend is to adapt pre-trained
language models for keyphrase generation (Liu
et al., 2020; Wu et al., 2021; Garg et al., 2022;
Ray Chowdhury et al., 2022; Kulkarni et al., 2021;
Madaan et al., 2022; Wu et al., 2022b,a; Kulkarni
et al., 2022). However, although a number of such
variants and extensions of seq2seq models have
been proposed to enhance keyphrase generation,
there have been limited attempts at analyzing the
predictive distribution of neural seq2seq models
in this task. Particularly, we are interested here
in taking a closer look at the decoder of seq2seq
models to understand model calibration and
evaluate uncertainty estimation (Guo et al., 2017)
of keyphrase predictions.

Model Calibration and Uncertainty: In practical
applications, it is often desirable to accurately
estimate the confidence of a model prediction
to decide whether that prediction can be used or
not (Guo et al., 2017; Rybkin et al., 2021; Zhao
et al., 2021; Tian et al., 2023). Thus, the models
must not only be accurate, but also must indicate
when they are likely to get a wrong prediction
(reflected in the model’s confidence or uncertainty).
This allows the decision-making to be routed
as needed to a human or another more accurate,
but possibly more expensive, model. Similarly,
in keyphrase generation, in principle, calibrated
model confidence could be used to make different
decisions - for example, ranking keyphrases after
overgeneration, or mixing predictions of different



models based on their confidence, or even switch-
ing control to an expert for annotation. However,
before we can rely on the confidence estimated by
a model (based on its prediction probabilities), we
need to determine how well calibrated the model is.
A well-calibrated model should generally “know
what it does not know”, which can be reflected
by a strong alignment between its empirical
likelihood (accuracy) and its probability estimates
(confidence). Thus, in this work, we measure and
contrast calibration and performance of five key
models for keyphrase generation: (1) ExHiRD; (2)
Transformer; (3) Trans2Set; (4) BART; and (5) T5.
Moreover, to be able to measure confidence cal-
ibration and uncertainty at the level of keyphrases,
we propose a novel perplexity-based measure
called Keyphrase Perplexity (KPP) which we use
to analyze a model’s own estimated confidence.
Overall, our contributions are as follows:

1. We introduce keyphrase perplexity (KPP) met-
ric to gauge model confidence. Using KPP, we
analyze the prediction confidence of multiple
seq2seq models.

2. We explore the models’ calibration for
keyphrase generation to study confidence ver-
sus generation performance for five seq2seq
models and evaluate their performance on
standard F1-score and expected calibration
error (ECE) using four benchmark datasets.

3. We examine the variance of model perfor-
mance with that of the position of extracted
present keyphrases in the source document.

2 Related Work

Keyphrase Generation: The current focus of re-
search on keyphrase generation has been increas-
ingly shifting towards seq2seq models particu-
larly because of their capability to generate ab-
sent keyphrases (Meng et al., 2017). Multiple
works built upon seq2seq architectures to address
keyphrase generation (Meng et al., 2017; Chen
et al., 2018; Chan et al., 2019a,b; Swaminathan
et al., 2020; Chen et al., 2020; Ye et al., 2021b,a;
Huang et al., 2021) (inter alia). Some recent works
also explored the inclusion of pre-trained mod-
els for both absent and present keyphrase gener-
ation (Liu et al., 2020; Wu et al., 2021; Kulka-
rni et al., 2021; Wu et al., 2022b,a; Garg et al.,
2022; Ray Chowdhury et al., 2022; Madaan et al.,
2022; Wu et al., 2023). Our focus, however, is
more on the analysis and evaluation rather than the

development of a new architecture. In terms of
analysis, Meng et al. (2021) showed the effects of
different hyperparameters including the ordering
format for concatenating target keyphrases on the
task. Boudin et al. (2020) and Boudin and Gallina
(2021) analyzed the contribution of present key
phrases and different types of absent keyphrases
for document retrieval. Do et al. (2023) and
Shen et al. (2022) investigated unsupervised open-
domain keyphrase generation using a transformer
based seq2seq model to avoid human-supervision.
Garg et al. (2022) analyzed additional information,
e.g., an extractive summary of a document or cita-
tion sentences from its content, rather than simply
using title and abstract for keyphrase generation.
Garg et al. (2023) explored the impact of data aug-
mentation strategies for keyphrase generation in
resource-constrained domains. Meng et al. (2023)
proposed a framework for keyphrase generation
for domain adaptation. Keyphrase generation has
also been studied in other works such as Liu et al.
(2024); Zhang et al. (2022); Zhao et al. (2022);
Chen and Iwaihara (2024); Choi et al. (2023).

Model Calibration: Calibration and uncertainty
of modern deep neural models (Guo et al., 2017)
have started to gain attention on several natural
language processing tasks, including neural ma-
chine translation (Miiller et al., 2019; Kumar and
Sarawagi, 2019; Wang et al., 2020), natural lan-
guage understanding (Park and Caragea, 2022a,b;
Desai and Durrett, 2020), coreference resolution
(Nguyen and O’Connor, 2015), and summariza-
tion Xu et al. (2020). For example, Wang et al.
(2020) focused on the calibration of neural ma-
chine translation (NMT) models to understand the
generative capability of the models at inference
(decoding time) under the exposure bias (Ranzato
et al., 2016), i.e., the discrepancy between training
and inference due to teacher forcing in the train-
ing of auto-regressive models. Other recent studies
on the calibration of pre-trained language mod-
els include (Chen et al., 2023; Zhu et al., 2023;
Tian et al., 2023; Jiang et al., 2023). Chen et al.
(2023) and Zhu et al. (2023) showcased studies on
how pre-training and training affect the calibration
of language models. Tian et al. (2023) explored
calibration of recent language models pre-trained
with reinforcement learning with human feedback
(RLHF) pre-training objective. Jiang et al. (2023)
proposed generative calibration with in-context pre-
dictive distributions adjusted by label marginal.



3  Our Models

For our analysis, we consider five models: (1) Ex-
HiRD (Chen et al., 2020); (2) Transformer (Ye
et al., 2021b); (3) Trans2Set (Ye et al., 2021b); (4)
BART (Lewis et al., 2020); and (5) TS5 (Raffel et al.,
2020). We chose ExHiRD because it is one of the
strongest performing Recurrent Neural Network-
based keyphrase generation architectures without
relying on reinforcement learning or GANs. We
chose Transformer (Ye et al., 2021b) to show the
effect of simply using a Transformer-based archi-
tecture over a specialized RNN-based one when
both have no pre-training. We chose Transformer
One2Set because it is one of the strongest perform-
ing Transformer-based architecture with no pre-
training (Ye et al., 2021b). We chose TS5 and BART
because they are starting to become foundation
models (Bommasani et al., 2021) for keyphrase
generation with pre-training (Kulkarni et al., 2021;
Ray Chowdhury et al., 2022; Wu et al., 2022b;
Madaan et al., 2022; Wu et al., 2022a).

ExHiRD: ExHiRD (Chen et al., 2020) is an RNN-
based seq2seq model with attention and copy-
mechanism. It uses a hierarchical decoding strategy
to address the hierarchical nature of a sequence of
keyphrases, where each keyphrase is, in turn, a
sub-sequence of words. ExHiRD also proposes
exclusion mechanisms to improve the diversity of
keyphrases generated and reduce duplication.

Transformer: Transformer One2Seq is simply
the vanilla Transformer model (Vaswani et al.,
2017) without prior pre-training that is trained on
keyphrase generation in the seq2seq paradigm—the
target sequence is a concatenation of keyphrases
with some delimiter (Yuan et al., 2020). We use the
same settings as Ye et al. (2021b).

Trans2Set: Transformer One2Set is similar to
Transformer One2Seq but trains the Transformer
model in a One2Set paradigm (Ye et al., 2021b)
and does not require any prior pre-training. In this
paradigm, the decoder uses a constant number of
trainable embeddings as “control codes” to condi-
tion cross-attention to generate a single keyphrase
(or alternatively some null token) per control code.
In other words, keyphrases in Trans2Set are gen-
erated simultaneously without any influence of
order—the generation of one keyphrase is not de-
pendent on some generation of earlier keyphrase
like in the seq2seq paradigm. We use the same
settings for the model as Ye et al. (2021b).

TS: TS5 (Raffel et al., 2020) is a large-scale pre-
trained encoder-decoder Transformer-based model
pre-trained on the C4 dataset, which was intro-
duced in the paper along with T5. TS5 is pre-trained
using the BERT-style masked language modeling
(MLM) objective and deshuffling. MLM objec-
tive in TS5 includes spans of text are corrupted
and masked using a single sentinel token whereas
deshuffling consists of shuffling the input sequence
in random order and trying to predict the original
text. We use the t 5-base model from the Trans-
formers library (Wolf et al., 2020).

BART: BART (Lewis et al., 2020) is a large-scale
pre-trained encoder-decoder Transformer-based
model. BART has been pre-trained as a denoising
autoencoder for seq2seq tasks with a bidirectional
encoder similar to BERT (Devlin et al., 2019) and a
GPT (Radford et al., 2018)-like autoregressive de-
coder. BART achieved state-of-the-art results over
abstractive dialogue, summarization and question
answering at the time of its release. Pre-training
data used for BART is the same as for ROBERTa
(Liu et al., 2019). We use the BART-1arge model
in similar settings as Wu et al. (2022a). BART is
fine-tuned similar to how Transformer is trained.

We provide further implementation details for
our five models in Appendix B.

4 Model Calibration and Uncertainty

As we discussed before, it is important to check
how well calibrated a given model is to determine
how trustworthy and reliable the model is. In this
section, we first present our novel Keyphrase per-
plexity (KPP) metric, to estimate a model’s confi-
dence at the level of keyphrases and then we de-
scribe how we use KPP to estimate calibration and
uncertainty.

4.1 Keyphrase Perplexity

We propose Keyphrase Perplexity (KPP) to
gauge model confidence on a particular predicted
keyphrase. K PP is rooted in the general concept
of perplexity, which is a widely used metric for
evaluating language models. For a sequence of to-
kens wy., = w1, wa, ..., wy of length n, perplexity
is the inverse normalized probability p of gener-
ating them and can be defined as: PP(w;.,) =
p(wy, we, ..., wn)*l/". For an auto-regressive de-
coder, the probability p of the sequence can be
factorized and reformulated as:
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However, note that in the widely used seq2seq
framework (Yuan et al., 2020), a generated/decoded
sequence is a concatenation of keyphrases. The
vanilla perplexity is only defined over the whole
generated sequence and cannot be directly applied
for subsequences (keyphrases) within the sequence.
Thus, to get an estimate of the model confidence
at the level of predicting individual keyphrases, we
adapt the original perplexity and define keyphrase
perplexity (K PP) as follows. Given a partic-
ular keyphrase represented as the sub-sequence
W)k = Wj, Wjt1, ..., w, within the sequence wy.,
(1 <j <k < n) (representing a sequence of con-
catenated keyphrases), the KPP of that keyphrase
(wj.k) is defined as:
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where m = k — j + 1 is the number of tokens
in the keyphrase wj.,. Essentially, for KPP,
we simply use the conditional probabilities of to-
kens within the keyphrase w;.;, under consideration.
One limitation of this K PP formulation is that it
does not negate the conditioning effect of previous
keyphrases (included in sub-sequence w1 to w;_1
while measuring the K PP of the keyphrase start-
ing from w;). However, removing this limitation
is not straight-forward; so we take a naive assump-
tion that the delimiters guide the overall probabili-
ties of keyphrases to be independent of the earlier
keyphrases. As such, our formulation is a form of
“quasi-perplexity" measure. During our analysis,
any probability of the form p(w;|w1, wa, ... w;—1)
indicates the predicted model probability for token
w; given that tokens wy, ws, ... w;—1 have been
already generated. We do not consider special to-
kens (e.g., keyphrase delimiters or end of sequence
markers) as part of any keyphrase subsequence for
KPP. As in perplexity, a lower K PP indicates
a higher confidence in the prediction, whereas a
higher K PP indicates a lower confidence.

Trans2Set KPP In case of One2Set models
(Transformer One2Set), we will get some k inde-
pendent keyphrase span predictions in a set where
none of the keyphrase prediction is autoregressively

dependent on earlier or latter keyphrases. This is
analogous to running a separate decoder for gener-
ating each keyphrase. In this case, we apply KPP
individually to each keyphrase (span of words) in
the set. In other words, w; in Equation 2 repre-
sents the special start token, and ws represents the
first token of the keyphrase whose KPP is being
calculated.

—1/m
KPP(ws.x) (Hp wilwi, wa, .. .wi1)>
(3)

Subword to Word-level KPP  One problem with
our KPP formulation is that the non-pretrained
models (ExHiRD, Transformer One2Seq, Trans-
former One2Set) are using word-level tokenization
whereas the pre-trained models (TS5, BART) are us-
ing subword-level tokenization. The prediction sub-
words are generally easier than whole words, and
confidence per subwords can be generally higher
- which can lead to an inherent bias towards lower
perplexity/higher confidence simply as an artifact
of tokenization choice. As an example, consider
a prediction probability of a word ‘geothermal’ as
p(geothermal) = 0.5. KPP of the word would be:

“)

For the same word, a subtokenization could be
a sequence (‘geo’,‘thermal’). Let us say the
predicted probabilities are p(geo) = 0.625 and
p(thermal|geo) = 0.8. In this case the overall
word-level probability is the same:

p(geothermal) /1 = 2

p(geothermal) = p(geo) - p(thermal|geo) = 0.5
(%)
However now KPP((‘geo’, ‘thermal’)) is:
(p(geo) - p(thermal|geo))™'/2 = 1.41  (6)

Thus, the subword tokenization will have an inher-
ent bias towards lower perplexity/higher confidence
because of the difference in length normalization
based on token numbers despite having the same
probabilities at the word-level.

Given these circumstances, to level the playing
field for comparison, we use a different KPP metric
(KPP-s) for T5 and BART where we normalize the
keyphrase subsequence based on number of words
rather than the number of (subword) tokens. For a
subsequence of tokens wyj., this can be expressed
as:
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Here, wc(w;.x) returns the number of words! in
the subsequence of (subword) tokens wj.. Thus,

for our example above, KPP from Eq. 6 becomes:

®)

which is the same as the KPP for the word ‘geother-
mal’ from Eq. 4.

Henceforth, we simply use KPP to refer to both
KPP and KPP-s - we simply apply the former for
word-level tokenization models (ExHiRD, Trans-
former, Trans2Set), and the latter for subword-level
tokenization models (TS5, BART).

(p(geo) - p(thermal|geo)) /1 = 2

4.2 Calibration

Model calibration reflects the accuracy of model
predictions as a function of its generated posterior
probabilities. A calibrated model has alignment
between its empirical likelihood (accuracy) and its
probability estimates (confidence). For example,
a calibrated model that has a confidence of 90%
while making predictions, would correctly predict
90 out of 100 possible samples. Formally, cali-
bration models the joint distribution P(Q,Y") over
generated model probabilities () € R and labels Y.
P(Y = y|Q = q) = q signifies perfect calibration
of a model (Guo et al., 2017).

Expected calibration error (ECE) is a popular
measure of model miscalibration (Naeini et al.,
2015). ECE is computed by partitioning the predic-
tions according to their confidence estimates into &
bins (we set k=10) and summing up the weighted
average of the absolute value of the difference be-
tween the accuracy and the average confidence of
keyphrases in each bin. This can be formalized as:

k
ECE =) ‘i"’mcc(B,-) — confid(B;)| (9)
i=1

Here n is the number of total samples, |B;| is the
number of samples in bin B;, 1 < ¢ < k, of k

"The words can be counted by first turning the subword
tokens into a string based on the respective tokenizer imple-
mentations for TS and BART in Huggingface (Wolf et al.,
2020) and then using space tokenizer for word tokenization.
The length of the list of the tokenized words will then be the
return value of we(wj.x ).

bins. In our task, we compute acc(B;) as the frac-
tion of accurately predicted keyphrases in bin B;
and con fid(B;) as the average confidence in bin
B;. We define confidence of a particular generated
keyphrase as the inverse of its KPP ()X PP~!) that
is, roughly, the length normalized product of poste-
rior probabilities for the tokens of that keyphrase.

In addition to ECE, reliability diagrams depict
the accuracy of the model as a function of the prob-
ability across the k bins.

S Experiments and Results

We share hyperparameter details in Appendix A.

5.1 Datasets

We select four widely used benchmarks for our
experimentation: KP20k (Meng et al., 2017),
Krapivin (Krapivin et al., 2009), Inspec (Hulth,
2003) and SemEval (Kim et al., 2010). We use the
KP20k training set (~500,000 samples) to train our
models. As test sets, we use the test sets available
for each dataset for performance evaluation and
analysis. The test sets of KP20k, Inspec, Krapivin,
and SemEval have ~20,000, 500, 400, and 100 doc-
uments, respectively. All datasets have annotated
present and absent keyphrases.

5.2 Models’ Performance

We compare the results of our models using stan-
dard F; metrics (F1 @5 and F; @M), similar to
Chen et al. (2020), in Table 1 after training them
on KP20k. For F; evaluation, we used similar
post-processing as Chen et al. (2020). We share
more concrete details in Appendix B. Interest-
ingly, we find trained-from-scratch models (Ex-
HiRD, Trans2Set, Transformers) to perform com-
petitively or outperform pre-trained language mod-
els (PLMs) like T5/BART in several datasets, with
Trans2Set generally coming out on top. This shows
that domain-general pre-training may not be as ef-
fective for keyphrase generation. Similar results
are also noted in (Ray Chowdhury et al., 2022; Wu
et al., 2023, 2022a). However, there could be bet-
ter ways to utilize PLMs by adapting them in a
trans2set framework (Madaan et al., 2022).

PLMs can also be augmented by new decoding
strategies (Wu et al., 2023; Zhao et al., 2022), re-
ranking (Choi et al., 2023), task-specific training
(Kulkarni et al., 2022; Wu et al., 2022a), or data-
augmentation (Ray Chowdhury et al., 2022; Chen
and Iwaihara, 2024) among others.



Inspec Krapivin SemEval KP20k

Models FIeM Fl1@5 | FIeM F1@5 | FIeM Fl1@5 | FIeM Fl1@s
Present Keyphrase
ExHiRD 0.291 0.253 0.347 0.286 0.335 0.284 0.374 0.311
Transformer 0325  0.281 0315  0.365 0.287  0.325 0392  0.332
Trans2Set 0324  0.285 0364  0.326 0.357  0.331 0392  0.358
BART 0323  0.270 0336  0.270 0.321 0.271 0.388  0.322
T5 0.340  0.287 0328 0.271 0.306  0.275 0.387  0.335
Absent Keyphrase
ExHiRD 0.022 0.011 0.043 0.022 0.025 0.017 0.032 0.016
Transformer 0.019 0.010 0.060 0.032 0.023 0.020 0.046 0.023
Trans2Set 0.034  0.021 0.073  0.047 0.034  0.026 | 0.058 0.036
BART 0.017  0.010 0.049  0.028 0.021 0.016 | 0.042 0.022
T5 0.025 0.014 0.053  0.028 0.023 0.016 | 0.036 0.018

Table 1: Keyphrase generation performance for different models. Transformer represents Transformer One2Seq;

Trans2Set represents Transformer One2Set.
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Figure 1: Histograms with Y axis depicting number of
keyphrases and X axis indicating keyphrase perplexity
values for both present and absent keyphrase generation.
Dashed lines indicate the median of each distribution.

5.3 Keyphrase Perplexity Analysis

We compare keyphrase perplexities (/i PP) of all
the models - ExHiRD, Transformer, Trans2Set,
TS5, and BART (using histograms) in Figure 1.
In this experiment, we compute the KPP of each
keyphrase generated by the model and plot the num-
ber of present and absent keyphrases generated by
each model on every dataset. We analyze the plots
generated across a range of intervals. Unsurpris-
ingly, we find that all models have lower K PP
(thus, higher confidence) for present keyphrases
than absent keyphrases (which are harder to learn to
generate). However, TS5, ExHiRD, and Trans2Set
appear to be substantially more confident about
their absent keyphrase predictions compared to oth-
ers. There is also a degree of randomness in the

KPP values generated for absent keyphrase dis-
tributions as the middle 80% is spread across the
x-axis for all the models, which suggests higher
entropy in the probability distributions generated
by the model. The majority of the KPP values gen-
erated for present keyphrases are skewed towards
the intervals between 0 and 2 in figure 1, showcas-
ing the high degree of confidence the models have
for extractive keyphrase generation. The results
showcase how models generate predictive distribu-
tions and help us understand the weaknesses in the
language models to work towards improving them.

In Figure 2, we show that the conditional prob-
abilities of tokens in a keyphrase tend to be low
at the boundaries (at the beginning of a keyphrase)
but start to increase monotonically as the decoder
moves towards the end of the keyphrase (with the
exception of BART and T5 where the increment is
not purely monotonic). Intuitively, it makes sense
that a model will have less confidence predicting
the start of a keyphrase because it requires settling
on a specific keyphrase to generate out of many
potential candidates. However, the first keyphrase
token, once already generated, will condition and
restrict the space of plausible candidates for the
second token, thereby increasing its confidence.
For the same reason, the probabilities of the
second keyphrase token and later tend to be
much higher. This shows how critically important
generating the first token of a keyphrase is in terms
of generative language models. The high entropy
while generating the first token shows the fine
margins in terms of how language models are
generating incorrect predictions.
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Figure 2: ExHiRD, Transformer, Trans2Set, TS, and BART’s conditional probabilities for the first five word-level
tokens of the keyphrases generated in a sequence on the KP20K test set.

Models | KP20k | Inspec | Krapivin | Semeval
Present keyphrases

ExHiRD 19.06 15.66 11.69 17.51
Transformer | 23.41 20.01 22.96 20.49
Trans2Set 2546  26.38 24.38 22.44
BART 2993  21.85 51.85 16.10
T5 33.06 23.04 61.78 18.75
Absent keyphrases

ExHiRD 17.72 11.87 15.55 15.83
Transformer | 89.86 78.65 75.16 85.12
Trans2Set 4734  37.57 43.69 47.22
BART 8.18 11.14 9.27 11.30
TS 16.19 15.76 13.44 18.65

Table 2: Expected calibration error(ECE) (lower the
better) for ExXHiRD, Transformer, Trans2set, T5 and
BART on various datasets.

5.4 Model Calibration Analysis

We saw that TS, Trans2Set, and ExHiRD generally
predict keyphrases with higher confidence (lower
K PP). But does the higher confidence actually
translate into better predictions? Figure 3 shows
the reliability diagrams of all the models. Here,
we generate the probability values at the keyphrase
level, computing them from the token probabilities.
We map the keyphrase probabilities or confidence
to the accuracy of correct predictions across various
intervals. Interestingly, we can see that the calibra-
tion of ExHiRD or Transformer is better than the
other models. T5’s high-confidence keyphrase pre-
dictions do not translate into optimal accuracy val-
ues. In Table 2, we show the Expected Calibration
Error (ECE) for the different models in our consid-
eration across various datasets. Consistent with the
reliability diagrams, here, we find that T5’s ECE
is much higher than ExHiRD. ExHiRD, in fact,
achieves the best ECE. Transformer is generally
lower in ECE compared to other models besides

ExHiRD. The other three models - Trans2Set, T5,
BART (despite having strong F1 performances) are
on the higher end of ECE. We also observe in fig-
ure 3 that simpler models such as ExHiRD and
Transformer models are better calibrated than mod-
els with specific decoding techniques (Trans2Set)
and pre-training (TS and Bart). Pre-trained models
have allowed us to perform zero-shot or few-shot
learning due to the retention of vast amounts of
information. But the pre-training also introduces
high entropy within the models which translates
into the variability in predictive distributions as
seen in Figure 3 and Table 2.

5.5 Robustness to Positional Variance

We analyze all models’ present keyphrase predic-
tions with respect to their position in the input text.
First, we look at the distribution of gold present
keyphrases in the input text. We divide the input
text into five sections with 20% of characters in
each, and bin the keyphrases appearing in each
section accordingly. We compute the numbers of
present keyphrases in each section in the source text
for all the datasets and show them in Table 3. As
we can see, the majority of gold present keyphrases
are in the first section (bin) of the input sequence.
In Figure 4, we compare the accuracy of our five
models for present keyphrases in different sections
of the text. We notice that all models have a sim-
ilar accuracy at identifying keyphrases from the
first section of the input, and they progressively fail
to identify keyphrases in the later sections of the
input text. Interestingly, TS and BART not only per-
form well in identifying keyphrases present in the
initial sections of the text, but they also perform bet-
ter than the other models in predicting keyphrases
from the later sections (bins). This pattern is par-
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Figure 3: Reliability diagrams for model calibration of ExHiRD, Transformer, Trans2set, TS and Bart respectively.

Dotted black line depicts perfectly calibrated model.
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Figure 4: Accuracy of present keyphrase generation
with respect to their position in the original text for our
five models. The x-axis denotes the percent characters
of the source text where present keyphrases are located.

ticularly prominent on KP20k. The bias towards
predicting earlier present keyphrases is, most likely,
further compounded by the fact that the present
keyphrases are ordered according to their position
of first occurrence within the target sequence.

As such the models can be biased to be good at
only predicting keyphrases that occur early in the
source text. However, a potential main reason for
the bias is simply that the majority of keyphrases
exist in the earlier segments of a document as
shown in Table 3. Nevertheless, TS5 and BART
appear more resistant to these biases, despite be-
ing exposed to the same data and similarly ordered
target sequences. These results hint also to a “bet-
ter understanding” of the overall semantics of the
document by the T5 and BART models, and hence,
their improved generation of short phrase document
summaries (i.e., keyphrases).

6 Conclusion

Here, we discuss our main findings and motivate
their use for future work. First, we find that the

Positional ran
Dataset ositio ange

0-20 2040 40-60 60-80 80-100

Inspec 1,326 845 686 602 173
Krapivin 706 206 182 159 59
SemEval 346 126 103 54 20
KP20k | 39,571 9,865 8313 6,317 1,704

Table 3: Number of keyphrases present keyphrases in
gold labels binned into five sections, each having 20%
characters of the source document.

model confidences of absent keyphrase predictions
are much lower than present keyphrase predictions
for both models. Thus, the models know to be more
uncertain with absent keyphrase generation (for
which all models indeed have poor performance).
However, upon checking for model calibrations,
interestingly, we find that pre-trained Transformer
models are more overconfident (poorly calibrated)
compared to RNN (ExHiRD) and non-pre-trained
transformer models.

Second, we find that the models are much
less confident in predicting the starting words of
a keyphrase. We believe deciding on the start
of the keyphrase is much harder than predict-
ing the follow-up tokens. Based on this find-
ing, we may be able to make more efficient semi-
autoregressive models that sequentially decode dif-
ferent keyphrases but simultaneously decode dif-
ferent tokens within a particular keyphrase.

Third, pre-trained models are poorly calibrated
for the keyphrase generation task even though they
have been trained on a large corpus of text. RNN
and transformer models that have not been pre-
trained are better calibrated. Better calibrated mod-
els are less erroneous when model confidence is
high while generating keyphrases. Thus, there is
potential for further work on models’ calibration.



7 Limitations

Our analysis showcases key parameters of com-
parison between models in terms of KPP and cali-
bration measures for the keyphrase generation task.
This provides insights into intrinsic model behavior
while generating keyphrases. As we discussed be-
fore, one limitation of our X PP measure as used
in the study is that in a Transformer framework, it
is difficult to negate the effect of previously gen-
erated keyphrases. However, the keyphrase delim-
iters may naturally, to an extent, reduce the effect
of previous keyphrases. Thus, it still can be decent
heuristics. Note that Non-exact (quasi-)perplexity
measures (in different formulations) have been also
proposed in other contexts (Wang et al., 2019) be-
fore.

8 Ethics Statement

We analyze various aspects of the keyphrase gener-
ation task. Keyphrase generation is a popular and
established NLP task that is useful in information
extraction. We do not forsee any ethical concern
regarding our contribution to this domain
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A Implementation Details

ExHiRD is trained from the publicly available code
2 using the original settings mentioned in the pa-
per (Chen et al., 2020). Transformer One2Seq
and One2Set are trained from the code® made
publicly available by Ye et al. (2021b). BART
was trained from the script in a publicly avail-
able code*. T5 was trained with SM3 optimizer
(Anil et al., 2019) for its memory efficiency. We
use a learning rate (Ir) of 0.1 and a warm-up for
2000 steps with the following formulation: Ir =

2
Ir - minimum (1, ( —3kps ___ The learn-
? \ warmup_steps

ing rate was tuned among the following choices:
[1.0,0.1,0.01,0.001] (using grid search). We use
an effective batch size of 64 based on gradient ac-
cumulation. We train T5 for 10 epochs with a
maximum gradient norm of 5. All models were
trained using teacher forcing. We use train, val-
idation, and test splits from Meng et al. (2017)
for kp20k. Following (Meng et al., 2019; Chen
et al., 2020), the keyphrases in the target sequence
are ordered according to their position of the first
occurrence within the source text. The first occur-
ring keyphrase in the source text appears first in
the target sequence. The absent keyphrases were
appended in the end according to their original
order. Predictions for both models were gener-
ated through greedy decoding. We use a maximum
length of 50 tokens for T5 during decoding. The
models were trained in 1 — 2 NVIDIA RTX A5000.

B Evaluation

For the F; evaluations, we first stemmed both target
keyphrases and predicted keyphrases using Porter
stemmer. We removed all duplicates from predic-
tions after stemming. We determined whether a
keyphrase is present by checking the stemmed ver-
sion of the source document. As standard, we con-
sider two Fy based metrics - F;@QM and F;@b5.
Both are macro-F;. For F{@QM, we select all the
keyphrase predictions generated by the model. For
F1 @5, following Chen et al. (2020), we select at
most the top 5 keyphrase predictions. If there are
less than 5 predictions, similar to Chen et al. (2020);
Ye et al. (2021b), we append incorrect keyphrases
to the predictions to make it exactly 5 (which is
equivalent to always dividing by 5 for per sample

2https ://github.com/Chen-Wang-CUHK/ExHiRD-DKG
3https ://github.com/jiacheng-ye/kg_one2set
4h’ctps ://github.com/uclanlp/DeepKPG
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precision computation).
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