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Abstract

The use of emojis provide for adding a visual
modality to textual communication. The task
of predicting emojis however provides a chal-
lenge for computational approaches as emoji
use tends to cluster into the frequently used
and the rarely used emojis. Much of the re-
search on emoji use has focused on high re-
source languages and conceptualised the task
of predicting emojis around traditional servers-
side machine learning approaches, which can
introduce privacy concerns, as user data is
transmitted to a central storage. In this pa-
per, we provide a benchmark dataset of 118k
tweets for emoji prediction in Hindi.! Specif-
ically, we show that a privacy preserving ap-
proach, Federated Learning exhibits compa-
rable performance to traditional servers-side
transformer models.

1 Introduction

Since the creation of emojis around the turn of
the millennium (Stark and Crawford, 2015; Al-
shengeeti, 2016), they have become of a staple
of informal textual communication, expressing
emotion and intent in written text (Barbieri et al.,
2018b). This development in communication style
has prompted research into emoji analysis and pre-
diction for English (e.g. Barbieri et al., 2018a,b;
Felbo et al., 2017; Tomihira et al., 2020; Zhang
et al., 2020) while comparatively little attention
has been given to the low resource languages.

Emoji-prediction has posed a challenge for
the research community because emojis express
multiple modalities, containing visual seman-
tics while simultaneously standing in place for
words (Padilla Lépez and Cap, 2017). The chal-
lenge is further compounded by the quantity of
emojis sent and the imbalanced distribution of
emoji use (Cappallo et al., 2018; Padilla Lépez
and Cap, 2017).

!The dataset will be made publicly available upon request.

Machine learning for emoji analysis and predic-
tion has traditionally relied on traditional server-
side architectures. However, training such models
risks leaking highly sensitive information that may
co-occur with emojis in texts. In contrast, federated
learning (McMahan et al., 2017) approaches the
task of training machine learning models by empha-
sising privacy of data. Such privacy is ensured by
training models locally and sharing updates, rather
than the data, with a central server (see Figure 1).

Motivated by prior work in privacy preserving
machine learning (e.g. Ramaswamy et al., 2019;
Yang et al., 2018) and emoji prediction for low
resource languages (e.g. Choudhary et al., 2018),
we consider the application of federated learning
to the task of emoji prediction for Hindi. Specifi-
cally, we collect an imbalanced dataset of 118, 030
tweets in Hindi for emoji prediction. The dataset
contains 700 unique emojis, that we classify into
10 pre-defined categories of emojis.” We fur-
ther examine how balancing the data, using re-
sampling and cost-sensitive re-weighting, influence
a federated LSTM model and 6 server-side, cen-
tralised models: bi-directional LSTM (Hochreiter
and Schmidhuber, 1997), IndicBert (Kakwani et al.,
2020), HindiBERT,? Hindi-Electra,*, mBERT (De-
vlin et al., 2019), and XLM-R (Conneau et al.,
2020).

We find that the federated learning framework
using simple machine learning models can provide
results that are competitively with more complex
models such as fine-tuned large language models.
Moreover, we find that models that take into ac-
count a higher number of client updates provide
for the best performing federated models, in spite
of disregarding up to 50% of all available training
data.

“These categories are obtained from the Emojis library,
available at https://github.com/alexandrevicenzi/emojis.

3https://huggingface.co/monsoon-nlp/hindi-bert

*https://huggingface.co/monsoon-nlp/hindi-tpu-electra
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Figure 1: The Federated Learning process:(A) client devices compute updates based on the data stored locally, (B)
client updates are aggregated by the server and a new global model is formed, (C) the resulting model is sent back

to all the clients, and the process is repeated.

2 Prior work

Federated learning Federated Learning (McMa-
han et al., 2017) is a training procedure which dis-
tributes training of models onto a number of client
devices. In this way, federated learning can help
prevent computational bottlenecks when training
models on a large corpus while simultaneously pre-
serving privacy by not transmitting raw data. This
training approach has previously been applied for
on-device token prediction on mobile phones for
English. In a study of the quality of mobile key-
board suggestions, Yang et al. (2018) show that fed-
erated learning improves the quality of suggested
words. Addressing emoji-prediction, Ramaswamy
et al. (2019) use federated learning, to improve on
traditional server-based models on user devices.

Centralised training In efforts to extend emoji
prediction, Ma et al. (2020) experiment with a
BERT-based model on a new dataset that includes
a large set of emojis for multi label prediction.
Addressing the issue of low resource languages,
Choudhary et al. (2018) train a bi-directional
LSTM-based siamese network, jointly training
their model with high resource and low resource
languages.

3 Data

We collect our dataset for emoji prediction by scrap-
ing 1M tweets using the Twitter API, keeping
only the 24, 794 tweets that contain at least one
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Figure 2: Distribution of 15 most frequently appearing
emojis in Hindi.

emoji and are written in Hindi. For tweets that
contain multiple emojis, we duplicate the tweet by
the number of emojis they contain and assign a
single emoji to each copy, resulting in a dataset
of 118,030 tweets with 700 unique emojis. Due
to the highly imbalanced nature of emoji use in
our dataset (see Figure 2), we categorise into a
coarse-grained set of 10 emoji categories.

3.1 Balancing data

This dataset exhibits a long-tail in the distribution
of emoji categories (see Figure 3), with the vast
majority of tweets belonging to the “Smileys &
Emotions” and “People & Body” categories. To
address this issue, we use two different data balanc-
ing methods: re-sampling (He and Garcia, 2009)
and cost-sensitive reweighting (Khan et al., 2017).
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Figure 3: Category distribution of complete dataset

Re-Sampling Re-sampling has been used widely
to address issues of class imbalances (e.g. Buda
et al., 2018; Zou et al., 2018; Geifman and El-
Yaniv, 2017; Shen et al., 2016). By balanc-
ing our data, through over-sampling the minority
classes (Drumnond, 2003) and under-sampling the
majority classes (Chawla et al., 2002), we obtain a
dataset of 58, 000 tweets.

Cost-Sensitive Learning Similarly to re-
sampling data, cost-sensitive weighting has
been applied to the issue of dealing with class
imbalances in data (e.g. Zhou and Liu, 2005;
Huang et al., 2016; Ting, 2000; Sarafianos et al.,
2018). Rather than over or under-sampling, each
class is assigned a weight, that can be used to
weight the loss function (Lin et al., 2017). For
our models, we assign each class the inverse class
frequency as its’ weight:
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where |S| is the number of samples and |C/| is the
number of classes.

3.2 Pre-processing

We pre-process all tweets by lower-casing all text
and removing numbers, punctuation, and URLS.
We also remove Twitter specific such as hashtags,
@-mentions, and the retweet marker: "RT:".

4 Experiments

We conduct our experiments using PyTorch (Paszke
et al., 2019) and Transformers (Wolf et al., 2020)

on Google Colab using a Nvidia Tesla V100 GPU
with 26GB of RAM. The datasets are split into
train (80%), validation (10%), and test sets (10%).
We measure our performance with the accuracy,
AUC, and weighted F1 metrics. Each model is
trained and evaluated on the original imbalanced
data and the two balancing approaches described
in Section 3.1. Finally, for the federated setting, we
conduct experiments where data is independent and
identically distributed (I.I.D.) across the different
client nodes.

4.1 Baseline models

We use 6 centralised models as baselines to com-
pare the federated approach against. Specifically,
we use a bi-LSTM (Hochreiter and Schmidhuber,
1997) with 2 hidden layers and dropout,’ two multi-
lingual models: mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020). Finally we use
IndicBERT (Kakwani et al., 2020), HindiBERT,
and Hindi-Electra as these are pre-trained on indic
languages.® All baselines are trained with batch
size 8, learning rate 4e — 5, and seq. length 128.

4.2 Federated models

For our federated experiments, we use the FedProx
algorithm (Li et al., 2018) which trains a federated
model by considering dissimilarity among the local
gradient updates while preventing divergence un-
der non-LL.D. settings through adding a proximal
term to the loss function.” We reuse the bi-LSTM
architecture from Section 4.1 as our experimental
model to limit the computational power required
from client devices. For our experiments, we set
the number of clients to 100 and simulate L.I.D.
and non-L.L.D. settings. We simulate an L.I.D. set-
ting by ensuring that all client devices receive data
that is representative of the entire dataset. For the
non-L.I.D. setting, we create severely imbalanced
data splits for clients by first grouping the data by
label, then splitting the grouped data into 200 bins
and randomly assigning 2 bins to each client. We
experiment with three different settings, in which
we randomly select 10%, 30%, and 50% of all
clients whose updates are incorporated into the
global model.

>We set the dropout to 0.5

®IndicBERT is pre-trained on 12 indic languages, HindiB-
ERT and Hindi-Electra are both trained on Hindi Wikipedia
and CommonCrawl.

"We follow Li et al. (2018) in setting the value of the
proximal term to 0.01.



Bi-LSTM mBERT XLM-R IndicBERT hindiBERT Hindi-Electra
‘Acc. AUC  Fl ‘Acc. AUC  Fl ‘Acc. AUC  Fl ‘Acc. AUC  Fl ‘Acc. AUC  Fl | Acc. AUC Fl
Imbalanced | 62.38 77.53 63.83 | 66.90 7596 64.50 | 70.39 83.00 69.44 | 68.21 82.13 67.60 | 66.53 81.62 65.90 | 52.30 49.64 35.91
Re-sampled | 53.95 78.97 58.61 | 53.43 78.79 56.58 | 60.76 8245 63.39 | 6244 80.00 64.58 | 55.16 78.60 57.92 | 52.30 50.10 60.30
Cost-Sensitive | 61.19 79.76 64.46 | 62.73 79.42 63.30 | 68.33 83.05 68.87 | 67.98 82.70 68.66 | 65.32 81.55 66.06 | 52.20 50.10 35.91
Table 1: Centralised model performances.
c=10% c=30% c=50%
11D non-1ID 11D non-1ID 11D non-IID
Acc  AUC F1 Acc  AUC F1 Acc AUC F1 Acc  AUC F1 Acc  AUC F1 Acc  AUC F1
Imbalanced | 63.32 70.27 62.32 | 63.78 60.96 57.96 | 66.56 67.13 42.68 | 56.99 62.56 54.86 | 65.91 66.86 63.57 | 59.41 G61.92 58.09
Re-sampled | 45.19 78.60 51.12 | 32.92 74.10 34.28 | 42.68 80.23 49.19 | 35.27 7547 41.36 | 47.10 80.66 52.14 | 40.22 75.71 45.76
Cost-Sensitive | 63.24 76.42 61.99 | 64.81 60.96 61.25 | 64.16 76.71 63.78 | 55.70 60.37 54.36 | 60.22 74.91 59.57 | 61.20 59.44 59.36

Table 2: Results of experiments run using the Federated Learning setup. c is the percentage

updates are considered.

Approach Results

Server trained Federated
Imbalanced 83.09 67.13
Balanced 82.45 80.23
Cost-Sensitive 83.05 76.71

Table 3: Results comparing the AUC scores for server-
based approach(XLM-R) and federated approach on
IID partitioning with client fraction of 0.3

4.3 Analysis

Considering first the results for our baseline models
(see Table 1), we find that XLM-R and IndicBERT
obtain the best performances. Across all baselines,
with the exception of Hindi Electra, we find that
using a cost-sensitive weighting out-performs bal-
ancing through re-sampling the dataset. Moreover,
we find that the cost-sensitive weighting performs
comparably or out-performs all other settings. Cu-
riously, we find that Hindi Electra under-performs
compared to all other models, including HindiB-
ERT which is a smaller model trained on the same
data. This discrepancy in the performances of these
two models may be due to the differences in com-
plexity, and thus data required to achieve compet-
itive performances. Finally, the bi-LSTM slightly
under-performs in comparison to XLM-R, however
it obtains competitive performances with all other
well-performing models.

Turning to results of our experiments with feder-
ated models (see Table 2), we note that the feder-
ated models achieve slightly lower, but comparative
performances with the centralised models, across
data distribution setting for clients. Considering
the performance in terms of AUC given the num-
ber of clients’ update considered, we find that the
best performing setting is 50%, for both L.I.D. and
non-L.I.D. settings. However, if we are to consider

of clients whose

accuracy or F1, the best performing client percent-
age varies depending on whether the data is I.I.D.
or not. In terms of the data balancing schemes, we
find that the imbalanced label distribution tends to
achieve low performances in terms of AUC and
high performances in terms of accuracy, while the
cost-sensitive strategy often offers a more balanced
performance. In contrast, the re-sampled label bal-
ancing technique provides highly variable results.
For the L.I.D. setting, the scores posted are compa-
rable with the other label balancing schemes while
the non-1.1.D. setting produces very high scores in
terms of AUC but poor performances in terms of
accuracy and F1.

5 Conclusion

Emoji prediction in user-generated text is a task
which entails potentially highly private data, for
which reason it is important to consider privacy-
preserving methods for the task. Moreover, while
emojis are used by people around the world, the
majority of academic research has been focused
on English. Here, we presented a new dataset for
emoji for Hindi and compare a privacy preserv-
ing machine learning approach, Federated Learn-
ing, with traditional, centralised machine learning
methods. Experimenting with the different data
balancing methods and simulating settings where
data is I.I.D. and where it is not, we find that using
federated learning can afford competitive perfor-
mances with more complex centralised machine
learning methods, such as fine-tuned language mod-
els, while ensuring that user data is kept secure by
only sharing model weight updates rather than the
raw data.
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A Appendix
A.1 Server-Based Models

For traditional server-side transformer models, we
use the simpletransformers® library. We use the
default configuration options. We train all the trans-
former models for 25 epochs with a learning rate
of 4e-5 and no weight decay or momentum.

A.2 Federated Learning Plots

This section provides detailed graphs comparing
the training loss, validation AUC, validation F1
score and validation accuracy for every dataset vari-
ation. All of these graphs were made using Weights
and Biases (Biewald, 2020).

A.2.1 Imbalanced Dataset (IID)

Train Loss

8https://simpletransformers.ai/
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A.2.3 Balanced Dataset (IID)
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A.3.2 Balanced Dataset
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