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Abstract
We formulate the low-rank matrix completion problem as a masked language modeling (MLM)
task, and train a BERT model to solve this task. We find that BERT succeeds in matrix completion
and outperforms the classical nuclear norm minimization method. Moreover, the mean–squared–
error (MSE) loss curve displays an early plateau followed by a sudden drop to near-optimal values,
despite no changes in the training procedure or hyper-parameters. To gain interpretability insights,
we examine the model’s predictions, attention heads, and hidden states before and after this transi-
tion. We observe that (i) the model transitions from simply copying the masked input to accurately
predicting the masked entries; (ii) the attention heads transition to interpretable patterns relevant to
the task; and (iii) the embeddings and hidden states encode information relevant to the problem.

1. Introduction

This paper investigates the behavior of Transformers trained on the classical mathematical task of
low-rank matrix completion [5] to gain insights into the mechanisms of Transformers and their
training process. In this setup, we assume access to a matrix with some fraction of its entries
missing, and would like to complete the missing entries assuming the ground truth matrix is low-
rank (Appendix A). By treating a matrix as a sequence of tokens, we find that training a BERT model
[11] in an online manner can successfully solve this problem to a small error. Moreover, BERT can
outperform the classical nuclear norm minimization algorithm for matrix completion, suggesting
that BERT does not simply recover this classical algorithm. Further, the MSE loss curve during
training undergoes a sudden decrease (Fig. 3), marking the transition to a model that generalizes
well, also observed in [7] for BERT trained in natural language setups. We find that this decrease in
loss marks an algorithmic shift from the pre-transition model simply copying the input (predicting
0 at masked positions) to the post-transition model accurately predicting missing values at masked
positions.

2. BERT Solves Matrix Completion

For BERT model (with parameters θ) and masked matrix X̃ and model output X̂ := X̂(X̃; θ) ∈
Rn×n, the training objective L(θ) is the MSE loss at all positions,

L(θ) =
1

n2

n∑
i,j=1

(Xij − X̂ij)
2.
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Figure 1: (A) Matrix completion using BERT; (B) Algorithmic shift marked by sharp decrease in
loss. The model shifts from simply copying the input (copying phase) to computing missing entries
accurately (completion phase).

Further, we separately track MSE over observed and masked entries, defined as

Lobs =
1

|Ω|
∑

(i,j)∈Ω

(Xij − X̂ij)
2 ; Lmask =

1

|ΩC |
∑

(i,j)∈ΩC

(Xij − X̂ij)
2

for Ω the set of observed entries. Data for matrix completion is generated as

X = UV ⊤; U, V ∈ Rn×r, Uij , Vij
iid∼ Unif[−1, 1] ∀i, j ∈ [n]× [r]

so that X has rank at most r. To mask entries at random, we sample binary matrices M ∈ {0, 1}n×n

such that Mij = 0 with probability pmask, indicating that the element at position (i, j) is masked in
the input matrix, i.e., Ω = {(i, j) | Mij = 1}. In the subsequent sections, we analyse a 4–layer, 8–
head BERT model trained upto MSE ∼ 4e−3 for analysing training dynamics and interpretability.
Pre–shift denotes the model at step 4000, and post–shift denotes model at the end of training (step
50000). Please see Appendix B for further experiment details.

Figure 2: BERT outperforms nuclear norm mini-
mization

Nuclear Norm Minimization Nuclear norm
minimization is one of the most widely stud-
ied approaches towards low–rank matrix com-
pletion (Appendix A). We use CVXPY to solve
matrix completion using nuclear–norm mini-
mization at various levels of pmask comparing
it to the output of a BERT model trained on
pmask = 0.3. We find that BERT performs bet-
ter than nuclear norm minimization w.r.t. MSE;
at the same time, the nuclear norm of BERT
solution is larger (Fig. 2). Further, we also
solve the regularized version of the above prob-
lem (Eq. 2) to attempt to match the perfor-
mance of BERT at some λ > 0. We find that
BERT still outperforms regularized MSE mini-
mization (details in Appendix D).
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3. Matrix Completion Capability Emerges during Training

Figure 3: Sharp reduction in training loss
shortly after step 15000

We observe a sharp decrease in training loss at ap-
proximately step 15000 (Fig. 3). Observe that this
decrease in total loss is driven almost exclusively by
the corresponding decrease in Lmask, since Lobs is
very close to 0 both before and after the drop. We hy-
pothesize that this sudden drop is caused by an algo-
rithmic shift, i.e., the model switches to a different,
more accurate algorithm for prediction at missing
entries and hence Lmask rapidly decreases follow-
ing that shift. Moreover, since Lobs barely changes
during this algorithmic shift, we further argue that
(1) the model has two distinct mechanisms for pre-
diction at masked and observed entries after the al-
gorithmic shift, and (2) that the mechanism for pre-
diction at observed positions is not significantly af-
fected by this algorithmic shift. We note that this sudden drop is in MSE loss, i.e., not in a discontin-
uous metric like accuracy. Hence, the idea of sudden emergence being an artifact of discontinuous
metrics and poorly defined evals [31] is unlikely to explain the full story in our setting.

3.1. Before the Algorithmic Shift – Copying

In this section, we demonstrate that before the algorithmic shift, the model simply copies the input
at all positions in the matrix, through the following approach – replace the masked elements in the
7 × 7, rank-2 input by the token corresponding to a real value m. For such input, we would like
to see whether the model implements copying and outputs m at the masked positions. For model
output X̂ on this input, MSE at observed positions is Lobs, and for masked positions the MSE is
defined as

L′
mask =

1

|ΩC |
∑

(i,j)∈ΩC

(X̂ij −m)2.

Lobs and L′
mask for this experiment averaged over 512 samples are compiled in Row 1, Table 1

(Appendix C). The small loss values verify the copying hypothesis – model output matches the
ground truth at observed positions, while at masked positions it outputs a value nearly equal to m,
the replacement mask value. Note that when the mask token is MASK (i.e., no replacement), we
set m = 0, indicating that the model is outputting 0 at the masked locations. This hypothesis is
also confirmed for random 7 × 7 input matrices, that is, all entries i.i.d. uniformly in [−1, 1] (not
necessarily low–rank); results in Row 2, Table 1.

Role of Attention Heads Attention heads at this stage (Fig. 13(a)) do not appear to attend to any
specific tokens in an interpretable manner. In fact, the final structure of the attention heads does not
start to appear unless just after the algorithmic shift (Figure 13). Since the model is simply copying
the masked input, we hypothesize that attention heads (that combine different tokens) are incon-
sequential to the model output. To quantitatively verify this hypothesis we use uniform ablation:
simply replace the softmax probabilities in the attention head by 1/n2 for all elements i.e. equally
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Figure 4: Attention heads in post–shift model show distinct regions in the input they attend to.

attend to all tokens (Sec. 4.6, [18]). With these ablations, there is negligible change in model per-
formance at both observed and masked positions. Averaged over 256 samples, Lobs = 3.4e−4 and
Lmask = 0.2236 when using all attention heads; whereas, on ablating all heads, these values are
3.2e−4 and 0.2236 respectively. Clearly in this case, attention heads do not substantially affect the
model prediction.

As further confirmation, we replace the key, query and value weights in the pre–shift model by
those from the post-shift model. Averaged over 256 samples, Lobs is 5e–3, that is similar to the
optimal total MSE obtained at the end of training, while Lmask = 0.2246, similar to that obtained
without replacing the weights.

3.2. After the Algorithmic Shift – Matrix Completion

We analyze the post-shift model separately for missing and observed entries, with a focus on the role
of attention heads given the apparent interpretable patterns in Fig. 4. We find that for observed en-
tries, the model output is still not substantially affected by the attention heads, whereas, for masked
entries this effect is substantial.

3.2.1. OBSERVED ENTRIES

To check the effect of attention heads, we uniformly ablate all attention heads in the post-shift
model. Averaged over 256 samples, this leads to Lobs = 9.2e−5 when using all attention heads,
compared to 3.7e−3 with ablation (close to the total MSE at model convergence). However, Lmask

increases from 0.0128 to 0.2183, essentially the value in the pre-shift model. Further, we replace
attention (key, query, value) weights in the post–shift model by weights from a pre–shift model.
Indeed, averaged over 256 samples, Lobs = 9.5e−4 in this case, supporting our claim.
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Finally, since attention crucially depends on the position of elements, we randomly permute the
positional embeddings in the post–shift model. That is, the embedding originally encoding position
i in the input now represents position π(i) for some random permutation π : [n2] → [n2]. Averaged
over 256 samples, Lobs = 2.4e−4, whereas Lmask = 0.5687, implying that the observed positions
are negligibly affected compared to masked positions due to this intervention. Intuitively, positional
information is not required for copying, and this result supports our ‘sub–algorithm’ hypothesis.

3.2.2. MISSING ENTRIES

To confirm that attention heads causally affect the model output for missing entries, in addition to
uniform ablations, we perform causal interventions (activation patching) [37] on the hidden states
just after the attention heads. This involves replacing the hidden state after an attention head for
input A with the hidden state obtained at the same attention head, but for a different input A′.
Ideally, if that head is causally relevant to the output, then such an intervention should steer the
model towards the output for A′, instead of A. We find in our case that for A = X and A′ = −X,
such an intervention simultaneously on all attention heads steers the model output at missing entries
towards −X for input X (more details in Appendix I).

Denote attention head H in layer L by the tuple (L, H). We can group the attention heads de-
pending on the specific regions of the input matrix they attend to: (a) the same row as the query
element (the ‘block–diagonal’ patterns, e.g. (2, 1)); (b) the same column as the query element (the
‘parallel–off–diagonal’ patterns, e.g. (2, 2)); (c) the query element itself (the ‘diagonal’ patterns,
specifically in the last layer, e.g. (4, 3)). There are also some other attention heads that do not neatly
fit into either of these 3 categories – for example, all heads in layer 1 except (1,2), (1,3); (3,3);
(4,2), (4,5–7). In this context, uniformly ablating heads (3,3), (4,2), (4,5–7) gives Lobs = 9.36e−5,
Lmask = 0.01575 compared to Lobs = 9.44e−5, Lmask = 0.01428 without ablation, i.e. these
uninterpretable heads do not significantly affect the output.

3.3. Additional Experiments

We investigate attention heads when the observed entries in the input are arranged in a structured
manner to analyse the function of individual attention heads (Appendix E). Further, we also probe
hidden states of intermediate layers to understand the working of the model (Appendix F). More-
over, positional and token embeddings of the model also exhibit structure relevant to the problem,
in some cases before the algorithmic shift occurs (Appendix G).

4. Discussion

In a toy task of matrix completion with masked language modeling, we have shown that a sudden
drop in training loss marks an emergent, algorithmic shift in the model from a phase of merely
copying the input to actually solving the task. We have also demonstrated that components in the
post–shift model display clear evidence of learning useful abstractions relevant to the task. The
question of why this shift occurs suddenly, rather than gradually, is an important avenue for future
work. A concrete characterization of the algorithm used by the model for computation is also an
interesting direction for future research, but not the primary focus of this work.
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Appendix A. Low Rank Matrix Completion

Low-rank matrix completion is a well-studied problem in machine learning and statistics. This
problem finds applications in recommender systems, where given an incomplete matrix of user
ratings on some items, the goal is to recover the missing entries assuming the ground truth matrix
is low-rank. For a matrix X ∈ Rn×n, denote its observed (visible) entries by the set Ω ⊂ [n]× [n],
and the set of missing entries by ΩC = [n]× [n] \ Ω. Formally, the problem is

min
U

rank(U) s.t. Uij = Xij ∀(i, j) ∈ Ω.

Nuclear norm minimization Since rank is not a convex function of the matrix entries, nuclear
norm minimization [5] is a widely used convex optimization approach to low-rank matrix comple-
tion. The modified optimization problem is,

min
U

∥U∥∗ s.t. Uij = Xij ∀(i, j) ∈ Ω (1)

where ∥U∥∗ denotes the nuclear norm (sum of singular values) of matrix U . A regularized version
of this problem for λ > 0 is

min
U

 1

|Ω|
∑

(i,j)∈Ω

(Uij −Xij)
2 + λ∥U∥∗

 . (2)

Appendix B. Experimental details

Data Preprocessing We tokenize real values as follows: discretize the range [−10, 10] (all matrix
entries in our experiments are in this range) in steps of size ϵ = 0.01, and assign token IDs to
these values with IDs starting from 1; the mask token (MASK) is assigned token ID 0. Input to
the transformer is the tokenized masked sequence Xmask = TOK(Vec(X ⊙M)) , where TOK
denotes tokenization, Vec denotes vectorizing the n × n matrix to a n2-dimensional vector and ⊙
denotes the element-wise product. Due to this discretization, in experiments, MSE will be with the
rounded-off version of X to 2 decimals.

Training We use the BERT model implementation from the HuggingFace library [35], with ‘ab-
solute’ positional embeddings and no dropout. Since the model maps a sequence of discrete token
IDs to a sequence of real values, we compute the MSE loss between the real valued model out-
put, and the discretized real values in the ground truth matrix. For example, for input sequence
[0.12, 0.45, 0.87] ∈ R3, corresponding masked token sequence [“0.12”, “MASK”, “0.87”], and
output [x1, x2, x3] ∈ R3, the MSE loss is 1

3

[
(x1 − 0.12)2 + (x2 − 0.45)2 + (x3 − 0.87)2

]
.

We use the MSE loss on all elements of the input and output matrices for training. We addi-
tionally fix the masking probability pmask = 0.3 in all cases. Using a 12–layer, 12–heads per layer
BERT model with a linear read–out layer, the train loss is optimized using Adam with constant step
size 5e−5 for 50000 epochs (without weight decay or warmup). Data at each step is obtained by
sampling 256 train and 64 test matrices. Since the training is ‘online’, train and test losses are nearly
identical at all points in training, and thus we will not separately analyze them.

We additionally train a smaller BERT model with 4 layers and 8 heads per layer, with step-
size 1e−4 on square matrices of order 7 and rank−2. We use this smaller model primarily to keep
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our interpretability analyses tractable; in any case the attention heads are similar to those in larger
models (Appendix J). The model converges to a total MSE of the order 1e−3 (i.e. solves matrix
completion well) for all runs – square matrices of order 7, 10, 12, 15 and rank 2, 3, 3, 4 respectively.
For the 4−layer 8−heads case, we obtain comparable performance (final total MSE ∼ 4e−3) to the
12–layer, 12–head model.

Appendix C. Pre–shift copying

Mask = “MASK” Mask = “0.44” Mask = “-0.24”

Input Samples ↓ L′
mask Lobs L′

mask Lobs L′
mask Lobs

Rank−2 matrices 3e-4 3.3e-4 4e-4 2.8e-4 3.7e-4 2.7e-4
Random matrices 2.8e-4 3.5e-4 3.7e-4 3e-4 3.6e-4 2.8e-4

Table 1: Pre–shift model implements copying, predicting the value for mask token at missing en-
tries.

Appendix D. Nuclear Norm Minimization

We use the regularized version of the nuclear norm minimization problem as detailed in Sec. 2,
and obtain the following L,Lobs, Lmask for various values of λ. We average our results over 256
samples generated in the same way as the training data for BERT (including rounding off to 2
decimal places) for the sake of comparison.

λ Lobs Lmask L

0.0005 1.015e−5 0.040728 0.012173

0.001 3.686e−5 0.040456 0.01211

0.0015 7.959e−5 0.040505 0.012155

0.002 0.00013769 0.040734 0.012264

0.005 0.00078591 0.043402 0.013516

Appendix E. Attention Heads with Structured Mask

Since the maps in Fig. 4 are averaged over multiple random masks and input matrices, it is difficult
to extract more specific details about the algorithm, apart from the coarse–grained insights as in
Section 3.2.2. To remedy this, we generate inputs with specific mask structure, see for example Fig.
5. This implies that for different input matrices, the mask i.e. ΩC remains the same. This step helps
us highlight how an attention head attends to input elements based on the element being masked or
observed. From the results in Fig. 5, it is evident that different attention heads focus on specific
parts of the input. For instance,

1. (2, 1), (3,4) and (4,8) are significantly active only at the masked rows, and in those cases has
maximal attention at the only observed positions in those rows. In other words, this head acts
as a ‘masked–only’ head.

12
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Figure 5: Attention heads for a structured mask attend to specific entries in the input. Left: struc-
tured mask (blue denotes missing entries)

2. (4,3) and (4,4) correspond roughly to an identity map, slightly deviating in the masked rows.
In these cases, again the maximal attention score corresponds to the only observed position
in these rows. That is, this head acts as an ‘identity–map’ head.

3. Further, there are multiple ‘parallel off-diagonal’ heads that completely ignore the masked
rows for their computation. These heads include (2,2–4), (2,6); (3,2), (3,3), (3,5). Addition-
ally, there are also attention heads like (3,1), (3,6) that attend to only the observed element
of each masked row. Collectively these heads act as ‘observed-only’ heads, attending to only
observed entries, and using this information to compute missing entries.

4. There also exist attention heads that respond systematically to changes in the mask. For
example, consider attention heads (2, 5), (2, 7), (2, 8) in Fig. 10. For each row, these heads
attend to the element in the 6th and 2nd column respectively for part (a) and (b). On a closer
look, the connecting link between these two mask patterns is that, the longest contiguous
unmasked column is exactly the column that these heads attend to. We hypothesize that this
information is somehow used by the model in its inner computation for masked entries.

5. Finally, Heads (1,1–2), (1, 5–8) do not fall in any of the categories above . These heads
are mostly static across different mask / input variations (for example, comparing Fig 4 and
5), and the patterns suggest that these heads almost exclusively focus on the middle row of
the input matrix and some other elements. A possible function of these heads is to process
positional and token embeddings (input to the first layer) so that this information can be used
appropriately in the subsequent layers.
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Appendix F. Probing

Figure 6: Layer 3 and 4 store information about
the rows of the masked input matrix.

We probe for properties of the input matrix in
the hidden states of the model, to concretely
determine how the model computes the output.
We use our 12–layer model in this case, for en-
hancing contrast between probing in different
layers.

Specifically, for every element in the input,
we use a linear probe [3] on its hidden state af-
ter a given layer, mapping the hidden state to
the n−dimensional masked row that this ele-
ment belongs to. Missing entries are replaced
by 0, and the linear probe is fit using least
squares. The results for this experiment in Fig.
6 demonstrate that, layer 3 and 4 in the model correspond quite strongly to the probe target, com-
pared to other layers. This suggests that the model tracks input information in its intermediate layers
and uses it for computation.

Appendix G. The Curious Case of Embeddings

(a) ℓ2 norm of token embed-
dings is symmetric around 0

(b) PCA of token embeddings
shows distinct components
for sign and magnitude of
real value

(c) Positional embeddings in
the same column cluster to-
gether (t-SNE)

Figure 7: Embeddings in the post–shift model display interpretable behavior.

Interpretable Embeddings In the post–shift model, positional and token embeddings also exhibit
interesting properties related to the input elements and structure. For instance, the ℓ2 norm of token
embeddings corresponding to values from −1.5 to 1.5 is symmetric w.r.t. 0 as seen in Fig. 7(a).
Further, the PCA of token embeddings in Fig. 7(b) shows that the embeddings have a separable
structure based on the sign of the real–valued input (y–axis), and continuous variation w.r.t. the
absolute value of the real–valued input (x–axis).

The t-SNE projection of positional embeddings also show an interesting clustering pattern; po-
sitions in the same column tend to cluster together as seen in Fig. 7(c). This is especially important
because we have not used any marker tokens to mark the end of a row or column. Additionally, the
ℓ2 norm of positional embeddings (Fig. 8) is nearly constant across positions, except for a drop at
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positions around 21 − 26; that is, most of the middle row of the 7 × 7 input. This can be under-
stood as the model marking the ‘origin’ of the position range from 1 to 49, and use it in subsequent
computation.

Figure 8: ℓ2 norm of positional embed-
dings in post–shift model.

From these observations about embeddings, it is clear
that the model utilizes the actual real–value correspond-
ing to the discretized tokens, and also has non–trivial po-
sitional information about the input that take into account
the matrix structure relevant to the task.

Do embeddings change abruptly? Unlike attention
heads (Fig. 13), embeddings might not abruptly change
with the algorithmic shift. Motivated by the experi-
ments in [23], we compute the top–2 principal compo-
nents of the token embeddings at the final step (50000),
and project the token embeddings at intermediate training
steps on these components. The results (Fig. 9) show that
the embeddings align very closely to the final arrange-
ment before the actual drop in loss.

These results hint towards a conjecture that even though the model might undergo a sudden
algorithmic shift, some components evolve beforehand and possibly are a driving force behind the
shift.

(a) Step 4000 (b) Step 10000 (c) Step 14000

(d) Step 16000 (e) Step 20000

Figure 9: Projection of token embeddings along principal components of embeddings at step 50000.
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Appendix H. Effect of changing mask structure

(a)

(b)

Figure 10: Attention heads and corresponding masks; blue denotes masked position in the input
matrix.
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Appendix I. Causal effect of Attention heads

To verify whether attention heads actually contribute towards the model output, or are simply a
side–effect of some other latent factor in the model, we employ 2 methods used earlier to quantify
the contribution of attention heads in transformers.

1. Uniform Ablation Following the methodology in (Sec 4.6, [18]), for a square matrix input
of order n, we set each element of the n2 × n2 softmax attention matrix to 1/n2. That is,
attend equally to all tokens in the input sequence, and remove any learned information about
attending to specific positions in the input.

2. Causal Interventions In the uniform ablation setup, it is possible that setting the softmax
probabilities to a given value might change the distribution of resultant hidden states, and con-
sequently degrade model performance. A more principled technique to analyse the effect of a
specific component is to replace the hidden state just after that component by hidden states on
a different input, and analyse how this affects the final output [37]. In our case, we intervene
on attention heads by replacing the hidden state after an attention head for input matrix X by
the hidden state for input (−X). Importantly, this change does not affect properties like rank
of the input, and hence the hidden states obtained are from the same distribution as those for
input X.

Pre–shift In the pre–shift model, we want to demonstrate that removing attention heads does not
affect the model predictions significantly. For this, we uniformly ablate all attention heads in the
pre–shift model, and measure the effect averaging over 256 samples. We get that Lobs = 3.4e−4
and Lmask = 0.2236 when using all attention heads; whereas, on ablating all heads, these values are
3.2e−4 and 0.2236 respectively. Clearly, in the pre–shift model, attention heads do not substantially
affect the model prediction.

Post–shift In the post–shift model, we want to demonstrate that the attention heads causally affect
the output. Using uniform ablation, we get that Lobs = 9.2e−5 and Lmask = 0.0128 when using
all attention heads; whereas, on ablating all heads, these values are 3.7e−3 and 0.2183 respectively.

From these observations, we could claim causal effect of attention heads for prediction at miss-
ing entries. A stronger test however is through causal interventions,

Step 1 Extract the hidden states for all attention layers from the model on some input matrix X;
call these h+. Concretely, these hidden states are obtained just after the matrix product of
the softmax attention probabilties and the value matrix and hence before the output matrix
product.

Step 2 Change the input to the model to −X, however, also replace the hidden states just after the
attention layers with h+ obtained in Step 1. Call the output of the model in this setup as
fp(−X,X).

We observe that, the MSE between fp(−X,X) and X , averaged over 256 samples at masked posi-
tions is approximately 0.014 (this is comparable to optimal Lmask), compared to the MSE between
fp(−X,X) and −X being 0.8066. This demonstrates that the attention heads are causally relevant
to the model output for missing entries.
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Appendix J. Attention Heads for larger inputs

Figure 11: Attention heads in 12 layers, 12–heads model on 7× 7 rank–2 input
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Figure 12: Attention heads in 12 layers, 12–heads model on 12× 12 rank–3 input

19



HOW DO TRANSFORMERS FILL IN THE BLANKS? A CASE STUDY ON MATRIX COMPLETION

Figure 13: Attention heads in 12 layers, 12–heads model on 15× 15 rank–4 input
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Appendix K. Attention Heads variation along training

(a) Step 4000

(b) Step 14000
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(c) Step 16000

(d) Step 20000

Figure 13: Attention heads across various training steps.
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Appendix L. Related Work

Mathematical problem solving capabilities of Transformers have been a topic of interest lately
[4, 6, 20]. In fact, [20] show that learning addition from samples is equivalent to low–rank ma-
trix completion. Further, [6] show that it is possible to train a transformer based model to solve
various linear algebraic tasks e.g. eigendecomposition, matrix inversion, etc.; however, to the best
of our knowledge, interpretability studies for such tasks have not been conducted before. For inter-
pretability in simpler math tasks, [15] mechanistically analyse GPT-2 small on predicting whether
a number is ‘greater-than’ a given number, by formulating the problem as a natural language task.
[9, 30, 32] analyse BERT from an interpretability perspective. More recently, there has been a line
of research works analysing decoder based models to reverse–engineer the mechanisms employed
by these models, termed as ‘mechanistic interpretability’ [10, 12, 16, 19, 21, 22, 26–29, 34]. We
note that our setting is distinct from the recent work on solving mathematical tasks like linear re-
gression through ‘in–context’ learning in transformers [1, 2, 4, 8, 13, 14, 25, 33]. Whether our
model learns to implicitly ‘implement’ an optimization procedure as shown in some of these works
is an open question.

Further, [17, 23, 24, 27, 36] analyse ‘grokking’, the sudden emergence of generalization during
model training. In the context of training dynamics of MLM, [7] analyses ‘breakthroughs’ (sudden
drop in loss and associated improvement in generalization capabilities of the model), specifically
for BERT. They show that the breakthrough marks the transition of the model to a generalizing
one. Their work however is focused on language tasks, distinct from our setting which is more
mathematical in nature. We also note that their work is not in the online training setting; our setup
is online in the sense of sampling new data at every step of training.
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