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Abstract

The problem of computing minimally sparse solutions of under-determined linear systems
Ax = b is NP hard in general. Subsets with extra properties, may allow efficient algorithms,
most notably problems with the restricted isometry property (RIP) can be solved by convex
ℓ1-minimization. While these classes have been very successful, they leave out many practical
applications. Alternative sub-classes, can be based on the prior information that x = Xz is
in the (sparse) span of some suitable matrix X. The prior knowledge allows us to reduce
assumptions on A from RIP to stable rank and by means of choosing X make the classes
flexible. However, in order to utilize these classes in a solver, we need explicit knowledge
of X, which, in this paper, we learn form related samples, A and bl, l = 1, . . . . During
training, we do not know X yet and need other mechanisms to circumvent the hardness of
the problem. We do so by organizing the samples in a hierarchical curriculum tree with a
progression from easy to harder problems.

1 Introduction

We consider efficiently solvable subclasses of NP hard problems, signed extensions of 1-in-3-SAT at the end
of the paper and sparse solutions of linear systems in its main part: For matrix A ∈ Rm×n and right hand
side b ∈ Rm, we wish to find the sparsest solution of

min
x∈Rn

∥x∥0 subject to Ax = b, (1)

where ∥x∥0 denotes the number of non-zero entries of x. In full generality, this problem is NP -hard Natarajan
(1995); Ge et al. (2011) but as many hard problems it contains tractable subclasses. Some of these are
uninteresting, at least from the perspective of sparsity, e.g. problems with zero kernel ker(A) = 0 and unique
solution, which renders the ℓ0-minimization trivial. Other tractable subclasses have been extensively studied
in the literature, most notably problems that satisfy the (s, ϵ)-Restricted Isometry property (RIP)

(1 − ϵ)∥x∥ ≤ ∥Ax∥ ≤ (1 + ϵ)∥x∥ for all s-sparse x ∈ Rn, (2)

with strict requirements ϵ < 4/
√

41 ≈ 0.6246 on the RIP constants and more generally the null space property
(NSP) of order s

∥vS∥1 < ∥vS̄∥1 for all 0 ̸= v ∈ kerA and |S| ≤ s,

where vS is the restriction of v to an index set S and S̄ its complement. In both cases, the sparsest solution
of (1) is found by the relaxation of the sparsity ∥ · ∥0 to the convex ∥ · ∥1-norm

min
x∈Rn

∥x∥1 subject to Ax = b,

see Candes et al. (2006); Donoho (2006); Candès et al. (2006); Foucart & Rauhut (2013) for details.

All of these tractable subclasses are completely rigid: A problem is either contained in the class or we are
out of luck. Alternatively, there are subclasses based on prior knowledge. Trivially, if we know that the
solution x = Xz is in the column span of a matrix X ∈ Rn×p, we can simplify the search space to

min
z∈Rp

∥Xz∥0 subject to AXz = b,
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which, however, is no longer a standard compressed sensing problem in the variable z. In order to utilize
compressed sensing results, we confine X to sparse matrices and consider the simpler problem to find sparse
z

min
z∈Rp

∥z∥0 subject to AXz = b. (3)

so that also the product x = Xz is necessarily sparse. In general this modified problem does not provide
the globally sparsest solution x, but does so in many scenarios: E.g. if ∥Xz∥0 sparse solutions are unique
(which is much weaker than the RIP Foucart & Rauhut (2013)), if X has sufficiently sparse columns so that
cancellation of non-zero entries in their span are unlikely or the compressed sensing problem admits some
extra structure as in the SAT experiments at the end of the paper.

Besides the global optima question, the variant (3) has the advantage that it can be analyzed by available
compressed sensing theory. Indeed, we can uniquely recover z if AX is RIP, which is the case for (partially)
random X and only mild rank conditions on A, see Kasiviswanathan & Rudelson (2019) and Welper (2020;
2021) in our context.

In summary, we can define tractable and adaptable subclasses by properly chosen X, but the algorithms
require explicit knowledge of it. Since it is implausible that we just happen to know a good X, we learn
it. While one may try to automatically uncover interesting or useful classes X, in this paper, we analyze
the simpler option of a teacher-student setup: The teacher knows X and can generate samples from the
class, i.e. compressed sensing problems consisting of the measurement matrix A and a right hand side
b = Ax. The student observes only the compressed sensing problems (A, b), without having the answers x
and reconstructs the class. On first sight, this is a cyclic problem, where the student has to solve intractable
problems to uncover a class that helps her to solve otherwise intractable problems. This conundrum is
solved by differentiating the problems into easy and hard ones: The former are used during training, can be
solved without prior knowledge of X and have sparser z than the hard problems that the student can solve
after training. For details, see Welper (2021) or its summary in Section 2, included to keep this paper self
contained.

New Contributions In Welper (2021), it is difficult to find easy problems that do not require prior
knowledge. This paper addresses this issue by organizing problems classes into a tree, similar to a university
curriculum. Each node is a problem class, arranged so that the hard problems on the children match the
easy problems on the parent. This setup allows the student to use the child prior to learn a tree node and
thus inductively iterate through the tree. We prove two main theorems stated informally as follows:

1. Theorem 3.5, Corollary 3.6: If a tree is learnable (see Definition 3.4), the student can learn to solve
all hard problems in the tree. As for compressed sensing, this is a recovery result; the student learns
the knowledge of the teacher. If this constitutes ℓ0 minimizers is verified separately.

2. Theorem 4.2, Corollary 4.4: Given several assumptions, learnable trees exist, consisting of one
deterministic solution and further random solutions.

These two results mimic the theory of classical compressed sensing: 1. RIP conditions ensure sparse recovery
(via ℓ1 minimization) and 2. RIP matrices exist (e.g. i.i.d. random matrices). Further results include the
following:

3. In Welper (2021) the problem class, defined by X is completely random, because it is the most favor-
able setup for compressed sensing. As a first step towards low randomness classes, our construction
allows to embed one fully deterministic problem into the root of the curriculum tree. While a single
problem is not yet practical, it shows that some determinism is permissible.

4. In Section 5, we apply the learning method to a signed generalization of NP complete 1-in-3-SAT
problems.

In summary, unlike traditional tractable subclasses of ℓ0 minimization, we aim for subclasses that are adapt-
able and learnable by some matrix X. Overlaps in the classes organized into a tree together with training
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samples form each class allow a student to follow a trail from easier to harder problems and avoid the
NP -hardness of the problems alone. See Figure 1.

ℓ0-min
ker(A) = 0

Null Space
Property

AX

Figure 1: Tractable subclasses inside the NP -hard problem of sparse solutions of linear systems.

Human Learning The prior knowledge informed subclasses, together with an iterative learning curricu-
lum, are intended as a hypothetical model for human problem solving, or more concretely theorem proving.

If P ̸= NP , and human brains have no fundamental superiority to computers, humans cannot effectively
solve arbitrary instances of computationally hard problems. Yet, we routinely prove theorems and have built
up a rich trove of results. But we only do so in our respective areas of expertise. Hence, one may argue
that within these areas, and equipped with prior knowledge and experience, theorem proving is tractable.
If so, can we program corresponding solvers into a computer? The history of artificial intelligence provides
some caution. Hand coded rules in expert systems and natural language processing have proven difficult
due to their immense complexity, while learned approaches are currently superior. Likewise, instead of hand
crafting tractable subclasses, it seems more promising to learn them.

As a mathematical model for tractable subclasses, we consider sparse solutions of linear systems. These
are NP -hard and in (3), we have already identified some adaptable and tractable subclasses. The solution
vector x is a model for a proof, as both are hard to compute. The linear combination x = Xz, together with
the non-linear minimal sparsity, composes a candidate solution x from elementary pieces in the columns of
X, similar to assembling a proof from known tricks, techniques, lemmas and theorems.

Of course, this solution strategy is of no use if we do not know X. Likewise, humans need to acquire their
expertise, either through training or research. An important component of both, is the solution of many
related and often simplified problems. For a student, these are split into episodes, ordered by prerequisites
into a curriculum tree. Likewise, for our mathematical model, we learn a tree of subclasses Xi from simple
samples, i.e. pairs (Ak, bk) generated form solutions in the respective classes.

As we will see (Remark 3.3), the combined knowledge of all leaf nodes [X1, X2, . . . ] in the curriculum tree
is not sufficient to solve all problems in the root node X0 because in an expansion x = X0z0 =

∑
iXizi, the

zi combined generally have less sparsity than z0 and are thus more difficult to find. Therefore, at each tree
node we compress our knowledge into matrices with fewer columns and more sparse z. This step is similar
to summarizing reoccurring proof steps into a lemma and the using it as a black box in subsequent classes.

Unlike human curricula, the model curricula in this this paper are substantially random. This is remi-
niscent of compressed sensing and phase retrieval, whose theory is also more random than many practical
applications. In the latter areas much effort has been invested in low randomness results, yielding partially
structured measurement matrices like e.g. random samples from bounded orthonormal systems. Likewise,
in this paper, in an effort towards lower randomness, we allow one deterministic solution embedded into
otherwise random classes. Further effort towards more realistic low randomness models is left for future
work.
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Greedy Search and Heuristics Similar to ℓ1 minimization, greedy algorithms like orthogonal matching
pursuit

jn+1 = argmax
j

∣∣AT·j(Axn − b)
∣∣

Sn+1 = Sn ∪ {jn+1}
xn+1 = argmin

supp(x)⊂Sn+1
∥Ax− b∥2

2,

also find global ℓ0-minimizers under RIP assumptions Foucart & Rauhut (2013). Instead of systematically
searching through an exponentially large set of candidate supports S, the first line provides a criterion to
greedily select the next support index, based on the correlation of a column A·j with the residual Axn − b.
Applied to the modified problem (3) with prior knowledge X, the method changes to

jn+1 = argmax
j

∣∣XT
·jA

T (AXzn − b)
∣∣

Sn+1 = Sn ∪ {jn+1}
zn+1 = argmin

supp(z)⊂Sn+1
∥AXz − b∥2

2.

In the first row, the learned knowledge X modifies the index selection and thus provides a learned greedy
criterion or heuristic. The learning of X, however, implicitly depends on a meta-heuristic as explained in
Remark 3.3 below. From this perspective, the proposed methods are related to greedy and heuristic search
methods in AI Russell et al. (2010); Sutton & Barto (2018); Holden (2021).

1.1 Related Work

ℓ0-Minimization without RIP This paper is mainly concerned with minimally sparse solutions of sys-
tems with non-NSP or non-RIP matrices A. A common approach in the literature for these systems is
ℓp-minimization with p < 1, which resembles the ℓ0-norm more closely than the convex ℓ1 norm. While
sparse recovery can be guaranteed for weaker variants of the RIP Candès et al. (2008); Chartrand & Staneva
(2008); Foucart & Lai (2009); Sun (2012); Shen & Li (2012), these problems are again NP hard Ge et al.
(2011). Nonetheless, iterative solvers for ℓp-minimization or non-RIP A often show good results Candès et al.
(2008); Chartrand & Wotao Yin (2008); Foucart & Lai (2009); Daubechies et al. (2010); Lai et al. (2013);
Woodworth & Chartrand (2016).

ℓ0-Minimization with Learning Similar to our approach, many papers study prior information for
under-determined linear systems Ax = b. Similar to this paper, ℓ1 synthesis März et al. (2022) considers
solutions of the form x = Xz, in case x is not sparse in the standard basis and for random A. The papers Bora
et al. (2017); Hand & Voroninski (2018); Huang et al. (2018); Dhar et al. (2018); Wu et al. (2019b) assume
that the solution x is in the range of a neural network x = G(z;w), with weights pre-trained on relevant
data, and then minimize minz ∥AG(z;w) − b∥2. Alternatively, the deep image prior Ulyanov et al. (2020)
and compressed sensing applications Veen et al. (2020); Jagatap & Hegde (2019); Heckel & Soltanolkotabi
(2020) use the architecture of an untrained network as prior and minimize the weights minw ∥AG(z;w)− b∥2
for some latent input z. These papers assume i.i.d. Gaussian A or the Restricted Eigenvalue Condition
(REC) and use the prior to select a suitable candidate among all non-unique solutions. In contrast, in the
present paper, we aim for the sparsest solution and use the prior to address the hardness of the problem for
difficult A.

The paper Wu et al. (2019a) considers an auto-encoder mechanism to find measurement matrices A, not only
X, as in our case. Several other papers that combine compressed sensing with machine learning approximate
the right hand side to solution map b → x by neural networks Mardani et al. (2018); Shi et al. (2017).

Teaching Dimension A teacher/student setup is also considered in the teaching dimension. It measures
how many samples a teacher needs to provide for a learner to distinguish all concepts in a concept class
C ⊂ {0, 1}X for some finite domain X, see Goldman & Kearns (1995). The recursive teaching dimension

4



Under review as submission to TMLR

refines the idea to teaching plans, i.e. sequences of concepts and corresponding samples Zilles et al. (2011);
Doliwa et al. (2014); Kirkpatrick et al. (2019). The teaching dimension is closely related to the VC-dimension
Chen et al. (2016); Hu et al. (2017).

While we also learn problems in a curriculum imposing a sequential order, the goal is different: In the
terminology of supervised learning, the student learns the problem to solution map (A, b) → x for (A, b) is
some problem class. Unlike supervised learning, this map is known to the student from the outset. The
problem is rather that initially the student does not have an efficient algorithm to compute it and the learning
shall help her to reduce the “problem to solution map” to a convex optimization problem.

Knowledge Distillation Another area that relies on a teacher/student setup is knowledge distillation
Hinton et al. (2015), where a large teacher neural network is used to train a smaller student network. See
Gou et al. (2021) for an overview.

Transfer Learning The progression through a tree splits the learning problem into separate episodes on
different but related data sets. This is reminiscent of empirical studies on transfer- Donahue et al. (2014);
Yosinski et al. (2014) and meta-learning Hospedales et al. (2020) in neural networks.

1.2 Notations

We use c and C for generic constants, independent of dimension, variance or ψ2 norms that can change in
each formula. We write a ≲ b, a ≳ b and a ∼ b for a ≤ cb, a ≥ cb and ca ≤ b ≤ Ca, respectively. We denote
index sets by [n] = {1, . . . , n} and restrictions of vectors, matrix rows and matrix columns to J ⊂ [n] by vJ ,
MJ· and M·J , respectively.

2 Easy and Hard Problems

In this section, we summarize an easy to hard progression from Welper (2021) that allows us to progress
from one node to the next, in the curriculum tree below.

2.1 ℓ0-Minimization with Prior Knowledge

For given matrix A ∈ Rm×n and vector b ∈ Rm, we consider the ℓ0-minimization problem

min
x∈Rn

∥x∥0, s.t. Ax = b

from the introduction. We have seen that this problem is NP -hard in general, but tractable for suitable
subclasses. While the RIP and NSP conditions are rigid classes, fully determined by the matrix A, we now
consider some more flexible ones, based on the prior knowledge that the solution is in some subset

C<t := {x ∈ Rn : x = Xz, z is t-sparse},

parametrized by some matrix X ∈ Rn×p and with only mild assumptions on A, to be determined below.

Remark 2.1. This definition does not enforce that the x ∈ C<t are ℓ0-minimizers and likewise, the main
results in this paper show recovery of x ∈ C<t, not ℓ0 minimization. In order to obtain ℓ0 minimizers, we
need extra assumptions:

1. If the columns of X are s-sparse, all solutions in class C<t are st-sparse and global ℓ0 minimization
can be guaranteed by uniqueness of st-sparse solutions. In classical compressed sensing this is implied
by the RIP condition, but can also be enforced by much weaker conditions, see Foucart & Rauhut
(2013).

2. For specific applications one may find alternative arguments. E.g. For the SAT type problems in
Section 5, Lemmas 5.4 and 5.5 show global ℓ0 minimization of class members.
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We may regard X’s columns as solution components and hence assume that they are s-sparse, as well, for
some s > 0, so that the solutions x = Xz in class are st sparse. Although the condition seems linear on first
sight, the sparsity requirement of z can lead to non-linear behavior as explored in detail in Welper (2021).
As usual, we relax the ℓ0 to ℓ1 norm and solve the convex optimization problem

min
x∈Rn

∥z∥1, s.t. AXz = b. (4)

Of course any solver requires explicit knowledge of X, which we discuss in detail in Section 2.2. For now, let
us assume X is known. Two extreme cases are noteworthy. First, without prior knowledge X = I, we retain
standard ℓ1-minimization

min
x∈Rn

∥x∥1, s.t. Ax = b,

which provides correct solutions for the ℓ0-minimization problem if A satisfies the null-space property (NSP)
or the restricted isometry property (RIP), typically for sufficiently random A.

Second, if instead of the matrix A, the prior knowledge X is sufficiently random, we can reduce the null-
space property of A to a much weaker stable rank condition on A. In that case, the product AX satisfies a
RIP with high probability (Kasiviswanathan & Rudelson (2019) and Theorem 2.5 below) and hence we can
recover a unique sparse z. Since X is also sparse, this leads to a sparse solution x = Xz of the linear system
Ax = b. In order to show that x is the sparest possible solution, we need some extra structure, as discussed
in Remark 2.1.

2.2 Learning Prior Knowledge

We have seen that subclasses C<t of ℓ0-minimization problems may be tractable, given suitable prior knowl-
edge encoded in the matrix X. Hence, we need a plausible model to acquire this knowledge. To this end,
we consider a teacher - student scenario, with a teacher that provides sample problems and a student that
infers knowledge X from the samples.

The training samples must be chosen with care. Indeed, to be plausible for a variety of machine learning
scenarios, we assume that the student receives samples (A, bi), but not the corresponding solutions xi. On
first sight, this poses a cyclic problem: We need X to efficiently solve for xi, but we need xi to find X.

To resolve this issue, we train only on a subset of easy problems Ceasy ⊂ C<t. These must be sufficient to fully
recover X and at the same time solvable by the student, without prior knowledge of X, by some method

Solve(A, b): Given an easy problem (A,Ax), with x ∈ Ceasy, return x.

Throughout this paper, easy problems are given by b = AXz for random samples z with expected sparsity
t̄ < t, which is strictly less than the sparsity of class C≤t, see Assumption (A1) for details. These samples are
provided by the teacher, who has access to X, in contrast of the student, who has not. If this class is indeed
easy, depends on the existence of Solve and requires a delicate balance because we want the easy problems
solvable but the hard ones not (otherwise training is not necessary). At this point, we do not consider the
implementation of Solve. It will arise naturally out of the tree construction in Section 3, which also resolves
the balancing issue. For comparison, the presence of easy problems may also play a role in gradient descent
training of neural networks Allen-Zhu & Li (2020).

In order to recover the matrix X from the easy samples Ceasy, the student combines the corresponding
solutions into a matrix Y (as columns). Since Ceasy is contained in C<t, they must be of the form Y = XZ
for some matrix Z with t-sparse columns. Given that Y contains sufficiently many independent samples form
the class C<t, sparse factorization algorithms Aharon et al. (2006); Gribonval & Schnass (2010); Spielman
et al. (2012); Agarwal et al. (2014); Arora et al. (2014b;a); Neyshabur & Panigrahy (2014); Arora et al.
(2015); Barak et al. (2015); Schnass (2015); Sun et al. (2017a;b); Rencker et al. (2019); Zhai et al. (2020)
can recover the matrices X and Z up to scaling Γ and permutation P .

SparseFactor(Y ): Factorize Y into X̄ = XPΓ and Z̄ = Γ−1P−1Z for some permutation P and
diagonal scaling Γ.

Scale: Scale the columns of X̄ so that AX̄ satisfies the RIP .
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The permutation is irrelevant, but we need proper scaling for ℓ1 minimizers to work, computed by Scale,
which is a simple normalization in Welper (2021) and an application dependent function in the experiments
in Section 5. We combine the discussion into Train defined in Algorithm 1.

Algorithm 1 Training of easy problems Ceasy.
function Train(A, b1, . . . , bq)

For all l ∈ [q], compute yl = Solve(A, bl).
Combine all yl into the columns of a matrix Ȳ .
Compute X̄, Z̄ = SparseFactor(Ȳ )
return Scale(X̄).

end function

Remark 2.2. In general Ȳ and X̄ have the same column span and thus every x ∈ C<t is given by

x = X̄z = Ȳ u.

Why don’t we skip the sparse factorization? While z is t-sparse by construction, u = Y +x is generally not.
Hence, even if Y is sufficiently random for AY to satisfy an RIP, it is not clear that it allows us to recover
u by the modified ℓ1-minimization (4).

2.3 Results

This section contains rigorous results for the algorithms of the last sections.

2.3.1 Learning Prior Knowledge

We need a suitable model of random matrices, where as usual the ψ2 norm is defined by ∥X∥ψ2 :=
supp≥1 p

−1/2E [|X|p]1/p.
Definition 2.3. A matrix M ∈ Rn×p is s/n-Bernoulli-Subgaussian if Mjk = ΩjkRjk, where Ω is an i.i.d.
Bernoulli matrix and R is an i.i.d. Subgaussian matrix with

E [Ωjk] = s

n
, E [Rjk] = 0, E

[
R2
jk

]
= ν2, ∥Rjk∥ψ2 ≤ νCψ (5)

for some variance ν > 0. We call M restricted s/n Bernoulli-Subgaussian if in addition

Pr [Rjk = 0] = 0, E [|Rjk|] ∈
[

1
10 , 1

]
, E

[
R2
jk

]
≤ 1, Pr [|Rjk| > τ ] ≤ 2e

−τ2
2 . (6)

Next, we define the easy class Ceasy as a slightly sparser version of C<t and generate the training data by
drawing random samples.

(A1) The easy class Ceasy consists of solutions for xl = Xzl with columns zl of t̄/2p restricted Bernoulli-
Subgaussian matrix Z ∈ Rp×q with

c log q ≤ t̄ ≤ t, q > cp2 log2 p,
2
p

≤ t̄

p
≤ c

√
p
. (7)

The matrixX is only known to the teacher, while the student receives samples (A, bl) with bl = AXzl.

The first and last inequalities pose mild conditions on the sparsities t and t̄, while the middle inequality can
always be satisfied by providing sufficiently many samples. The vectors zl have expected sparsity t̄ and
thus the corresponding solutions Xzl have expected sparsity st̄. In order for them be easier than the full
class C<t, we generally choose t̄ < t.

Next, we require the student to be accurate on easy problems, with a safety margin
√

2 on sparsity:
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(A2) For all
√

2t̄ sparse columns zl of Z, we have Solve(A,AXzl) = Xzl for Solve as defined at the
beginning of Section 2.2.

This assumption, used in Welper (2021), is delicate and will be lifted in the reminder of the paper, see
Section 2.4 for more details. Since the student shall only recover the class X, at this point, it is not strictly
necessary that the solutions Xzl are global ℓ0 minimizers, which can, however, be ensured by the teacher in
selecting the class X, see Remark 2.1. Finally, we need the following technical assumption.

(A3) X has full column rank.

Although this implies that X has more rows than columns, that is generally not true for AX used in the
sparse recovery (4). The assumption results from the sparse factorization Spielman et al. (2012), where X
represents a basis. Newer results Agarwal et al. (2014); Arora et al. (2014b;a; 2015); Barak et al. (2015)
consider over-complete bases with less rows than columns and coherence conditions and may eventually allow
a weaker assumption. Anyways, as is, the assumption can be enforced by shrinking the problem class, i.e.
removing columns in X, at the expense of being less expressive. Such a procedure is not necessary for the
choices of X in this paper, which have strong random components and thus full rank with high probability.
With the given setup, we can recover X from easy training samples as claimed in the previous sections.
Theorem 2.4 (Welper (2021), Theorem 4.2). Assume that (A1), (A2) and (A3) hold. Then there are
constants c > 0 and C ≥ 0 independent of the probability model, dimensions and sparsity, and a tractable
implementation of SparseFactor (see Section 2.2) so that with probability at least

1 − Cp−c

the output X̄ of Train (Algorithm 1) is a scaled permutation permutation X̄ = XPΓ of the matrix X that
defines the class C<t.

The result follows from Theorem 4.2 in Welper (2021) with some minor modifications described in Appendix
A.1.

2.3.2 ℓ0-Minimization with Prior Knowledge

After we have learned X, we need to ensure that we can solve all problems in class C<t by (4), not only the
easy ones. We do so here for random X, which is clearly a idealization but common in compressed sensing,
phase retrieval and related fields. Section 4 makes some progress towards more realistic classes by allowing
some deterministic component. For this review, we assume

(A4) The matrix X ∈ Rn×p is (s/n
√

2)-Bernoulli-Subgaussian with

∥A∥2
F

∥A∥2 ≥ CC4
ψ

nt

sϵ2
log
(

3p
ϵt
,

)
(8)

ψ2-norm bound Cψ in the Bernoulli-Subgaussian model (5) and arbitrary constant 0 < ϵ < 4/
√

41 ≈
0.6246 with the same bounds as the RIP constant in (2).

The left hand side ∥A∥2
F /∥A∥2 is the stable rank of A. With the scaling

Scale(X̄) =
√
n

∥A∥F
, (9)

we obtain the following result, with some minor modifications from the reference described in Appendix A.1.
Theorem 2.5 (Welper (2021), Theorem 4.2). Assume we choose (9) for Scale and that (A1) and (A4)
hold. Then there are constants c > 0 and C ≥ 0 independent of the probability model, dimensions and
sparsity, and a tractable implementation of SparseFactor (see Section 2.2) so that with probability at least

1 − Cp−c
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the matrix X has full column rank, s-sparse columns and AX and satisfies the RIP

(1 − ϵ)∥v∥2 ≤ ∥AX̄v∥2 ≤ (1 + ϵ)∥v∥2 (10)

for all 2t-sparse vectors v ∈ Rp. Hence, for ϵ < 4/
√

41 ≈ 0.6246, we can solve all problems in C<t by ℓ1
minimization (4).

As discussed in Remark 2.1, this is a recovery result and ℓ0-optimality of the class C<t must be shown
separately. In conclusion, if we train on easy samples in Ceasy, we can recover X and thus with the modified
ℓ1-minimization (4) solve all problems in class C<t, even the ones which we could not solve before training.

2.4 Implementation of the Student Solver?

While most assumptions are of technical nature the two critical ones are:

1. Implementation of Solve? If we implement Solve by plain ℓ1-minimization, A must satisfy the st̄-
NSP. This poses strong assumptions on A and if it satisfies the slightly stronger st-NSP, all problems
in C<t can be solved by ℓ1-minimization, rendering the training of X obsolete. We resolve the issue
in the next section by a hierarchy of problem classes, which allow us to use prior knowledge from
lower level classes to implement Solve.

2. Can we learn classes X that are not fully random? Some partially deterministic cases are considered
in Section 4.

3 Iterative Learning

3.1 Overview

We have seen that we can learn to solve all problems in a class C<t, if we are provided with samples from an
easier subclass Ceasy. The easy class must be sufficiently rich and at the same time its sample problems must
be solvable without prior training. This results in a delicate set of assumptions, which we have hidden in the
existence of Solve, in the last section. The situation becomes much more favorable if we do not try to learn
C<t at once, but instead iteratively proceed from easy to harder and harder problems. This way, we can
implement Solve by the outcomes of previous learning episodes, instead of uninformed plain ℓ1 minimizers.
To this end, we order multiple problem classes into a curriculum, similar to a human student who progresses
from easy to hard classes ordered by a set of prerequisites. Likewise, we consider a collection of problem
classes Ci, indexed by some index set i ∈ I and organized in a tree, e.g.

C1

C2

C4 C5

C3

C6

with root node C0 and where each class Ci has finitely many children Cj , j ∈ child(i).

(T1) Each tree node has at most γ children for some γ ≥ 0.

The student starts learning the leafs and may proceed to a class Ci only if all prerequisite or child classes
have been successfully learned. As before each class is given by a matrix Xi with si sparse columns and
sparsity t

Ci := {x ∈ Rn : x = Xiz, z is t-sparse}.
As in Remark 2.1, we do not enforce that class members are ℓ0 minimizers, which has to be ensured separately.
The difficulty of each class roughly corresponds to the sparsity, with the easiest at the leafs and then less and

9
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less sparsity towards the root of the tree. In order to learn each class Ci, the corresponding easy problems
are constructed as in Assumption (A1) in the last section

(T2) On each node i, the teacher provides easy problems consisting of solutions for xl = Xizl with columns
zl of t̄/2p restricted Bernoulli-Subgaussian matrix Zi ∈ Rp×q with

c log q ≤ t̄ ≤ t, q > cp2 log2 p,
2
p

≤ t̄

p
≤ c

√
p
. (11)

The matrix Xi is only known to the teacher, while the student receives samples (A, bl) with bl =
AXizl.

Thus, the easy samples are x = Xiz with random z of expected sparsity t̄. For reference, we define

Ceasy,i := {x ∈ Rn : x = Xiz, z is a column of Zi},

which differs slightly from Welper (2021) and its summary in Section 2 and is only used for the following
motivation.

In order to progress through the curriculum, we have to carefully connect each parent to its children. First,
we assume:

(T3) The combined knowledge of all children contains the knowledge of the parent, i.e.

Xi =
∑

j∈child(i)

XjWj =: Xchild(i)Wchild(i) (12)

for some matrices Wj and combined matrices Xchild(i) = [Xj1 , . . . , Xjr ] and [WT
j1
, . . . ,WT

jr
]T with

child(i) = {j1, . . . , jr}.

Next, we carefully calibrate the sparsity of all matrices to obtain a proper easy/hard split.

(T4) Assume that the columns of Xi are si sparse and the columns of Wchild(i) are t/t̄ sparse with

t/t̄ ≥ 1, sit̄ ≤ sjt, j ∈ child(i). (13)

Then every element in the parent class satisfies x = Xizi = Xchild(i)Wchild(i)zi =: Xchild(i)zchild(i). Hence,
if it is easy for the parent ∥zi∥0 ≤ t̄, it is hard for the combined knowledge of the children ∥zchild(i)∥0 ≤ t.
But given our prerequisites, we can already solve all hard children problems and implement Solve by the
ℓ1 minimization (4) with prior knowledge Xchild(i). Technically, this requires that AXchild(i) is t-NSP, not
only all AXj , j ∈ child(i) separately. This is a relatively mild extra assumption because the NSP typically
depends only logarithmically on the number of columns in X·.

(T5) For all tree nodes i the matrix product A[Scale(Xchild(i))] as well as the root node A[Scale(X0)]
satisfy the null space property of order

√
2t.

With the implementation of Solve, we can now learn the full parent class Ci by Algorithm 1 and then
proceed through the full tree by induction. The split (12), roughly models a set of university courses,
where higher level courses recombine concepts from multiple prerequisite courses. In summary, we have the
sparsities (ignoring probabilities in Ceasy,i)

x ∈ Child problems⇝ x = Xchild(i)zchild(i), ∥zchild(i)∥0 ≤ t, ∥x∥0 ≤ sjt,

x ∈ Ceasy,i ⇝ x = Xizi, ∥zi∥0 ≤ t̄, ∥x∥0 ≤ sit̄,

x ∈ Ci ⇝ x = Xizi, ∥zi∥0 ≤ t, ∥x∥0 ≤ sit.

10
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It remains to learn the leafs, for which we cannot rely on any prior knowledge. To this end, note that by
construction (12), we can expect the columns of the parent Xi to be a factor t/t̄ > 1 less sparse than the
columns of the children Xj , j ∈ child(i). Hence, in a carefully constructed curriculum, the tree nodes’ Xi

become more sparse towards the bottom of the tree and ideally have unit sparsity O(1) at the leafs. This
ensures that the leaf node classes can be solved by brute force in sub-exponential time.

(T6) We have a solver SolveL for the leaf nodes, satisfying Assumption (A2).

For some applications this may be costly, while for others, like SAT reductions to compressed sensing and
related problems discussed in Section 5, this is routinely done for moderately sized problems Holden (2021).

We need the following two technical assumptions

(T7) For each tree node i, the matrix Xi has full column rank.

(T8) On each tree node, we have implementations of Scale.

These match (A3) and Scale in Section 2, where they are discussed in more detail.
Remark 3.1. All problems x in class Ci are t2/t̄-sparse linear combinations of Xchild(i). Hence, if AXchild(i)
satisfies the t2/t̄ instead of only a t-NSP, the student can solve all problems in Ci, without training Algorithm
1. Practically, she can jump a class, but it is increasingly difficult to jump all classes, which would render
the entire learning procedure void.
Remark 3.2. The easy/hard split is achieved by some matrix satisfying a t̄ but not a t RIP. In Section 2
this matrix is A, so that this setup is very limiting. In this section, this is the matrix AXchild(i) and therefore
at the digression of the teacher and to a large extend independent on the problem matrix A.
Remark 3.3. The sparse factorization in Algorithm 1 condenses the knowledge Xchild(i) into Xi, allowing
more sparse zi than zchild(i) and as a consequence to tackle more difficult, or less sparse, problems x. This
condensation is crucial to progress in the curriculum, but is in itself a meta-heuristic to consolidate knowledge.
It is comparable to Occam’s razor and the human preference for simple solutions. More flexible meta-
heuristics are left for future research.

3.2 Learnable Trees

The algorithm of the last section is summarized in Algorithm 2 and all assumptions in the following definition.

Definition 3.4. We call a tree of problem classes Ci, i ∈ I learnable if it satisfies (T1)–(T8).

Deferring existence of learnable trees to Section 4 below, for now we assume that a teacher has already
constructed such a tree. Then, as reasoned in the last section, we can recover the knowledge X0 of the root
class C0, up to permutation and scaling in polynomial time. For a formal proof, see Appendix A.3.
Theorem 3.5. Let Ci, i ∈ I be learnable according to Definition 3.4. Then, there exists an implementation
of SparseFactor and constants c > 0 and C ≥ 0 independent of the probability model, dimensions and
sparsity, so that with probability at least

1 − Cγs
log γ

log(cst/t̄)
0 p−c

the output X̄i = TreeTrain(Ci) of Algorithm 2 is a scaled permutation Scale(X̄i) = Scale(XiP ) of Xi

for some permutation matrix P .

Knowing all Xi up to permutation and scaling allows the student to solve all problems in the tree. The proof
for the following corollary is in Appendix A.3.

11
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Corollary 3.6. Assume that the event in Theorem 3.5 is true so that the student has computed
TreeTrain(Ci) = X̄i for all three nodes i ∈ I, which are scaled permutations Scale(X̄i) = Scale(XiP ) of
Xi for some permutation matrix P . Then, the student can solve all problems in class Ci, i ∈ I by the convex
optimization problem (3).

Remark 3.7. As for compressed sensing, the last corollary is a recovery result: After training the student
can find the same solutions x in class Ci as the teacher. The corollary does not state that these are ℓ0-
minimizers, which has to be verified separately. In classical compressed sensing this follows from uniqueness
of sparse solutions, which is not required for the last corollary, but may be assumed in addition (and is much
weaker than the RIP, see e.g. Foucart & Rauhut (2013)). Alternative verification of global ℓ0 minimization
are also possible as e.g. Lemmas 5.4, 5.5 for reductions of SAT type problems to compressed sensing.

The biggest problem with learning hard problems C<t from easy problems Ceasy in Theorem 2.4 is the need
for a solver for the easy problems, as discussed in Section 2.4. The hierarchical structure of Theorem 3.5
completely eradicates this assumption, except for the leaf nodes, which ideally have sparsity O(1) so that
brute force solvers are a viable option.

Algorithm 2 Tree training
SolveX : Solve the modified ℓ1-minimization (4) with the given matrix X
SolveL: Solver for leaf nodes.
Train(A, b1, . . . , bq,Solve): Algorithm 1 using the given solver subroutine.

function TreeTrain(class Ci)
Get matrix A and training samples b1, . . . , bq from teacher.
if Ci has children then

Compute Xj = TreeTrain(Cj) for j ∈ child(i)
Concatenate all child matrices X = [Xj ]j∈child(i)
return Xi = Train(A, b1, . . . , bq,SolveX)

else if Ci has no children then
return Xi = Train(A, b1, . . . , bq,SolveL)

end if
end function

3.3 Cost

Let us consider the cost of learnable trees from Definition 3.4. The number of nodes grows exponentially in
the depth of the tree, but the depth only grows logarithmically with regard to the sparsity s0 of the root
node, given that we advance the sparsities si as fast as (13) allows.
Lemma 3.8. Let s0 be the sparsity of the root node of the tree. Assume that each node of the tree has at
most γ children and that sit̄ ≳ csjt for c ≥ 0 and all j ∈ child(i). Then the tree has at most

γN+1 = γs
log γ

log(ct/t̄)
0

nodes.

The proof is given in Appendix A.2. Since on each node, the number of training samples and the runtime
of the training algorithm are both polynomial, this lemma ensures that the entire curriculum is learned in
polynomial time, with an exponent depending on γ, and the ratio t/t̄.

4 A tree Construction

In the last section, we have seen that we can learn difficult classes, given a suitable training curriculum. In
this section, we argue that such curricula exist. Definition 3.4 and Theorem 3.5 state several conditions on
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classes Ci and their matrices Xi that allow the student to successfully learn the entire tree. While these are
mainly simple dimensional requirements, the most severe is the NSP condition of A[Scale(Xchild(i))]. By
Kasiviswanathan & Rudelson (2019) or Theorem 2.5 this is expected for random Xi. For a more realistic
model scenario, we add a deterministic component.

The deterministic part guarantees that every global ℓ0-minimizer

min
x∈Rn

∥x∥0, s.t. Ax = b (14)

can be embedded into a dedicated curriculum, for arbitrary right hand side b and only minor rank assumptions
on A. The random part is a placeholder for further solutions in class, to obtain a more realistic model.
Remark 4.1. The model shall demonstrate that learning of any deterministic problem is possible, but is not
intended as a practical curriculum design.

4.1 Tree Result

Given A and x, we construct a partially random learnable tree whose root class contains x and each Xi has
p columns for some p > 0. To this end, we first partition the support supp(x) into non-overlapping patches
{J1, . . . , Jq} = J and then place the corresponding sub-vectors of x into q columns of the matrix

Sjl :=
{
xj j ∈ Jl
0 else. (15)

The columns are spread into the leaf classes of the following learnable tree, were κ(·) denotes the condition
number.
Theorem 4.2. Let A ∈ Rm×n and split x ∈ Rn into q = 2L, L ≥ 1 components S given by (15). If

1. AS has full column rank.

2. On each tree node, we have implementations of Scale.

3. SolveL satisfies Assumption (A2) on the leaf nodes.

4.

t ≳ log p2 + log3 p, 1 ≲ t ≲ √
p (16)

5.

min
J∈J

∥A·J∥2
F

∥A·J∥2 ≳ tκ(AS)L+ tκ(AS) log cqp
t

(17)

for some generic constant c, with probability at least

1 − 2 exp
(

−c 1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)

there is a learnable binary tree of problem classes Ci, i ∈ I of depth L, given by matrices Xi and sparsity t
so that

1. The root class C0 contains x.

2. The parents are constructed from the children Xi = Xchild(i)Wchild(i), where Wchild(i) has t/t̄ = 2
sparse columns.

3. The columns of the leaf nodes’ Xi are |J | sparse.

13
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4. Each class’ matrix Xi contains p columns, consisting of columns of S, i.e. pieces of x, in the leafs
and sums thereof in the interior nodes. All other entries are random (dependent between classes) or
zero.

In short, curricula that allow us to learn the root class do exist, even if we add some deterministic structure
to ensure that the classes contain some meaningful result. More sophisticated classes are left for future
research.

Note that x can be recovered even if it is not a global ℓ0 minimizer. This has to be ensured separately by
the designer of the curriculum, see Remarks 2.1 and 3.7. The only restriction on x is Assumption 1 that AS
has full column rank. In case x is indeed a global ℓ0 minimizer, this assumption is automatically satisfied
by the following lemma, with z = [1, 1, . . . ]T . The proof is in Appendix A.4.
Lemma 4.3. Assume the columns of S ∈ Rn×q have non-overlapping support and z ∈ Rq with non-zero
entries. If the vector x = Sz is the solution of the ℓ0-minimization problem 14, then the columns of AS are
linearly independent.

Theorem 4.2 leaves the implementation of Scale open. The function is necessary because the sparse
factorization of Y = XZ into X and Z in Algorithm 1 is not unique up to permutation and scaling. Two
options are as follows:

1. If AX satisfies the RIP, all columns of AX must have unit size up to the RIP constants. Hence a
reasonable scaling of X ensures equality ∥(AX)·i∥ = 1. However, the proof only shows that TAX
is RIP for some preconditioner T , depending on the condition of the deterministic part AS. This
implies the NSP (without preconditioning) since it is invariant under left preconditioning and hence
ensures ℓ1 recovery. However, this is not informative for scaling X, unless the teacher provides the
preconditioned matrix TA instead of A.

2. The teacher can ensure that the training samples Z are scaled, e.g. by sampling entries from a
discrete set {−1, 0, 1}, which allows the student to recover the scaling.

Another major assumption in Theorem 4.2 is the existence of a leaf node solver SolveL. We can use a
brute force approach if we manage to achieve enough sparsity |J | in the leaf nodes, which we estimate in the
following corollary.
Corollary 4.4. Let A ∈ Rm×n. Let x ∈ Rn be a sparse, sx := ∥x∥0 and for some q let

J = {J1, . . . , Jq},
sx
q

≤ |Ji| ≤ 2sx
q

be a quasi-uniform partition of its support and S be the corresponding component split defined in (15).

1. Assume that the following sub-matrices have uniform condition number and full stable rank

κ(AS) ≲ 1, ∥A·J∥2
F

∥A·J∥2 ≳ |J |, J ∈ J .

with
|J | ≳ log sx log p+ (log p)2. (18)

2. On each tree node, we have implementations of Scale.

3. SolveL satisfies Assumption (A2) on the leaf nodes.

Then for some generic constant c, with probability at least

1 − 2 min
{
s−c
x , p−c}

there is a learnable binary tree of problem classes Ci, i ∈ I, given by matrices Xi so that
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1. The root class C0 contains x.

2. The columns of the leaf nodes’ Xi are |J | sparse.

3. Each class’ matrix Xi contains p columns

Proof. We apply Theorem 4.2. Using κ(AS) ≲ 1 and ∥A·J∥2
F

∥A·J∥2 ≳ |J | and choosing the most favorable t ∼ log p
in (16), assumption (17) reduces to

|J | ≳ Lt+ t log(2Lp) ∼ Lt+ t log p ∼ L log p+ (log p)2, (19)

posing a limit on the minimal support size we can achieve at the leafs of the tree. In order to eliminate L,
the corollary assumes that all J are of equivalent size. Since the tree has q = 2L leafs, this implies that
sx ∼ |J |2L and thus log sx ∼ log |J | + L ≥ L. Thus, condition (19) reduces to

|J | ≳ log sx log p+ (log p)2. (20)

Thus, the corollary follows from Theorem 4.2 with probability at least

1 − 2 exp
(

−c 1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)
≤ 1 − 2 exp (−c|J |) ,

for all J ∈ J , which directly shows the result.

Hence, on the leaf nodes, a brute force SolveL search of |J | sparse solutions, considers about n|J| ≥ nlog s

possible supports (ignoring p for the time being, which is at the teachers discretion). While significantly
better than ns possible supports for finding x directly, the former number is not of polynomial size. In order
to drive down the search size to O(1), we can iterate the tree construction and build new trees designed to
enable the student to find every column in the leaf nodes Xi with one full tree per column. At the break
between curricula, this requires the teacher to provide the samples (A, bk) with bk = A(Xi)·k for every leaf
node column (Xi)·k, which is a much stronger requirement than just providing arbitrary samples from the
child classes in the interior nodes. Since this is more costly, we calculate in the next section that this still
leads to a total tree of polynomial size.

4.2 Tree Extension

The curriculum in Theorem 4.2 shrinks the support size from s to log s. In order to reduce the size further,
we may build a new curriculum for every column in every leaf Xi, if these columns can be split with full
rank of AS, yielding p2L ≤ ps new curricula. The assumption seems plausible for the random parts and is
justified for the deterministic part by the following lemma (together with Lemma 4.3), proven in Appendix
A.4.
Lemma 4.5. Assume the columns of S ∈ Rn×q have non-overlapping support and z ∈ Rq with non-zero
entries. If the vector x = Sz is the solution of the ℓ0-minimization problem 14, then the columns S·k, k ∈ [q]
are global ℓ0 optimizers of

S·k ∈ min
x∈Rn

∥x∥0 subject to Ax = AS·k.

Remark 4.6. Within each curriculum, the teacher provides samples from each class. At the break between
different curricula, the teacher must provide the more restrictive samples b = Ax with columns x of leaf node
Xi. Weather this can be avoided in a more careful tree construction is left for future research.

Since we aim for leaf column support size |J | ∼ 1 and its lower bound (18) contains the number p of columns
in each Xi, which is at the teachers disposal, we shrink it together with the initial (sub-)curriculum support
size s by choosing p ∼ s.
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Remark 4.7. By choosing a large constant in p ∼ s or alternatively p ∼ sα, for the more difficult curricula,
p can be larger than m. But by (19), towards the simpler curricula p must become small so that eventually
p ≤ m and the matrix AXi has more rows that columns. Depending on the kernel of AXi, this may void ℓ0
or ℓ1-minimization and allow simpler constructions towards the bottom of the curriculum tree.

We iteratively repeat the procedure until the leaf support |J | ∼ O(1) is of unit size. The total number #(s)
of required (sub-)curricula for initial support size s satisfies the recursive formula

#(s) ∼ ps#
(
log s log p+ (log p)2) ≥ s2#

(
(log s)2)

By induction, one easily verifies that #(s) ≲ s3, so that we use only a polynomial number of curricula,
each of which can be learned in polynomial time. In conclusion, combining all problem classes into one
single master tree, this yields a curriculum for a student to learn the root C0 in polynomial time,
including a predetermined solution x. The problem classes can be fairly large at the top of the tree
and must be small at the leafs. At the breaks between different curricula, the training samples must be of
unit size containing only one column of the next tree.

4.3 Construction Idea

In Theorem 4.2, all class matrices Xi are derived from the single matrix

X := SZT +DR(I − ZZT ). (21)

The first summand is the deterministic part, with components S of x defined in (15) and arbitrary matrix
Z with sparse orthogonal columns that boosts the number of columns from q to the desired p. The second
summand is the random part with sparse random matrix R. The projector (I − ZZT ) ensures that it does
not interfere with the deterministic part and D is a scaling matrix to balance both parts.

We choose Z and the support of R so that, upon permutation of rows and columns X is a block matrix

X =

B1
. . .

Bq


with each block containing one piece xJ . The tree is constructed out of these blocks as follows in case q = 4
and analogously for larger cases.

X0 =


B1
B2
B3
B4


X1 =


B1
B2



B1


B2



X2 =

B3
B4


B3



X4



See Appendices A.5.1 and A.6 for details.

5 Applications

5.1 3SAT and 1-in-3-SAT

For an example applications, we consider reductions from the NP -complete 3SAT and 1-in-3-SAT to sparse
linear systems (The paper Ayanzadeh et al. (2019) considers the other direction). The problems are defined
as follows.
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• Literal: boolean variable or its negation, e.g. : x or ¬x.

• Clause: disjunction of one or more literals, e.g.: x1 ∨ ¬x2 ∨ x3.

• 3SAT: satisfiability of conjunctions of clauses with three literals. For a positive result, at least one
literal in each clause must be true.

• 1-in-3-SAT: As 3SAT, but for a positive result, exactly one literal in each clause must be true.

Both problems are NP -complete and can easily be transformed into each other. In this section, we reduce
a 1-in-3-SAT problem with clauses ck, k ∈ [m] and boolean variables xi, i ∈ [n] to a sparse linear system,
following techniques from Ge et al. (2011). For each boolean variable xi, we introduce two variables yi ∈ R
corresponding to xi and zi ∈ R corresponding to ¬xi for i ∈ [n]. For each clause ck, we define a pair of
vectors Ck, Dk. The vector Ck has a one in each entry i for which the corresponding literal (not variable) xi
is contained in the clause ck and likewise Dk has a one in each entry i for which the literal ¬xi is contained
in ck. All other entries of Ck and Dk are zero. It is easy to see that

y ∈ {0, 1}n and zi = ¬yi
⇒ Exactly one literal in ck is true if and only if CTk y +DT

k z = 1. (22)

We combine the linear conditions into the linear system

A :=



· · · CT1 · · · · · · DT
1 · · ·

...
...

· · · CTm · · · · · · DT
m · · ·

. . . . . .
Inn Inn

. . . . . .


, b :=



1
...
1
1
...

1
...


(23)

with some extra identity blocks that together with the ℓ0-minimization

min
y,z∈Rn

∥y∥0 + ∥z∥0 subject to A

[
y
z

]
= b. (24)

ensure that y ∈ {0, 1}n, when possible.
Lemma 5.1. The clauses ck corresponding to Ck and Dk, k ∈ [m] are 1-in-3 satisfiable if and only if (24)
has a n sparse solution.

Proof. The i-th row of the identity blocks is yi + zi = 1. The solution is either 2-sparse or 1-sparse with
yi = 1, zi = 0 or yi = 0, zi = 1. Hence the solution is at most n sparse. The latter two cases are true for all
i if and only if y and z combined are n sparse. Then the pair (yi, zi) matches a boolean variable (xi,¬xi)
and the result follows from (22).

5.2 Model Class

Note that RIP proofs typically rely on random mean zero matrix entries, while reductions of random 1-in-3-
SAT subclasses to compressed sensing have matrices and solution vectors with non-negative entries and thus
non-zero mean. As a result, our theory is not immediately applicable. We avoid the problem by considering
a larger problem class with signed solutions x ∈ Rn or x ∈ {−1, 0, 1}n, which we can sample by mean-zero
Bernoulli-Subgaussian distributions required for our theory. While in our 1-in-3-SAT reduction the first rows
of A have exactly three non-zero entries, for simplicity, we sample sparse rows

A =
[
A11 A12
In/2 In/2

]
∈ Rm×n, b =

[
b1
b2

]
∈ Rn
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for two sparse matrices A1j ∈ {0, 1}(m−n/2)×(n/2). As in Lemma 5.1, the two identity blocks ensure that
any solution x of Ax = b must have support at least ∥x∥0 ≥ ∥b2∥0. In the 1-in-3-SAT case, equality
corresponds to satisfiable problems. Likewise, we ensure that all training problems satisfy ∥x∥0 = ∥b2∥0,
which automatically implies that they are global ℓ0 optimizers.
Remark 5.2. If ∥x∥0 = ∥b2∥0, then x is a global ℓ0 minimizer.

5.3 Curricula

We consider several example curricula. The first is a realization of the construction in Theorem 4.2. The
following two add some extra structure to ensure global ℓ0 minimization properties. The Second for all
columns of each Xi in the curriculum and the third for all sparse linear combinations of columns of Xi, i.e.
all elements in the corresponding problem class Ci.

5.3.1 Curriculum I

We first consider a realization of the curriculum in Theorem 4.2, as shown in Figure 2. The curriculum is
constructed from a single matrix X at the root node, where ∗ entries are mean-zero random ±1 and the x
entries are (different per entry) random {0, 1}. The latter have non-zero mean, which is not amenable to RIP
conditions and used as a model for the deterministic part of the theory. The children Xi are constructed from
the parent by zeroing out selected rows, as shown in the figure. The tree is learnable, proven in Appendix
C.

Lemma 5.3. Assume that the dimensions m,n, p, sparsities t, deterministic solution x and matrix A satisfy
all assumptions of Theorem 4.2. Then the tree in Figure 2 is learnable and all other conclusions in Theorem
4.2 hold.


x ∗ . . . ∗
x ∗ . . . ∗
x ∗ . . . ∗
x ∗ . . . ∗



x ∗ . . . ∗
x ∗ . . . ∗



...
...

x ∗ . . . ∗
x ∗ . . . ∗



...
...

Figure 2: Xi matrices for a Curriculum I. x can be different in each row and ∗ are random entries.

5.3.2 Curriculum II

For none of the solutions in the problem classes in Curriculum I we know if they are global ℓ0 minimizers.
While this is not necessarily an issue for the tree construction, as outlined in Remark 3.7, it is not fully
satisfactory and global minimizers can be obtained as follows. First, we split the columns according to the
identity blocks in A, as shown in Figure 3. Each component in the upper block y or ∗, has exactly one
corresponding component in the lower block z or + so that for each pair at most one entry is non-zero. As
a result each column has the required sparsity to guarantee that it is a global ℓ0 minimum by Remark 5.2.

Lemma 5.4. For all nodes i ∈ I in Curriculum II, all columns of Xi are global ℓ0 minimizers.

Since the random parts of the curriculum have dependencies, we can no longer apply Theorem 4.2 to show
that this tree is learnable, although it is conceivable that similar results still apply.
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Figure 3: Xi matrices for Curriculum II with ℓ0 minimal columns.

5.3.3 Curriculum III

In Curriculum II the columns of Xi are global ℓ0 minimizers, but their linear combinations in the classes
Ci or the training samples are generally not, which can be fixed by the modification in Figure 4. All blocks
individually work as before, but instead of allowing all possible sparse linear combinations of the columns,
we only allow one non-zero contribution from each block column. This ensures the sparsity requirements in
Remark 5.2 so that all problems in class are global ℓ0 minimizers.

Lemma 5.5. For all nodes i ∈ I in Curriculum III, define the classes by

Ci := {x ∈ Rn : x = Xiz, z is t-sparse
z has at most one non-zero entry per block column of Xi}

Then all elements of Ci are global are global ℓ0 minimizers.

As for Curriculum II Theorem 4.2 is not applicable to show that this tree is learnable. Since the y and z
entries are non-negative, this allows us to build a curriculum to learn one arbitrary 1-in-3-SAT problem in
a larger class of random signed problems. If we can build an entire curriculum that is fully contained in
1-in-3-SAT itself remains open.

5.4 Numerical Experiments

Table 1 contains results for Curricula II and III. All ℓ1-minimizations problems are solved by gradient descent
in the kernel of Ax = b and the sparse factorization is implemented by ℓ4-maximization Zhai et al. (2020).
Solutions on the leaf nodes are given instead of brute force solved. As in Welper (2021), Algorithm 1 contains
an additional grader that sorts out wrong solutions from Solve, which often depend on the gradient descent
accuracy. Scale is implemented by snapping the output of SparseFactor to the discrete values {−1, 0, 1},
which allows exact recovery of all nodes Xi, without numerical errors. Further details are given in Appendix
C.

• Curriculum II: We train three tree nodes on two levels. Grader tests to accuracy 10−4. The results
are the average of 5 independent runs.
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Figure 4: Xi matrices for Curriculum III with ℓ0 minimal classes.

Curr. I Curr. II
Depth 0 1 0
m 96 96 121
n 128 128 162
p
(
Xchild(i)

)
102 102 459

Rank
(
AXchild(i)

)
96.00 62.80 113.00

# Samples 10000 10000 90000
% Validate 0.55 0.91 0.98
#(Xstudent = X) 5/5 7/10 2/2

Table 1: Results of numerical experiments, Section 5.4, averaged over all runs and all nodes of given depth.
The second but last row shows the percentage of successful training solutions, according to the grader. The
last row shows the number of successfully recovered Xi for the given level out of the total number of trials.

• Curriculum III: We train one tree node. The training sample matrices (23) are preconditioned per
node, not globally as in Theorem 4.2, below. Grader tests to accuracy 10−3. The results are the
average of 2 independent runs.

Table 1 contains the results. It includes average ranks to show that the systems AX are non-trivial with non-
zero kernel and the row %Validate shows the percentage of correctly recovered training samples according
to the grader. A major bottleneck is the number of training samples for each node, which scales quadratically
for ℓ4 maximization (but only linear for unique factorization without algorithm Spielman et al. (2012)), up
to log factors. The last line shows that in the majority of cases we can recover the tree nodes Xi. The misses
depend on solver parameters as e.g. iteration numbers and the size of random matrices.
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6 Conclusion

Although sparse solutions of linear systems are generally hard to compute, many subclasses are tractable. In
particular, the prior knowledge x = Xz with sparse z allows us to solve problems with only mild assumptions
on A. We learn X from a curriculum of easy samples and condensation of knowledge at every tree node. The
problems in each class must be compatible so that AX satisfies the null space property. To demonstrate the
feasibility of the approach, we show that the algorithms can learn a class X of non-trivial size that contains
an arbitrary solution x.

The results provide a rigorous mathematical model for some hypothetical principles in human reasoning,
including expert knowledge and its training in a curriculum. To be applicable in practice, further research
is required, e.g.:

• The mapping of SAT type problems into sparse linear problems lacks several invariances, e.g. a
simple reordering of terms may invalidate acquired knowledge. The reduction of SAT or other
problems to sparse linear solvers is similar to feature engineering in machine learning.

• For sparse factorization, the required number of samples scales quadratically, up to a log factor,
which is the biggest computational bottleneck in the numerical experiments. However, the current
implementation uses a standard method and does not use that the parent class Xi can be constructed
from its children (12).

• The curriculum is designed so that knowledge can be condensed by sparse factorization, which in
itself is a meta-heuristic. One may need to dynamically adapt the condensation heuristic to real data.
Since sparse factorization algorithms themselves often rely on ℓ1 minimization, similar approaches
as discussed in the paper are conceivable.

• Not all relevant knowledge can be combined into one root class X0 so that AX0 satisfies the null
space property. Hence, one may need several roots or rather a knowledge graph, together with a
decision criterion which node to use for a given problem.
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A Details and Proofs

A.1 Easy and Hard Problems: Theorems 2.4, 2.5

Theorem 2.4 contains some small changes to the original reference Welper (2021). In the original version
(A1) contains two extra inequalities

n ≥ c̄1p log p, 1
p

≤ s

n
≤ c̄2,

which are used to ensure that X has full rank Welper (2021), Proof of Theorem 4.2 with (A3), Item 4. We
assume this directly in (A3) and leave out the inequalities.

For Theorem 2.5, the reference Welper (2021) requires the extra assumption that Ax = b has unique st sparse
solutions, which is only used to verify that solutions of Solve are correct . In our case, this is implicitly
contained in (A2), instead.

A.2 Tree Size: Lemma 3.8

Lemma A.1 (Lemma 3.8 restated). Let s0 be the sparsity of the root node of the tree. Assume that each
node of the tree has at most γ children and that sit̄ ≳ csjt for c ≥ 0 and all j ∈ child(i). Then the tree has
at most

γN+1 = γs
log γ

log(ct/t̄)
0

nodes.

Proof. Let ℓi be the level of a node, i.e. the distance to the root node, and N the maximal level of all nodes.
Each level has at most γN−i nodes and thus the full tree has at most

N∑
i=0

γN−i = γN+1 − 1
γ − 1 ≤ γγN
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nodes.

It remains to estimate N . By induction on the assumption sit̄ ≥ csjt we have

sj ≤
(
t̄

ct

)ℓj
s0

and thus, since necessarily sj ≥ 1, we conclude that

s0 ≥
(
ct

t̄

)N
.

Plugging in γN =
(
ct
t̄

)N log γ
log ct/t̄ the number of nodes is bounded by

γγN = γ

(
ct

t̄

)N log γ
log ct/t̄

≤ γs
log γ

log ct/t̄
0 .

A.3 Learnable Trees: Theorem 3.5

Theorem A.2 (Theorem 3.5 restated). Let Ci, i ∈ I be learnable according to Definition 3.4. Then, there
exists an implementation of SparseFactor and constants c > 0 and C ≥ 0 independent of the probability
model, dimensions and sparsity, so that with probability at least

1 − Cγs
log γ

log(cst/t̄)
0 p−c

the output X̄i = TreeTrain(Ci) of Algorithm 2 is a scaled permutation Scale(X̄i) = Scale(XiP ) of Xi

for some permutation matrix P .

Proof. The result follows from inductively applying Theorem 2.4 on each node of the tree, starting at its
leafs. The assumptions of Theorem 2.4 are easily matched with the given ones, except for (A2), which we
verify separately for leaf and non-leaf nodes.

1. Leave Nodes: For the leaf nodes (A2) is assumed. This is required because the globally sparsest
solution of Ax = b may not be unique, in which case (A2) ensures that we pick an in class solution.

2. Non-Leave Nodes: Let z be a column of the training sample Z and x = Xiz. By (12), we have

x = Xiz = Xchild(i)Wchild(i)z =: Xchild(i)w

with
√

2t sparse w because Wchild(i) has t/t̄ sparse columns and z is
√

2t̄ sparse, with probability at
least 1 − 2p−c (see the proof of Theorem 2.4, Item 2, in Welper (2021)). Since AXchild(i) satisfies
the

√
2t-RIP, the correct solution x is recovered by the modified ℓ1-minimization (4) and hence by

SolveXi .

Finally, we add up the probabilities. By Theorem 2.4, the probability of failure on each node is at most
Cp−c. By Lemma 3.8, there are at most γs

log γ
log(ct/t̄)
0 nodes and thus the result follows from a union bound.

Proof of Corollary 3.6. By assumption, the student knows the matrices X̄i, which are scaled permutations
of Xi, i.e. Scale(X̄i) = XiSP for some scaling matrix S and permutation matrix P . Since sub-matrices of
NSP matrices are also NSP, by Assumption (T5) of learnable trees and removing contributions from siblings,
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for all tree nodes i ∈ I, the scaled product A[Scale(X̄i)] satisfies the null space property of order . Hence,
for every problem x = Xiz = (XiSP )(P−1S−1z) =: Scale(X̄i)z̄ with t-sparse z in class Ci, the convex
ℓ1-minimization problem

min
z̄∈Rp

∥z̄∥1 subject to AScale(X̄i)z̄ = b,

recovers z̄ and thus the solution x = Sclae(X̄i)z̄.

A.4 Split of Global ℓ0 Minimizers

This section contains two lemmas that state the splits of ℓ0 minimizers are again ℓ0 minimizers and that
they are linearly independent.
Lemma A.3 (Lemma 4.3 restated). Assume the columns of S ∈ Rn×q have non-overlapping support and
z ∈ Rq with non-zero entries. If the vector x = Sz is the solution of the ℓ0-minimization problem 14, then
the columns of AS are linearly independent.

Proof. Let xi be the columns of S and assume that the Axi, i ∈ [t] are linearly dependent. Then there exists
a non-zero y ∈ Rt such that

∑t
i=1 Axiyi = 0. Without loss of generality, let y1 ̸= 0 so that

Ax1 = −A
t∑
i=2

xi
yi
y1
.

We use this identity to eliminate x1:

b = Ax = A

t∑
i=1

xizi,= Ax1z1 +A

t∑
i=2

xizi,= A

t∑
i=2

xizi

(
1 − yi

y1
z0

)
=: Ax̄.

Since all xi have disjoint support and all zi are non-zero, we have ∥x̄∥0 < ∥x∥0, which contradicts the
assumption that x is a ℓ0 minimizer and thus all Axi, i ∈ [n] must be linearly independent.

Lemma A.4 (Lemma 4.5 restated). Assume the columns of S ∈ Rn×q have non-overlapping support and
z ∈ Rq with non-zero entries. If the vector x = Sz is the solution of the ℓ0-minimization problem 14, then
the columns S·k, k ∈ [q] are global ℓ0 optimizers of

S·k ∈ min
x∈Rn

∥x∥0 subject to Ax = AS·k.

Proof. Assume the statement is wrong. Then for some k ∈ [q] there is a yk with
∥yk∥0 ≤ ∥S·k∥0, Ayk = AS·k.

Define
x̄ := ykzk +

∑
l ̸=k

S·lzl.

Then, we have
Ax̄ = Aykzk +A

∑
l ̸=k

S·lzl. = A
∑
l

S·lzl = ASz = Ax

and since all S·l have disjoint support and zl ̸= 0

∥x̄∥0 = ∥yk∥0 +
∑
l ̸=k

∥S·l∥0 <
∑
l

∥S·l∥0 = ∥x∥0.

This contradicts the assumption that x is a global ℓ0 minimiser and hence all S·k must be ℓ0 minimizers as
well.
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A.5 Tree Nodes for Theorem 4.2

This section contains the construction of the matrices X in the tree nodes used in Theorem 4.2.

A.5.1 Construction of X

We follow the idea outlined in Section 4.3. For given matrix A and vector x, we construct a decomposition
matrix X ∈ Rn×p and z so that x = Xz for t-sparse z and AX satisfies the null space property. The
first condition ensures that x is contained in the class C<t and the second provides solvers Solve. This
construction will be used in subsequent sections to define nodes in the curriculum tree. We start with some
simple definitions

(M1) By Sm×n we denote all matrices in Rm×n whose columns have non-overlapping support.

(M2) 1 :=
[
1 · · · 1

]T with dimensions derived from context.

We split x into q non-overlapping components, which we combine into the columns of a matrix S ∈ Sn×q so
that x = S1. The matrix S has q columns, which is generally less than the p columns we desire for a rich
class given by X. A convenient way out is to choose some matrix Z ∈ Rp×q with orthonormal columns so
that x = SZTZ1 = SZT z with z := Z1. To ensure sparsity of z and for later tree construction, we confine
Z to Sp×q.

(M3) S ∈ Sn×q with non-zero columns.

(M4) Z ∈ Sp×q with ℓ2-normalized columns.

While the matrix SZT has the same dimensions as X, it is generally low rank and cannot satisfy the NSP.
Furthermore, we want a rich class matrix X with further possible random solutions. To this end, we add in
a random matrix R, but only on blocks of SZT that are non-zero to keep sparsity. We define R as follows

(M5) Note that upon permutation of rows and columns SZT is a block diagonal matrix with l ∈ [q] blocks
with row indices supp(S·l) and column indices supp(Z·l). If the blocks do not contain all rows and
columns, we may enlarge them to some disjoint sets Jl and Kl, respectively so that

supp(S·l) ⊂ Jl, supp(Z·l) ⊂ Kl, l ∈ [q].

Then each set Jl × Kl corresponds to one diagonal block that contains one component of x in the
columns of S. We also use the index free notation

J := {Jl : l ∈ [q]}, K := {Kl : l ∈ [q]}, J K := {Jl ×Kl : l ∈ [q]},

(M6) R ∈ Rn×p is block matrix

Rjk =
{

i.i.d random j, k ∈ [J,K] ∈ J K
0 else,

whose random entries satisfy

E [Rjk] = 0, E
[
R2
jk

]
= 1, ∥Rjk∥ψ2 ≤ Cψ

for some constant Cψ and are absolutely continuous with respect to the Lebesgue measure.

Finally, we need a scaling matrix that will be determined below.

(M7) D ∈ Rn×n is a diagonal scaling matrix to be determined below.
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Then, we define the following class matrix

(M8)
X := SZT +DR(I − ZZT ), (25)

which is random on the kernel of ZT and matches the previously constructed SZT on the orthogonal
complement.

The following lemma summarises several elementary properties of the matrices and vectors in (M1) - (M8)
that are used in the proofs below. In particular, they satisfy x = Xz for z = Z1.
Lemma A.5. For the construction (M1) - (M8) we have:

1. ZTZ = I.

2. ZZT is an orthogonal projector.

3. Let supp(Z·l) ⊂ K ∈ K for some column l. Then

(ZZT )KL =
{
ZKlZ

T
Kl if K = L

0 else.

4. (ZZT )KL = 0 for all K ̸= L ∈ K.

5. (ZZT )KK is an orthogonal projector for all K ∈ K.

6. For all u ∈ Rp we have ∑
K∈K

∥∥(ZZT )KKuK
∥∥2 =

∥∥ZTu∥∥2
.

7. For all u ∈ Rp we have ∑
K∈K

∥∥(I − ZZT )K·u
∥∥2 ≤ ∥u∥2

.

8. For z = Z1, we have ZZT z = z.

9. For x = S1 and z = Z1, we have SZT z = x.

10. For x = S1 and z = Z1, we have Xz = x.

Proof. 1. Since Z is normalized and Z ∈ Sp×q, all columns are orthonormal.

2. ZZT is symmetric and with Item 1 we have (ZZT )(ZZT ) = Z(ZTZ)ZT = ZZT .

3. We have (ZZT )KL =
∑q
l=1(Z·lZ

T
·l )KL =

∑q
l=1 ZKlZ

T
Ll, which reduces to the formula in the lemma

because K ̸= L are disjoint and suppZ·l ⊂ K.

4. Follows directly from Item 3.

5. Follows directly from Item 3 because the vectors ZKl is normalized.

6. For every K ∈ K, let l ∈ [q] be the corresponding index with supp(Z·l) ⊂ K. Then, we have

∑
K∈K

∥∥(ZZT )KKuK
∥∥2 =

q∑
K,l=1

∥∥ZKlZTKluK∥∥2

=
q∑

K,l=1
(ZTKluK)2 =

q∑
l=1

(ZT·l u)2 =
∥∥ZTu∥∥2

,

where in the first equality we have used Item 3, in the second that all ZKl are normalized and in
the third that supp(ZKl) ⊂ K.
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7. From Item 3, we have

(I − ZZT )K·u = uK −
∑
L∈K

(ZZT )KLuL = uK − (ZZT )KKuK .

Since by Item 5 the matrix (I − ZZT )KK is a projector, it follows that

∑
K∈K

∥∥(I − ZZT )K·u
∥∥2 =

∑
K∈K

∥∥(I − ZZT )KKuK
∥∥2

≤
∑
K∈K

∥∥(I − ZZT )KK
∥∥2 ∥uK∥2 ≤ ∥u∥2

.

8. With Item 1 we have ZZT z = ZZTZ1 = Z1 = z.

9. With Item 1 we have SZT z = SZTZ1 = S1 = x.

10. Follows directly from the previous items.

A.5.2 Expectation and Concentration

For the proof of RIP and null space properties, we need expectation and concentration results for ∥AXu∥
for an arbitrary u.
Lemma A.6. Let u ∈ Rp, A ∈ Rm×n and X be the matrix defined in (25). Then

E
[
∥AXu∥2] =

∥∥ASZTu∥∥2 +
∑

[J,K]∈J K

∥AD·J∥2
F

[
∥uK∥2 −

∥∥(ZZT )KKuK
∥∥2]

.

Proof. Since R is zero outside of the blocks RJK for [J,K] ∈ J K, we have

Xu = [SZT +DR(I − ZZT )]u = SZTu+
∑

[J,K]∈J K

D·JRJK(I − ZZT )K·u

and thus

E
[
∥AXu∥2] = E


∥∥∥∥∥∥ASZTu+

∑
[J,K]∈J K

AD·JRJK(I − ZZT )K·u

∥∥∥∥∥∥
2


=
∥∥ASZTu∥∥2 +

∑
[J,K]∈J K

∥∥AD·JRJK(I − ZZT )K·u
∥∥2

=
∥∥ASZTu∥∥2 +

∑
[J,K]∈J K

∥AD·J∥2
F

∥∥(I − ZZT )K·u
∥∥2
,

where in the third line we have used Lemma B.1 and in the second that the cross terms〈
ASZTu,

∑
[J,K]∈J K

AD·JE [RJK ] (I − ZZT )K·u

〉
= 0

and 〈
AD·J̄E [RJ̄K̄ ] (I − ZZT )K̄·u, AD·JE [RJK ] (I − ZZT )K·u

〉
= 0
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vanish because E [RJK ] = 0 and in the last equation we have split the expectation because RJK and RJ̄K̄
are independent for all cross terms (J̄ , K̄) ̸= (J,K). We simplify the last term

∥∥(I − ZZT )K·u
∥∥2 =

∥∥∥∥∥uK −
∑
L∈K

(ZZT )KLuL

∥∥∥∥∥
2

=
∥∥uK − (ZZT )KKuK

∥∥2

= ∥uK∥2 −
∥∥(ZZT )KKuK

∥∥2
,

where the second and third lines follow from Items 4 and 5 in Lemma A.5, respectively. Hence, we obtain

E
[
∥AXu∥2] =

∥∥ASZTu∥∥2 +
∑

[K,J]∈J K

∥AD·K∥2
F

[
∥uK∥2 −

∥∥(ZZT )KKuK
∥∥2]

.

If AS has orthonormal columns, we can simplify the expectation. Since this is generally not true, we rename
A → M , which will be a preconditioned variant of A later.
Lemma A.7. Let u ∈ Rp and M ∈ Rm×n. With X, S and D defined in (25), assume that MS has
orthonormal columns and the diagonal scaling is chosen as Dj = ∥M·J∥−1

F for all j in block J ∈ J . Then

E
[
∥MXu∥2

]
= ∥u∥2

.

Proof. The result follows from Lemma A.6 after simplifying several terms. First, since MS has orthonormal
columns, we have (MS)T (MS) = I and thus∥∥MSZTu

∥∥2 = uTZ(MS)T (MS)ZTu = uTZZTu =
∥∥ZTu∥∥2

.

Second, for arbitrary j ∈ J , by definition of the scaling D, we have

∥MD·J∥2
F = ∥M·J∥2

F |Dj |2 = ∥M·J∥2
F ∥M·J∥−2

F = 1.

Finally, from Lemma A.5 Item 6, we have∑
K∈K

∥∥(ZZT )KKuK
∥∥2 =

∥∥ZTu∥∥2
.

Plugging into Lemma A.6, we obtain

E
[
∥MXu∥2

]
=
∥∥MSZTu

∥∥2 +
∑

[J,K]∈J K

∥MD·J∥2
F

[
∥uK∥2 −

∥∥(ZZT )KKuK
∥∥2]

.

=
∥∥ZTu∥∥2 +

 ∑
[J,K]∈J K

∥uK∥2

−
∥∥ZTu∥∥2

= ∥u∥2
.

Next, we prove concentration inequalities for the random matrix X.
Lemma A.8. Let u ∈ Rp and M ∈ Rm×n. With X, S and D defined in (25), assume that MS has
orthonormal columns and the diagonal scaling is chosen as Dj = ∥M·J∥−1

F for all j in block J ∈ J . Then∥∥∥∥MXu∥2 − ∥u∥
∥∥∥
ψ2

≤ CC2
ψ max
J∈J

∥M·J∥
∥M·J∥F

∥u∥ .
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Proof. The result follows from Lemma B.4 after we have vectorized R. To this end, let vec(·) be the
vectorization, which identifies a matrix Ra×b with a vector in (Ra) ⊗ (Rb)′ for any dimensions a, b. Then,
since for all matrices ABu = (A⊗ uT ) vec(B), we have

MD·JRJK(I − (ZZT )K·u =
[
MD·J ⊗ uT (I − (ZZT )TK·

]
vec (RJK)

so that

MXu = [MSZT +MDR(I − ZZT )]u

= MSZTu+
∑

[J,K]∈J K

MD·JRJK(I − ZZT )K·u

= MSZTu+
∑

[J,K]∈J K

[
MD·J ⊗ uT (I − ZZT )TK·

]
vec (RJK)

=: B + AR,

with the block matrix and vectors

A :=
[
MD·J ⊗ uT (I − ZZT )TK·

]
[J,K]∈J K

R := [vec (RJK)][J,K]∈J K

B := MSZTu.

Using Lemma B.2 in the fist equality and Lemma A.7 in the last, we have

∥A∥2
F + ∥B∥2 = E

[
∥AR + B∥2

]
= E

[
∥MXu∥2

]
= ∥u∥2.

Furthermore, we have

∥A∥ ≤

 ∑
[J,K]∈J K

∥∥MD·J ⊗ uT (I − ZZT )TK·
∥∥2

1/2

=

 ∑
[J,K]∈J K

∥MD·J∥2 ∥∥(I − ZZT )K·u
∥∥2

1/2

= max
J∈J

∥MD·J∥

(∑
K∈K

∥∥(I − ZZT )K·u
∥∥2
)1/2

≤ max
J∈J

∥MD·J∥ ∥u∥ ,

where in the last inequality we have used Lemma A.5, Item 7. Thus, with Lemma B.4, we have

∥∥MXu∥ − ∥u∥∥ψ2
=
∥∥∥∥∥AR + B∥ −

(
∥A∥2

F + ∥B∥2
)1/2

∥∥∥∥
ψ2

≤ CC2
ψ ∥A∥ ≤ CC2

ψ max
J∈J

∥MD·J∥ ∥u∥ .

We can further estimate the right hand side with the definition of diagonal scaling D

∥MD·J∥ = ∥M·JDJJ∥ = ∥M·J∥
∥M·J∥F

,

which completes the proof.
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A.5.3 RIP of MX

We do not show the RIP for AX directly, but for a preconditioned variant. Since we determine the pre-
conditioner later, we first state results for a generic matrix MX. With the expectation and concentration
inequalities from the previous section, the proof of the RIP is standard, see e.g. Baraniuk et al. (2008);
Foucart & Rauhut (2013); Kasiviswanathan & Rudelson (2019). We first show a technical lemma.
Lemma A.9. Let A ∈ Rm×n and assume that there is a ϵ

4 cover N ⊂ Sn−1 of the unit sphere Sn−1 with

|∥Axi∥ − 1| ≤ ϵ

2 for all xi ∈ N .

Then
(1 − ϵ) ∥x∥ ≤ ∥Ax∥ ≤ (1 + ϵ) ∥x∥ for all x ∈ Rn.

Proof. Let x ∈ Sn−1 be the maximizer of the norm so that ∥Ax∥ = ∥A∥. Then, there is a element xi ∈ N
in the cover with ∥x− xi∥ ≤ ϵ

4 and we obtain the upper bound

∥A∥ = ∥Ax∥ ≤ ∥Axi∥ + ∥A(x− xi)∥ ≤ ∥Axi∥ + ∥A∥ ϵ4
⇒
(

1 − ϵ

4

)
∥A∥ ≤ ∥Axi∥

⇒ ∥A∥ ≤ 1 + ϵ/2
1 − ϵ/4 ≤ 1 + ϵ.

With the upper bound and the given assumptions, for arbitrary x ∈ Sn−1, we estimate the lower bound by

∥Ax∥ ≥ ∥Axi∥ − ∥A(x− xi)∥ ≥ ∥Axi∥ − (1 + ϵ) ∥x− xi∥

≥
(

1 − ϵ

2

)
− (1 + ϵ) ϵ4 = 1 − ϵ

2 − ϵ

4 − ϵ2

4 ≥ 1 − ϵ.

The bounds extend from the sphere to all x ∈ Rn by scaling.

For the following RIP result, we add in an isometry W ∈ Rp×p′ , with ∥W ·∥ = ∥·∥, which allows us to
construct tree nodes Xi from its children by (12) below.
Lemma A.10. Let W ∈ Rp×p′ be an isometry and for M ∈ Rm×n, with X, S and D defined in (25), assume
that MS has orthonormal columns and the diagonal scaling is chosen as Dj = ∥M·J∥−1

F for all j in block
J ∈ J . If minJ∈J

∥M·J∥2
F

∥M·J∥2 ≥ 2tC4
ψ

cϵ2 log 12ep
tϵ , then with probability at least 1 − 2 exp

(
− c

2
ϵ2

C4
ψ

minJ∈J
∥M·J∥2

F

∥M·J∥2

)
the matrix MXW satisfies the RIP

(1 − ϵ) ∥z∥ ≤ ∥MXWz∥ ≤ (1 + ϵ) ∥z∥ for all z with ∥z∥0 ≤ t.

Proof. Fix a support T ⊂ [p′] with |T | = t and let ΣT ⊂ Rp′ be the subspace of all vectors supported on T .
By standard volumetric estimates Baraniuk et al. (2008); Vershynin (2018) there is a ϵ

4 cover N of the unit
sphere in ΣT of cardinality

|N | ≤
(

12
ϵ

)t
.

Since ∥Wzi∥ = ∥zi∥, zi ∈ N , by Lemma A.8 and a union bound, we obtain

Pr [∃zi ∈ N : |∥MXWzi∥ − 1| ≥ ϵ] ≤ 2
(

12
ϵ

)t
exp

(
−c ϵ

2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2

)
.

Let us assume that the event fails and thus |∥MXWzi∥ − 1| ≤ ϵ for all zi ∈ N . Then, by Lemma A.9, we
have

(1 − ϵ) ∥z∥ ≤ ∥MXWz∥ ≤ (1 + ϵ) ∥z∥ for all z ∈ ΣT .
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There are
(
p
t

)
≤
(
ep
t

)t supports T of size t and thus, by a union bound we obtain

(1 − ϵ) ∥z∥ ≤ ∥MXWz∥ ≤ (1 + ϵ) ∥z∥ for all z with ∥z∥0 ≤ t

with probability of failure bounded by

2
(ep
t

)t(12
ϵ

)t
exp

(
−c ϵ

2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2

)

= 2 exp
(

−c ϵ
2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2 + t log 12ep
tϵ

)

≤ 2 exp
(

− c

2
ϵ2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2

)

if
t log 12ep

tϵ
≤ c

2
ϵ2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2 ⇔ min
J∈J

∥M·J∥2
F

∥M·J∥2 ≥
2tC4

ψ

cϵ2
log 12ep

tϵ
.

A.5.4 Null Space Property of AX

The matrix MS in the RIP results must have orthonormal columns, which is not generally true for M = A.
However, this is true with a suitable preconditioner that we construct next. The null space property is
invariant under preconditioning, which allows us to eliminate it, later.
Lemma A.11. Let M ∈ Rm×q with m ≥ q have full column rank. Then there is a matrix T ∈ Rm×m with
condition number κ(T ) = κ(M) such that TM has orthonormal columns.

Proof. Let M = UΣV T be the singular value decomposition of M . Define

T := DUT , D−1 := diag[σ1, . . . , σq, σ, . . . , σ]

for q ≤ m singular values σi and remaining m− q values σ in the interval [σ1, . . . , σq]. Then, we have

MTTTTM = (V ΣTUT )(UDT )(DUT )(UΣV T ) = V ΣTDTDΣV T = V V T = I,

where we have used that ΣTDTDΣ = I. By construction, T has singular values σ1, . . . , σq and one extra
value σ bounded by the former so that

κ(T ) = σ1

σq
= κ(M).

Lemma A.12. Let A ∈ Rm×n and T ∈ Rm×m be invertible. Then

∥A∥F
∥A∥

≤ κ(T )∥TA∥F
∥TA∥

.

Proof. We first show that
∥TA∥F ≥

∥∥T−1∥∥−1 ∥A∥F .

Indeed ∥x∥ ≤
∥∥T−1

∥∥ ∥Tx∥ implies ∥Tx∥ ≥
∥∥T−1

∥∥−1 ∥x∥ and thus applied to the columns aj of A, we have

∥TA∥2
F =

n∑
j=1

∥Taj∥2 ≥
n∑
j=1

∥∥T−1∥∥−2 ∥aj∥2 =
∥∥T−1∥∥−2 ∥A∥2

F .
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With this estimate, we obtain

κ(T )∥TA∥F
∥TA∥

≥ ∥T∥
∥∥T−1∥∥ ∥∥T−1

∥∥−1 ∥A∥F
∥T∥ ∥A∥

= ∥A∥F
∥A∥

.

Corollary A.13. Let W ∈ Rp×p′ be an isometry and for X, S and D defined in (25), assume that AS
has full column rank and minJ∈J

∥A·J∥2
F

∥A∥2
·J

≥ 2tC4
ψ

cϵ2 κ(AS) log 12ep
tϵ . Then there is an invertible matrix T ∈

Rm×m so that with the diagonal scaling Dj = ∥TA·J∥−1
F for all j in block J ∈ J with probability at least

1 − 2 exp
(

− c
2
ϵ2

C4
ψ

1
κ(AS) minJ∈J

∥A·J∥2
F

∥A·J∥2

)
the matrix TAXW satisfies the RIP

(1 − ϵ) ∥z∥ ≤ ∥TAXWz∥ ≤ (1 + ϵ) ∥z∥ for all z with ∥z∥0 ≤ t.

Proof. Since the matrix AS has full column rank by Lemmas A.11 and A.12, there is an invertible matrix T
such that

κ(T ) = κ(AS), TAS has orthogonal columns
∥A·J∥F
∥A·J∥

≤ κ(T )∥TA·J∥F
∥TA·J∥

for all J ∈ J .

Thus, the corollary follows from Lemma A.10 with M = TA.

The last corollary allows us to recover x = S1 by ℓ1-minimization

min
x∈Rn

∥x∥1 subject to TAx = b,

preconditioned by some matrix T . This problem is not yet solvable by the student, who generally has no
access to the matrix T , which is only used by the teacher for the construction of X. However, the matrix T is
unnecessary for ℓ1 recovery because the RIP implies the null space property, which is sufficient for recovery
and independent of left preconditioning.
Corollary A.14. Let W ∈ Rp×p′ be an isometry and for X, S and D defined in (25), assume that AS
has full column rank and minJ∈J

∥A·J∥2
F

∥A·J∥2 ≥ 2tC4
ψ

cϵ2 κ(AS) log 12ep
tϵ . Then there is an invertible matrix T ∈

Rm×m so that with the diagonal scaling Dj = ∥TA·J∥−1
F for all j in block J ∈ J with probability at least

1 − 2 exp
(

− c
2
ϵ2

C4
ψ

1
κ(AS) minJ∈J

∥A·J∥2
F

∥A·J∥2

)
the matrix AXW satisfies the null space property of order t

∥zT ∥1 < ∥zT̄ ∥1 for all z ∈ ker(AXW ) and T ⊂ [p], |T | ≤ t.

with complement T̄ of T .

Proof. Setting ϵ = 1
3 , changing t → 2t and adjusting the constants accordingly, with the given conditions

and probabilities, the matrix TAX satisfies the
(
2t, 1

3
)
-RIP. Thus, by Foucart & Rauhut (2013), proof of

Theorem 6.9, TAX satisfies

∥zT ∥1 <
1
2 ∥z∥1 for all z ∈ ker(TAX) and T ⊂ [p], |T | ≤ t.

This directly implies the null space property of order t

∥zT ∥1 < ∥zT̄ ∥1 for all z ∈ ker(TAX) and T ⊂ [p], |T | ≤ t.

Since T is invertible, ker(TAX) = ker(AX), so that also AX satisfies the null space property.
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Remark A.15. For Corollaries A.13 and A.14, we are particularly interested in applications where x = S1
is the global ℓ0-minimizer of Ax = b in 14. Then the full column rank condition of AS is automatically
satisfied by Lemma A.3.

A.6 Model Tree: Theorem 4.2

Recall that κ(·) denotes the condition number.
Theorem A.16 (Theorem 4.2 restated). Let A ∈ Rm×n and split x ∈ Rn into q = 2L, L ≥ 1 components
S given by (15). If

1. AS has full column rank.

2. On each tree node, we have implementations of Scale.

3. SolveL satisfies Assumption (A2) on the leaf nodes.

4.

t ≳ log p2 + log3 p, 1 ≲ t ≲ √
p (26)

5.
min
J∈J

∥A·J∥2
F

∥A·J∥2 ≳ tκ(AS)L+ tκ(AS) log cqp
t

(27)

for some generic constant c, with probability at least

1 − 2 exp
(

−c 1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)
there is a learnable binary tree of problem classes Ci, i ∈ I of depth L, given by matrices Xi and sparsity t
so that

1. The root class C0 contains x.

2. The parents are constructed from the children Xi = Xchild(i)Wchild(i), where Wchild(i) has t/t̄ = 2
sparse columns.

3. The columns of the leaf nodes’ Xi are |J | sparse.

4. Each class’ matrix Xi contains p columns, consisting of columns of S, i.e. pieces of x, in the leafs
and sums thereof in the interior nodes. All other entries are random (dependent between classes) or
zero.

Proof. We build a matrix X according to (M1) - (M8) and use the extra matrix W in Corollary A.14 to
build a tree out of it. In the following, we denote by p̄ the number of columns in X and by p the number
of columns in the class matrices Xi that we are going to construct. By assumption, the support of x is
partitioned into patches {J1, . . . , Jq} = J for which we define a corresponding partition K = {K1, . . . ,Kq}
of [p̄] with all Ki of equal size and Z by

Zkl :=
{

1 k = kl
0 else

for some choices kl ∈ Kl. The index sets J and K are naturally combined by their indices to obtain the
pairs J K. With these choices, the matrix X is given by (M1) - (M8).

X is non-zero only on blocks [J,K] ∈ J K, which allows us to build a tree, whose nodes we index by i in a
suitable index set I with leaf nodes i ∈ [q]. Each node i is associated with a subset Ki ⊂ [q] that is a union
of two children Ki =

⋃
j∈child(i) Kj , starting with leaf nodes Ki ∈ K, i ∈ [q], e.g.
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{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

We now define matrices Xi on each node, starting with the leafs

Xi := X·Ki

for leaf i and then inductively by joining the two child matrices

Xi :=
[
Xj1 Xj2

]
W̄i, W̄i = 1√

2

[
IKj1 ,Kj1
IKj2 ,Kj2

]
for child(i) = {j1, j2} and identity matrix I·,· on the given index sets. It is easy to join all W̄i matrices
leading up to node i into a single isometry Wi so that

Xi =
[
X1 · · · Xq

]
Wi.

which implies

Xchild(i) =
[
Xj1 Xj2

]
=
[
X1 · · · Xq

]
Wchild(i), Wchild(i) =

[
Wj1 Wj2

]
,

where again Wchild(i) is an isometry because the columns of Wj1 and Wj2 have non-overlapping support. By
Lemma 3.8 the tree has at most 2L+1 nodes and thus, if

min
J∈J

∥A·J∥2
F

∥A·J∥2 ≥
2tC4

ψ

cϵ2
κ(AS) log 12ep̄

tϵ
(28)

by Corollary A.14 and union bound over all tree nodes, with probability at least

1 − 42L exp
(

− c

2
ϵ2

C4
ψ

1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)

all nodes Xchild(i) satisfy the t-NSP. For this probability to be close to one, log 2L must be smaller than say
half the exponent

L ≳ log 2L ≤ − c

4
ϵ2

C4
ψ

1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2 ⇔ min
J∈J

∥A·J∥2
F

∥A·J∥2 ≳
tC4

ψ

ϵ2
κ(AS) log s.

Combining this with the NSP condition (28), if

min
J∈J

∥A·J∥2
F

∥A·J∥2 ≳
tC4

ψ

ϵ2
κ(AS)L+

tC4
ψ

ϵ2
κ(AS) log 12ep̄

tϵ
,

with probability at least

1 − 2 exp
(

− c

2
ϵ2

C4
ψ

1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)
all nodes Xchild(i) satisfy the t-NSP. This yields the statements in the proposition if we choose ϵ ∼ 1 and
Cψ ∼ 1, without loss of generality.
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Let us verify the remaining properties of learnable trees. By construction, we have t/t̄ = 2 and γ = 2 and
p̄ = qp. Since all random samples in X are absolutely continuous with respect to the Lebesgue measure, the
probability of rank deficit Xi is zero. The remaining assumptions are given, with the exception of the first
two inequalities in (A1). Renaming the number of training samples q, whose name is already used otherwise
here, to r, they state that t ≥ c log r and r > cp2 log2 p and thus imply that t ≥ log p2 + log3 p, which is
sufficient since the number of training samples r is at the disposal of the teacher.

B Technical Supplements

Lemma B.1. Let R ∈ Rn×p be a i.i.d. random matrix with mean zero entries of variance one. Then for
any A ∈ Rm×n and u ∈ Rp we have

E
[
∥ARu∥2] = ∥A∥2

F ∥u∥2.

Proof. Since E [RikRjl] = δijδkl, we have

E
[
∥ARu∥2] = E [⟨ARu,ARu⟩]

= E

∑
ijkl

ukRik(ATA)ijRjlul


=
∑
ijkl

(ATA)ijukulE [RikRjl]

=
∑
ik

(ATA)iiukuk

= ∥A∥2
F ∥u∥2.

Lemma B.2. Let A ∈ Rm×n be a matrix, b ∈ Rm be a vector and x ∈ Rn a i.i.d. random vector with
E [xj ] = 0, E

[
x2
j

]
= 1. Then

E
[
∥Ax+ b∥2

]
= ∥A∥2

F + ∥b∥2
.

Proof. Since b is not random, we have

E
[
∥Ax+ b∥2

]
= E

[
∥Ax∥2

]
+ ∥b∥2 = ∥A∥2

F + ∥b∥2
,

where in the last equality we have used Lemma B.1 with Rn×1 matrix R = x and u = [1] ∈ R1.

The following result is a slight variation of Vershynin (2018), Theorem 6.3.2.
Lemma B.3. Let A ∈ Rm×n be a matrix, b ∈ Rm be a vector and x ∈ Rn a i.i.d. random vector with
E [xj ] = 0, E

[
x2
j

]
= 1 and ∥x∥ψ2

≤ Cψ. Then

Pr
[∣∣∣∥Ax+ b∥2 − ∥A∥2

F − ∥b∥2
∣∣∣ ≥ ϵ

(
∥A∥2

F + ∥b∥2
)]

≤ 8 exp
[

−cmin(ϵ2, ϵ)∥A∥2
F + ∥b∥2

C4
ψ∥A∥2

]
.
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Proof. We decompose

∥Ax+ b∥2 − ∥A∥2
F − ∥b∥2 = ∥Ax∥2 + 2 ⟨Ax, b⟩ + ∥b∥2 − ∥A∥2

F − ∥b∥2

=
(

∥Ax∥2 − ∥A∥2
F

)
+ 2 ⟨Ax, b⟩

so that

Pr
[
±
(

∥Ax+ b∥2 − ∥A∥2
F − ∥b∥2

)
≥ ϵ

(
∥A∥2

F + ∥b∥2
)]

≤ Pr
[
±
(

∥Ax∥2 − ∥A∥2
F

)
± 2 ⟨Ax, b⟩ ≥ ϵ

(
∥A∥2

F + ∥b∥2
)]

≤ Pr
[
±
(

∥Ax∥2 − ∥A∥2
F

)
≥ ϵ ∥A∥2

F

]
+ Pr

[
±2 ⟨Ax, b⟩ ≥ ϵ ∥b∥2

]
.

It remains to estimate the two probabilities on the right hand side. Since E
[
x2
j

]
= 1, we have Cψ ≳ 1 and

thus from the proof of Theorem 6.3.2 in Vershynin (2018), we have

Pr
[
±
(
∥Ax∥2 − ∥A∥2

F

)
≥ ϵ∥A∥2

F

]
≤ 2 exp

[
−cmin(ϵ2, ϵ) ∥A∥2

F

C4
ψ∥A∥2

]

and from Hoeffding’s inequality, we have

Pr
[
±2 ⟨Ax, b⟩ ≥ ϵ∥b∥2] ≤ 2 exp

[
−cϵ2 ∥b∥4

C2
ψ∥AT b∥2

]
≤ 2 exp

[
−cϵ2 ∥b∥2

C4
ψ∥AT ∥2

]
.

The following result is a slight variation of Vershynin (2018), Theorem 6.3.2.
Lemma B.4. Let A ∈ Rm×n be a matrix, b ∈ Rm be a vector and x ∈ Rn a i.i.d. random vector with
E [xj ] = 0, E

[
x2
j

]
= 1 and ∥x∥ψ2

≤ Cψ. Then∥∥∥∥∥Ax+ b∥ −
(

∥A∥2
F + ∥b∥2

)1/2
∥∥∥∥
ψ2

≤ CC2
ψ ∥A∥

for some constant C ≥ 0.

Proof. We use a standard argument, e.g. from the proof of Theorem 6.3.2 in Vershynin (2018). An elementary
computation shows that for δ2 = min(ϵ2, ϵ) and any a, b ∈ R, we have

|a− b| ≥ δb, ⇒ |a2 − b2| ≥ ϵb2.

With a = ∥Ax+ b∥ and b =
(

∥A∥2
F + ∥b∥2

)1/2
and Lemma B.3, this implies

Pr
[∣∣∣∣∥Ax+ b∥ −

(
∥A∥2

F − ∥b∥2
)1/2

∣∣∣∣ ≥ δ
(

∥A∥2
F + ∥b∥2

)1/2
]

≤ 8 exp
[

−cδ2 ∥A∥2
F + ∥b∥2

C4
ψ∥A∥2

]
.

This shows Subgaussian concentration and thus the ψ2-norm of the lemma.
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C Implementation Details

Details for Curriculum I in Section 5.3.1

Proof of Lemma 5.3. The curriculum satisfies (M1) – (M8) with the index sets[
1, . . . , |J |︸ ︷︷ ︸

J1

, . . . , n− |J |, . . . , n︸ ︷︷ ︸
Jq

]
,

[
1, . . . , |K|︸ ︷︷ ︸

K1

, . . . , p− |K|, . . . , p︸ ︷︷ ︸
Kq

]
and Z =

[
e1 e|K|+1 e2|K|+1 . . .

]
with unit basis vectors ek for the first index in each block Ki. Hence,

it is a special case of the construction in the proof of Theorem 4.2 and all conclusions of the theorem are
applicable.

Details for the implementation in Section 5.4:

1. The teacher provides a left preconditioned matrix TA in every tree node. This allows RIP instead of
weaker NSP conditions, as in Corollary A.13 versus Corollary A.14. For Curriculum II T is uniform
for all tree nodes, for Curriculum III, it is computed individually for each node.

2. Unlike (21) in the split X := SZT +DR(I −ZZT ) between deterministic and random part, we use
no balancing D in the experiments.

3. As a result, all tree node Xi have entries in {−1, 0, 1} so that we implement Scale by snapping to
these discrete values.

D Glossary

Algorithms

Solve(A, b) ℓ0 minimizer for easy problems, Section 2.2.
SparseFactor(Y ) Sparse matrix factorization Y = XZ, Section 2.2.
Scale Rescaling after matrix factorization, Section 2.2, Definition 3.4.
Train(A, b1, . . . , bq) Find class X from samples, Algorithm 1.
SolveL ℓ0 minimizer for easy problems in leaf nodes, Definition 3.4.
TreeTrain(Ci) Find Xi for all tree nodes i from samples, Algorithm 2.

Dimensions

A ∈ Rm×n

X ∈ Rn×p

Z ∈ Rp×q

Sparsities

s Sparsity of the columns of X.
t (Expected) Sparsity of the columns of Z for problems class C.
t̄ (Expected) Sparsity of the columns of Z for easy problems in class Ceasy ⊂ C.

Tree

I Indices of tree nodes, Section 3.1.
child(i) Children of node i, Section 3.1.
Wchild(i) (13).
Xchild(i) (13).
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