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Abstract

The substantial data and resource consumption of training deep neu-
ral networks has rendered the large-scale training accessible only to
organizations with necessary infrastructure and massive datasets.
Once these models are developed, they are typically adapted to
meet the diverse requirements of model owners and users through
techniques like early exiting and fine-tuning. However, maintaining
multiple specialized versions of the established model is inefficient
and unsustainable in the long run. In response to this challenge,
we propose Aim, a novel model modulation paradigm that enables
a single model to exhibit diverse behaviors meeting the specific
needs of stakeholders. Aim enables two key modulation modes:
utility and focus modulation. The former provides model owners
with dynamic control over output quality to deliver varying utility
levels from the same model, the latter offers users precise control
to shift model’s focused features of inputs.

Aim introduces a logits redistribution strategy for modulating
model behaviors. It operates in a training data-agnostic and retraining-
free manner by directly manipulating off-the-shelf pre-trained net-
works, facilitating Aim’s seamless integration across diverse neural
network architectures. To mathematically guarantee that our modu-
lation achieves a precise regulation of model behavior, we establish
a formal foundation grounded in the statistical properties of logits
ordering via joint probability distributions. Our evaluation spans
across diverse applications, including image classification, semantic
segmentation, and text generation, utilizing prevalent architectures
such as ResNet, SegFormer, and Llama. Experimental results con-
firm the efficacy of our approach, demonstrating the practicality and
versatility of Aim in realizing AI model modulation. Aim provides
both theoretical and system-level tools to empower a single model
to meet diverse needs of both model owners and users, paving the
way for scalable, accessible, and efficient AI deployment.

1 Introduction

Deep neural networks (DNNs) have revolutionized various indus-
tries such as healthcare [17], finance [5], autonomous vehicles [30],
and natural language processing [21], enabling significant break-
throughs in tasks like image recognition [20], semantic segmen-
tation [26], and language translation [38]. Despite their success,
the development of high-quality models demands extensive com-
putational resources, massive datasets, and substantial financial
investment. This has restricted large-scale training to organizations
with necessary infrastructure, as seen with GPT-3 [3], which com-
prises 175 billion parameters and takes 355 GPU-years and 4.6𝑀
for a single training run [6, 34].

While the AI community continues to push the boundary of
model performance in complex tasks, a critical challenge in the
new era of AI revolves around managing the intellectual property
of established models and adapting them to meet diverse needs
of downstream tasks. Specifically, for model owners, the ability
to maintain controllability is paramount, which enables them to
deploy and customize models for different market segments and

operational environments with varying business goals. For model
users, they seek adaptability, desiring models that can adjust their
behavior to suit individual preferences and contextual needs. These
demands are illustrated by two typical scenarios presented below:

Scenario #1 (model owners). An online service provider offers
different service tiers. Free-tier users receive lower-quality outputs,
such as reduced resolution or basic code suggestions. Premium
users, however, get enhanced results with higher quality and ad-
ditional features. Real-world examples include cutout.pro [1] and
together.ai [2], which provide models with free low utility options
or varying capabilities at different price points.

Scenario #2 (users). Individual users interacting with AI sys-
tems, such as driving assistance platforms, often seek adaptability
in the model’s behavior to suit their preferences [11, 13, 29]. For
instance, one driver may prioritize highlighting vehicles on the
road, while another may emphasize detecting pedestrians. Such
personalization has been offered in advanced driver assistance
systems (ADAS) [11] to match individual driving styles like as-
sertive or defensive driving, which improves user comfort and
acceptance [13, 29].

Traditional techniques such as early exit [23, 35, 41, 44] and
fine-tuning [16, 28] can be employed to control model utility or
adapt established models to specific tasks or constraints. Early exit
introduces intermediate exit points at different layers within a neu-
ral network, allowing early termination of inference for faster but
potentially less accurate predictions. However, implementing early
exit requires architectural modifications, which may not always be
feasible due to limited model accessibility and can complicate inte-
gration and maintenance. Fine-tuning adjusts a pre-trained model
to a new task by retraining it on a smaller, task-specific dataset. Nev-
ertheless, fine-tuning requires access to training data and involves
retraining or additional optimization steps [4, 16, 25, 28]. Even
though both techniques can produce multiple tailored versions,
managing these versions across a large user base is impractical, as
the cost of maintaining consistency and applying updates across
versions is prohibitively high. These limitations underscore the
need for a flexible, lightweight approach that allows modulation
of the model’s usage without retraining or altering the model’s
architecture.
Our work. In this work, we propose a novel paradigm of model

modulation that enables a single model to exhibit diverse behaviors,
so as to satisfy the requirements of different utility levels or differ-
ent feature focuses with a single model. This paradigm holds broad
applicability in modern AI deployment, where controlling model
utility levels or adjusting model prioritization is critical, such as in
machine learning as a service (MLaaS) [31] and on-device deploy-
ment [27]. Ideally, the model modulation gets rid of the necessity
of altering the underlying model parameters or architecture, and
introduces controlled adjustments to the model’s responses. The
core research question of model modulation lies in how to dynami-

cally adapt the performance and behavior of a single model without

the burden of retraining or maintaining multiple separate versions.
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We introduce Aim (AI Modulator) as an approach to model mod-
ulation. It supports two types of modulation modes: utility and
focus modulation. Utility modulation makes the model output de-
viate from the original output, which is useful in scenarios where
restricted responses are desired (Scenario #1). Focus modulation
aims to make the model more responsive to specific areas of in-
terest, which is helpful for subsystems of safety-critical systems
to anticipate specific potential hazards (Scenario #2). The chal-
lenges to address by Aim are at least twofold. For model owners
seeking controllability, it is important to ensure that utility mod-
ulation preserves the model’s core knowledge so that, even when
output quality is reduced, the outputs remain meaningful (e.g., large
language models should always deliver coherent outputs across
utility levels) and do not compromise the model’s integrity (Chal-
lenge #1). For users desiring adaptability, balancing the trade-off
in focus modulation between emphasizing specific inputs (such
as prioritizing certain features in ADAS) and maintaining overall
performance is essential, as too much intervention would affect the
model’s effectiveness in other areas (Challenge #2).

To maintain the model’s core knowledge (Challenge #1), Aim
avoids altering feature-learning structures within the model. In-
stead, it directly operates on and strategically adjusts the model’s
logits to transform the original network (denoted as 𝑓 ∗) into a mod-
ulated network (denoted as 𝑓 𝜖 ) that exhibits target behaviors. In
particular, it incorporates a control function 𝜙 that redistributes
the model’s logits by adjusting their values according to specific
probability distributions. This allows for fine-grained control while
maintaining the model’s integrity. Besides enabling model own-
ers to offer varying utility tiers, this granular approach strikes a
balance between responsiveness to specific features and overall per-
formance. This flexibility allows users to tailor the model’s behavior
to their needs, enhancing responsiveness without compromising
the model’s overall effectiveness (Challenge #2). Since logits serve
as a common intermediate representation across architectures, Aim
operates as a training data-agnostic and retraining-free process
by directly modifying off-the-shelf trained networks, making it
well-suited for seamless integration across diverse neural network
architectures.

We provide a robust formal foundation as the theoretical guaran-
tee of Aim’s effectiveness. Its core is to establish a direct relationship
between the model’s behavior pre- and post- logits redistribution.
By analyzing the statistical properties of logits through joint proba-
bility distributions, we quantify how controlled interventions affect
their distribution and order. Our formal analysis ensures that, given
specific conditions on the logits’ distribution, the probability of
achieving a desired modulation outcome can be precisely controlled.
This formalization lays the groundwork for a probabilistic analysis
of model behavior, offering a solid formal foundation for AI model
modulation.

We conduct extensive evaluations across a wide range of appli-
cation domains and model architectures to validate Aim. Our eval-
uation spans image classification, semantic segmentation, and text
generation, utilizing prevalent deep neural network architectures
such as ResNet-56 [14], SegFormer-B2 [42], and Llama-3.1-8B [37].
Through utility modulation, Aim successfully provides model own-
ers with fine-grained control over model behavior across all settings.
Aim’s focus modulation, on the other hand, significantly enhances

the model’s ability to prioritize key features without compromising
overall performance. For example, in an autonomous driving task,
Aim yields substantial improvement in the pedestrian segmenta-
tion accuracy of a model that is originally trained to be focused
on vehicle recognition. These experimental results validate that
our method is practical, versatile, and broadly applicable across
different AI systems and real-world scenarios, effectively meeting
the diverse needs of both model owners and users.
Contributions. Our main contributions are:

• A new problem formulation of AI model modulation.

We introduce the concept of model modulation, involving con-
trolledmulti-level adjustments to amodel’s behavior. This par-
adigm allows a single model to cater to diverse requirements
and application contexts without the need for maintaining
multiple model versions.

• A generic modulation approach. Aim is the first practical
schema for AI model modulation, featured by its lightweight,
data-agnostic, and retraining-free attributes. It supports two
modulation modes of utility and focus modulation. Aim effi-
ciently modulates the model’s output by redistributing the
logits through a control function that adjusts them according
to specific probability distributions.

• A formal framework and theoretical analysis.We pro-
vide a robust theoretical framework for analyzing the impact
of noise on the ordering of logits in neural networks. This for-
malization enables a systematic and probabilistic approach to
model modulation, offering new insights into how controlled
noise affects the logits’ distribution and their ranking.

• Extensive empirical evaluation.We implement Aim and
validate its effectiveness across various application domains,
including image classification, semantic segmentation, and
text generation, using prevalent neural network architectures
such as ResNet, SegFormer, and Llama. Our results demon-
strate that Aim offers fine-grained control for model owners
while enhancing feature prioritization for users, all without
compromising overall performance.

2 Problem Formulation

In this section, we introduce the preliminaries regarding neural
networks (Section 2.1) to facilitate the understanding of our work.
We then discuss the specific challenges associated with managing
and adapting trained models (Section 2.2), and formally define the
concept of model modulation (Section 2.3).

2.1 Deep Neural Networks

Deep neural networks (DNNs) are computational models composed
of multiple layers that transform input data into outputs through
learned weights and activation functions. They have achieved re-
markable success in various domains by effectively modeling com-
plex patterns and relationships in data [22]. Applications range from
image recognition and semantic segmentation to natural language
processing and autonomous systems.

Formally, a DNN can be represented as a function 𝑓 : R𝑚 → R𝑛 ,
mapping an input vector 𝑥 ∈ R𝑚 to an output vector 𝑦 ∈ R𝑛 . Each
layer in the network performs a linear transformation followed by
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a non-linear activation, allowing the network to capture intricate
features through multiple levels of abstraction.

Despite their powerful capabilities, training high-quality DNNs
requires extensive computational resources and large datasets. The
complexity and resource intensity of this process have led to a
concentration of development within organizations that possess
substantial infrastructure [32]. This situation underscores the im-
portance of efficiently utilizing trained models and finding ways
to adapt them to various needs without incurring the high costs of
retraining.

2.2 Motivation

AdaptingDNNs tomeet diverse requirements is amajor challenge in
AI deployment. Model owners need controllability to adjust models
for various contexts without retraining, while users seek adapt-

ability to tailor models to their needs. However, several challenges
hinder these objectives:

• Inflexibility: Once optimized for specific tasks, trained models
lack the inherent flexibility to adjust to new contexts or business
needs. They do not provide the controllability required by model
owners or the adaptability desired by users without retraining.

• Limitations of Traditional Adaptation Approaches: Meth-
ods like fine-tuning require access to original training data and
substantial resources [16], while techniques like early exits de-
mand architectural modifications, which are often constrained
by model accessibility [23].

• Maintenance Overhead: Managing multiple tailored versions
of a model is complex and costly, complicating updates and
consistency.

• Performance Trade-offs: Emphasizing specific features can
degrade overall performance, making it difficult to maintain
balance without retraining.

These challenges highlight the need for a flexible and efficient ap-
proach that allows a single model to adjust its behavior dynamically
without retraining.

2.3 Defining Model Modulation

Model modulation is a paradigm designed to enable controlled
adjustments to the behavior of a trained network, allowing it to
meet varying requirements without retraining or modifying its
architecture. Specifically, for a trained neural network 𝑓 ∗, model
modulation applies a control function Φ parameterized by 𝜖 . This
function adjusts the model’s output to produce a modulated model
𝑓 𝜖 , defined as:

𝑓 𝜖 (𝑥) = Φ(𝑓 ∗ (𝑥), 𝜖),

where 𝜖 represents the modulation parameters controlling the ad-
justments, depending on the type of modulation.

We formalize two primary modes of modulation: utility modu-
lation and focus modulation, each designed to address the specific
conditions for both model owners and users.

2.3.1 Utility Modulation. The objective of utility modulation is
to enable model owners to control the utility level of the model’s
outputs while preserving the core knowledge embedded within

the model. This ensures that even when the output quality is in-
tentionally reduced, the outputs remain meaningful and do not
compromise the model’s integrity.

Specifically, utility modulation aims for the performance of the
modulated model 𝑓 𝜖 to decrease in a predictable and controlled
manner as 𝜖 increases. Formally, for a performance metric𝑀 , we
require

𝑀 (𝑓 𝜖1 ) ≤ 𝑀 (𝑓 𝜖2 ), ∀𝜖1 ≥ 𝜖2 ≥ 0,

where 𝜖1 and 𝜖2 are two given constants.
To demonstrate maintained integrity, we further require:

|𝑀 (𝑓 𝜖1 ) −𝑀 (𝑓 𝜖2 ) | < Δ(𝛿), ∀|𝜖1 − 𝜖2 | ≤ 𝛿,

where 𝛿 is a small constant and Δ(𝛿) is determined by 𝛿 . This
condition ensures gradual and fine-grained control over the model’s
utility, allowing precise adjustments to performance.

2.3.2 Focus Modulation. Focus modulation enables users to em-
phasize specific features or classes without significantly affecting
the model’s overall performance. This allows the model to be more
responsive to areas of interest while maintaining effectiveness in
other areas.

Specifically, it aims for the performance of the modulated model
𝑓 𝜖 to maintain stable overall performance under the metric𝑀 while
enhancing a specified metric 𝐸 as 𝜖 increases. Formally, for any two
given constants 𝜖1 and 𝜖2, we require:

|𝑀 (𝑓 𝜖1 ) ≤ 𝑀 (𝑓 𝜖2 ) | ≤ Δ ∧ 𝐸 (𝑓 𝜖1 ) ≥ 𝐸 (𝑓 𝜖2 ), ∀𝜖1 ≥ 𝜖2 ≥ 0,

where Δ is a small constant representing acceptable performance
deviation.

3 Our Approach – Aim

Given the objective to modulate the model’s output to align with
varying user needs and application scenarios, a natural question
arises:where should this adjustment take place? We propose logits re-
distribution as the most direct and effective point of intervention, as
logits represent the final decision stage of the model. This approach
enables fine-grained control over the model’s behavior without
altering its underlying structure. Two key types of modulation are
introduced: utility modulation (Section 3.2), which adjusts the out-
put quality, and focus modulation (Section 3.3), which enhances
the model’s attention to specific features of inputs.

3.1 Logits Redistribution

3.1.1 Model Logits. The logits, which are the raw scores generated
just before the final output probabilities, are the primary determi-
nants of a model’s decisions. They encapsulate the learned features
and internal confidence levels across different outcomes, ultimately
dictating how predictions are ranked. Even minor modifications to
the logits can significantly impact the model’s final output, making
them an ideal point for implementing controlled adjustments.

By conceptualizing the neural network as comprising two compo-
nents, i.e., the feature extractor before the logits and the probability
mapper after, the logits emerge as the most direct and effective
point for modulation. Formally, let 𝑓1 denote the function mapping
the input 𝑥 to the logits 𝑦, and 𝑓2 represent the function that maps

3
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Figure 1: Illustration of Aim’s logits redistribution.

𝑦 into the final output 𝑦. The overall network can be expressed as:

𝑓 = 𝑓2 ◦ 𝑓1,

where 𝑦 = 𝑓1 (𝑥) and 𝑦 = 𝑓2 (𝑦).

3.1.2 Logits Redistribution. Based on this insight, Aim introduces
a control function 𝜙 : R𝑛 → R𝑛 that directly operates on the logits
to modulate the model’s output. The modulated logits are obtained
as 𝑦′ = 𝜙 (𝑦), and the overall network becomes:

𝑓 = 𝑓2 ◦ 𝜙 ◦ 𝑓1,

where 𝑓1 extracts features from the input, 𝜙 modulates the logits,
and 𝑓2 maps these modulated logits to the final output. This setup
enables dynamic adjustments at the logits level, allowing the model
to meet varying requirements without modifying its underlying
learned features or necessitating retraining.

Our framework applies the control function 𝜙 to introduce tar-
geted shifts to the logits by adding noise sampled from specific
statistical distributions or by applying deterministic adjustments.
Formally, we adjust the logits as:

𝑦′ = 𝜙 (𝑦),

which influences the model’s output probabilities while preserving
the internal feature representations and decision logic. This flexible,
lightweight approach to model modulation effectively serves the
needs of both model owners and users. An illustration of Aim’s
logits redistribution is displayed in Figure 1.

3.2 Utility Modulation

Utility modulation caters to the requirements of model owners
who wish to offer different service tiers or control the utility of the
model’s outputs. By introducing controlled randomness to degrade
performance, the model’s outputs remain meaningful but exhibit
reduced accuracy. This allows owners to provide lower-quality
outputs to certain user segments while reserving full capabilities
for premium users.

3.2.1 Definition. In utility modulation, we introduce noise to the
logits using a bilateral distribution, such as a Gaussian distribution.
The modulation is defined as:

𝜙 (𝑦𝑖 ) = 𝑦𝑖 + 𝜖, 𝜖 ∼ N(0, 𝜎2),

where 𝜖 is noise sampled independently for each logit 𝑦𝑖 . By ad-
justing the standard deviation 𝜎 , model owners can control the
degree of utility degradation, with higher noise levels leading to
lower-quality outputs.

3.2.2 Analysis. To quantify the impact of noise on the model’s
predictions, we analyze the probability that the ordering of the
logits remains unchanged after adding noise, which corresponds to
the model maintaining its top prediction.

Theorem 1. Let 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) be a vector of logits with

an ordering 𝑦𝜏1 ≤ 𝑦𝜏2 ≤ . . . ≤ 𝑦𝜏𝑛 , where 𝜏 is a permutation of

1, 2, . . . , 𝑛. Let 𝜖 = (𝜖1, 𝜖2, . . . , 𝜖𝑛) be a vector of i.i.d. Gaussian random
variables 𝜖𝑖 ∼ N(0, 𝜎2). Define the perturbed logits as 𝑦′ = 𝑦 +𝜖 . The
probability that the ordering of the logits remains unchanged after

perturbation is

Pr
(
𝑦′𝜏1 ≤ 𝑦′𝜏2 ≤ . . . ≤ 𝑦′𝜏𝑛

)
=

𝑛−1∏
𝑖=1

Φ

(
Δ𝑖√
2𝜎

)
,

where Δ𝑖 = 𝑦𝜏𝑖+1−𝑦𝜏𝑖 and Φ(·) is the cumulative distribution function

(CDF) of the standard normal distribution.

Proof. We aim to calculate the probability that the ordering
of the elements in the perturbed vector 𝑦′ = 𝑦 + 𝜖 remains the
same as the original ordering in 𝑦, i.e., Pr(𝑦′𝜏1 ≤ 𝑦′𝜏2 ≤ · · · ≤ 𝑦′𝜏𝑛 ) .
This requires that, for all 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}, 𝑦𝜏𝑖+1 + 𝜖𝜏𝑖+1 ≥ 𝑦𝜏𝑖 +
𝜖𝜏𝑖 . Rewriting this inequality, we obtain 𝑦𝜏𝑖+1 − 𝑦𝜏𝑖 ≥ 𝜖𝜏𝑖 − 𝜖𝜏𝑖+1 .
Define the gap between adjacent elements of the ordered logits as
Δ𝑖 = 𝑦𝜏𝑖+1 − 𝑦𝜏𝑖 . Therefore, for each 𝑖 , the condition simplifies to
Δ𝑖 ≥ 𝜖𝜏𝑖 − 𝜖𝜏𝑖+1 .

Since each 𝜖𝑖 ∼ N(0, 𝜎2), the difference 𝜖𝜏𝑖 − 𝜖𝜏𝑖+1 follows a
normal distribution 𝜖𝜏𝑖 − 𝜖𝜏𝑖+1 ∼ N(0, 2𝜎2). Thus, the probability
that the ordering is preserved for the 𝑖-th pair is given by,

Pr(Δ𝑖 ≥ 𝜖𝜏𝑖 − 𝜖𝜏𝑖+1 ) = Φ

(
Δ𝑖√
2𝜎

)
,

where Φ(·) is the CDF of the standard normal distribution.
Since the events are independent (due to the independence of

the noise terms), the probability that the entire order is preserved
is the product of the probabilities over all pairs:

Pr
(
𝑦′𝜏1 ≤ 𝑦′𝜏2 ≤ . . . ≤ 𝑦′𝜏𝑛

)
=

𝑛−1∏
𝑖=1

Φ

(
Δ𝑖√
2𝜎

)
,

which concludes the proof. □

Remark 1: Theorem 1 establishes a direct mapping between

the utility of the model and the noise variance 𝜎2. By adjusting

the noise level, model owners can control the extent of utility

degradation. Specifically, increasing 𝜎2 decreases the probability
of maintaining the original logits order, leading to less accurate

predictions. This allows precise tuning of the model’s performance

to meet different service level requirements.

To further understand the impact of Aim’s logits redistribution,
we analyze its rate of change with respect to the noise variance 𝜎2.

Theorem 2. Given the vector 𝑦 and the noise vector 𝜖 as in The-

orem 1, the rate of change of the probability of the order changing

with respect to the variance 𝜎2 of the noise is:

𝑑

𝑑𝜎2
Pr(𝑦′𝜏1 ≤ 𝑦′𝜏2 ≤ · · · ≤ 𝑦′𝜏𝑛 ) =

𝑛−1∑︁
𝑖=1

©«− Δ𝑖
2𝜎3

· 𝜙
(
Δ𝑖√
2𝜎

)∏
𝑗≠𝑖

Φ

(
Δ 𝑗√
2𝜎

)ª®¬ ,
4
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where 𝜙 (·) is the probability density function (PDF) of the standard

normal distribution 𝜙 (𝑧) = 1√
2𝜏
𝑒−𝑧

2/2
and Φ(·) is the CDF of the

standard normal distribution.

Proof. Let 𝑧𝑖 = Δ𝑖√
2𝜎

. The derivative of 𝑧𝑖 with respect to 𝜎2 is:

𝑑𝑧𝑖

𝑑𝜎2
=

𝑑

𝑑𝜎2

(
Δ𝑖√
2𝜎

)
= − Δ𝑖

2𝜎3
.

Then, using the chain rule to differentiate Φ(𝑧𝑖 ), we have
𝑑

𝑑𝜎2
Φ(𝑧𝑖 ) = 𝜙 (𝑧𝑖 ) ·

𝑑𝑧𝑖

𝑑𝜎2
= 𝜙 (𝑧𝑖 ) ·

(
− Δ𝑖
2𝜎3

)
,

where 𝜙 (𝑧𝑖 ) is the probability density function of the standard
normal distribution 𝜙 (𝑧𝑖 ) = 1√

2𝜏
𝑒−𝑧

2
𝑖 /2.

Next, applying the product rule to the entire product,

𝑑

𝑑𝜎2

𝑛−1∏
𝑖=1

Φ(𝑧𝑖 ) =
𝑛−1∑︁
𝑖=1

©« 𝑑

𝑑𝜎2
Φ(𝑧𝑖 )

∏
𝑗≠𝑖

Φ(𝑧 𝑗 )ª®¬ .
Substituting the derivative of Φ(𝑧𝑖 ), we have the desired result. □

Remark 2: The negative derivative indicates that as the noise

variance 𝜎2 increases, the probability of preserving the original

logits order decreases, causing utility degradation. This probabil-

ity drops sharply when 𝜎2 nears the mean of differences between

logits (Δ𝑖 ), leading to rapid changes in predictions, ensuring the

effectiveness of Aim.

3.3 Focus Modulation

3.3.1 Definition. Focus modulation adjusts the model’s responsive-
ness to specific features of inputs, making it more or less attentive
as needed. This is achieved by adding noise that is constrained to be
either non-negative or non-positive, shifting the logits in a specific
direction. Formally, we modulate the logits as:

𝜙 (𝑦𝑖 ) = 𝑦𝑖 ± |𝜖 |, 𝜖 ∼ N(0, 𝜎2),
where the sign ± is chosen to increase or decrease the emphasis
on the target class or feature. This adjustment shifts the logits,
enhancing or reducing the model’s focus on particular outputs.

For example, in a driving assistance system, applying a posi-
tive shift (adding |𝜖 |) to the car detection component increases the
model’s attention to car hazards, causing the vehicle to react more
readily to car obstacles and potentially leading to more frequent
interventions. When the logits are modulated by adding or subtract-
ing the absolute value of Gaussian noise, the model’s predictions
become uniformly more or less inclined toward certain outcomes.
This consistent shift in the logits affects the softmax probabilities,
making the model more or less attentive overall.

3.3.2 Analysis. Consider two logits 𝑦𝑖 (target) and 𝑦𝑖 (reference).
We analyze the scenario where non-negative noise redistributes
the value of a specific logit. Our analysis focuses on the probability
that this adjustment affects the model’s prediction.

Theorem 3. Given 𝑦𝑖 ≤ 𝑦 𝑗 and a noise 𝜖 ∼ N(0, 𝜎2), the proba-
bility that 𝑦′

𝑖
= 𝑦𝑖 + |𝜖 | remains less or equal to 𝑦 𝑗 is

Pr(𝑦′𝑖 ≤ 𝑦 𝑗 ) = 2Φ
(
𝑦 𝑗 − 𝑦𝑖

𝜎

)
− 1,

where Φ(·) is the CDF of the standard normal distribution.

Proof. Given two logits 𝑦𝑖 and 𝑦 𝑗 such that 𝑦𝑖 ≤ 𝑦 𝑗 , we con-
sider the modulation of the target logit 𝑦𝑖 with the noise term
𝜖 ∼ N(0, 𝜎2). After modulation, we define the modified logit as
𝑦′
𝑖
= 𝑦𝑖 + |𝜖 |.
To determine the probability that the order of the logits remains

unchanged, we need to evaluate Pr(𝑦′
𝑖
≤ 𝑦 𝑗 ) = Pr(𝑦𝑖 + |𝜖 | ≤ 𝑦 𝑗 ).

This can be rewritten as Pr( |𝜖 | ≤ 𝑦 𝑗 − 𝑦𝑖 ).
The absolute value |𝜖 | follows a folded normal distribution. The

CDF of |𝜖 | can be derived from the properties of the normal distri-
bution. Specifically, we have

Pr( |𝜖 | ≤ 𝑥) = Pr(−𝑥 ≤ 𝜖 ≤ 𝑥) = Φ
( 𝑥
𝜎

)
− Φ

(
−𝑥

𝜎

)
= 2Φ

( 𝑥
𝜎

)
− 1,

where Φ(·) is the CDF of the standard normal distribution.
Thus, let 𝑥 = 𝑦 𝑗 − 𝑦𝑖 , we obtain

Pr( |𝜖 | ≤ 𝑦 𝑗 − 𝑦𝑖 ) = 2Φ
(
𝑦 𝑗 − 𝑦𝑖

𝜎

)
− 1.

This concludes the theorem, with the probability of the logits’ order
remaining unchanged after modulation. □

The other cases of the focus modulation can be derived by com-
bining the results of any two logits and the case of 𝑦𝑖 ≥ 𝑦 𝑗 can be
derived by symmetry. The case of 𝑦′

𝑖
= 𝑦𝑖 − |𝜖 | given 𝑦𝑖 ≤ 𝑦 𝑗 is not

considered because it will not change the order of the logits.

Remark 3: This theorem provides users with a direct relationship

to control the level of themodel’s focus on specific features through

the noise level. By adjusting 𝜎2, users can tailor the model’s

responsiveness to their areas of interest, enhancing adaptability

without modifying the model’s structure.

4 Experimental Evaluation

To validate the effectiveness of our proposed modulation method,
Aim, we conduct comprehensive experiments addressing the two
primary scenarios outlined in the introduction: providing different
utility levels for model owners (Scenario #1) and enabling users
to tailor model behavior to their preferences (Scenario #2). We
evaluate both modulation modes – utility modulation and focus

modulation – across various tasks and models. These experiments
demonstrate how Aim allows dynamic adjustments to model be-
havior without retraining or modifying model parameters or archi-
tecture, achieving both the controllability desired by model owners
and the adaptability sought by users.

4.1 Experimental Setup

To showcase the flexibility and broad applicability of Aim, we con-
duct experiments using models and datasets from various domains,
including image classification, semantic segmentation, and text
generation. The datasets represent widely recognized benchmarks
across these tasks:
• CIFAR-10 and CIFAR-100 [19]: Standard benchmarks for im-

age classification, each containing 60,000 colored images. CIFAR-
10 includes images from 10 classes, while CIFAR-100 features
images from 100 distinct classes.
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Figure 2: Performance of ResNet-56 for classification tasks

(left) and SegFormer-B2 for semantic segmentation tasks

(right) under varying noise levels (𝜎) for utility modulation.

• ADE20K [43]: A large-scale scene parsing dataset comprising
over 20,000 images across 150 semantic categories, commonly
used for semantic segmentation tasks.

• KITTI [9]: A real-world dataset collected from autonomous
driving scenarios, providing data for tasks such as 2D/3D object
detection, optical flow, and semantic segmentation.

• GSM8K [7]: Consists of 8,500 high-quality grade-school-level
math word problems, designed to evaluate the mathematical
reasoning capabilities of language models.

• MMLU [15]: The Massive Multitask Language Understanding
benchmark with 57 tasks spanning various domains, used to
assess the language understanding and reasoning abilities of
language models.
While Aim can be applied to any trained model, we use sev-

eral common DNNs as a proof-of-concept, such as ResNet-56 [14],
SegFormer-B2 [42], and Llama-3.1-8B [37]. To demonstrate thatAim
is retraining-free, we directly use pre-trained models with weights
public online.

By applying Aim to these models and datasets, we demonstrate
its ability to offer both controllability for model owners and adapt-
ability for users across a variety of AI applications.

4.2 Utility Modulation

For the utility modulation mode, we aim to adjust the model’s
output to provide varying levels of utility. By controlling the noise
level, owners canmodulate performance, allowing a basic version to
be available to all users while encouraging upgrades for enhanced
features.

4.2.1 Implementation. We apply utility modulation across all mod-
els by redistributing the model logits through the addition of con-
trolled Gaussian noise with zero mean and varying standard devia-
tions (𝜎). Specifically, the noise level is increased in increments of
0.2, allowing for fine-grained control over the modulation process.
In cases where the model has smaller logits variance (e.g., the Llama
model due to normalization in the final layer), the process stops
earlier based on the logits’ mean and standard deviation to ensure
effective modulation and stability.

4.2.2 Results. The impact on overall performance for computer
vision tasks is illustrated in Figure 2. As the noise level increased,
the performance of ResNet-56 and SegFormer-B2 on different com-
puter vision tasks gradually declined. For example, on CIFAR-10,
the classification accuracy dropped from 94.37% (original model)
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Figure 1

1 Quest i on: Br andon ' s i Phone i s f our
2 t i mes as ol d as Ben ' s i Phone. Ben
3 ' s i Phone i s t wo t i mes ol der t han
4 Suzy ' s i Phone. I f Suzy ' s i Phone i s
5 1 year ol d , how ol d i s Br andon ' s
6 i Phone? Let ' s t hi nk st ep by st ep.
7 Answer :

1 Suzy ' s i Phone i s 1 year ol d. Ben ' s i Phone i s t wo t i mes o-
2 l der t han Suzy ' s i Phone , so i t i s 2* 1 = 2 year s ol d. Br a-
3 ndon ' s i Phone i s 4 t i mes as ol d as Ben ' s i Phone , so i t i s
4 4* 2 = 8 year s ol d.
5 The answer i s 8

1 Suzy ' s i Phone i s 1 year s ol d , and Ben ' s i Phone i s 2 year s
2 ol der , meani ng t hat Ben ' s i Phone i s 1+2=3 year s ol d. Ben ' s
3 i Phone i s 3 year s ol d , and Br andon ' s i Phone i s 4 t i mes as
4 ol d , meani ng t hat Br andon ' s i Phone i s 3* 4=12 year s ol d.

5 The answer i s 12

Listing 1: prediction
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Figure 3: Performance of Llama-3.1-8B onGSM8K andMMLU

datasets with different noise levels (𝜎), along with a sample

output (MMLU) under utility modulation (𝜎 = 0 and 𝜎 = 2.2).

to 20.00% as 𝜎 increased from 0 to 20. At a moderate noise level
(𝜎 = 5.0), the accuracy was reduced to 72.08%, representing a basic
utility level suitable for demonstration purposes. On CIFAR-100,
accuracy falls from 72.62% to 4.59% over the same range of 𝜎 . At
𝜎 = 5.0, the accuracy is 43.62%. Similarly, for SegFormer-B2, the
Mean Intersection over Union (mIoU) decreases smoothly from
46.20% (original model) to 1.24% as 𝜎 increases. At 𝜎 = 3.0, the
mIoU is 31.42%, providing a lower-utility version of the model that
would be suitable for basic service tiers. These results demonstrate
that utility modulation via Aim offers fine-grained control over
the utility levels of models in various computer vision tasks, en-
abling model owners to adjust performance levels according to
their business strategies without retraining or maintaining multiple
models.

Apart from conventional computer vision tasks, we also conduct
experiments on large language models (LLMs) to demonstrate the
practicality and uniqueness of applying Aim to text generation
tasks. This is particularly significant because LLMs are integral
to many applications, and ensuring that outputs remain coherent
and meaningful under modulation is crucial for user experience.
In particular, by applying Aim to LLMs, we highlight the property
of knowledge preservation, where the model’s language capabilities
are preserved despite utility modulation.

We assess the utility modulation capabilities of Aim on the pow-
erful LLaMA-3.1-8B model. As shown in Figure 3, the performance
degraded smoothly with increasing 𝜎 . On GSM8K, accuracy de-
creased from 80.74% to 2.12%. At 𝜎 = 1.6, accuracy was 59.36%.
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Figure 4: Segmentation of pedestrians improves progressively

with moderate noise levels (c-e) compared to no noise (𝜎 = 0),
where pedestrians are partially or not detected (b).

On MMLU, accuracy decreased from 66.40% to 28.03% over the
range of 𝜎 . Notably, even at higher noise levels, the generated text
remains grammatically correct and coherent but tends to become
excessively verbose and redundant. This increased verbosity can
sometimes lead to incorrect answers, as the unnecessary elabora-
tion may introduce confusion or logical errors. Despite this, Aim’s
knowledge preservation property ensures that the model often main-
tains grammatical correctness, even when some content becomes
inaccurate due to over-explanation. Figure 3 provides a sample
output on an MMLU question; under utility modulation (𝜎 = 2.2),
the response is more verbose and includes superfluous details com-
pared to the baseline (𝜎 = 0). While the modulated output may
contain inaccuracies because of the added redundancy, it remains
readable and coherent, making it suitable for demo versions where
preserving user experience is important despite restricted capabili-
ties. Additional examples illustrating this behavior are provided in
Appendix A, with some verbose responses being correct (examples
1, 2, 4), while others lead to incorrect answers (example 3).

The results across all datasets andmodels demonstrate thatAim’s
utility modulation effectively adjusts the utility level of models. By
controlling the noise level 𝜎 , model owners can offer models with
reduced performance as basic versions, encouraging users to up-
grade for full capabilities. The smooth degradation in performance
ensures that models remain functional at lower utility levels, pro-
viding a controlled and predictable user experience. This approach
allows a single model to serve multiple utility levels without re-
training, simplifying deployment and reducing maintenance costs.

4.2.3 Discussion. Our empirical results reveal a consistent three-
stage pattern of performance degradation under utility modulation,
which closely aligns with our theoretical analysis in Section 3.
This pattern is intrinsically linked to the distribution of differences
between logits in neural networks.

In the initial stage of low noise levels, model performance re-
mains high with minimal degradation. The added noise is insuffi-
cient to significantly alter the ordering of the logits, as the dominant
logits corresponding to correct classes continue to stand out, and
predictions remain accurate. This corresponds to cases where the
differences between the top logits are large, and minor perturba-
tions have little effect.

As noise levels increase to moderate values, we observe a rapid
decline in performance. Here, the noise magnitude becomes compa-
rable to the typical differences between logits, effectively reshuffling
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Figure 5: Focus modulation improves the accuracy of the

targeted class, but with a trade-off as overall mIoU decreases

when adjustments are too large, balancing targeted gains

with general performance.

their order and leading to frequent misclassifications. Since the ma-
jority of logit differences lie within this range, the introduced noise
has the greatest impact, causing significant shifts in model behavior.

At high noise levels, the rate of performance degradation slows
down and approaches a plateau near random guessing levels. Fur-
ther increases in noise have diminishing effects because the logits
are already heavily disrupted.

This pattern is particularly beneficial for practical applications,
especially publicly accessible demo models. Such models aim to
demonstrate core capabilities while encouraging users to upgrade
for better performance. The moderate noise range is ideal, allow-
ing precise control over the model’s utility. By adjusting the noise,
model owners can limit performance to a functional yet constrained
level, offering a consistent user experience that showcases the
model’s strengths and motivates users to opt for the full version.

4.3 Focus Modulation

While providing effective utility modulation for model owners, Aim
also allows users to adapt the model’s behavior to suit individual
preferences or contextual needs. By adjusting the model’s focus
on specific features or aspects, users can enhance performance on
areas of interest without the need for retraining.

4.3.1 Implementation. We conduct focus modulation exclusively
on semantic segmentation tasks as it intuitively aligns with real-
world needs, such as ADAS, where prioritizing specific features (e.g.,
detecting pedestrians) is crucial. Using the SegFormer-B2 model
with the ADE20K dataset and real-world test cases, we enhance
the detection of the focused (critical) classes, such as “Person”, by
redistributing the targeted logits through sampling a folded normal
distribution. The noise level is added in steps of 0.2, while ensuring
that the overall mIoU remains stable, allowing for a tolerance of up
to a 0.5% decrease from the original mIoU.

4.3.2 Results. As shown in Figure 5, increasing the noise level
𝜎 from 0.0 to 2.4 resulted in a notable improvement in the pixel
accuracy of the “Person” class (from 91.24% to 96.20%), with a negli-
gible decrease in the overall segmentation quality (mIoU remained
stable). Figure 4, cropped for better clarity, demonstrates that with
moderate noise levels (𝜎 = 0.6, 1.2, 1.8), the segmentation of pedes-
trians progressively improves compared to no noise (𝜎 = 0), where
pedestrians are partially or not detected. These visualizations are
based on scenes from the KITTI dataset, a widely-used benchmark
for realistic autonomous driving scenarios [9].
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Table 1: Accuracy improvement (%) for different object classes

under varying noise level 𝜎 , along with the average change

in mIoU (%).

Class 𝜎 = 0.0 𝜎 = 0.2 𝜎 = 0.4 𝜎 = 0.6 𝜎 = 0.8 𝜎 = 1.0

Person 91.24 +0.77 +1.43 +2.01 +2.52 +2.96
Car 91.70 +0.53 +1.03 +1.48 +1.88 +2.26
Tree 87.95 +0.91 +1.73 +2.46 +3.10 +3.68
Bicycle 75.90 +2.01 +3.75 +5.13 +6.46 +7.53
Bus 92.30 +0.32 +0.60 +0.84 +1.09 +1.32
Streetlight 29.02 +1.90 +3.99 +6.16 +8.37 +10.65
Traffic Light 42.22 +2.38 +4.75 +6.80 +8.98 +10.91

avg. mIoU 46.20 +0.00 +0.00 -0.01 -0.02 -0.02

While adding excessive noise could theoretically further boost
pixel accuracy, it would negatively impact the overall mIoU by di-
minishing the accuracy of other classes. Striking a balance between
improving the target class accuracy and maintaining overall model
performance is essential. Our results show that moderate noise
levels can significantly enhance the detection of critical classes like
“Person” without substantially impacting the overall performance.
Additional visualizations are available in Figure 6 (uncropped) and
Figure 7 in Appendix A.

We also evaluate focus modulation on other classes such as
“Traffic Light”, “Bicycle”, and “Car”, which are likely to be of interest
in applications like autonomous driving systems. These classes
are critical for ensuring road safety and compliance with traffic
regulations. As reported in Table 1, all evaluated classes exhibited an
increase in accuracy with increasing noise levels, while the average
mIoU remained stable. For instance, at 𝜎 = 1.0, the accuracy of the
“Bicycle” class increased from 75.90% to 83.43% (+7.52), with only a
negligible decrease in the average mIoU (-0.02%).

4.3.3 Discussion. By carefully selecting the noise levels, we can
significantly enhance the segmentation of critical classes like “Per-
son” without compromising the overall performance of the model.
This approach provides a practical way to adjust model sensitivity
in applications where certain detections are prioritized, offering
users the ability to tailor the model’s responsiveness based on their
preferences or requirements.

Our focus modulation significantly enhances the model’s ability
to prioritize specific classes without compromising overall per-
formance. An important aspect of this approach is its effect on
predictions near decision boundaries, where inputs are particularly
prone to misclassification. By strategically redistributing the logits
of targeted classes, Aim allows the model to favor specific classes,
effectively pulling instances back from crossing into incorrect clas-
sifications and boosting the model’s confidence in boundary cases.

Overall, Aim provides flexible, fine-grained control over model
behavior, allowing users to prioritize specific outputs without re-
training or altering the model architecture. This flexibility is crucial
for applications that require precise adjustments while maintaining
the model’s overall effectiveness.

Remark 4: Experimental results confirm that Aim effectively

modulates models across diverse applications without the need

for retraining or architectural changes. This capability allows

model owners to maintain control while enabling users to adapt

the model to their specific needs, thereby enhancing the flexibility

and user-centricity of AI deployments.

5 Related Work

Intermediate representations in neural networks. Early-exit
techniques [12, 18, 24, 33, 35, 40] leverage intermediate representa-
tions within neural networks to reduce inference costs by dynami-
cally skipping later layers when early predictions are sufficiently
confident, trading off performance for latency. While focusing on
computational efficiency, they do not aim to modulate the model’s
behavior tomeet diverse user requirements. Ourwork draws insight
from the pivotal role of intermediate representations, particularly
the model logits, in shaping model outputs. By directly modify-
ing the logits, we provide fine-grained control over the model’s
behavior without altering its architecture or requiring retraining.
Rather than focusing on performance-latency trade-offs, we enable
post-training adaptation of utility and feature prioritization.

Fine-tuning and transfer learning. Fine-tuning [16, 28] and
transfer learning [36, 39] adapt pre-trained models to new tasks
or domains by retraining them on task-specific datasets, achiev-
ing high performance on specialized tasks. However, this process
requires access to original training data and involves additional
optimization steps [25], making it resource-intensive and time-
consuming. Managing multiple fine-tuned models for different user
groups also increases maintenance overhead and complicates con-
sistency across updates [8]. Unlike these methods that rely on
retraining, our approach modulates the model’s output without
any retraining or data access, enabling dynamic adaptation when
retraining is impractical or undesirable.

Temperature scaling and calibration. Temperature scaling [10]
is a post-processing technique used to calibrate neural network
predictions by adjusting a temperature parameter in the softmax
function, effectively modifying output probabilities without chang-
ing model weights. It aims to improve the confidence calibration
of models, ensuring that predicted probabilities better reflect true
likelihoods. While temperature scaling adjusts the sharpness of the
probability distribution, it preserves the relative ordering of logits
and does not provide control over the model’s utility levels or focus
on specific features or classes. In contrast, our approach directly
manipulates the logits to allow fine-grained modulation of both
utility and focus, enabling dynamic adaptation of model behavior
without retraining or modifying the model architecture.

6 Conclusion

We propose a novel paradigm for AI model modulation that bridges
the gap between model owners’ need for controllability and users’
desire for adaptability. By enabling utility and focus modulation
without retraining or altering the model’s architecture, our modu-
lator Aim allows a single model to offer varying performance levels
and personalized feature responsiveness. This empowers model
owners to efficiently manage intellectual property and cater to dif-
ferent market segments, while enabling users to align the model’s
behavior with their preferences without compromising overall per-
formance. Our theoretical analysis and experiments across diverse
tasks validate Aim’s practicality and effectiveness, providing a flexi-
ble, efficient, and user-centric approach to AI deployment thatmeets
the demands of modern applications in a complex AI landscape.
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A Additional Results

1 Question: Annika brought $50 to the town fair. She spent
2 half of it on food and snacks , and an additional $10 for
3 rides. How much , in dollars , is left?
4 Let 's think step by step. Answer:

1 Annika spent half of her money on food and snacks , so she
2 spent 50/2 = 25 dollars on food and snacks.She also spent
3 an additional 10 dollars on rides ,so she spent 25+10 = 35
4 dollars in total. Annika started with 50 dollars , and she
5 spent 35 dollars , so she has 50-35 = 15 dollars left.
6 The answer is 15

1 Annika had a total of $50 and she spends half of the to-
2 tal amount on food , and the remaining is a full amount.
3 Since there is no mention about the rides before saying
4 Annika brings some money , we can guess Annika brings at
5 least $10 for ride. Since half is $25 and a total of mo-
6 ney that Annika has is $50 and Annika has rides after
7 spending $25, so Annika had total of $35 left to use on
8 the rides. Therefore , Annika had more than $40. Since
9 she only spent half then the other amount must come after
10 $10 spent on rides. This $10 spent on rides is added to
11 the half that Annika has spent , so Annika has more than
12 $45 left. So we will proceed with the method above and
13 we calculate half from $50. Half of $50 is $50/2 = $25.
14 Annika is left $50-$25 = $25 when she decides to buy the
15 rides. When Annika decides to buy the rides , Annika is
16 left with 25 dollars. She spends an extra 10 dollars to
17 buy rides. So Annika is having 15 dollars. What does it
18 mean? It means $50 - $25 - $10 is the minimum money that
19 Annika must have after Annika has spent 10 dollars. And
20 this minimum will always be $15.
21 The answer would then be $15

Text generation example 1 (MMLU, 𝜎 = 0 and 𝜎 = 2.2)

1 Question: A "dished face" profile is often associated
2 with:
3 A. a protruding mandible due to reactivation of the
4 condylar cartilage by acromegaly.
5 B. a recessive maxilla due to failure of elongation of
6 the cranial base.
7 C. an enlarged frontal bone due to hydrocephaly.
8 D. defective development of the maxillary air sinus.
9 Answer:

1 B
2 There is a single choice question about anatomy.
3 Answer the question by replying A, B, C or D.

1 B
2 All muscles in a biliaterally innervated facial muscle
3 group have the same nerve supply. During unilateral
4 nerve paralysis , which muscle characteristics will
5 result when trying to mimic these muscles on the
6 paralyzed side?
7 A. Hypertrophied muscles
8 B. Atrophy
9 C. Weak muscle contraction and potential compensatory
10 hypertrophy
11 D. Hyperesthetic (more sensitive than normal)
12 Answer: B

Text generation example 2 (MMLU, 𝜎 = 0 and 𝜎 = 2.2)

1 Question: Brandon 's iPhone is four times as old as Ben 's
2 iPhone. Ben 's iPhone is two times older than Suzy 's iPh -
3 one. If Suzy 's iPhone is 1 year old , how old is Brandon 's
4 iPhone?
5 Let 's think step by step. Answer:

1 Suzy 's iPhone is 1 year old. Ben 's iPhone is two times o-
2 lder than Suzy 's iPhone , so it is 2*1 = 2 years old. Bra -
3 ndon 's iPhone is 4 times as old as Ben 's iPhone , so it is
4 4*2 = 8 years old.
5 The answer is 8

1 Suzy 's iPhone is 1 years old , and Ben 's iPhone is 2 years
2 older , meaning that Ben 's iPhone is 1+2=3 years old.Ben 's
3 iPhone is 3 years old , and Brandon 's iPhone is 4 times as
4 old , meaning that Brandon 's iPhone is 3*4=12 years old.
5 The answer is 12

Text generation example 3 (GSM8K, 𝜎 = 0 and 𝜎 = 2.2)

1 Question: Toulouse has twice as many sheep as Charleston.
2 Charleston has 4 times as many sheep as Seattle. How many
3 sheep do Toulouse , Charleston , and Seattle have together
4 if Seattle has 20 sheep?
5 Let 's think step by step. Answer:

1 Seattle has 20 sheep. Charleston has 4 times as many
2 sheep as Seattle , so Charleston has 20*4= 80 sheep.
3 Toulouse has 2 times as many sheep as Charleston , so
4 Toulouse has 80*2=160 sheep. All together , Seattle ,
5 Charleston , and Toulouse have 160+80+20=260 sheep.
6 The answer is 260

1 Charleston has 4 times as many sheep as Seattle and
2 Seattle has 20, so the total number for Charleston is
3 4*20= 80. Toulouse also has 2 times the number of
4 Charleston , so the number of Toulouse has can be found as
5 2*80 = 160. The number of sheep of Toulouse plus the num -
6 ber of sheep of Charleston plus the number of Seattle is
7 20+80+160 = 260 sheep.
8 The answer 260

Text generation example 4 (GSM8K, 𝜎 = 0 and 𝜎 = 2.2)
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(a) Image (b) σ = 0.0 (c) σ = 0.6 (d) σ = 1.2 (e) σ = 1.8

(a) Image (b) σ = 0.0 (c) σ = 0.6 (d) σ = 1.2 (e) σ = 1.8

Figure 6: Improved segmentation quality on targeted class (people) using Aim’s focus modulation (uncropped).

(a) Image (b) σ = 0.0 (c) σ = 0.4 (d) σ = 0.8 (e) σ = 1.2 (f) σ = 3.2

Figure 7: Improved segmentation quality on targeted class (street light) using Aim’s focus modulation.

11


	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Deep Neural Networks
	2.2 Motivation
	2.3 Defining Model Modulation

	3 Our Approach – Aim
	3.1 Logits Redistribution
	3.2 Utility Modulation
	3.3 Focus Modulation

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Utility Modulation
	4.3 Focus Modulation

	5 Related Work
	6 Conclusion
	References
	A Additional Results

