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Abstract

We study a typical optimization model where the optimization variable is com-
posed of multiple probability distributions. Though the model appears frequently in
practice, such as for policy problems, it lacks specific analysis in the general setting.
For this optimization problem, we propose a new structural condition/landscape
description named generalized quasar-convexity (GQC) beyond the realms of con-
vexity. In contrast to original quasar-convexity [24], GQC allows an individual
quasar-convex parameter γi for each variable block i and the smaller of γi implies
less block-convexity. To minimize the objective function, we consider a generalized
oracle termed as the internal function that includes the standard gradient oracle as
a special case. We provide optimistic mirror descent (OMD) for multiple distri-
butions and prove that the algorithm can achieve an adaptive Õ((

∑d
i=1 1/γi)ε

−1)
iteration complexity to find an ε-suboptimal global solution without pre-known
the exact values of γi when the objective admits “polynomial-like” structural.
Notably, it achieves iteration complexity that does not explicitly depend on the
number of distributions and strictly faster (

∑d
i=1 1/γi v.s. dmaxi∈[1:d] 1/γi) than

mirror decent methods. We also extend GQC to the minimax optimization problem
proposing the generalized quasar-convexity-concavity (GQCC) condition and a
decentralized variant of OMD with regularization. Finally, we show the appli-
cations of our algorithmic framework on discounted Markov Decision Processes
problem and Markov games, which bring new insights on the landscape analysis of
reinforcement learning.

1 Introduction

We study a common class of generic minimization problem

min
x∈X

f(x), (1)

where the optimization variable x is composed of d probability distributions {xi}di=1 and X denotes
the product space of the d probability simplexes. Problem (1) meets widespread applications in
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reinforcement learning optimization [62, 2, 35], multi-class classification [53] and model selection
type aggregation [29]. In this paper, we are particularly interested in the case where d is reasonably
large and we manage to obtain complexities dependent of d non-explicitly.

When f is convex with respect to x, many efficient algorithms can be powerful tools for solving
Problem (1). One well-known algorithm is mirror descent (MD) [5] which is based on Bregman
divergence. The wide choices of Bregman divergence enable the algorithm to iterate and converge
under specifically constrained region [34]. In particular, if one applies the usual Euclidean distance,
the algorithm reduces to project gradient descent [37]. One common and more sophisticated selection
is the Kullback-Leibler (KL) divergence, the algorithm thereby becoming the variant of multiplicative
weights update (MWU) [41] over probability distribution.

Turning to the non-convex world, specific analysis for Problem (1) is rare. In general, finding an
approximate global solution suffers from the curse of dimensionality [51, 46]. And one interesting
direction is to consider suitable relaxations for the desired solutions, such as an approximate local
stationary point of smooth functions [31, 19]. However, for many cases, local solutions may not
be sufficient. Moreover, the algorithms often converge much faster in practice than the theoretic
lower bounds in non-convex optimization suggest. This observed discrepancy can be attributed
to the fairly weak assumptions underpinning these generic bounds. For example, many generic
non-convex optimization theories, e.g. Carmon et al. [7, 8] only focus on the consideration of
Lipschitz continuity of the gradient and some higher-order derivatives. In practice, the objective is
often more “structured”. For example, the recent progress in neural networks shows that systems of
neural networks approximate convex kernel systems when the model is overparameterized [28]. As
pointed out by Hinder et al. [24], much more research is needed to characterize structured sets of
functions for which minimizers can be efficiently found; It was also noted by Yurii Nesterov [47] that
lots of functions are essentially convex; Our work follows this research line.

We propose generalized quasar-convexity (GQC) for the class of “structure”. The original quasar-
convex functions [22] is parameterized by a constant γ ∈ (0, 1] and requires f(x) − f(x∗) ≤
1
γ ⟨∇f(x),x− x

∗⟩. These functions are unimodal on all lines that pass through a global minimizer
and so all critical points are minimizers. We extend quasar-convexity by introducing individual
quasar-convex parameter γi for each distribution xi. Therefore GQC is parameterized by d constants
{γi}di=1 and implies quasar-convexity in the case d = 1. The main intuition of the generalization is
the observation that d/mini∈[1:d] γi often depends on the number of distributions d in real problems,
whereas,

∑d
i=1 1/γi may not. That is to say, the hardness for distribution i diverges according to the

magnitude of γi. The larger of γi implies more convexity and the simpler to solve xi. In general,
one always have

∑d
i=1 1/γi ≤ dmaxi∈[1:d] 1/γi. In the worst case,

∑d
i=1 1/γi can be d times

smaller than dmaxi∈[1:d] 1/γi (see discussions in Section 3.3), which motivates us to study the GQC
condition.

We then study designing efficient algorithms to solve (1). One simple case is when {γi}mi=1 is
pre-known by the algorithms. The possible direction is to impose a γi-dependent update rule, such as
by non-uniform sampling. However, in general cases, {γi}mi=1 is not known and determining {γi}mi=1
require non-negligible costs.

In this paper, we consider a generalized oracle, which we refer to as the internal function. Here
the standard gradient oracle can be viewed as a special case of the internal function. We pro-
vide the optimistic mirror descent algorithm for multiple distributions, which makes sure that
each probability distribution is updated according to its own internal function. We first establish
an O((dγmax)

1/2(
∑d

i=1 γ
−1
i )3/2Lε−1 log(N)) complexity with N = maxi∈[1:d] ni and γmax =

maxi∈[1:d] γi when γmax <∞. However, such an complexity depends on dγmax and requires the step
size rely on pre-known γmax

∑d
i=1 γ

−1
i . We then consider f satisfies “polynomial-like” structural (see

Assumption 3.3). We show the assumption can be achieved in a variety of function classes and impor-
tant machine learning problems. Under the assumption, we show the algorithm can adapt to the values
of {γi}mi=1 and guarantees an reduced iteration complexity O((

∑d
i=1 1/γi)ε

−1 log(N) log4.5(ε−1)).
In the following, the Õ(·) notation hides factors that are polynomial in log(ε−1) and log(N).

We also extend our framework to the minimax optimization

min
x∈X

max
y∈Y

f(x,y), (2)
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Solution
type

Related
work

Iteration
complexity

Single
loop

ε-approximate NE

Cen et al. [9]
Chen et al. [12] Õ

(
1

(1−θ)2ε

)
✗

Wei et al. [67] Õ
(

|S|3
(1−θ)8ε2

)
✓

Cen et al. [10] Õ
(

|S|
(1−θ)4ε

)
✓

This Work Õ
(

1
(1−θ)2.5ε

)
✓

Table 1: Comparison of policy optimization methods for finding an ε-approximate NE of infinite
horizon two-player zero-sum Markov games in terms of the max-min gap (see Eq. (4)). Since the
iteration complexity of several research works (such as Zhao et al. [75], Alacaoglu et al. [3] and Zeng
et al. [72]) involve concentrability coefficient and initial distribution mismatch coefficient, we will
not delve into them here.

where both x and y are composed of d probability distributions, and Z = X ×Y is a joint region. In
the general non-convex and non-concave setting, it is known that finding even an approximated local
solution for (2) is computationally intractable [16]. We introduce the generalized quasar-convexity-
concavity (GQCC) condition analogous to GQC and demonstrate the feasibility of obtaining an
ε-approximate Nash equilibrium with O((1− θ)−2.5 maxz∈Z(

∑d
i=1 ψi(z))ε

−1 log(M) log(ε−1))

iteration complexities, where maxz∈Z(
∑d

i=1 ψi(z)) is analogous to (
∑d

i=1 1/γi) with ψi(z) defined
in the GQCC condition; θ is the discount parameter; M = maxi∈[1:d]{mi + ni}. Intuitively, the
GQCC condition can be viewed as the generalization of convexity-concavity condition. Similarly, the
Õ(·) notation hides factors that are polynomial in log(ε−1) and log(M).

Finally, we demonstrate the applications of our framework. For problem (1), we consider both infinite
horizon discounted and finite horizon MDPs problem. For problem (2), we study the infinite horizon
two-player zero-sum Markov games. We prove the learning objectives admit the GQC and GQCC
conditions, respectively. This provides new landscape description for RL problems, thereby bringing
new insights. Accordingly, our algorithms achieve state-of-the-art iteration complexities up to loga-
rithmic factors. We provide Õ(ε−1) iteration bound for finding an ε-approximate Nash equilibrium
of infinite horizon two-player zero-sum Markov games, which outperforms the Õ(|S|3ε−2) bound of
Wei et al. [67] and the Õ(|S|ε−1) bound of Cen et al. [10] by factors of |S|3ε−1 and |S|, respectively,
up to a logarithmic factor.

1.1 Contribution

(A) We introduce new structural conditions GQC for minimization problems and GQCC for
minimax problems over multiple distributions.

(B) We provide adaptive algorithm that achieves Õ((
∑d

i=1 1/γi)ε
−1) iteration complexities to

find an ε-suboptimal global minimum of “polynomial-like” function under GQC. We also
provide an implementable minimax algorithm, given a generalized quasar-convex-concave
function with proper conditions, uses Õ((1− θ)−2.5 maxz∈Z(

∑d
i=1 ψi(z)) ε

−1) iterations
to find an ε-approximate Nash equilibrium.

(C) We show that discounted MDP and infinite horizon two-player zero-sum Markov games
admit the GQC and GQCC conditions, respectively, and also satisfy our mild assumptions. In
addition, we provide Õ((1− θ)−2.5ε−1) iteration bound for finding an ε-approximate Nash
equilibrium of infinite horizon two-player zero-sum Markov games. Detailed comparisons
between our method and prior arts are provided in Table 1.

1.2 Related Works

Minimization: Convexity condition has been studied at length and plays a critical role in optimizing
minimization problems [59, 44, 25, 60, 6, 49]. Several other “convexity-like” conditions have
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attracted considerable attention, which provide opportunity for designing algorithmic framework to
achieve global convergence. Star-convexity [47] is a typical example that relaxes convexity, showing
potential in machine learning recently [32, 76]. Quasi-convexity, which admits that the highest
point along any line segment is one of the endpoints, is also an important condition [6]. Following
this, the concept of weak quasi-convexity is proposed by Hardt et al. [22] which is an extension of
star-convexity in the differentiable case, and Hinder et al. [24] provides lower bound for the number
of gradient evaluations to find an ε-minimizer of a quasar-convex function (a linguistically clearer
redefinition of weak quasi-convex function claimed by Hinder et al. [24] ).

Minimax Optimization: Minimax problem attracted considerable attention in machine learning.
There exist a variety of algorithms to find the approximate Nash equilibrium points [63, 43, 48,
45, 40, 33, 55, 66, 27] or stationary points [71] for convex-concave functions. Without convex-
concave assumption, there exist related work considered specific structures in objective, including
nonconvex-(strongly-)concave assumption [39, 73, 50], Kurdyka–Lojasiewicz condition (or specific
PL condition) [68, 11, 69, 38], interaction dominant condition [21] and negative comonotonicity
[17, 36].

RL Landscape Descriptions: For the policy gradient based model of infinite horizon reinforcement
learning problems, Agarwal et al. [2] provides a convergence proof for the natural policy gradient
descent, which is the same as the mirror descent-modified policy iteration algorithm [20] with
negative entropy as the Bregman divergence. Subsequently, Lan [35] focuses on exploring the
structural properties of infinite horizon reinforcement learning problems with convex regularizers.
For two-player zero-sum Markov games [61, 42] under full information setting, there are various
algorithms [26, 54, 64, 18, 42, 67, 9, 74, 70] have been proposed. Specifically, Cen et al. [9] focus on
finding approximate minimax soft Q-function in regularized infinite horizon setting; Zhao et al. [74]
focus on finding one-sided approximate Nash equilibrium in standard infinite horizon setting with
Õ(ε−1) iteration bound which depends on the concentrability coefficient; Yang and Ma [70] focus on
finding approximate Nash equilibrium in standard finite horizon setting with Õ(ε−1) iteration bound.

Related Works on Optimistic Mirror Descent (OMD) and Optimistic Multiplicative Weights
Update (OMWU): The connection between online learning and game theory [58, 4, 23, 1] has
since led to the discovery of broad learning algorithms such as multiplicative weights update (MWU)
[41]. Rakhlin and Sridharan [57] introduces an optimistic variant of online mirror descent [56, 14]–
optimistic mirror descent. Daskalakis et al. [15] shows that the external regret of each player achieves
near-optimal growth in multi-player general-sum games, with all players employ the optimistic
multiplicative weights update.

2 Preliminary

Notation: Let x = (x1, · · · ,xd) ∈ R
∑d

i=1 ni be the joint vector variable, for every vector
variable xi ∈ Rni . Let α = (α(1), · · · ,α(n)) be the multi-indices, where α(i) ∈ Z+, we define
|α| =

∑n
i=1α(i) and α! = α(1)! · · ·α(n)!. For any vector u = (u(1), · · · ,u(n)) ∈ Rn, we

define uα = u(1)α(1) · · ·u(n)α(n). Let f : Rn → R be a smooth function, we expand its Taylor
expansion with Lagrange remainder Rf

K,w(u) as follows,

Rf
K,w(u) = f(u)−

K∑
i=0

∑
|α|=i

Dαf(w)

α!
· (u−w)α. (3)

Given matrices Q and P in Rℓ1×ℓ2 we claim that Q ≤ P if [Q]i,j − [P]i,j ≤ 0 for every i, j.
For a sequence of vector-valued functions {F i}di=1, we say that {F i}di=1 is uniformly L-Lipschitz
continuous with respect to ∥·∥′ under ∥·∥ if ∥F i (xi)− F i (ui)∥′ ≤ L∥xi−ui∥ for every i ∈ [1 : d]
and any x,u ∈ X . We denote by ∥ · ∥∗ the dual norm of ∥ · ∥. Let P : Rℓ1×ℓ2 → Rn1×n2 be a matrix
function, we say that P is a θ-contraction mapping under ∥·∥ if ∥P(Q1)−P(Q2)∥∞ ≤ θ∥Q1−Q2∥
for any Q1,Q2 ∈ Rℓ1×ℓ2 . For matrix-valued function P : Rn → Rℓ1×ℓ2 ,we define DP(x,x

′) =

P(x) − P(x′) for any x,x′ ∈ Rn. The KL divergence KL(p∥q) =
∑n

j=1 p(j) · log
(

p(j)
q(j)

)
between distributions p and q is defined on probability simplex ∆n. And the variance of x over p
is defined by Varp(x) =

∑n
j=1 p(j) · (x(j)− Ej′∼p[x(j

′)])
2. We define max-min gap of function
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f : X × Y → R as follows,

Gf (x,y) := max
y′∈Y

f(x,y′)− min
x′∈X

f(x′,y). (4)

We claim that (x,y) is an ε-approximate Nash equilibrium (ε-approximate NE) if Gf (x,y) ≤ ε.
When ε = 0, (x,y) is a Nash equilibrium.

Infinite Horizon Discounted Markov Decision Process: We consider the setting of an infinite
horizon discounted Markov decision process (MDP), denoted byM := (S,A,P, σ, θ,ρ0). S is
a finite state space; A is a finite action space; P(s|s′, a′) denotes the probability of transitioning
from s to s′ under playing action a′; σ : S × A → [0, 1] is a cost function, which quantifies the
cost associated with taking action a in state s; θ ∈ [0, 1) is a discount factor; ρ0 is an initial state
distribution over S.

π : S → ∆A (where ∆A is the probability simplex over A) denotes a stochastic policy, i.e., the
agent play actions according to a ∼ π(·|s). We use Prπt (s

′|s) = Prπ(st = s′|s0 = s) to denote
the probability of visiting the state s′ from the state s after t time steps according to policy π. Let
trajectory τ = {(st, at)}∞t=0, where s0 ∼ ρ0, and, for all subsequent time steps t, at ∼ π(·|st) and
st+1 ∼ P(·|st, at). The value function V π : S → R is defined as the discounted sum of future cost
starting at state s and executing π, i.e.

V π(s) = (1− θ)E

[
∞∑
t=0

θtσ(st, at)

∣∣∣∣∣π, s0 = s

]
.

Moreover, we define the action-value function Qπ : S × A → R and the advantage function
Aπ : S ×A → R as follows:

Qπ(s, a) = (1− θ)E

[
∞∑
t=0

θtσ(st, at)

∣∣∣∣∣π, s0 = s, a0 = a

]
, Aπ(s, a) = Qπ(s, a)− V π(s).

It’s also useful to define the discounted state visitation distribution dπs0 of a policy π as dπs0(s) =
(1− θ)

∑∞
t=0 θ

tPrπt (s|s0). In order to simplify notation, we write dπρ0
(s) = Es0∼ρ0

[dπs0(s)], where
dπρ0

is the discounted state visitation distribution under initial distribution ρ0.

3 Minimization Optimization

In this section, we propose the generalized quasar-convexity (GQC) condition, and analyze a related
algorithmic framework for minimization over X =

∏d
i=1 ∆ni , under mild assumptions.

3.1 Generalized Quasar-Convexity (GQC)

We provide a novel depiction of function structure–generalized quasar-convexity, which is defined as
follows:
Definition 3.1 (Generalized Quasar-Convexity (GQC)). Let x∗ ∈ X ⊂ R

∑d
i=1 ni be a minimizer of

the function f : X → R. We say that f is generalized quasar-convex on X with respect to x∗ if for
all x ∈ X , there exist a sequence of vector-valued functions {F i : X → Rni}di=1 and a sequence of
positive scalars {γi}di=1 such that

f(x∗) ≥ f(x) +
d∑

i=1

1

γi
⟨F i(x),x

∗
i − xi⟩ . (5)

If Eq. (5) holds, we say that F = (F⊤
1 , · · · ,F

⊤
d )

⊤ is the internal function of f . Given i ∈ [1 : d] we
say that F i is the internal function of f for variable block xi.

Our proposed GQC condition concerns the multi-variable generalized extension of the quasar-
convexity condition. In the case d = 1, the GQC condition degenerates into the γ-quasar-convexity
condition as studied in Hinder et al. [24] with the gradient∇f(x) belongs to the internal functions
of f . In the case d > 1, the GQC condition is instrumental in capturing the crucial characteristic of
those optimization applications with each variable block has difficulty to be optimized.
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Algorithm 1 Optimistic Mirror Descent for Multi-Distributions

Input:
{
g0
i = x0

i = (1/ni, · · · , 1/ni)
}d

i=1
, η and T .

Output: Randomly pick up t ∈ {1, · · · , T} following the probability P[t] = 1/T and return xt.
1: while t ≤ T do
2: for all i ∈ [1 : d] do
3: xt

i = argmin
xi∈∆ni

η
〈
F i(x

t−1),xi

〉
+KL

(
xi ∥gt−1

i

)
,

4: gt
i = argmin

gi∈∆ni

η
〈
F i(x

t), gi

〉
+KL

(
gi

∥∥gt−1
i

)
.

5: end for
6: t← t+ 1.
7: end while

3.2 Main Results

Recall that GQC condition provides a perspective to bound function error f(x)− f(x∗) based on
internal function, which is different from that based on gradient oracle. We therefore aim to provide
an algorithmic framework for finding an approximate suboptimal global solution using internal
function. Given an objective function f : X → R with internal function F , our algorithm (Algorithm
1) independently computes points gti and xt

i following OMD over each block. If maxi∈[1:d] γi <∞
and internal function F has Lipschitz continuity, we have following basic and primary convergence
result of Algorithm 1,
Theorem 3.2. Assuming that F is L-Lipschitz continuous with respect to ∥ · ∥∗ under ∥ · ∥ and
γmax = maxi∈[1:d] γi <∞, and setting η = (L2dγmax

∑d
i=1 γ

−1
i )−1/2/2, we have

1

T

T∑
t=1

(f(xt)− f(x∗)) ≤
2Lmaxi∈[1:d] log(ni) (dγmax)

1/2
(∑d

i=1 γ
−1
i

)3/2
T

. (6)

However, the estimation provided by Theorem 3.2 depends on dγmax. And the step size relying on
γmax

(∑d
i=1 γ

−1
i

)
might be difficult to set when {γi}di=1 is unknown.

We then hope to propose an alternative analytical method that can adapt to unknown {γi}di=1 and
obtain complexity which does not depends on block dimension d explicitly. The challenges includes:
1) The algorithm does not know the weight 1/γi; 2) every F i has dependence on the joint variable
x instead of depending on xi. Before we present the details of convergence analysis, we need the
following notations and assumptions:

Denote P f
K,y(x)) =

∑K
i=0

∑
|α|=i

|Dαf(y)|
α! · (|x| + |y|)α and let Pϕ

K,y(x) = (P
ϕ(1)
K,y (x), · · · ,

P
ϕ(ℓ)
K,y (x)) for any vector-valued function ϕ : Rn → Rℓ. Recalling the definition of Rf

K,w in Eq. (3),

we shall also defineRϕ
K,y(x) = (R

ϕ(1)
K,y (x), · · · , Rϕ(ℓ)

K,y (x)).

Assumption 3.3. Let F be the internal function of f . There exists Θ1,Θ2 > 0, K0 ∈ Z+, and
θ ∈ [0, 1), and a fixed y ∈ R

∑d
i=1 ni such that

[A1]
∥∥∥RF

K,y(x)
∥∥∥
∞
≤ Θ1θ

K for any integer K > K0 and x ∈ X .

[A2]
∥∥∥P F

K,y(x)
∥∥∥
∞
≤ Θ2 for any integer K ∈ Z+ and x ∈ X .

Assumption 3.3 is a characterization of “polynomial-like” functions. We clarify this view as follows.
For a standard polynomial function p, it’s clear that p satisfies Assumption 3.3, since the Taylor
expansion of p after order K0 is always equal to 0 ([A1] in Assumption 3.3 holds) and X is a
bounded and closed set ([A2] in Assumption 3.3 holds). Assumption 3.3 is easy to achieve. Shown in
Proposition B.2 and Remark B.3 in Appendix B, Assumption 3.3 can be satisfied by many smooth
functions defined on bounded region X . In addition, we introduce a simple machine learning example:
learning one single neuron network over a simplex in the realizable setting.
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Example 3.4. The objective function is written as f(p,P) = 1
2Ex,y(

∑m
i=1 piσ(x

⊤Pi)− y)2, where
p ∈ ∆m and P = (P1, · · · ,Pm) ∈

∏m
i=1 ∆d and the target y given x ∈ [−C,C]d admits y =

σ(x⊤P∗
1) for some P∗

1 ∈ ∆d. For activation function σ(x) = exp{x}, f satisfies GQC condition
and Assumption 3.3 with the internal functions F p = {E[(

∑m
j=1 pjσ(x

⊤Pj)− y)σ(x⊤Pi)]}mi=1

for block p and FPi = E[(σ(x⊤Pi)− y)x] for block Pi.

Note previous work [65] studies single neuron learning by considering P∗
1 in the sphere and assuming

x follows from a Gaussian distribution. To our knowledge, there is no evidence shows that objective
function of Example 3.4 has quasar-convexity. This example demonstrates the advantage of studying
the GQC framework over the previous approach. The proof of Example 3.4 is in Section B.2.

Parameter Setting Before stating the convergence result, we set the parameters as follows:

Θ = Θ1 +Θ2 + 1, H = ⌈log(T )⌉, β0 = (4H)−1, β = min

{√
β0/8

H3
,

1

2Θ(H + 3)

}
,

Γ = e2 +O(Θ2), K̂ = max

{
H log(4β−1) + log(Θ1)

log(θ−1)
,K0

}
, η = min

{
β

6e3K̂Γmax{Θ, 1}
,

β4
0

O(Θ)

}
.

(7)

Theorem 3.5. Let f satisfies the GQC condition and denoteN = maxi∈[1:d]{ni}. Under Assumption
3.3, the following estimation holds for Algorithm 1’s output {xt}Tt=1

1

T

T∑
t=1

(f(xt)− f(x∗)) ≤

(
d∑

i=1

1/γi

)[
1

η
log(N) + ηΘ3(6 + 330240ΘH5)

]
T−1, (8)

Theorem 3.5 implies that for any generalized quasar-convex function f satisfies Assumption 3.3,
the T -step random solution outputted by Algorithm 1 is a O((

∑d
i=1 1/γi)T

−1 log(N) log4.5(T ))-
suboptimal solution. Ignoring the logarithmic factor, the iteration complexity of our algorithm
is competitive to the state-of-the-art algorithm when applied to specific application (i.e. policy
optimization of reinforcement learning [2]). Moreover, our algorithm makes iteration complexity
depend on

∑d
i=1 1/γi linearly. In some common applications,

∑d
i=1 1/γi has no dependence on d,

which is the number of variable blocks (see discussions in Section 3.3).

3.3 Application to Reinforcement Learning

This section reveals that GQC condition provides a novel analytical approach to reinforcement
learning. We show how to leverage Algorithm 1 to find ε-suboptimal global solution for infinite
horizon reinforcement learning problem. And in Appendix B.3.2, we show how to leverage Algorithm
1 to minimize finite horizon reinforcement learning problem.

The infinite horizon reinforcement learning is formulated as the following policy optimization
problem:

min
π∈X

Jπ(ρ0), (9)

where Jπ(ρ0) = Es0∼ρ0
[V π(s0)] and X =

∏|S|
i=1 ∆A denotes |S| probability simplexes. We write

S = {si}|S|
i=1 and denote the action-value vector on state si byQπ(si, ·). The next Proposition 3.6

states that Jπ(ρ0) satisfies the GQC condition for any initial state distribution ρ0.
Proposition 3.6. Let {π∗(·|s) ∈ ∆A}s∈S denote the optimal global solution of problem (9). We
have that Jπ(ρ0) satisfies the GQC condition in Eq. (5) with internal function F i(π) = Q

π(si, ·)
for variable block πi and F satisfies Assumption 3.3 with Θ1 = θ,Θ2 = 1 and K0 = 1.

According to Theorem 3.5, if we apply Algorithm 1 to the infinite horizon reinforcement learning
basing action-value vector Qπ with parameter selection Eq. (7), which is actually a simple variant of
natural policy gradient descent [2], then the iteations T we need to find an ε-suboptimal global solution
is upper-bounded byO(max{1, log−1(θ−1)}(1−θ)−1ε−1 log4.5(ε−1) log(|A|)) under Agarwal et al.
[2]’s setting. Therefore, the iteration complexity of Algorithm 1 does not depend on the size of states,
since the summation of dπ

∗

ρ0
over S (

∑|S|
i=1 1/γi =

∑|S|
i=1 d

π∗

ρ0
(si) = 1) mollifies the accumulation

7



of the maximum of dπ
∗

ρ0
over S with |S| times. Specifically, if we take into account the loosest upper

bound |S|maxi∈[1:|S|] d
π∗

ρ0
(si), then the iteration complexity of algorithm may suffer from the linear

dependence on |S|, since maxi∈[1:|S|] d
π∗

ρ0
(si) ≥ (1 − θ)maxi∈[1:|S|] ρ0(si). Previous research

[2, Theorem 5.3] has demonstrated that utilizing the information of joint variables to separately
update each variable block ensures global convergence for problem (9) with O((1 − θ)−2ε−1)
iteration complexity. However, their analytical approach is carefully designed for infinite horizon
reinforcement learning problems.

4 Minimax Optimization

In this section, we introduce the generalized quasar-convexity-concavity (GQCC) condition, which
can be verified in real applications such as two-player zero-sum Markov games. We provide a
related algorithm for minimax optimization (minimizing Gf (x,y) has been defined in Eq. (4))
over Z =

∏d
i=1Zi =

∏d
i=1 (∆ni

×∆mi
), under proper assumptions. We specify the divergence-

generating function v as v(x) = Ei∼x(·)[log(x(i))] in probability simplexes setting. We also provide
a framework for minimax problem over the general compact convex regions in Appendix C.

4.1 Generalized Quasar-Convexity-Concavity (GQCC)

We provide a new notion called generalized quasar-convexity-concavity for nonconvex-nonconcave
minimax optimization, which is defined as follows:
Definition 4.1 (Generalized Quasar-Convexity-Concavity (GQCC)). Denote Zi = Xi × Yi for any
i ∈ [1 : d], and let f : Z → R be the objective function. We say that f is generalized quasar-convex-
concave on Z if for all z = (x,y) ∈ Z , there exist a sequence of functions {fi : Rℓ×d × Zi →
R}di=1, a sequence of non-negative functions {ψi : Z → R+ ∪ 0}di=1 and a matrix-valued function
P = (P1, · · · ,Pd) : Z → Rℓ×d where every Pi is a ℓ-dimensional vector-valued function, such
that

Gf (x,y) ≤
d∑

i=1

ψi(z)Gfi(P(z),·,·)(xi,yi), (10)

where each fi(Q, ·, ·) is convex-concave for a fixed Q = (Q1, · · · ,Qd) ∈ Rℓ×d. We denote the in-
ternal operator of f for variable block zi by F i where F i(Q, zi) = ((∇xi

fi(Q, zi))
⊤, (−∇yi

fi(Q,

zi))
⊤)⊤. Moreover, we say that F = (F⊤

1 , · · · ,F
⊤
d )

⊤ is the internal operator of f .

The GQCC condition is an extension of the GQC condition in minimax optimization setting. The
specific connection between them can be found in Appendix C. The GQCC condition can be viewed
as an extension of the convexity-concavity condition in multi-variable optimization; it seamlessly
reduces to the convexity-concavity condition with f1(P(z), z) = f(z) and ψ1(z) ≡ 1, in the case
d = 1. Assuming every ψi is bounded, fi(P(z), zi) ≡ fi(0, zi) with Lipschitz continuous gradient
and is convex-concave with respect to zi, then finding the Nash equilibrium point of f is reduced to
finding the Nash equilibrium points of d independent convex-concave minimax problems. However,
how to find the approximate Nash equilibrium points in more general case has not been well-studied.
Most of existing work for minimax optimization without convex-concave assumption are focused on
finding the approximate stationary points.

4.2 Main Results

For simplicity, we denote by F x
i and F y

i the projection of F i in the xi and yi directions, respectively,
i.e., F⊤

i =
(
(F x

i )
⊤, (F y

i )
⊤). Given an objective function f : Z → R with internal operator F , our

algorithm (Algorithm 2) employs regularized OMD over each distribution independently basing on
F i and updates matrix Qt to track the behavior of function P iteratively. It’s worth noting that each
iteration of Algorithm 2 provides explicit expressions for xt

i and gti (see the proof of Theorem 3.5 in
Appendix B). Consequently, Algorithm 2 essentially operates as a single-loop algorithm.
Assumption 4.2. In Definition 4.1, we assume that matrix-valued function P has the form of
P(Qz, z) where Qz ∈ Rℓ×d depends on z, and P satisfies the following properties on region{
Q ∈ Rℓ×d

∣∣ ∥Q∥∞ ≤ C} × Z for some constant C > 0:

8



Algorithm 2 Optimistic Mirror Descent with Regularization for Multiple Distributions

Input:
{
z0
i

}d

i=1
=
{
g0
i

}d

i=1
={(1/ni, · · · , 1/ni), (1/mi, · · · , 1/mi)}di=1, {αt ≥ 0}Tt=1 with

∑T
t=1 αt = 1,

{γt ≥ 0}Tt=1, {λt ≥ 0}Tt=1, η and Q0 = 0.
Output: z̄T =

∑T
t=1 αtz

t.
1: while t ≤ T do
2: Qt = (1− βt−1)Q

t−1 + βt−1P(Qt−1,zt−1).
3: for all i ∈ [1 : d] do
4: xt

i = argmin
xi∈Xi

η
〈
F x

i (Q
t−1,zt−1

i ),xi

〉
+ γtKL

(
xi

∥∥(gx
i )

t−1
)
+ λtv(xi),

5: yt
i = argmin

yi∈Yi

η
〈
F y

i (Q
t−1,zt−1

i ),yi

〉
+ γtKL

(
yi

∥∥(gy
i )

t−1
)
+ λtv(yi),

6: (gx
i )

t = argmin
gx
i ∈Xi

η
〈
F x

i (Q
t,zt

i), g
x
i

〉
+ γtKL

(
gx
i

∥∥(gx
i )

t−1
)
+ λtv(g

x
i ),

7: (gy
i )

t = argmin
g
y
i ∈Yi

η
〈
F y

i (Q
t,zt

i), g
y
i

〉
+ γtKL

(
gy
i

∥∥(gy
i )

t−1
)
+ λtv(g

y
i ).

8: end for
9: t← t+ 1.

10: end while

[A1] There exist constants L1, L2 ≥ 0 such that F i(·, zi) is uniformly L1-Lipschitz continuous
with respect to ∥ · ∥∞ under ∥ · ∥∞, and F i(Q, ·) is uniformly L2-Lipschitz continuous with
respect to ∥ · ∥∞ under ∥ · ∥1.

[A2] There are a positive constant γ > 0 and a set of non-negative constant matrices
{Bi,Ci}di=1 satisfying

∥∥∑d
i=1(Bi + Ci)

∥∥
∞ ≤ γ, such that DP(Q,·,y)(x, x

′) ≤∑d
i=1 Ci⟨F x

i (Q, zi),xi − x′
i⟩ and DP(Q,x,·)(y,y

′) ≥
∑d

i=1 Bi⟨F y
i (Q, zi),y

′
i − yi⟩.

[A3] There exists θ ∈ [0, 1) such that P(·, z) is a θ-contraction mapping under ∥ · ∥∞, and
∥P(Q, z)∥∞ ≤ C for any z ∈ Z .

We present Lemma 4.3 to demonstrate that there exist Q∗ ∈ Rℓ×d, x∗ ∈ X and y∗ ∈ Y satisfy the
saddle point and fixed point conditions of function P, i.e., Eq. (11), under proper assumptions.

Lemma 4.3. Assuming that Assumption 4.2 holds, [P(Q, ·, ·)]k,j is continuous, convex with respect
to x, concave with respect to y for any (k, j), and mink,j,i

min{[Ci]k,j ,[Bi]k,j}
[Ci]k,j+[Bi]k,j

≥ C ′ for some C ′ > 0,

then there exist Q∗ ∈ Rℓ×d and z∗ ∈ Z such that

Q∗ = P(Q∗,x∗,y∗), Q∗ ≤ P(Q∗,x,y∗), and Q∗ ≥ P(Q∗,x∗,y). (11)

For Algorithm 2, we let βT,t = βt
∏T

j=t+1(1−βj) for any T ≥ t and βT,T = βT , and set parameters

c = 2(1− θ)−1, η ≤ (1− θ)1/2

16L2((γL1)1/2 + 1)
, βt =

c

c+ t
, αt = βT,t, γt =

αt−1

αt
, λt = 1− γt. (12)

Then we have the following convergence result by denoting M = maxi∈[1:d] {mi + ni}.
Theorem 4.4. For any generalized quasar-convex-concave function f which satisfies Assumption 4.2
with P ≡ Q∗, where Q∗ satisfies Eq. (11). Algorithm 2’s output z̄T = (x̄T , ȳT ) satisfies

Gf (x̄T , ȳT ) ≤ 60max
z∈Z

(
d∑

i=1

ψi(z)

)
(1− θ)−1

(
2

η
log(M) + ηL2

1 + L1Y
η
T

)
T−1,

where Y η
T = 8(c+ 1)[ 4γη log(M) + 160γL2 + 2ηγL2

1(1 + 64C2)](log(c+ T ) + 1).

Similar to minimization Algorithm 1, the iteration complexity of minimax Algorithm 2 linearly
depends on the upper bound of

∑d
i=1 ψi over Z . Generally, the upper bound of

∑d
i=1 ψi on Z

is related to d. In specific problems of multi-variable optimization (such as two-player zero-sum
Markov games), one can uniformly bound

∑d
i=1 ψi on Z by a constant.
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4.3 Application to Infinite Horizon Two-Player Zero-Sum Markov Games

In this section, we show how to leverage Algorithm 2 to achieve accelerated rates for optimizing
infinite horizon two-player zero-sum Markov games. Our algorithm use Õ(ε−1) iteration bound to
find an ε-approximate Nash equilibrium of infinite horizon two-player zero-sum Markov games.

As similar as the definition of discounted MDP in Preliminary, we utilizeM = (S,A,B,P, σ, θ, ρ0)
to define a infinite horizon two-player zero-sum Markov game. The difference here compared to
Section 3.3 is that the cost function σ is defined on S ×A×B with values in [0, 1], and the transition
model P(s|s′, a′, b′) denotes the probability of transitioning into state s upon player 1 taking action
a′ and player 2 taking action b′ in state s′. We can define the value function V z and action-value
function Qz on the joint distribution z = (x,y) ∈ Z =

∏|S|
i=1 ∆A ×

∏|S|
i=1 ∆B. The infinite horizon

two-player zero-sum Markov games consider the following policy optimization problem:

min
x∈X

max
y∈Y

Jx,y(ρ0), (13)

where Jz(ρ0) = Es0∼ρ0
[V z(s0)]. The following proposition indicates that Jz is general quasar

convex-concave, and satisfies Assumption 4.2 and the condition of Theorem 4.4,

Proposition 4.5. For any Q = (Q1, · · · ,Q|S|) with every Qi ∈ R|A|×|B|, define function
fi(Q, zi) := x⊤

i Qiyi for any i ∈ [1 : |S|]. There exists a tensor-valued function P such that
Jz(ρ0) satisfies GQCC condition with fi(P(z), zi) = fi(Q

∗, zi) for any ρ0 ∈ ∆S , where Q∗

satisfies the conditions mentioned in Eq. (11). Moreover, P satisfies Assumption 4.2.

According to Proposition 4.5 and Theorem 4.4, if we apply Algorithm 2 to the infinite horizon
two-player Markov games basing internal operator F i(Q, z) = (y⊤

i Q
⊤
i ,−x⊤

i Qi)
⊤ for block zi

with parameter selection Eq. (12), which is actually a variant of optimistic gradient descent/ascent for
Markov games [67], then the iterations T we need to find an ε-approximate Nash equilibrium is upper-
bounded by Õ((1− θ)−2.5ε−1). To the best of our knowledge, our iteration bound matches state-of-
the-art iteration bound and is a factor of (1−θ)−1.5|S| better than Õ((1−θ)−4|S|ε−1) bound of Cen
et al. [10]. Since the upper bound of

∑|S|
i=1 ψi over feasible region Z in infinite horizon two-player

zero-sum Markov games’ setting satisfies
∑|S|

i=1 ψi(z) ≤
∑|S|

i=1[d
x,y∗(x)
ρ0

(si) + d
x∗(y),y
ρ0

(si)] ≤ 2
for any z ∈ Z , our algorithm’s iteration bound does not depend on the size of states.

5 Conclusion

In this work, we introduce two function structures: GQC and GQCC and provide related algorithmic
frameworks with convergence result. To complement our result, we also show that discounted MDP
and infinite horizon two-player zero-sum Markov games admit the GQC and GQCC condition,
respectively, and satisfy our mild assumptions.
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A Preliminary

A.1 Supplemental Notation

For simplicity, we denote g(Γ) :=
∑∞

k=1 Γ
−k[k7 + (k + 1) exp{2k}], the chi-squared divergence

between p, q as χ2(p∥q) :=
∑n

j=1
(p(j)−q(j))2

q(j) , Ep(x) :=
∑n

j=1 p(j)x(j) and Varp(x) :=∑n
j=1 p(j) · (x(j)− Ep(x))

2 for any p, q ∈ ∆n and x ∈ Rn. For ζ > 0, n ∈ Z+, we say
that a sequence of distributions p1, · · · ,pT ∈ ∆n is ζ-consecutively close if for each 1 ≤ t < T , it
holds that max

{∥∥∥ pt

pt+1

∥∥∥ ,∥∥∥pt+1

pt

∥∥∥} ≤ 1 + ζ. For positive scalar θ ∈ [0, 1), non-negative integers t

and T , we define βθ
T,t := βt

∏T−1
j=t (1− βj + θβj), and βθ

T,T = 1.

A.2 Finite Differences

Definition A.1 (Finite Differences). For a sequence of vectors L = (L0, · · · ,LT ) where each
Lt ∈ Rn, and integers h ∈ Z+, the order-h finite difference sequence for the sequence L is denoted
by DhL :=

(
(DhL)

0, · · · , (DhL)
T−h

)
recursively with (D0L)

t := Lt for all t ∈ [0 : T ], and

(DhL)
t := (Dh−1L)

t+1 − (Dh−1L)
t, (14)

for all h ≥ 1 and t ∈ [1 : T − h].

As stated in [15, Remark 4.3], we have

(DhL)
t =

h∑
s=0

(
h
s

)
(−1)h−sLt+s. (15)

To guarantee the coherence of the analysis’s structure, we introduce the definition of the shift operator
Es as follows:

Definition A.2 (Shift Operator). For a sequence of vectors L = (L0, · · · ,LT ) where each Lt ∈ Rn,
and integers s ∈ Z+, the s-shift sequence for the sequence L is denoted by EsL :=

(
(EsL)

0, · · · ,
(EsL)

T−h
)

with (EsL)
t = Lt+s for t ∈ [1 : T − s].

A.3 Finite Horizon Markov Decision Process

We also consider the following finite horizon Markov decision process (MDP), denoted byM :=
(H,S1:H ,A1:H ,P2:H , σ,ρ1). H ∈ Z+ denotes the number of horizon; S1:H = (S1, · · · ,SH) is a
sequence of H finite state spaces; A1:H = (A1, · · · ,AH) is a sequence of H finite action spaces;
Ph(sh|sh−1, ah−1) denotes the probability of transitioning from sh−1 to sh under playing action
ah−1 at horizon h− 1; σ : S1:H ×A1:H → [0, 1]is a cost function; ρ1 is a initial state distribution
over S1.

π = (π1, · · · ,πH) : S1:H → ∆A1 × · · · × ∆AH
denotes a stochastic policy. Similarly, we

use Pr
π1:h−1

h (s′|s) = Pr
π1:h−1

h (sh = s′|s1 = s) to denote the probability of visiting the state s′

from the state s at horizon h according to policy π1:h−1. Let trajectory τ = (sh, ah)
H
h=1, where

s1 ∼ ρ1, and, for all subsequent horizon h, ah ∼ πh(·|sh) and sh+1 ∼ Ph+1(·|sh, ah). The value
function V πh:H

h : Sh → R is defined as the sum of future cost starting at state sh and executing
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Algorithm 3 Optimistic Mirior Descent for Multi-Variables

Input:
{
g0i = x0

i

}d
i=1

, η and T .
Output: Randomly pick up t ∈ {1, · · · , T} following the probability P[t] = 1/T and return xt.
1: while t ≤ T do
2: for all i ∈ [1 : d] do
3: xt

i = argmin
xi∈Xi

η
〈
F i(x

t−1),xi

〉
+ V

(
xi, g

t−1
i

)
,

4: gti = argmin
gi∈Xi

η ⟨F i(x
t), gi⟩+ V

(
gi, g

t−1
i

)
.

5: end for
6: t← t+ 1.
7: end while

πh:H = (πh, · · · ,πH), i.e.,

V πh:H

h (sh) = E

[
H∑

h′=h

σ(sh′ , ah′)

∣∣∣∣∣πh:H , sh

]
.

For convenience, we define V π
1 (s1) = V π1:H

1 (s1). Moreover, we define the action-value function
Q

πh+1:H

h : Sh ×Ah → [0, 1 +H − h] as follows:

Q
πh+1:H

h (sh, ah) = σ(sh, ah) + E

[
H∑

h′=h+1

σ(sh′ , ah′)

∣∣∣∣∣πh+1:H , sh, ah

]
.

B Minimization Optimization

We begin with a general version of Theorem 3.2 basing Algorithm 3 in this part.
Theorem B.1. [General Version of Theorem 3.2] We consider the divergence-generating function
v with Bregman’s divergence V (xi,ui) = v(xi) − v(ui) − ⟨∇v(ui),xi − ui⟩ for any block Xi

and any xi,ui ∈ Xi. Assuming that F is L-Lipschitz continuous with respect to ∥ · ∥∗ under ∥ · ∥,
V (xi,ui) ≥ ∥xi − ui∥2 for any xi,ui ∈ Xi and γmax = maxi∈[1:d] γi <∞, we have

1

T

T∑
t=1

(f(xt)− f(x∗)) ≤
2L (dγmax)

1/2
(∑d

i=1 γ
−1
i

)3/2
T

max
i∈[1:d]

[
max
xi∈Xi

V (xi, g
0
i )

]
, (16)

with setting η = (L2dγmax
∑d

i=1 γ
−1
i )−1/2/2.

Proof. According to GQC condition (Definition 3.1), we have the following estimation

T∑
t=1

(f(xt)− f(x∗)) ≤
d∑

i=1

1

γi

T∑
t=1

〈
F i(x

t),xt
i − x∗

i

〉
. (17)

For any fixed i ∈ [1 : d], we obtain that

⟨F i(x
t),xt

i − x∗
i ⟩ = ⟨F i(x

t)− F i(x
t−1),xt

i − gti⟩︸ ︷︷ ︸
I

+ ⟨F i(x
t−1),xt

i − gti⟩︸ ︷︷ ︸
II

+ ⟨F i(x
t), gti − x∗

i ⟩︸ ︷︷ ︸
III

(18)

Since F is L-Lipschitz continuous with respect to ∥ · ∥∗ under ∥ · ∥, we have following estimation of
I by using Cauchy-Schwarz inequality

I ≤ L2η

2

∥∥xt − xt−1
∥∥2 + 1

2η

∥∥xt
i − gti

∥∥2 . (19)
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In addition, utilizing the result of [Lemma 3.4, [34]] on step-3 and step-4 of Algorithm 3, we have

II ≤1

η

[
V
(
gti, g

t−1
i

)
− V

(
gti,x

t
i

)
− V

(
xt
i, g

t−1
i

)]
, (20)

III ≤1

η

[
V
(
x∗
i , g

t−1
i

)
− V

(
x∗
i , g

t
i

)
− V

(
gti, g

t−1
i

)]
. (21)

Therefore, by applying Eq. (19), (20) and (21) into Eq. (18), we obtain
T∑

t=1

⟨F i(x
t),xt

i − x∗
i ⟩ ≤

1

η
V (x∗

i , g
0
i ) +

T∑
t=1

[
L2η

2

∥∥xt − xt−1
∥∥2 + 1

2η

∥∥xt
i − gti

∥∥2]

− 1

η

T∑
t=1

V (gti,x
t
i)−

1

η

T∑
t=1

V (xt
i, g

t−1
i )

≤
(a)

1

η
V (x∗

i , g
0
i ) +

L2η

2

T∑
t=1

∥∥xt − xt−1
∥∥2

− 1

2η

T∑
t=1

∥∥gti − xt
i

∥∥2 − 1

2η

T∑
t=1

∥∥xt
i − gt−1

i

∥∥2
≤
(b)

1

η
V (x∗

i , g
0
i ) +

1

2η

∥∥g0i − x0
i

∥∥2 + L2η

2

T∑
t=1

∥∥xt − xt−1
∥∥2

− 1

4η

T∑
t=1

∥∥xt
i − xt−1

i

∥∥2 , (22)

where (a) is derived from the assumption that V (xi,ui) ≥ ∥xi − ui∥2 for any xi,ui ∈ Xi and (b)
follows from the convexity of ∥ · ∥. Applying Eq. (22) to Eq. (17), we have

T∑
t=1

(f(xt)− f(x∗)) ≤
(c)

1

η

d∑
i=1

V (x∗
i , g

0
i )

γi
+
L2η

2

(
d∑

i=1

γ−1
i

)
T∑

t=1

∥∥xt − xt−1
∥∥2

− 1

4η

T∑
t=1

[
d∑

i=1

∥∥xt
i − x

t−1
i

∥∥2
γi

]

≤
(d)

∑d
i=1 γ

−1
i

η
max
i∈[1:d]

[
max
xi∈Xi

V (xi, g
0
i )

]
−

(
1

4dηγmax
− L2η

2

d∑
i=1

γ−1
i

)
T∑

t=1

∥∥xt − xt−1
∥∥2 , (23)

where (c) is derived from the fact that g0i = x0
i for any i ∈ [1 : d] and (d) follows from the convexity

of ∥ · ∥ ( 1d
∑d

i=1 ∥xi∥2 ≤ ∥ 1d
∑d

i=1 xi∥2).

Since KL divergence satisfies KL(xi∥ui) ≥ ∥xi − ui∥21 (Pinsker’s inequality), Theorem 3.2 can be
directly derived from Theorem B.1. Next, we propose Proposition B.2 and provide related proof.

Proposition B.2. We denote N =
∑d

i=1 ni and let a smooth vector-valued function F : RN → Rℓ

satisfies:

1. There is a point y ∈ RN such that ∥DαF (y)∥∞ ≤ γk with |α| = k for all k ∈ [0 : K],

2. For any positive integer k greater than K, ∥DαF ∥∞ ≤ γk with |α| = k uniformly over X ,

with a positive constant γ and a positive integer K, then F satisfies Assumption 3.3.

Proof of Proposition B.2. For any k ∈ Z+ and j ∈ [1 : l], we have

P
F (j)
k,y (x) ≤

k∑
i=0

∑
|α|=i

γi

α!
· (|x|+ |y|)α =

k∑
i=0

[γ(d+ ∥y∥1)]i

i!
≤ exp{γ(d+ ∥y∥1)}, (24)
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using the fact that ∥DαF (y)∥∞ ≤ γk for any k ∈ Z+ and |α| = k. In addition, by the Taylor
expansion of F (j) with Lagrange remainder formula for any j ∈ [1 : l] and k > 1, we can obtain

∣∣∣RF (j)
k,y (x)

∣∣∣ =
∣∣∣∣∣∣
∑
|α|=k

DαF (j)(y + t(x− y))
α!

(x− y)α
∣∣∣∣∣∣ ≤ [γ(d+ ∥y∥1)]k

k!
, (25)

where t ∈ [0, 1] depends on F (j),x and y. Letting k0 = ⌈3γ(d + ∥y∥1)⌉ and supposing k ≥
k0

(
1 + log(1+γ(d+∥y∥1))

log(3/2)

)
, we derive that

[γ(d+ ∥y∥1)]k

k!
≤ 3k0−k. (26)

Therefore, in the light of Eq. (24), Eq. (25) and Eq. (26), it’s direct to derive that F statisfies
Assumption 3.3 with K0 = k0

(
1 + log(1+γ(d+∥y∥1))

log(3/2)

)
, θ = 1

3 , Θ1 = 3k0 and Θ2 = exp{γ(d +
∥y∥1)}.

The following remark discusses the reasonability of Proposition B.2 conditions, which supports the
reasonability of Assumption 3.3.

Remark B.3. Since region X =
∏d

i=1 ∆ni
is bounded, it’s reasonable to assume that the growth rate

of the upper bound of internal function’s high-order derivatives is not faster than linear growth rate.
For example, the upper bounds of high-order derivatives of sin(Cx), cos(Cx) and exp{Cx} have
linear growth rate over X for fixed constant C. Therefore, if the internal function F can be generated
by the linear combination of {sin(Ckx)}Kk=1 and {cos(Ckx)}Kk=1 (or {exp{Ckx}}Kk=1) with finite
K, F satisfies Assumption 3.3 by using Proposition B.2.

B.1 Proof of Theorem 3.5

We briefly introduce our techniques to make the proof of Theorem 3.5 more comprehensible
in this part. Our proof consists of two ingredients. The first is applying Lemma B.4 to con-
struct a variant upper bound of average function error 1

T

∑T
t=1(f(x

t) − f(x∗)) that is differ-
ent from the upper bound derived from the classical OMD algorithm. This bound is com-
posed of a) O

(
1
ηT

)
invariant error and b) weighted sum of the variance for finite difference

sequence {(D1F i(x
t−1)}Tt=1 and {(D0F i(x

t−1)}Tt=1 over i ∈ [1 : d], which has the form of∑d
i=1

1
γi
[O(1)

T

∑T
t=1 Varxt

i
(D1F i(x

t−1))− O(1)
T

∑T
t=1 Varxt

i
(F i(x

t−1))]. The second is applying
Lemma D.7 (refer to it as control lemma) on each {F i(x

t)}Tt=1 to bound (b) by a quantity that grows
poly-logarithmically in T . Therefore, it’s necessary to leverage Theorem B.5 and Lemma B.7 to show
that every sequence {F i(x

t)}Tt=0 outputted by Algorithm 1 satisfies the preconditions of Lemma
D.7.

B.1.1 Part I

The next Lemma B.4 provides a variant convergence proof of the OMD algorithm. In this Lemma,
basing on KL divergence, an explicit expression for the optimal solution of the OMD sub-problem is
utilized to provide an upper bound of

∑T
t=1 (f(x

t)− f(x∗)).

Lemma B.4. Suppose ∥F (x)∥∞ ≤ Θ (Θ ≥ 1) for any x ∈ X and policy set {xt}Tt=1 follows the
iteration of Algorithm 1 with step size η ∈ (0, 1

32Θ ). Then, it holds that

T∑
t=1

(
f(xt)− f(x∗)

)
≤

d∑
i=1

1

γi

[
log(ni)

η
+ ĝ1(ηΘ)ηΘ2

T∑
t=1

Varxt
i

(
F i(x

t)− F i(x
t−1)

)
−ĝ2(ηΘ)ηΘ2

T∑
t=1

Varxt
i
(F i(x

t−1))

]
, (27)

where ĝ1(η) := 1
2 + 64

(
1

3(1−16η) + 2
)
η and ĝ2(η) := 1

2 − 16
(

1
3(1−16η) + 2

)
η.
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Proof. As claimed by Definition 3.1, we have the following estimation

T∑
t=1

(f(xt)− f(x∗)) ≤
d∑

i=1

1

γi

T∑
t=1

〈
F i(x

t),xt
i − x∗

i

〉
. (28)

In the following, considering a fixed i ∈ [1 : d], it’s easy to obtain that

⟨F i(x
t),xt

i − x∗
i ⟩ = ⟨F i(x

t)− F i(x
t−1),xt

i − gti⟩︸ ︷︷ ︸
I

+ ⟨F i(x
t−1),xt

i − gti⟩︸ ︷︷ ︸
II

+ ⟨F i(x
t), gti − x∗

i ⟩︸ ︷︷ ︸
III

(29)

Recall the update of Algorithm 1 can be devided into two parts:

gti =arg min
gi∈∆ni

η
〈
F i(x

t), gi
〉
+KL(gi∥gt−1

i ), (30)

xt+1
i =arg min

xi∈∆ni

η
〈
F i(x

t),xi

〉
+KL(xi∥gti), (31)

for any i ∈ [1 : d] where g0i ∝ x0
i · exp{η(F i(x

0)− F i(x
−1))} and x−1

i = x0
i =

(
1
ni
, · · · , 1

ni

)⊤
.

According to Cauchy-Schwarz inequality, we can evaluate I as follows

I ≤
∥∥gti − xt

i

∥∥∗
xt

i

·
√
Varxt

i
(F i(xt)− F i(xt−1)). (32)

In addition, utilizing the result of Lemma D.2, we have

II =
1

η

[
KL
(
gti||gt−1

i

)
−KL

(
gti∥xt

i

)
−KL

(
xt
i∥gt−1

i

)]
, (33)

III =
1

η

[
KL
(
x∗
i ∥gt−1

i

)
−KL

(
x∗
i ∥gti

)
−KL

(
gti∥gt−1

i

)]
. (34)

Therefore, by applying Eq. (32), (33) and (34) into Eq. (29), we obtain

T∑
t=1

⟨F i(x
t),xt

i − x∗
i ⟩ ≤

1

η
KL(x∗

i ∥g0i ) +
T∑

t=1

∥gti − xt
i∥∗xt

i
·
√
Varxt

i
(F i(xt)− F i(xt−1))

− 1

η

T∑
t=1

KL(gti∥xt
i)−

1

η

T∑
t=1

KL(xt
i∥gt−1

i ). (35)

Since there is a vector F i(x
t)− F i(x

t−1) such that for any j ∈ [1 : ni]

gti(j) =
xt
i(j) exp

{
η
(
F i(j)(x

t)− F i(j)(x
t−1)

)}∑ni

j′=1 x
t
i(j

′) exp {η (F i(j′)(xt)− F i(j′)(xt−1))}
, (36)

we have that

max
i∈[1:d]

∥∥∥∥gtixt
i

∥∥∥∥
∞
≤ exp{2η

∥∥F i(x
t)− F i(x

t−1)
∥∥
∞} ≤ exp{4ηΘ} ≤ 1 + 8ηΘ, (37)

and

max
i∈[1:d]

∥∥∥∥ xt
i

gt−1
i

∥∥∥∥
∞
≤ exp{2η∥F i(x

t−1)∥∞} ≤ exp{2ηΘ} ≤ 1 + 4ηΘ,

with combining Eq. (31) and choosing proper η such that ηΘ ≤ 1
4 . According to Lemma D.3, we

have

KL(gti∥xt
i) ≥

(
1− 8ηΘ

2
− 16ηΘ

3(1− 8ηΘ)

)
X 2(gti,x

t
i),

KL(xt
i∥gt−1

i ) ≥
(
1− 4ηΘ

2
− 8ηΘ

3(1− 4ηΘ)

)
X 2(xt

i, g
t−1
i ),

(38)
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for any i ∈ [1 : d]. Noting that X 2(ρ, µ) =
(
∥ρ− µ∥∗µ

)2
, in the light of Lemma D.4, we derive that

X 2(gti,x
t
i) ≤

(
1 + 32

(
1

3(1− 16ηΘ)
+ 2

)
ηΘ

)
(ηΘ)2Varxt

i

(
F i(x

t)− F i(x
t−1)

)
,

X 2(gti,x
t
i) ≥

(
1− 32

(
1

3(1− 16ηΘ)
+ 2

)
ηΘ

)
(ηΘ)2Varxt

i

(
F i(x

t)− F i(x
t−1)

)
,

(39)

as long as ηΘ ≤ 1
32 . There exists a similar lower bound with respect to X 2(xt

i, g
t−1
i )

X 2(xt
i, g

t−1
i ) ≥

(
1− 16

(
1

3(1− 8ηΘ)
+ 2

)
ηΘ

)
(ηΘ)2Vargt−1

i
(F i(x

t−1))

≥
(
1− 16

(
1

3(1− 8ηΘ)
+ 2

)
ηΘ

)
(ηΘ)2 exp{−2ηΘ}Varxt

i
(F i(x

t−1))

≥
(a)

(
1− 16

(
1

3(1− 8ηΘ)
+ 3

)
ηΘ

)
(ηΘ)2Varxt

i
(F i(x

t−1)), (40)

where (a) is derived from exp{−2ηΘ} ≥ 1− 4ηΘ for any ηΘ ≤ 1
32 . Relying on Eq. (35), Eq. (38)-

(40), we conclude that
T∑

t=1

〈
F i(x

t),xt
i − x∗

i

〉
≤ log(ni)

η
+

(
1 + 32

(
1

3(1− 16ηΘ)
+ 2

)
ηΘ

)
ηΘ2

T∑
t=1

Varxt
i

(
F i(x

t)− F i(x
t−1)

)
−
(
1

2
−
(

32

3(1− 16ηΘ)
+ 36

)
ηΘ

)
ηΘ2

T∑
t=1

Varxt
i

(
F i(x

t)− F i(x
t−1)

)
−
(
1

2
−
(

16

3(1− 8ηΘ)
+ 27

)
ηΘ

)
ηΘ2

T∑
t=1

Varxt
i
(F i(x

t−1))

≤ log(ni)

η
+

(
1

2
+ 64

(
1

3(1− 16ηΘ)
+ 2

)
ηΘ

)
ηΘ2

T∑
t=1

Varxt
i

(
F i(x

t)− F i(x
t−1)

)
−
(
1

2
− 16

(
1

3(1− 16ηΘ)
+ 2

)
ηΘ

)
ηΘ2

T∑
t=1

Varxt
i
(F i(x

t−1)). (41)

Finally, applying the estimation Eq. (41) to Eq. (28), we complete the proof.

B.1.2 Part II

Basing on the conclusion of Lemma B.4, if the finite sum of Varxt
i
(F i(x

t) − F i(x
t−1)) can be

controlled by the finite sum of Varxt
i
(F i(x

t−1)) with aO(poly(log(T ))) constant for each i ∈ [1 : d],
the final convergence result can be obtained directly. Hence, to demonstrate this relationship, we
require the assistance of auxiliary Lemma D.7. Our initial step is to prove that F i(x

t) satisfies the
first condition in Lemma D.7 for any i ∈ [1 : d].
Theorem B.5. Assuming f satisfies GQC condition and Assumption 3.3 holds, xt follows the
iteration of Algorithm 1, we set β ∈

(
0, 1

(Θ1+Θ2+1)(H+3)

)
, Γ ≥ e2 + 322560Θ2, K̂ ≥ max{K0,

H log(4β−1)+log(Θ1)
log(θ−1) } and η = β

6e3K̂Γmax{Θ,1} . Then, the following finite difference bound with

respect to {F i(x
t)}di=1 holds

max
i∈[1:d]

∥∥(DhF i(x))
t0
∥∥
∞ ≤ β

hh3h+1, (42)

for all h ∈ [1 : H] and t0 ∈ [0 : T − h]. Without loss of generality, we require that H does not
exceed T .
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Proof of Theorem B.5. According to the Taylor expansion of each component k of F i at y, one can
notice that∣∣∣(DhF i(k)(x))

t0
∣∣∣ ≤ K̂∑

j=0

∑
|α|=j

|DαF i(k)(y)|
α!

∣∣(Dh(x− y)α)t0
∣∣+ ∣∣∣∣(DhR

F i(k)

K̂,y
(x)
)t0∣∣∣∣ , (43)

for any K̂ ∈ Z+. Therefore, setting K̂ ≥ max
{

H log(4β−1)+log(Θ1)
log(θ−1) ,K0

}
and combining the remark

Eq. (15) of operator Dh in Appendix A.2, we can guarantee the validity of the following estimation∣∣∣∣(DhR
F i(k)

K̂,y
(x)
)t0∣∣∣∣ ≤ 2h max

x∈X

∣∣∣RF i(k)

K̂,y
(x)
∣∣∣ ≤ Θ12

hθK̂ ≤ 1

2
βH ≤ 1

2
βHhBh+1, (44)

for any h ∈ [1 : H]. Moreover, as stated by Assumption 3.3, we obtain max
i∈[1:d]

∥F i(x)∥∞ ≤ Θ1+Θ2

for any x ∈ X . Suppose that max
i∈[1:d]

∥(Dh′F i(x))
t0∥∞ ≤ βh′

h′Bh′+1 holds for any h′ ∈ [1 : h] and

t0 ∈ [0 : T − h′], we deduce∣∣(Dh+1F i(k)(x))
t0
∣∣ ≤g(Γ)βh+1(h+ 1)B(h+1)+1P

F i(k)

K̂,y
(xt0) +

1

2
βh+1(h+ 1)B(h+1)+1

≤
(
1

2
+ g(Γ)Θ2

)
βh+1(h+ 1)B(h+1)+1 ≤ βh+1(h+ 1)B(h+1)+1,

(45)

by using Lemma B.6 with p(x) := |DαF i(k)(y)|
α! (x − y)α and the fact that g(Γ)Θ2 ≤ 1

2 (which
can be derived from Lemma D.1). Therefore, to apply mathematical induction, it suffices to
prove that max

i∈[1:d]
∥(Dh′F i(x))

t0∥∞ ≤ βh′
h′Bh′+1 holds when h′ = 1. Observe that Lemma

B.6 holds in the case h = 0. Thus, we can obtain Eq. (45) for h = 0 as well. Hence, we have
max
i∈[1:d]

∥(D1F i(x))
t0∥∞ ≤ β.

The proof of Theorem B.5 relies on the next Lemma B.6.
Lemma B.6. Assume max

i∈[1:d]
∥F i(x)∥∞ ≤ Θ for any x ∈ X and each element in ut belongs to

one of the d probability distributions generated by Algorithm 1 with η ≤ β

6e3ΓK̂ max{Θ,1} for some

Γ > 1, K̂ ≥ K in iteration t, and consider positive constants B ≥ 3, β ∈
(
0, 1

(Θ+1)(H+3)

)
and polynomial function p(u) := C

∏K
k=1(u(k) − y(k)) where u := (u(1), · · · ,u(K))⊤ and

y := (y(1), · · · ,y(K))⊤ ∈ RK is a fixed point. Given h ∈ [1 : H − 1], we derive that∣∣(Dh+1p(u))
t0
∣∣ ≤ g(Γ)C K∏

k=1

(ut0(k) + |y(k)|)βh+1(h+ 1)B(h+1)+1, (46)

if the condition max
i∈[1:d]

∥(Dh′F i(x))
t0∥∞ ≤ βh′

h′Bh′+1 holds for any h′ ∈ [1 : h] and t0 ∈ [0 :

T − h′].

Proof. Drawing on the premises outlined in the lemma, we assume that each u(k) corresponds to a
unique xi(k)(j(k)). According to the iteration of Algorithm 1, we can obtain

ut+1(k) =
xt
i(k)(j(k)) · exp

{
η ·
(
2F i(k)(j(k)) (x

t)− F i(k)(j(k))
(
xt−1

))}∑ni(k)

j=1 x
t
i(k)(j) · exp

{
η ·
(
2F i(k)(j) (xt)− F i(k)(j) (xt−1)

)} ,

=
ut(k) · exp

{
η ·
(
2F i(k)(j(k)) (x

t)− F i(k)(j(k))
(
xt−1

))}∑ni(k)

j=1 x
t
i(k)(j) · exp

{
η ·
(
2F i(k)(j) (xt)− F i(k)(j) (xt−1)

)} , (47)

for any k ∈ [1 : K] and t ∈ [1 : T − 1]. Given the sequence x1, · · · ,xt0+h generated by Algorithm
1, it is straightforward to derive that

ut0+t+1(k) = (Nk
u)

−1ut0(k) · exp{η · (F i(k)(j(k))(x
t0+t) +

t∑
t′=0

F i(k)(j(k))(x
t0+t′)

− F i(k)(j(k))(x
t0−1))}, (48)
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for any k ∈ [1 : K], t0 ∈ [1 : T − h − 1] and t ∈ [1 : h], where Nk
u =

∑ni(k)

j=1 x
t0
i(k)(j) · exp{η ·

(F i(k)(j)(x
t0+t) +

∑t
t′=0 F i(k)(j)(x

t0+t′)− F i(k)(j)(x
t0−1))}. We write

rtt0,k := F i(k)(x
t0+t−1) +

t−1∑
t′=0

F i(k)(x
t0+t′)− F i(k)(x

t0−1). (49)

Also, for a vector z ∈ Rni(k) and an index j ∈ [1 : ni(k)], define

ψj
t0,k

(z) =
exp{z(j)}∑ni(k)

j′=1 x
i(k)
t0 (j′) · exp {z(j′)}

, (50)

so that ut0+t(k) = xt0
i(k)(j(k)) · ψ

j(k)
t0,k

(
ηrtt0,k

)
= ut0(k) · ψj(k)

t0,k

(
ηrtt0,k

)
for t ≥ 1. For conve-

nience, we denote that D :=
{
α ∈ NK |α(i) ∈ {0, 1},∀ i ∈ [1 : K]

}
and e := (1, · · · , 1) ∈ NK . In

particular, for any α ∈ D, we have∣∣∣(Dh′(ue−α)
)t0∣∣∣ ≤ (ut0)e−α

∣∣∣(Dh′(ψt0(ηrt0))
e−α

)0∣∣∣︸ ︷︷ ︸
I(α,h′,t0)

, (51)

whereψt0(ηr
t
t0) :=

(
ψ

j(1)
t0,1

(ηrtt0,1), · · · ,ψ
j(K)
t0,K

(ηrtt0,K)
)

, h′ ∈ [1 : h+1] and t0 ∈ [1 : T −h−1].

It is important to observe that the finite difference in Eq. (51) pertains specifically to ψj(k)
t0,k

(ηrtt0,k).
Notice that

(D1rt0,k)
t
= 2(E1F i(k)(x))

t0+t−1 − F i(k)(x
t0+t−1), (52)

for any t ∈ [0 : h]. Therefore, for any h′ ∈ [1 : h+ 1], we obtain

(Dh′rt0,k)
t
= 2

(
E1Dh′−1

(
F i(k)(x)

))t0+t−1 −
(
Dh′−1

(
F i(k)(x)

))t0+t−1
, (53)

for any t ∈ [0 : h+1−h′]. Because the step size η satisfies η ≤ β

6e3ΓK̂ max{Θ,1} ,
∥∥∥(D0ηrt0)

t
∥∥∥
∞
≤

ηHΘ ≤ 1
6e3ΓK̂

and max
i∈[1:d]

∥∥∥(Dh′F i(x))
t0
∥∥∥
∞
≤ βh′

h′Bh′+1 for all h′ ∈ [1 : h], the following

estimation holds ∥∥∥(Dh′+1ηrt0)
0
∥∥∥
∞
≤ 1

2e2ΓK̂
βh′+1(h′ + 1)B(h′+1), (54)

for any h′ ∈ [0 : h] by using Eq. (53) where rtt0 :=
(
rtt0,1(j(1)), · · · , r

t
t0,K

(j(K))
)
. By Lemma

D.5 and Lemma D.6, we have
I(α, h+ 1, t0) ≤ g(Γ)βh+1(h+ 1)B(h+1)+1. (55)

Noting that

p(u) = C

K∑
i=0

(−1)i
 ∑

α∈D:|α|=i

yαue−α

 , (56)

and applying bound Eq. (55) to Eq. (50), we can derive∣∣∣(Dh+1p(u))
t0
∣∣∣ =

(a)
|C|

∣∣∣∣∣∣
K∑
i=0

(−1)i
 ∑

α∈D:|α|=i

yα
h+1∑
h′=1

(
h+ 1

h′

)
(−1)h

′
(ut0+h′

)e−α

∣∣∣∣∣∣
≤|C|

K∑
i=0

∑
α∈D:|α|=i

|y|α
∣∣∣(Dh+1

(
ue−α

))t0∣∣∣
≤|C|

K∑
i=0

∑
α∈D:|α|=i

|y|α(ut0)e−αg(Γ)βh+1(h+ 1)B(h+1)+1

≤g(Γ)βh+1(h+ 1)B(h+1)+1C

K∏
k=1

(ut0(k) + |y(k)|), (57)

for any t0 ∈ [1 : T − h − 1] where (a) is derived from the equivalent expression Eq. (56) of the
polynomial p(u) and Eq. (15) of the finite difference (Dhf(x))

t0 w.r.t function f respectively.
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Recalling that we set parameters as follows

T ≥ 4, H := ⌈log(T )⌉, β =
1

8(Θ1 +Θ2 + 1)H7/2
, Γ = e2 + 322560Θ2,

K̂ = max

{
H log(4β−1) + log(Θ1)

log(θ−1)
,K0

}
, η =

β

6e2K̂Γ
, B ≥ 3,

(58)

According to Theorem B.5, we have max
i∈[1:d]

∥∥∥(DhF i(x))
t
∥∥∥
∞
≤ βhH3h+1 for each h ∈ [0 : H] and

t ∈ [1 : T − h]. We are now prepared to prove that xt
i satisfies the second condition of Lemma D.7.

Lemma B.7. The sequence {xt
i}Tt=1 which has been generated from Algorithm 1 is 7η(Θ1 +Θ2)−

consecutively close when H ≥ 1, β0 = (4H)−1 and η ∈ (0, β4
0(Θ1 +Θ2 + 1)−1/57792].

Proof. According to the iteration of Algorithm 1, we have

xt+1
i (k) =

xt
i(k) · exp{η · (2F i(k)(x

t)− F i(k)(x
t−1))}∑ni

k′=1 x
t
i(k

′) · exp{η · (2F i(k′)(xt)− 2F i(k′)(xt−1))}
, (59)

for any i ∈ [1 : d] and k ∈ [1 : ni]. Therefore, for any i ∈ [1 : d] and t ∈ [1 : T − 1], we obtain

max

{∥∥∥∥ xt
i

xt+1
i

∥∥∥∥
∞
,

∥∥∥∥xt+1
i

xt
i

∥∥∥∥
∞

}
≤ exp{6η(Θ1 +Θ2)} =

(a)
(1 + 7η(Θ1 +Θ2)), (60)

where (a) is derived from the fact that exp(x) ≤ 1 + 7
6x for x ∈ [0, 1/24].

B.1.3 The Last Step

With the preparatory work for proving Theorem 3.5 is completed, we now turn to providing the final
proof:

Proof of Theorem 3.5. Applying Theorem B.5 and Lemma B.7 to Lemma D.7, we have

T∑
t=1

Varxt
i
(F i(x

t)− F i(x
t−1)) ≤ 2β0

T∑
t=1

Varxt
i
(F i(x

t−1)) + 165120Θ2(1 + 7ηΘ)H5 + 2.

(61)

According to the result of Lemma B.4, we obtain

T∑
t=1

(f(xt)− f(x∗)) ≤
d∑

i=1

1

γi

[
log(ni)

η
−
(
ĝ2(ηΘ)ηΘ2 − 2β0ĝ1(ηΘ)ηΘ2

) T∑
t=1

Varxt
i
(F i(x

t))

]

+ ĝ1(ηΘ)ηΘ2
d∑

i=1

1

γi
[8β0Θ

2 + 165120Θ2(1 + 7ηΘ)H5 + 2]. (62)

Combining Assumptions 3.3 and parameters selection Eq. (7), we complete the proof.

B.2 Simple Example

In this section, we provide the proof of Example 3.4 which satisfies GQC condition and Assumption
3.3.

Proof of Example 3.4. Recalling the objective function f(p,P) = 1
2Ex,y(

∑m
i=1 piσ(x

⊤Pi)− y)2,
we have

f(p∗,P)− f(p,P) ≥ ⟨F p(p,P),p∗ − p⟩ , (63)
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since f(·,P) is convex for any fixed P. In addition, we obtain

f(p∗,P∗)− f(p∗,P) =− 1

2
E
[
(σ(x⊤P1)− σ(x⊤P∗

1))
2
]

(a)
≥BC

2
E
[
⟨σ(x⊤P1)− σ(x⊤P∗

1),x
⊤(P∗

1 −P1)⟩
]

=
BC

2
E
[
(σ(x⊤P∗

1)− y)x,P∗
1 −P1

]
, (64)

where BC is a constant depends on C and (a) is derived from the fact that BC ⟨exp{x1} −
exp{x2}, x1 − x2⟩ ≥ | exp{x1} − exp{x2}|2 for any x1, x2 ∈ [−C,C]. Therefore, summing
up Eq. (63) and Eq. (64), we have that f satisfies GQC condition with the internal functions
F p = {E[(

∑m
j=1 pjσ(x

⊤Pj) − y)]σ(x⊤Pi)}mi=1 for block p and FPi
= E

[
(σ(x⊤Pi)− y)x

]
for block Pi. Notice that γp = 1, γP1

= BC

2 and γPi
= 0 for any i ̸= 1. Furthermore, we

have ∥DαF p(·)∥∞ ≤ 2 exp{C}(2C)|α| and ∥DαFPi(·)∥∞ ≤ exp{C}C |α|+1 by using and
x ∈ [−C,C]d. According to Proposition B.2, we complete the proof.

There is also a toy example satisfying GQC condition and Assumption 3.3.
Example B.8. Assuming (p1,p2) ∈ ∆m × ∆n, the function f(p1,p2) = 1

2∥p1p
⊤
2 ∥2F satisfies

GQC condition and Assumption 3.3 with the internal functions F p1
= ∥p2∥2p1 for block p1 and

F p2
= p2 for block p2.

Proof. We have 1
2∥(p

∗
1)

⊤p2∥F − 1
2∥p

⊤
1 p2∥F ≥ ∥p2∥2p⊤1 (p∗1 − p1) and 1

2∥(p
∗
1)

⊤p∗2∥F −
1
2∥(p

∗
1)

⊤p2∥F ≥ ∥p∗1∥2p⊤2 (p∗2 − p2). Therefore, we have that f satisfies GQC condition with
the internal functions F p1

= ∥p2∥2p1 for block p1 and F p2
= p2 for block p2. Notice that γp1

= 1

and γp2
= ∥p∗1∥2. Since both ∥p2∥2p1 and p2 are polynomials with respect to (p1,p2), we derive

that the internal function of f satisfies Assumption 3.3.

B.3 Application to Reinforcement Learning

B.3.1 Analysis of Infinite Horizon Reinforcement Learning

Proof of Proposition 3.6. The following performance difference lemma [30, 13, 2, 35] plays an
important role in the policy gradient based model of infinite horizon reinforcement learning problems,

V π∗
(ρ0)− V π(ρ0) = Es∼dπ∗

ρ0
⟨Aπ(s, ·),π∗(·|s)− π(·|s)⟩ . (65)

Let d = |S|,S = {si}di=1 and write 1/γi = dπ
∗

ρ0
(si), F i(π) = Qπ(si, ·). According

to Eq. (65) whose proof is given in Cheng et al. [13] and ⟨Aπ(si, ·),π′(·|si)− π(·|s)⟩ =
⟨Qπ(si, ·),π′(·|si)− π(·|s)⟩ for any policy π and π′, we obtain that

V π∗
(ρ0)− V π(ρ0) =

d∑
i=1

1

γi
⟨F i(π),π

∗(·|si)− π(·|si)⟩ . (66)

Eq. (66) implies that V π(ρ0) satisfies GQC condition. For every a ∈ A, the Taylor expansion of
Qπ(si, a) up to K-th order at origin is the same as its truncation at horizon K, which indicates

R
Qπ(si,a)
K,0 (π) = θK+1EsK+1

[V π(sK+1)|s0 = si, a0 = a] ≤ θK+1.

Therefore, according to the fact that

P
Qπ(si,a)
K,0 (π) ≤ Qπ(si, a) ≤ 1,

we have thatQπ(si, ·) satisfies Assumption 3.3 with Θ1 = θ, Θ2 = 1 and K0 = 1.

25



B.3.2 Analysis of Finite Horizon Reinforcement Learning

The function structure of finite horizon reinforcement learning on policy is strictly polynomial.
Moreover, since the action-value functions on horizon h is only dependent of policy πh+1:H , we may
therefore verify that the objective function of finite horizon reinforcement learning satisfies GQC
condition by utilizing finite difference expansion on function error Jπ

1 (ρ1)− Jπ∗

1 (ρ1).

The finite horizon reinforcement learning considers the following policy optimization problem:

min
π∈X

Jπ
1 (ρ1), (67)

where Jπ
1 (ρ1) = Es1∼ρ1

[V π
1 (s1)], and X = X1 × · · · × XH , and each Xh denotes |Sh| probability

simplexes. We write Sh = {sh,ih}
|Sh|
ih=1 for any h ∈ [1 : H] and denote the action-value vector on

state sh,ih at horizon h by Qπh+1:H

h (sh,ih , ·). According to the definition of finite horizon value
function V πh:H

h , we obtain the observation as Eq. (68).

Jπ∗

1 (ρ1)− Jπ
1 (ρ1) =

H∑
h=1

[
J
π∗

1:h,πh+1:H

1 (ρ1)− J
π∗

1:h−1,πh:H

1 (ρ1)
]

=

H∑
h=1

E
sh∼Es1∼ρ1Pr

π∗
1:h−1

h (·|s1)

〈
Q

πh+1:H

h (sh, ·),π∗
h(·|sh)− πh(·|sh)

〉
,

(68)

Since Qπh+1:H

h (sh, ah) is a polynomial with respect to policy π1:H , whose value is bounded by
1 + H − h for any sh ∈ Sh and ah ∈ Ah, we derive that Jπ

1 (ρ1) satisfies GQC condition with
internal function F h,ih(π) = Q

πh+1:H

h (sh,ih , ·) for variable block xh,ih where ih ∈ [1 : |Sh|],
and F satisfies Assumption 3.3 with θ = 0, Θ1 = 0, Θ2 = H and K0 = H . Therefore, for
finite horizon reinforcement learning, it follows from Theorem 3.5 that Algorithm 1 with parameter
selection Eq. (7) finds an ε-suboptimal global solution in a number of iterations that is at most
O(Hmaxh∈[0:H] log(|Ah|)ε−1 log4(ε−1)).

C Minimax Optimization

We begin with showing the connection between GQCC condition and GQC condition. Without loss
of generality, we assume ni = n and mi = m for any i ∈ [1 : d], and let ℓ = n+m. If f(·,y) and
−f(x, ·) satisfy GQC condition with respect to a pair of minimizers x∗(y) and y∗(x), respectively,
then we have the following estimations of function error

f(x,y)− f(x∗(y),y) ≤
d∑

i=1

1

γi(y)
(fi(P(z),xi,yi)− fi(P(z),x∗(y)i,yi)) , (69)

f(x,y∗(x))− f(x,y) ≤
d∑

i=1

1

τi(x)
(fi(P(z),xi,y

∗(x)i)− fi(P(z),xi,yi)) , (70)

where fi(Q, zi) = ⟨Qi, zi⟩ for any Q ∈ Rℓ×d and zi ∈ Rn+m, and each Pi includes the internal
function of f(·,y) for varriable block xi and the internal function of−f(x, ·) for variable block yi. It
follows from Eq. (69) and Eq. (70) that Eq. (10) holds for f with ψi(z) = max{1/γi(y), 1/τi(x)}.

C.1 Preparatory Discussion

In this section, we provide the convergence analysis of general version of Algorithm 2, i.e., Algorithm
4. We consider the divergence-generating function v with Bregman’s divergence V (i.e., V (x,u) =
v(x)− v(u)− ⟨∇v(u),x− u⟩ for any x,u) over general compact convex regions Z = X × Y ⊂
R

∑d
i=1 ni × R

∑d
i=1 mi . Before we introduce the main theorem, we need the following assumptions:

Assumption C.1. There exists positive constants A,D such that

[A1] max
i∈[1:d]

{∥zi∥} ≤ A uniformly on Z .
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[A2] max

{
max
zi∈Zi
i∈[1:d]

(
V
(
xi, (g

x
i )

0
)
+ V

(
yi, (g

y
i )

0
))
, max

zi∈Zi
i∈[1:d]

(v(xi) + v(yi))

}
≤ D.

[A3] v modulus 2 with respect to ∥ · ∥ (i.e., ∀i ∈ [1 : d], V (xi,ui) ≥ ∥xi − ui∥2 for any
xi,ui ∈ Xi and V (yi,wi) ≥ ∥yi −wi∥2 for any yi,wi ∈ Yi).

If we choose v(x) =
∑n

j=1 x(j) log(x(j)) and ∥ · ∥ = ∥ · ∥1, then (1) in Assumption C.1 holds with
A = 2; (2) in Assumption C.1 holds with D = 2maxi∈[1:d]{log(ni) + log(mi)}; (3) in Assumption
C.1 holds following Pinsker’s inequality. According to Remark C.2, we state that there exist some
compact convex regions in R

∑d
i=1(ni+mi) with proper divergence-generating function v and proper

choice of g0 satisfy Assumption C.1.
Remark C.2. If the feasible region Z is a compact set of Euclidean space, then it is reasonable
that assuming the divergence-generating function v (i.e., v(x) =

∑n
j=1 x(j) log(x(j)) over the

probability simplex or v(x) = ∥x∥22 over the standard compact set) and the norm ∥ · ∥ are uniformly
bounded on every Zi. For some Bregman divergences, if x0 is a fixed point, V (·,x0) can be
bounded by a constant (may depend on the dimension of space) on a compact feasible region,
such as V (·,x0) = ∥ · −x0∥22 with x0 = 0 on the closed ball BR(0) for radius R ∈ (0,∞) and
V (·,x0) = KL(·∥x0) with x0 = (1/n, · · · , 1/n) on the probability simplex ∆n.

Assumption C.3. In Definition 4.1, let matrix-valued function P has the form of P(Qz, z)
where Qz ∈ Rℓ×d depends on z, and assume that P satisfies the following properties on region{
Q ∈ Rℓ×d

∣∣ ∥Q∥∞ ≤ C} × Z for some constant C > 0:

[A4] There exist constants L1, L2 ≥ 0 such that F i(·, zi) is uniformly L1-Lipschitz continuous
with respect to ∥ · ∥∗ under ∥ · ∥∞, and F i(P, ·) is uniformly L2-Lipschitz continuous with
respect to ∥ · ∥∗ under ∥ · ∥.

[A5] There are a positive constant γ > 0 and a pair of sets of matrices
{
{Bi}di=1, {Ci}di=1

}
⊂

Rℓ×d
+ ∪ 0 satisfying

∥∥∥∑d
i=1(Bi +Ci)

∥∥∥
∞
≤ γ, such that the following bounds hold

DP(Q,·,y)(x,x
′) ≤

d∑
i=1

Ci ⟨F x
i (Q, zi),xi − x′

i⟩ ,

DP(Q,x,·)(y
′,y) ≤

d∑
i=1

Bi ⟨−F y
i (Q, zi),y

′
i − yi⟩ ,

for any y,y′ ∈ Y and x,x′ ∈ X .

[A6] There exists θ ∈ [0, 1) such that P(·, z) is a θ-contraction mapping under ∥ · ∥∞, and
∥P(Q, z)∥∞ ≤ C for any z ∈ Z .

Lemma C.4 (General Version of Lemma 4.3). Assuming that Assumption C.1 and C.3 hold, [P(Q, ·,
·)]k,j is continuous, and convex with respect to x, and concave with respect to y for any (k, j), and
min
k,j

i∈[1:d]

min{[Ci]k,j ,[Bi]k,j}
[Ci]k,j+[Bi]k,j

≥ C ′ for some C ′ > 0, then we claim that there exist Q∗ ∈ Rℓ×d and

z∗ ∈ Z such that

Q∗ =P(Q∗,x∗,y∗), (71)
Q∗ ≤P(Q∗,x,y∗), (72)
Q∗ ≥P(Q∗,x∗,y). (73)

Proof. We shall begin the proof by proving the following lemma.

Lemma C.5. Under the conditions of Lemma C.4, it can be proven that for any Q ∈ Rℓ×d, there
exists a pair of x∗,y∗ that satisfy the following

P(Q,x∗,y) ≤ P(Q,x∗,y∗) ≤ P(Q,x,y∗). (74)
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Proof. Considering the following iteration

zti = argmin
zi∈Zi

η
〈
F i(Q, z

t−1
i ), zi

〉
+ V

(
xi, (g

x
i )

t−1
)
+ V

(
yi, (g

y
i )

t−1
)
,

gti = argmin
gi∈Zi

η
〈
F i(Q, z

t
i), gi

〉
+ V

(
gxi , (g

x
i )

t−1
)
+ V

(
gyi , (g

y
i )

t−1
)
,

(75)

for any i ∈ [1 : d] and combining [57, Lemma 1], we have

[Ci]k,j

T∑
t=1

〈
F x

i (Q, z
t
i),x

t
i − x′

i

〉
+ [Bi]k,j

T∑
t=1

〈
F y

i (Q, z
t
i),y

t
i − y′

i

〉
≤([Ci]k,j + [Bi]k,j)η

−1D + [Ci]k,j

T∑
t=1

∥∥F x
i (Q, z

t
i)− F

x
i (Q, z

t−1
i )

∥∥
∗

∥∥xt
i − (gxi )

t
∥∥

+ [Bi]k,j

T∑
t=1

∥∥F y
i (Q, z

t
i)− F

y
i (Q, z

t−1
i )

∥∥
∗

∥∥yt
i − (gyi )

t
∥∥

− [Ci]k,j
η

T∑
t=1

(∥∥xt
i − (gxi )

t
∥∥2 + ∥∥(gxi )t−1 − xt

i

∥∥2)
− [Bi]k,j

η

T∑
t=1

(∥∥yt
i − (gyi )

t
∥∥2 + ∥∥(gyi )t−1 − yt

i

∥∥2)
≤
(a)
([Ci]k,j + [Bi]k,j)η

−1D +
ηL2

2([Ci]k,j + [Bi]k,j)

2

T∑
t=1

∥∥zti − zt−1
i

∥∥2
− min{[Ci]k,j , [Bi]k,j}

η

T∑
t=1

(
1

4

∥∥zti − gti∥∥2 + 1

2

∥∥gt−1
i − zti

∥∥2) , (76)

for any i ∈ [1 : d] , (k, j) ∈ [1 : ℓ] × [1 : d], and z′i ∈ Zi, where (a) is derived from A4 in
Assumption C.3 and Cauchy-Schwarz inequality. Therefore, by setting η =

√
C′

2L2
and 1

T

∑T
t=1 z

t =

z̄T = (x̄T , ȳT ), the following estimation holds for any (k, j)

max
z′=(x′,y′)∈Z

[P(Q, x̄T ,y
′)−P(Q,x′, ȳT )]k,j

≤
(b)

1

T

T∑
t=1

[
P(Q,xt, ȳ∗

T )−P(Q, x̄∗
T ,y

t)
]
k,j

≤
(c)

1

T

d∑
i=1

T∑
t=1

(
[Ci]k,j

〈
F i(Q, z

t
i),x

t
i − (x̄∗

T )i
〉
+ [Bi]k,j

〈
F i(Q, z

t
i),y

t
i − (ȳ∗

T )i
〉)

≤ 2γη−1D + 4ηγA2L2
2

T
, (77)

where the convexity of function [P(Q, ·,w)−P(Q,u, ·)]k,j for fixed Q and v = (u,w) implies
(b), and (c) is derived from Eq. (76) and the definition that (x̄∗

T , ȳ
∗
T ) := argmax

z′∈Z
[P(Q, x̄T ,y

′) −

P(Q,x′, ȳT )]k,j . Since Z is a compact set, the sequence {(x̄T , ȳT )}
∞
T=1 must have a convergent

subsequence. Therefore, all accumulation points of the sequence {(x̄T , ȳT )}
∞
T=1 satisfy Eq. (74) by

using the continuity of P(Q, ·, ·).

Now, we define the iterately update as follows

Qt+1 = P(Qt,x∗
t ,y

∗
t ), (78)
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where (x∗
t ,y

∗
t ) satisfies Eq. (74) in Lemma C.5 w.r.t P(Qt, ·, ·). It’s direct to derive that

Qt+1 −Qt ≤P(Qt,x∗
t−1,y

∗
t )−P(Qt−1,x∗

t−1,y
∗
t )

≤θ
∥∥Qt −Qt−1

∥∥
∞ , (79)

Qt+1 −Qt ≥P(Qt,x∗
t ,y

∗
t−1)−P(Qt−1,x∗

t ,y
∗
t−1)

≥− θ
∥∥Qt −Qt−1

∥∥
∞ . (80)

Finally, according to the contraction mapping principle, we complete the proof.

Corollary C.6. Assuming preconditions of Lemma C.4 hold, and letting {fi(Q, ·) : Rni+mi →
R}di=1 be a sequence of continuous convex-concave functions which satisfies∇fi(Q, ·) = (F x

i (Q, ·),
−F y

i (Q, ·)) for any fixed Q ∈ Rℓ×d and i ∈ [1 : d], then there exist a matrix Q∗ and a pair of
(x∗,y∗) which satisfy Eq. (71)-Eq. (73) and

fi(Q
∗,x∗

i ,y
∗
i ) ≥ fi(Q∗,x∗

i ,yi),

fi(Q
∗,x∗

i ,y
∗
i ) ≤ fi(Q∗,xi,y

∗
i ),

for any zi ∈ Zi and i ∈ [1 : d].

Proof. With proper selection of η, we have the following bound which is similar to that derived from
Eq.(77)

max
y′
i∈Yi

fi(Q, (x̄T )i,y
′
i)− min

x′
i∈Xi

fi(Q,x
′
i, (ȳT )i)

≤
T∑

t=1

[fi(Q,x
t
i, (ȳ

∗
T )i)− fi(Q, (x̄∗

T )i,y
t
i)]

≤
T∑

t=1

[〈
F i(Q, z

t
i),x

t
i − (x̄∗

T )i
〉
+
〈
F i(Q, z

t
i),y

t
i − (ȳ∗

T )i
〉]

≤4η−1D + 8ηA2L2
2

T
, (81)

for every i ∈ [1 : d], where {zt = (xt,yt)}Tt=1 follows from the iteration (75) and (z̄∗T )i =
((x̄∗

T )i, (ȳ
∗
T )i) denotes argmax

z′
i∈Zi

[fi(Q, (x̄T )i,y
′
i)− fi(Q,x′

i, (ȳT )i)]. Hence, by directly leveraging

the result of Lemma 4.3, we obtain the result.

Before stating the general version of Theorem 4.4 as follows, we define

Y η
T = 8(c+ 1)

[
γD

(
1

η
+ 16ηL2

)
+ 40η3γA2L4

2 + 2ηγL2
1(1 + 64η2L2

2C
2)

]
(log(c+ T ) + 1).

(82)

C.2 Theorem C.7 and Relate Proof

Theorem C.7. [General Version of Theorem 4.4] For any generaized quasar-convex-concave function
f which satisfies Assumption C.1 and C.3 with constant matrix function P ≡ Q∗, where Q∗ is
unknown and satisfies Eq. (71)-Eq. (73), with parameter configuration in Eq. (12), the weighted
average of Algorithm 2’s outputs {zt}Tt=1 satisfies the following inequality

Gf (x̄T , ȳT ) ≤
6

(
max
z∈Z

∑d
i=1 ψi(z)

)
(1− θ)−1

(
3D
η + 10ηL2

1 + 5AL1Y
η
T + 4ηA2L2

2

)
T + 3

. (83)

For a generalized quasar-convex-concave function satisfying smoothness and recurrence conditions,
the iteration complexity of our algorithm matches the lower bound [52] for solving ε-approximate
Nash equilibrium points in the smooth convex-concave setting, up to a logarithmic factor. Furthermore,
we prove that standard smooth convex-concave functions satisfy the preconditions of Theorem C.7
(as discussed in Appendix C.3.2).
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Algorithm 4 Optimistic Mirror Descent with Regularization for Multi-Variables

Input:
{
z0
i

}d

i=1
=

{
g0
i

}d

i=1
, {αt ≥ 0}Tt=1 (

∑T
t=1 αt = 1), {γt ≥ 0}Tt=1, {λt ≥ 0}Tt=1, η and Q0 = 0.

Output: z̄T =
∑T

t=1 αtz
t.

1: while t ≤ T do
2: Qt = (1− βt−1)Q

t−1 + βt−1P(Qt−1,zt−1).
3: for all i ∈ [1 : d] do
4: xt

i = argmin
xi∈Xi

η
〈
F x

i (Q
t−1,zt−1

i ),xi

〉
+ γtV

(
xi, (g

x
i )

t−1
)
+ λtv(xi),

5: yt
i = argmin

yi∈Yi

η
〈
F y

i (Q
t−1,zt−1

i ),yi

〉
+ γtV

(
yi, (g

y
i )

t−1
)
+ λtv(yi),

6: (gx
i )

t = argmin
gx
i ∈Xi

η
〈
F x

i (Q
t,zt

i), g
x
i

〉
+ γtV

(
gx
i , (g

x
i )

t−1
)
+ λtv(g

x
i ),

7: (gy
i )

t = argmin
g
y
i ∈Yi

η
〈
F y

i (Q
t,zt

i), g
y
i

〉
+ γtV

(
gy
i , (g

y
i )

t−1
)
+ λtv(g

y
i ).

8: end for
9: t← t+ 1.

10: end while

Our analysis relies on the connection between F i(Q
t, zti) and F i(Q

∗, zti). Theorem C.8 combines
a) classical O(log(T )/T ) bound derived from regularized OMD, and b) the weighted average of
iteration error ∥Qt − Qt−1∥2∞ over t ∈ [1 : T ] which has the form of

∑T
t=1 αt∥Qt − Qt−1∥2∞,

with magnitude O(T−1 log(T )), and c) weighted average of approximation error ∥Qt −Q∗∥∞ over
t ∈ [1 : T ] which has the form of

∑T
t=1 αt∥Qt−Q∗∥∞ to bound the max-min gap of f at z̄T . Next,

we leverage Lemma C.9 to show the decreasing trend of approximation error ∥Qt − Q∗∥∞ and
bound

∑T
t=1 αt∥Qt −Q∗∥∞ by a quantity that grows only logarithmically in T . We may therefore

obtain the result of Theorem C.7 by applying the estimation of weighted average of approximation
error

∑T
t=1 αt∥Qt −Q∗∥∞ to Theorem C.8.

C.2.1 Part I

Theorem C.8. Assuming that Assumption C.1 holds, we set the hyper-parameters for Algorithm 2
carefully such that

αt(γt + λt) ≥ αt+1γt+1, (84)

η ≤ min
t∈[1:T ]

√
γt(γt + λt)

4L2
. (85)

Suppose that v modulus 2 w.r.t ∥ · ∥, ∥z∥ ≤ A for any z ∈ Z , and {zt}Tt=1 follows the iterations of
Algorithm 4, then we can show that

max
y′∈Y

f(x̄T ,y
′)− min

x′∈X
f(x′, ȳT ) ≤B(ψ) max

i∈[1:d]

{
α1γ1
η

max
zi∈Zi

(
V
(
xi, (g

x
i )

0
)
+ V

(
yi, (g

y
i )

0
))

− 1

2η

T∑
t=1

αt

[
γt∥zti − gt−1

i ∥2 + γt + λt
2
∥gti − zti∥2

]

+
2
∑T

t=1 αtλt
η

max
zi∈Zi

(v(xi) + v(yi))

}

+ 2B(ψ)ηL2
1

T∑
t=1

[
αt

γt + λt
∥Qt −Qt−1∥2∞

]

+ 2AB(ψ)L1

T∑
t=1

αt∥Qt −Q∗∥∞ +
8A2B(ψ)L2

2α1η

γ1 + λ1
,

(86)

where B(ψ) := max
z∈Z

∣∣∣∑d
i=1 ψi(z)

∣∣∣ and z̄T :=
∑T

t=1 αtz
t.
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Proof. Recalling the definition of GQCC, we derive that

max
y′∈Y

f(x,y′)− min
x′∈X

f(x′,y) ≤B(ψ) max
i∈[1:d]

[
max
wi∈Yi

fi(Q
∗,xi,wi)− min

ui∈Xi

fi(Q
∗,ui,yi)

]
, (87)

for any z = (x,y),v = (u,w) ∈ Z and

fi(Q
∗, (x̄T )i,wi)− fi(Q∗,ui, (ȳT )i) ≤

T∑
t=1

αt

[
fi(Q

∗,xt
i,wi)− fi(Q∗,ui,y

t
i)
]

(88)

≤
T∑

t=1

αt

〈
F i(Q

∗, zti), z
t
i − vi

〉
≤

T∑
t=1

αt

〈
F i(Q

t, zti), z
t
i − vi

〉
+ 2AL1

T∑
t=1

αt∥Qt −Q∗∥∞,

for any vi ∈ Zi. Using the optimality condition, we obtain

〈
F i(Q

t−1, zt−1
i ), zti − gti

〉
≤γt
η

(
V
(
(gxi )

t, (gxi )
t−1
)
+ V

(
(gyi )

t, (gyi )
t−1
))

− γt
η

(
V
(
xt
i, (g

x
i )

t−1
)
+ V

(
yt
i, (g

y
i )

t−1
))

− γt + λt
η

(
V
(
(gxi )

t,xt
i

)
+ V

(
(gyi )

t,yt
i

))
+
λt
η

(
v
(
(gxi )

t
)
+ v

(
(gyi )

t
)
− v

(
xt
i

)
− v

(
yt
i

))
, (89)〈

F i(Q
t, zti), g

t
i − vi

〉
≤γt
η

(
V
(
ui, (g

x
i )

t−1
)
+ V

(
wi, (g

y
i )

t−1
))

− γt
η

(
V
(
(gxi )

t, (gxi )
t−1
)
+ V

(
(gyi )

t, (gyi )
t−1
))

− γt + λt
η

(
V
(
ui, (g

x
i )

t
)
+ V

(
wi, (g

y
i )

t
))

+
λt
η

(
v(ui) + v(wi)− v

(
(gxi )

t
)
− v

(
(gyi )

t
))
. (90)

For each t ∈ [1 : T ], we can apply Eq. (89) and Eq. (90) to the following equation

αt

〈
F i(Q

t, zti), z
t
i − vi

〉
=αt

[〈
F i(Q

t, zti), g
t
i − vi

〉
+
〈
F i(Q

t−1, zt−1
i ), zti − gti

〉
+
〈
F i(Q

t, zti)− F i(Q
t−1, zt−1

i ), zti − gti
〉]
,

≤αt

[
γt
η

(
V
(
ui, (g

x
i )

t−1
)
+ V

(
wi, (g

y
i )

t−1
))
− γt + λt

η

(
V
(
ui, (g

x
i )

t
)

+ V
(
wi, (g

y
i )

t
))
− γt
η

(
V
(
xt
i, (g

x
i )

t−1
)
+ V

(
yt
i, (g

y
i )

t−1
))

−γt + λt
η

(
V
(
(gxi )

t,xt
i

)
+ V

(
(gyi )

t,yt
i

))]
+
αtλt
η

(v(ui) + v(wi)

−v
(
(gxi )

t
)
− v

(
(gyi )

t
))

+ αt

〈
F i(Q

t, zti)− F i(Q
t−1, zt−1

i ), zti − gti
〉
.

(91)
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Therefore, by summing Eq.(91) from t = 1 to t = T and utilizing Eq. (84), we have

T∑
t=1

αt

〈
F i(Q

t, zti), z
t
i − vi

〉
≤α1γ1

η

(
V
(
ui, (g

x
i )

0
)
+ V

(
wi, (g

y
i )

0
))

+
2
∑T

t=1 αtλt
η

max
zi∈Zi

(v(xi) + v(yi))

− 1

η

T∑
t=1

αt

[
γt∥zti − gt−1

i ∥2 + γt + λt
2
∥gti − zti∥2

]

+ η

T∑
t=1

[
αt

γt + λt

∥∥F i(Q
t, zti)− F i(Q

t−1, zt−1
i )

∥∥2
∗

]
. (92)

According to the Lipschitz continuity of F i, we derive that

η

T∑
t=1

[
αt

γt + λt

∥∥F i(Q
t, zti)− F i(Q

t−1, zt−1
i )

∥∥2
∗

]

≤2ηL2
2

T∑
t=1

[
αt

γt + λt
∥zti − zt−1

i ∥2
]
+ 2ηL2

1

T∑
t=1

[
αt

γt + λt
∥Qt −Qt−1∥2∞

]
. (93)

It follows from parameter setting Eq. (84) and Cauchy-Schwarz inequality that

αtγt
2
∥zti − gt−1

i ∥2 + αt−1(γt−1 + λt−1)

2
∥gt−1

i − zt−1
i ∥2 ≥ αtγt

4
∥zti − zt−1

i ∥2. (94)

Combining Eq. (85) and Eq. (94), we may therefore obtain

− 1

η

T∑
t=1

αt

[
γt
2
∥zti − gt−1

i ∥2 + γt + λt
4
∥gti − zti∥2

]
+ 2ηL2

2

T∑
t=1

[
αt

γt + λt
∥zti − zt−1

i ∥2
]

≤2ηL2
2α1

γ1 + λ1
∥z1i − z0i ∥2. (95)

Applying Eq. (93) and Eq. (95) to Eq. (92) and utilizing Eq. (87), Eq. (88), we complete the proof.

C.2.2 Part II: Estimation of Approximation Error ∥Qt −Q∗∥

According to the iterately update of Qt, we can derive the upper bound of weighted average of
∥Qt −Qt−1∥2∞. Next, we aim to bound ∥Qt −Q∗∥ for each iteration t. In this section, we select
the following parameter settings:

c = 2(1− θ)−1, η ≤ (1− θ)1/2

8(γAL1)1/2L2
, βt =

c

c+ t
, αt = βT,t, γt =

αt−1

αt
, λt = 1− γt. (96)

Lemma C.9. Consider the settings: γt =
αt−1

αt
≤ 1, λt = 1− γt, and η ≤ (1−θ)1/2

8(γAL1L2)1/2
. Then, we

obtain the estimation of ∥Qt −Q∗∥ as follows,

∥Qt −Q∗∥∞ ≤
t∑

j=2

β
(1+θ)/2
t,j Hj , (97)

for any t ≥ 2 where

Hj :=γD

(
1

η
+ 16ηL2

)(
βj−1,1γ1 + 2

j−1∑
κ=1

βj−1,κλκ

)

+ 2ηγL2
1(1 + 64η2L2

2C
2)

j−1∑
κ=1

βj−1,κβ
2
κ−1 + 128η3γA2L4

2βj−1,1. (98)
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Proof. According to the fact that Q∗ is a fixed point of function P , we have

Qt −Q∗ =

t−1∑
κ=1

βt−1,κ[P (Qκ, zκ)− P (Q∗, z∗)]

≤
(a)

t−1∑
κ=1

βt−1,κ {[P (Qκ,xκ,yκ)− P (Qκ,x∗,yκ)] + [P (Qκ,x∗,yκ)− P (Q∗,x∗,yκ)]}

≤
d∑

i=1

(
t−1∑
κ=1

βt−1,κ ⟨F x
i (Q

κ, zκi ),x
κ
i − x∗

i ⟩

)
Ci + θ

(
t−1∑
κ=1

βt−1,κ∥Qκ −Q∗∥∞

)
ede

⊤
d .

(99)

Where (a) is derived from the maximizer’s property of y∗ for matrix-valued function P (Q∗,x∗, ·).
Similarly, we can obtain

Qt −Q∗ ≥ −
d∑

i=1

(
t−1∑
κ=1

βt−1,κ ⟨F y
i (Q

κ, zκi ),y
κ
i − y∗

i ⟩

)
Bi − θ

(
t−1∑
κ=1

βt−1,κ∥Qκ −Q∗∥∞

)
ede

⊤
d .

(100)

Hence, we derive

∥Qt −Q∗∥∞ ≤γ max
i∈[1:d]

{
βt−1,1γ1

η
max
zi∈Zi

(
V
(
xi, (g

x
i )

0
)
+ V

(
yi, (g

y
i )

0
))

+
2
∑t−1

κ=1 βt−1,κλκ
η

max
zi∈Zi

(v(xi) + v(yi))

+2ηL2
2

t−1∑
κ=1

βt−1,κ

γκ + λκ

∥∥zκi − zκ−1
i

∥∥2}

+ 2ηγL2
1

t−1∑
κ=1

βt−1,κ

γκ + λκ
∥Qκ −Qκ−1∥2∞ + θ

(
t−1∑
κ=1

βt−1,κ∥Qκ −Q∗∥∞

)
,

(101)

by combining βt−1,κ

∏T
j=t(1 − βj) = ακ and Eq. (99), and using the proof technique of

Theorem C.8. Next, for any i ∈ [1 : d], we can obtain an upper bound estimation of
max
vi∈Zi

∑t−1
κ=1 βt−1,κ⟨F i(Q

κ, zκi ), z
κ
i − vi⟩ as follows

max
vi∈Zi

t−1∑
κ=1

βt−1,κ ⟨F i(Q
κ, zκi ), z

κ
i − vi⟩ ≤

D

η

(
βt−1,1γ1 + 2

t−1∑
κ=1

βt−1,κλκ

)
+ 8ηA2L2

2βt−1,1

+ 8ηL2
1C

2
t−1∑
κ=1

βt−1,κβ
2
κ−1 −

1

8η

t−1∑
κ=1

βt−1,κ

∥∥zkκ − zkκ−1

∥∥2 .
(102)

Furthermore, we also have a lower bound estimation of it

max
vi∈Zi

t−1∑
κ=1

βt−1,κ ⟨F i(Q
κ, zκi ), z

κ
i − vi⟩ ≥ max

vi∈Zi

t−1∑
κ=1

βt−1,κ ⟨F i(Q
κ,vi), z

κ
i − vi⟩

≥ max
vi∈Zi

t−1∑
κ=1

βt−1,κ ⟨F i(Q
∗,vi), z

κ
i − vi⟩

− 2AL1

t−1∑
κ=1

βt−1,κ∥Qκ −Q∗∥∞

≥− 2AL1

t−1∑
κ=1

βt−1,κ∥Qκ −Q∗∥∞. (103)
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Therefore, combining Eq. (102) and Eq. (103), we derive the following result
t−1∑
κ=1

βt−1,κ

∥∥zκi − zκ−1
i

∥∥2 ≤16ηAL1

t−1∑
κ=1

βt−1,κ∥Qκ −Q∗∥∞ + 64η2A2L2
2βt−1,1

+ 8D

(
βt−1,1γ1 + 2

t−1∑
κ=1

βt−1,κλκ

)
+ 64η2C2L2

1

t−1∑
κ=1

βt−1,κβ
2
κ−1,

(104)
for any i ∈ [1 : d].

∥Qt −Q∗∥∞ ≤γD
(
1

η
+ 16ηL2

2

)(
βt−1,1γ1 + 2

t−1∑
κ=1

βt−1,κλκ

)
+ 128η3γA2L4

2βt−1,1

+ 2ηγL2
1

(
1 + 64η2C2L2

2

) t−1∑
κ=1

βt−1,κβ
2
κ−1

+ (32η2γAL1L
2
2 + θ)

t−1∑
κ=1

βt−1,κ∥Qκ −Q∗∥∞. (105)

Finally, by applying [67, Lemma 33] to Eq. (105), we complete the proof.

Under parameter settings Eq. (96), the following auxiliary Lemma C.10 provides both lower bound
and upper bound of βT,t.

Lemma C.10. Assuming that βt = c′

c+t and c ≥ c′, we can obtain the following result:

exp

{
− (c′ + c′c)2

2c

}
(c+ t)c

′−1

(c+ T )c′
≤ βT,t ≤

(1 + c)(c+ t+ 1)c
′−1

(c+ T + 1)c′
, (106)

for any T ≥ t ≥ 1.

Proof. Recalling that

βT,t =
c′

c+ t

T∏
k=t+1

(
1− c′

c+ k

)
=

c′

c+ t
exp

{
T∑

k=t+1

log

(
1− c′

c+ k

)}
, (107)

we have

βT,t ≤
c′

c+ t

(
c+ t+ 1

c+ T + 1

)c′

≤ (1 + c)(c+ t+ 1)c
′−1

(c+ T + 1)c′
, (108)

and

βT,t ≥ exp

{
− (c′ + c′c)2

2c

}
(c+ t)c

′−1

(c+ T )c′
, (109)

by combining the result of Lemma D.9.

Corollary C.11. Assuming that βt = c′

c+t , c ≥ 1 and c′(1− θ) ≥ 1, we can obtain

βθ
T,t ≤

c′

c+ T
, (110)

for any T ≥ t ≥ 1.

By utilizing the result of Lemma C.10, we notice that
j−1∑
κ=1

βj−1,κλκ ≤
j−1∑
κ=1

(1 + c)2(c+ κ+ 1)c−2

(c+ j)c

≤
(a)

(1 + c)2

(c+ j)c

∫ j−1

1

(c+ x+ 1)c−2dx+
(1 + c)2

(c+ j)2

≤ (1 + c)2

(c− 1)(c+ j)
+

(1 + c)2

(c+ j)2
, (111)

34



and
j−1∑
κ=1

βj−1,κβ
2
κ−1 ≤

j−1∑
κ=1

(1 + c)4(c+ κ+ 1)c−3

c(c+ j)c

≤
(b)

(1 + c)3

c(c+ j)c

∫ j−1

1

(c+ x+ 1)c−2dx+
(1 + c)4

c(c+ j)3

≤ (1 + c)3

c(c− 1)(c+ j)
+

(1 + c)4

c(c+ j)3
, (112)

where (a) and (b) are derived from the fact that
∑j−2

κ=1(c + κ + 1)c−2 ≤
∫ j−1

1
(c + x + 1)c−2dx.

Next, we have

Hj ≤γD
(
1

η
+ 16ηL2

)(
2(c+ 2)c−1

(c+ j)c
+

2(1 + c)2

(c− 1)(c+ j)
+

2(1 + c)2

(c+ j)2

)
+ 2ηγL2

1(1 + 64η2L2
2C

2)

(
(1 + c)3

c(c− 1)(c+ j)
+

(1 + c)4

c(c+ j)3

)
+ 128η3γA2L4

2

(c+ 2)c

(c+ j)c
, (113)

and
t∑

j=2

β
(1+θ)/2
t,j Hj ≤

c

c

c+ t

{
γD

(
1

η
+ 16ηL2

)[∫ t

2

2(c+ 2)c−1

(c+ x)c
dx

+

∫ t

1

(
2(1 + c)2

(c− 1)(c+ x)
+

2(1 + c)2

(c+ x)2

)
dx+ 1

]
+2ηγL2

1(1 + 64η2L2
2C

2)

∫ t

1

(
(1 + c)3

c(c− 1)(c+ x)
+

(1 + c)4

c(c+ x)3

)
dx

}
+ 128η3γA2L4

2

[
1 +

∫ t

2

(c+ 2)c

(c+ x)c
dx

]
≤ c

c+ t

{
γD

(
1

η
+ 16ηL2

)[
2(c+ 1)2

c− 1
log(c+ t) + 5 + 2c

]
+ 640η3γA2L4

2

+ 2ηγL2
1(1 + 64η2L2

2C
2)

[
2(c+ 1)2

c− 1
log(c+ t) +

(c+ 1)2

2c

]}
,

(114)

where (c) follows from Corollary C.11. For simplicity, we denote

Y η
T := 8(c+ 1)

[
γD

(
1

η
+ 16ηL2

)
+ 40η3γA2L4

2 + 2ηγL2
1(1 + 64η2L2

2C
2)

]
(log(c+ T ) + 1).

(115)

Therefore, it follows from Eq. (114) and Lemma C.9 that

∥Qt −Q∗∥∞ ≤
t∑

j=2

β
(1+θ)/2
t,j Hj ≤

c

c+ t
Y η
t . (116)

C.2.3 The Last Step

According to Eq. (116) and the initial Q0 satisfies ∥Q0∥∞ ≤ C, we have ∥Q∗∥ ≤ C. We are ready
to complete the proof of Theorem C.7.

Proof of Theorem C.7. It is noteworthy that the hyper-parameters selected in Eq. (96) satisfies the
preconditions of Theorem C.8. Combining the conclusion of Theorem C.8, Eq. (116) and the
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estimation of αt (i.e. βT,t) in Lemma C.10, we obtain:

Gf (x,y) ≤B max
i∈[1:d]

{
α1γ1
η

max
zi∈Zi

(
V
(
xi, (g

x
i )

0
)
+ V

(
yi, (g

y
i )

0
))

+
2
∑T

t=1 αtλt
η

max
zi∈Zi

(v(xi) + v(yi))

}
+ 2ηBL2

1

T∑
t=1

αtβ
2
t−1

+ 2ABcL1Y
η
T

T∑
t=1

αt

c+ t
+ 8ηA2BL2

2α1

≤
a

2BD

η

(
(c+ 2)c−1

(c+ T + 1)c
+

c(c+ 2)

(c+ T + 1)2
+

2(c+ 1)

c+ T + 1

)
+ 2ηBL2

1

(
(c+ 1)3

c(c− 1)(c+ T + 1)
+

(c+ 1)4

c(c+ T + 1)3

)
+ 2ABL1Y

η
T

(
4c

c+ T + 1
+

c(c+ 2)

(c+ T + 1)2

)
+ 8ηA2BL2

2

(1 + c)(c+ 2)c−1

(c+ T + 1)c

≤2B
(
3D

η
+ 10ηL2

1 + 5AL1Y
η
T + 4ηA2L2

2

)
c+ 1

c+ T + 1
, (117)

when T ≥ 1, where B denotes maxz∈Z
∑d

i=1 ψi(z) and (a) is derived from parameter settings
Eq. (96) and the result of Lemma C.10.

C.3 Application to Minimax Problems

C.3.1 Infinite Horizon Two-Player Zero-Sum Markov Games

To simplify notations, in the following discussion, we write S = {si}|S|
i=1, and denote by Qz =(

Qz(s1, ·, ·), · · · ,Qz(s|S|, ·, ·)
)

the joint action-value matrix where Qz(si, ·, ·) ∈ R|A|×|B| is an
action-value matrix on state si. According to the connection between value function and action-value
function

V z(si) = E a∼x(·|si)
b∼y(·|si)

[Qz(si, a, b)], Q
z(si, a, b) = (1− θ)σ(si, a, b) + θEsi′∼P(·|si,a,b)[V

z(si′)],

we provide the following proof for Proposition 4.5.

Proof of Proposition 4.5. By defining

[Pi(Q, z)]a,b := (1− θ)σ(si, a, b) + θEsi′∼P(·|si,a,b) [⟨Qi′yi′ ,xi′⟩] , (118)

we derive that Qz = P(Qz, z). We can notice that

[Pi(Q,x,y)−Pi(Q,x
′,y)]a,b =θEsi′∼P(·|si,a,b) [⟨Qi′yi′ ,xi′ − (x′)i′⟩] ,

[Pi(Q,x,y
′)−Pi(Q,x,y)]a,b =θEsi′∼P(·|si,a,b)

[
⟨−Q⊤

i′xi′ ,yi′ − (y′)i′⟩
]
.

(119)

Therefore, for any Q satisfies ∥Q∥∞ ≤ 1, it’s easy to verify that

1. F i(·, zi) is uniformly 2-Lipschitz continuous with respect to ∥ · ∥∞ under ∥ · ∥∞ for any
zi ∈ Zi, and F i(Q, ·) is uniformly 1-Lipschitz continuous with respect to ∥ · ∥∞ under
∥ · ∥1, since F (Q, zi) =

(
y⊤
i Q

⊤
i ,−x⊤

i Qi

)⊤
,

2. P satisfies [A2] in Assumptions 4.2 with [Bi]s,a,b = [Ci]s,a,b = θP(si|s, a, b) and γ = 2θ,
since Eq. (119),

3. P(·, z) is a θ-contraction mapping under ∥ · ∥∞, and ∥P(·, ·)∥∞ ≤ 1, since the definition
of P,

4. [Pi(Q, ·, ·)]a,b is bi-linear with respect to x and y, and min{[Ci]s,a,b,[Bi]s,a,b}
[Ci]s,a,b+[Bi]s,a,b

≡ 1/2 for any
i and s, a, b.
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Therefore, according to Lemma 4.3, there exist a tensor Q∗ and a pair of (x∗,y∗) satisfy Eq. (11).
Furthermore, the (x∗,y∗) mentioned above is a Nash equilibrium of Jx,y(ρ0) by utilizing Corollary
C.6. We may therefore derive that Q∗ ≡ Qz∗

. Leveraging Eq. (65) for any Nash equilibrium
(x∗,y∗) ∈ Z and denoting Q∗

i = Qx∗,y∗
(si, ·, ·), we have

Jx∗,y∗
(ρ0)− Jx∗(y),y(ρ0) =

∑
s∈S

dx
∗(y),y

ρ0
(s)
[
⟨Qx∗,y∗

(s, ·, ·)y∗(·|s),x∗(·|s)⟩ (120)

−⟨Qx∗,y∗
(s, ·, ·)y(·|s),x∗(y)(·|s)⟩

]
≤

|S|∑
i=1

dx
∗(y),y

ρ0
(si)

[
⟨Q∗

iy
∗
i ,x

∗
i ⟩ − min

ui∈Xi

⟨Q∗
iyi,ui⟩

]
, (121)

where x∗(y) = argmin
u∈X

Ju,y(ρ0) and y∗(x) = argmax
w∈Y

Jx,w(ρ0). Similarly, we have

Jx,y∗(x)(ρ0)− Jx∗,y∗
(ρ0) ≤

|S|∑
i=1

dx,y
∗(x)

ρ0
(si)

[
max
wi∈Yi

⟨(Q∗
i )

⊤xi,wi⟩ − ⟨(Q∗
i )

⊤x∗
i ,y

∗
i ⟩
]
.

(122)

By setting ψi(z) := max{dx,y
∗(x)

ρ0
(si),d

x∗(y),y
ρ0

(si)} and combining the facts that fi(Q∗, x∗
i ,y

∗
i )−

min
ui∈Xi

fi(Q
∗,ui,yi) ≥ 0 and max

wi∈Yi

fi(Q
∗,xi,wi) − fi(Q∗,x∗

i ,y
∗
i ) ≥ 0 derived from Corollary

C.6, we have

Jx,y∗(x)(ρ0)− Jx∗(y),y(ρ0) ≤
d∑

i=1

ψi(z)

[
max
wi∈Yi

fi(Q
∗,xi,wi)− min

ui∈Xi

fi(Q
∗,ui,yi)

]
.

(123)

C.3.2 Convex-Concave Minimax Problems

In this section, we consider convex-concave minimax problem over compact concave region Z =

X ×Y ⊂ R
∑d

i=1 ni ×R
∑d

i=1 mi which satisfies Assumption C.1 with divergence-generating function
v. The standard convex-concave minimax problem is formulated as follows:

min
x∈X

max
y∈Y

f(x,y), (124)

where f is convex with respect to x and concave with respect to y. Therefore, we obtain that

f(x,y∗(x))− f(x∗(y),y) ≤ ⟨∇xf(z),x− x∗(y)⟩+ ⟨−∇yf(z),y − y∗(x)⟩ , (125)

for any z = (x,y) ∈ Z . We may therefore derive that f satisfies GQCC condition with g(z) ≡ 1
and f(P(z), z) = f(z). Furthermore, assuming ∇f is L-lipschitz continuous (i.e., ∥∇f(z) −
∇f(v)∥∗ ≤ L∥z − v∥ for any z,v ∈ Z) and choosing P ≡ 0, then verifying that f satisfies
the preconditions of general version of Theorem C.7 is reduced to verifying that f satisfies (1) in
Assumption C.3. Since F = ∇f only depends on variable z, it is evident that f satisfies (1) in
Assumption C.3 when∇f is L-Lipschitz. Therefore, under the smoothness condition of f , Theorem
C.7 implies that O(ε−1) iterations Algorithm 4 needs to find an ε-approximate Nash equilibrium
of f matches the lower bounds of Ω(ε−1) [52] for the number of iterations that any deterministic
first-order method requires to find an ε-approximate Nash equilibrium of a smooth convex-concave
function.

D Auxiliary Lemma

Lemma D.1. For Γ ≥ 17, the function g(Γ) can be bounded by 80640
Γ−1 + 2

Γe−2−1 . Let g(Γ) be defined
as
∑∞

k=1 Γ
−k[k7 + (k + 1) exp{2k}].
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Proof.

g(Γ) ≤
∞∑
k=1

[
Γ−k (k + 7)!

k!
+

(
e2

Γ

)k

(k + 1)

]

=
d7

dα7

(
α8

1− α

)∣∣∣∣
α=Γ−1

+
d

dα

(
α2

1− α

)∣∣∣∣
α=e2Γ−1

≤
(a)

80640

Γ− 1
+

2

Γe−2 − 1
, (126)

(a) can be deduced based on the following inequality

d7

dα7

(
α8

1− α

)
=

7∑
k=0

(−1)k
(
7
k

)
8!k!

(k + 1)!

(
α

1− α

)k+1

≤
(b)
7!

8∑
k=1

(
8
k

)(
α

1− α

)k

=7!

[(
1 +

α

1− α

)8

− 1

]

≤7!
[
exp

{
8α

1− α

}
− 1

]
≤
(c)

80640α

1− α
, (127)

where (b) and (c) are derived from Leibniz equation, and the inequality ex − 1 ≤ 2x holds for
0 ≤ x ≤ 1/2 respectively.

Lemma D.2. For any n ∈ N, r ∈ Rn,p ∈ ∆n, if it holds that p∗ = arg min
p∈∆n

η ⟨p, r⟩+KL(p∥q),
then we have

⟨p∗ − p, r⟩ =1

η
(KL(p∥q)−KL(p∥p∗)−KL(p∗∥q)) . (128)

Proof. We just need to prove p∗(i) ≡ p′(i) := q(i) exp{−ηr(i)}∑n
j=1 q(j) exp{−ηr(j)} for any i ∈ [n] which satisfies

⟨p− p′, ηr + log(p′)− log(q)⟩ = 0, (129)

for any p ∈ ∆n. Assume that F (p) := η ⟨p, r⟩+KL(p∥q) and define E(p) =
∑n

i=1 p(i) log(p(i))
for any p ∈ ∆n. Clearly, p′ ∈ ∆n. Hence, for all p ∈ ∆n,

F (p) =η ⟨p, r⟩+KL(p∥q)
=η ⟨p′, r⟩+KL(p′∥q) + ⟨p− p′, ηr − log(q)⟩+ E(p)− E(p′)
=
(a)
η ⟨p′, r⟩+KL(p′∥q) + E(p)− E(p′) + ⟨p− p′,− log(p′)⟩

=
(b)
F (p′)−KL(p∥p′), (130)

where (a) is derived from Eq. (129). Therefore, we obtain that p∗ ≡ p′. By using equality (b), we
finish the proof.

Lemma D.3. Suppose that for τ ∈ (0, 1), we have
∥∥∥p
q

∥∥∥
∞
≤ 1 + τ . Then(

1− τ
2
− 2τ

3(1− τ)

)
X 2(p, q) ≤ KL(p∥q).
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Proof. We consider the Taylor expansion of the function log(1 + x) =
∑∞

k=1
(−1)k−1

k xk and define
Qτ,D(x) := x−

(
1
2 +Dτ

)
x2. According to

log(1 + x)−Qτ,D(x) ≥ Dτx2 − |x|3

3(1− τ)
, (131)

for any x ∈ [−τ, τ ], we have log(1 + x) ≥ Qτ,D(x) when D ≥ 1
3(1−τ) and x ∈ [−τ, τ ]. Therefore,

we obtain

KL(p∥q) =
n∑

j=1

p(j) log

(
p(j)

q(j)

)

≥
n∑

j=1

p(j)

[(
p(j)

q(j)
− 1

)
−
(
1

2
+Dτ

)(
p(j)

q(j)
− 1

)2
]

=X 2(p, q)−
(
1

2
+Dτ

) n∑
j=1

p(j)

q(j)
q(j)

(
p(j)

q(j)
− 1

)2

≥X 2(p, q)−
(
1 + τ

2
+Dτ(1 + τ)

)
X 2(p, q)

=

(
1− τ
2
−Dτ(1 + τ)

)
X 2(p, q). (132)

We complete the proof if D = 1
3(1−τ) .

Lemma D.4. Suppose that r ∈ Rn, τ ∈ (0, 1/2), ∥r∥∞ ≤ τ
2 , and p, p̃ ∈ ∆n satisfy, for each

j ∈ [n],

p̃(j) =
p(j) · exp{r(j)}∑

j′∈[n] p(j
′) · exp{r(j′)}

. (133)

Then(
1−

(
2

3(1− τ)
+ 4

)
τ

)
Varp(r) ≤ X 2(p̃,p) ≤

(
1 +

(
2

3(1− τ)
+ 4

)
τ

)
Varp(r). (134)

Proof. Without loss of generality, we consider the case ⟨p, r⟩ = 0. If not, redefine r̃ := r − ⟨p, r⟩ ·
e(∥r̃∥∞ ≤ τ) and analyze r̃ where e ∈ Rn is an all 1 vector. It’s clear that

X 2(p̃,p) = −1 +
n∑

j=1

p(j)

(
p̃(j)

p(j)

)2

= −1 + Ep

[
exp{r}

Ep[exp{r}]

]2
. (135)

We define F 1
D(x) := 1+x+ 1−Dτ

2 x2, F 2
D(x) := 1+x+ 1+Dτ

2 x2 and note that for any x ∈ [−τ, τ ]

exp{x} − F 1
D(x) ≥Dτ

2
x2 − x3

6
, (136)

F 2
D(x)− exp{x} ≥Dτ

2
x2 − |x|3

6(1− τ)
, (137)

where Eq. (136) is derived from the summation of the 2k-th and 2k+1-th (k ≥ 2) terms in the Taylor
expansion of exp{x} is always non-negative, Eq. (137) is derived from

∑∞
k=3

xk

k! ≤
|x|3

6(1−x) ≤
|x|3

6(1−τ)

for any x ∈ [−τ, τ ]. Therefore, we have exp{x} − F 1
D(x) ≥ 0 and F 2

D(x) − exp{x} ≥ 0 for all
x ∈ [−τ, τ ] if D ≥ 1

3(1−τ) . Then, we have

1 + 2x+ (2− (D + 2)τ)x2 ≤ (exp{x})2 ≤ 1 + 2x+ (2 + (D + 2)τ)x2, (138)

when Dτ ≤ 1
2 . In addition, by ⟨p, r⟩ = 0, it’s obvious that

1 +
1−Dτ

2
Ep[r

2] ≤ Ep[exp{r}] ≤ 1 +
1 +Dτ

2
Ep[r

2]. (139)
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Combining Eq. (138) and (139), we derived that
1 + (1− (D + 1)τ)Ep[r

2] ≤ (Ep[exp{r}])2 ≤ 1 + (1 + (D + 1)τ)Ep[r
2], (140)

1 + (2− (D + 2)τ)Ep[r
2] ≤Ep

[
(exp{r})2

]
≤ 1 + (2 + (D + 2)τ)Ep[r

2], (141)

for Dτ ≤ 1
2 . According to Eq. (135) ,(140) and (141), we have

−1 + Ep

[
exp{r}

Ep[exp{r}]

]2
≥ (1− (2D + 3)τ)Ep[r

2]

1 + (1 + (D + 1)τ)Ep[r2]
≥ (1− (2D + 4)τ)Ep[r

2],

−1 + Ep

[
exp{r}

Ep[exp{r}]

]2
≤ (1 + (2D + 3)τ)Ep[r

2]

1 + (1− (D + 1)τ)Ep[r2]
≤ (1− (2D + 4)τ)Ep[r

2].

We derive Eq. (134) by setting D = 1
3(1−τ) .

Lemma D.5 (Lemma B.6, [15]). Let ϕ1, · · · , ϕl be softmax-type functions.

ϕi(x) =
exp{x(ji)}∑n

k=1 τik exp{x(k)}
, (142)

where ji ∈ [1, · · · , n],
∑n

k=1 τik = 1 for any i ∈ [1, · · · , l]. Let P (x) =
∑

k=0

∑
|α|=k

DαP (0)
α! xα

denote the Taylor series of
∏l

i=1 ϕi. Then for any integer k,∑
|α|=k

|DαP (0)|
α!

≤ (e3l)k. (143)

We introduce the conception of (Q,R)-bounded function briefly. Suppose ϕ : Rn → R is real-
analytic in a neighborhood of the origin. For real numbersQ,R > 0, we say that ϕ is (Q,R)-bounded
if the Taylor expansion of ϕ at 0, denoted Pϕ(x) =

∑∞
k=0

∑
|α|=k

Dαf(0)
α! xα, satisfies, for each

integer i ≥ 0,
∑

|α|=k
|Dαϕ(0)|

α! ≤ Q ·Rk.
Lemma D.6 (Detailed version of Lemma 4.5, [15]). Suppose that h, n ∈ N, ϕ : Rn → R is a
(Q,R)-bounded function such that the radius of convergence of its power series at 0 is at least
ν > 0, and Z = {Z0, · · · ,ZT } ⊂ Rn is a sequence of vectors satisfying

∥∥Zt
∥∥
∞ ≤ ν for

t ∈ [0, · · · , T ]. Suppose for some β ∈ (0, 1), for each 0 ≤ h′ ≤ h and t ∈ [0, · · · , T − h′], it holds
that

∥∥Dh′Zt
∥∥
∞ ≤

1
ΓRβ

h′
(h′)Bh′

for some B ≥ 3,Γ ≥ e3. Then for all t ∈ [0, · · · , T − h],∣∣(Dh(ϕ ◦Z))t
∣∣ ≤ Q · g(Γ) · βhhBh+1, (144)

where g(Γ) is a bounded function with respect to Γ.

Proof. Without loss of generality, we assume ϕ(0) = 0. We define (ϕ ◦ Z)t =∑
γ∈Zn

≥0
:|γ|=k aγ

(
Zt
)γ

and obtain

∣∣∣(Dh(ϕ ◦Z))
t
∣∣∣ =
∣∣∣∣∣∣
∞∑
k=1

∑
γ∈Zn

≥0
:|γ|=k

aγ (DhZ
γ)

t

∣∣∣∣∣∣
≤

∞∑
k=1

∑
γ∈Zn

≥0
:|γ|=k

|aγ |

 ∑
x:[h]→[k]

k∏
j=1

∣∣∣∣(Et′x,j
Dh′

x,j
Z(l′x,j)

)t∣∣∣∣


≤
∞∑
k=1

∑
γ∈Zn

≥0
:|γ|=k

|aγ | ·
βh

(ΓR)k
·

 ∑
x:[h]→[k]

k∏
j=1

(h′x,j)
Bh′

x,j


≤

∞∑
k=1

∑
γ∈Zn

≥0
:|γ|=k

|aγ | ·
βh

(ΓR)k
hBh max

{
k7, (hk + 1) exp

{
2k

hB−1

}}

≤
(c)

∞∑
k=1

Q

(
R

ΓR

)k

·max
{
k7, (k + 1) exp {2k}

}
· βhhBh+1

≤Q · g(Γ) · βhhBh+1, (145)
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where (c) is derived from (Q,R)-bounded condition.

Lemma D.7 (Lemma C.4, [15]). Let {n, T} ⊂ Z+ with n ≥ 2 and T ≥ 4, we select H :=

⌈log(T )⌉, β0 = 1
4H , and β =

√
β0/8

H3 . Assume that {zt}Tt=1 ⊂ [0, 1]n and {pt}Tt=1 ⊂ ∆n satisfy the
following condition

1. For each 0 ≤ h ≤ H and 1 ≤ t ≤ T − h, it holds that ∥(Dhz)
t∥∞ ≤ βhH3h+1.

2. The sequence {pt}Tt=1 is ζ−consecutively close for some ζ ∈
[
(2T )−1, β4

0/8256
]
.

Then, we have

T∑
t=1

Varpt(zt − zt−1) ≤ 2β0

T∑
t=1

Varpt(zt−1) + 165120(1 + ζ)H5 + 2. (146)

Proposition D.8. Given a constant c > 0, we have

t∑
k=1

(
c

c+ k

)2

≤ c. (147)

Lemma D.9. For a constant c ≥ c′ > 0, the following inequality holds

c′ log

(
c+ t− 1

c+ T

)
− (c′ + c′c)2

2c
≤

T∑
k=t

log

(
1− c′

c+ k

)
≤ c′ log

(
c+ t

c+ 1 + T

)
, (148)

when T > t ≥ 1.

Proof. Accoding to the Taylor expansion of log(1 − x) when x < 1, we obtain the estimation of
log
(
1− c′

c+k

)
for any k ≥ 1 as follows

log

(
1− c′

c+ k

)
≤− c′

c+ k
, (149)

log

(
1− c′

c+ k

)
≥− c′

c+ k
− (c′ + cc′)2

2

(
1

c+ k

)2

. (150)

Next, we have

T∑
k=t

− c′

c+ k
≤ −

∫ T+1

t

c′

c+ x
dx = c′ log

(
c+ t

c+ 1 + T

)
, (151)

T∑
k=t

[
− c′

c+ k
− (c′ + cc′)2

2

(
1

c+ k

)2
]
≥ −

∫ T

t−1

[
c′

c+ x
+

(c′ + cc′)2

2

(
1

c+ x

)2
]
dx

≥ c′ log
(
c+ t− 1

c+ T

)
− (c′ + cc′)2

2c
. (152)

E Limitation

For objectives with GQC condition (GQCC condition) and general smooth internal function (i.e.
Lipschitz continuous internal function), our analytical method might not provide similar iteration
complexity. We leave the related algorithmic analysis on more generalized smoothness conditions as
a future work.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: YES

Justification: We have a detailed explanation in the contribution section of the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: YES

Justification: See Section E in appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: YES
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Justification: We provide the assumptions and the associated theoretical results in Section 3
and Section 4, respectively.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: NA
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: YES
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: NA
Justification: Since this paper is a theoretical paper, it may not have other social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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