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Abstract

Reinforcement learning (RL) provides a normative computational framework for
reward-based decision making, where world models play a central role in enabling
efficient learning and flexible planning. Classical RL algorithms are based on
experienced outcomes, whereas humans and animals may generalize learning to
unexperienced events based on internal world models, so-called fictive learning.
We propose a simple, brain-inspired fictive learning rule to augment model-based
RL and use the rodent two-step task to examine whether fictive learning can
better explain the observed behavior and improve performance by better sample
efficiency. The learning rule uses the same reward prediction error (RPE) to update
both experienced and unexperienced states and actions, with scaling by the event
correlation inferred from the internal model for fictive update. Through simulations,
we show that this model achieves the highest accuracy and better reproduces
key behavioral traits observed in the two-step task. Model fitting validates its
superior fit over existing alternatives. Furthermore, the model replicates striatal
dopaminergic dynamics observed in the same task, suggesting the brain might
operate fictive learning for reward-based learning. The fictive learning observed
here is conceptually analogous to approaches in machine learning, such as off-
policy learning and counterfactual reasoning. These results suggest that fictive
learning could be an inherent advantage of world models, highlighting its role as
both a natural component of model-based decision making and an indispensable
principle for more efficient learning algorithms utilizing world models.
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Models for Decision Making.



1 Introduction

Learning from history to improve future decisions is the key to adaptation. Reinforcement learning
(RL) [19] is the canonical theory to describe reward-based learning. An RL agent learns to predict
the future outcome from experience and takes the difference between the prediction and the actual
outcome, the reward prediction error (RPE), to update the prediction. Within RL, world models play
a central role in enabling future prediction, long-term planning, and credit assignment for optimizing
decisions. There have been great successes in applying RL to study how animals and humans
utilize internal models to guide decisions. Especially, the distinction between the model-based and
model-free RL has been intensively studied using the two-step task [2}4}18}[13]], which serves as a
benchmark paradigm for probing how agents exploit world models in decision-making.

We performed a two-step task experiment in mice [4]], and found that the mice’s behaviors were
difficult to reproduce by standard model-free, model-based, or hybrid RL algorithms. We hypothesize
that the fictive learning, a possible inherent advantage of possessing the world model, underlies this
mismatch. Humans and animals often learns by asking, "If I did something different, what outcome
would I have gotten?" [6,[9} [14]. Specifically, they learn about non-encountered events by imagining
their potential returns based on the information from experience, which requires the correlation
between experienced and non-encountered events informed by an adequate world model [6} [14]].
Payoffs between options are often anticorrelated in two-step tasks [2}14], which encourages fictive
learning. The commonly observed win-stay-lose-shift strategy might result from fictive learning.

Fictive reward-related signals were found in the regions that are responsible for factual RPE compu-
tation, including striatum [12}[7], and orbital frontal cortex [1l], where neurons encoding different
actions and states overlap [17,[11]]. Factual RPE might be generalized as fictive RPE by the inferred
event correlation determined by the co-activation (or mutual inhibition) or overlapping of neurons
encoding multiple actions and states in those regions.

Fictive learning is not just a behavioral trait that naturally arises from world models. Related principles
have also been proposed in machine learning for causal inference [21]], efficient policy learning [3],
credit assignment [[10], and data augmentation for sample efficiency [[15] and robustness [20], ex-
ploiting world models to improve performance. This convergence suggests that fictive learning is
also a computational benefit inherent to world models. Fictive learning allows for the model-based
updating of non-experienced events, leading to better sample efficiency. Hence, we study whether
fictive learning can resolve the mismatch between current theories and experimental observation in
the two-step task, which would contribute to the understanding of model-based decision making.

We implement fictive learning in model-based RL by the generalized RPE and conduct simulation
and animal experiments in a two-step task. Our model exploits the factual RPE computed in factual
learning, scaled by a variable event correlation to ensure its flexibility. Previous studies often either
explicitly instructed the options anticorrelation (buying and selling in the stock market [12]]) or had
no correlation [3]. In our experiment, animals were not instructed of anticorrelation, allowing us to
examine whether fictive learning would naturally arise in reward-based learning.

In the following sections, we first describe the experiment design and model. We then simulated
existing models without fictive learning to show that they fail to explain the experimental result. Next,
we show that a fictive model-based RL fits the observation by simulation, followed by the explanation.
The model fitting confirmed that the fictive MB model fit the behavior better than others. Finally, we
conclude with a discussion of the implications and hypotheses for further validation of the model.

2 Methodology

2.1 Experiment design

We trained 10 mice (C47/BL background) with the two-step task (Fig. Eh) [2, 4]. The mice
freely chose between the left and right options in ~ 75 % trials (mice were forced to choose left or
right otherwise), leading to either an up or a down state with either common (80%) or rare (20%)
probability. The transition probability matrix was fixed between subjects and counterbalanced across
subjects. The left option commonly leads to the up state in some animals, and vice versa in others.
Reward is delivered probabilistically at each state, and the reward probabilities of up and down states
are different in three types (Table.[I). The reward settings changed block-wise. In an up or down
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Figure 1: a, task structure. After initiation, a choice between left and right is presented, followed by
up or down state with either common (80%) or rare (20%) probability. Two states are rewarded with
different probabilities. b, example behavior. The exponential moving average of choices (black line)
traces the reward setting (blue bar). ¢, reward settings. Reward probabilities change anticorrelated.

Table 1: Reward Probability

Block Up Down Neutral
Outcome  Reward Omission Reward Omission Reward Omission
Up state 0.8 0.2 0.2 0.8 0.5 0.5

Down state 0.2 0.8 0.8 0.2 0.5 0.5

block, changes after 5 - 15 trials once the exponential moving average of the correct response (i.e., the
option that commonly leads to the state with higher reward probability) in the last eight free-choice
trials reached 0.75. The reward settings changed after 20 - 30 trials in the neutral block.

2.2 Model description

We included some canonical models as the baseline for model comparison, including three model-free,
two model-based, and six mixture models. We integrate our fictive learning with baseline models
to assess how the fictive learning could affect the behavior and fit to the real data. We simulated 7
agents in Fig[2]and fit data with 19 models (7 fictive learning models) (A.2).

2.2.1 Baseline models

In the task, the agent chooses an action a € (left,right), which leads to the second-step state
s € (up,down), where the outcome r € (0,1) is delivered. Agents learn the action value Q(a)
differently, yet the action selection follows the softmax function.
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The model-free models have the same learning rule but different eligibility trace parameter, A. The
MF(lambda) agent updates its action value of chosen options Q. ¢(a) and state value of experienced
state V'(s) by the RPEs as follow,

V(s) < V(s) + ads 2)

ds =1 —V(s) 3

Qmys(a)  Qmy(a) + a(d, + Ads) @)
0o = V(s) = Qms(a) ®)

The model is termed MF and MF(memory) when the eligibility trace A is 1 or 0, respectively.

The model-based, MB, and the Bayesian hidden state model, hidden state, in which agents exploit
the learned model, the transition matrix between actions and state (P(s|a)). The MB agent learns the
state value by Equation (2)) and then computes the action value by,

Qmp(a) < Y P(sla)V(s) (6)



The hidden state agent (A.T) assumes that there are two hidden states in which either of the two
second-step states is better and updates the beliefs of being one hidden state (h € hyp, Rdown) using
Bayesian inference [4]]. Specifically, the agent estimates the P(h,,) by Bayesian inference with
likelihood P(r|s, hyyp) being the reward probability in the experiment (Table. Therefore, the state
values are updated as,

V(S) = P(T|Sa hup)P(hup) + P(T‘Sa hdmun)P(hdown) (7)
And the action is updated as in the MB model (6).

We also included the asymmetric hidden state model for comparison [4]]. In this model, the agent
treats the omission in up and down states as the same observation by using the likelihood table (A.1)),
while other components remain the same.

A hybrid model consists of both model-free and model-based models by,
Qhybrid = €Qms + (1 — €)Qmp (®)
2.2.2 Fictive learning

The fictive learning is implemented by updating the state value of the unvisited state (V' (s_)) and
the action value of the unchosen option (Q(a_)), by the RPE from visited state (V' (s )) and chosen
option (Q(a)) in Equation (2) and (). The proportion of updating depends on the inferred event
correlation of reward probability 7 between states and 7, between options by,
Qla-) < Qa-) + a(nada + Ansds) C))
Vis2) « V(s=) 4+ ansds (10)
These n are zero when the agent believes the action and state value change independently (as in
baseline models), negative if anticorrelated, and positive if changing in the same direction. In model
simulation and fitting, since the transition matrix was fixed and well-instructed, we assumed that the
agent believes the correlations between states and actions are the same (i.e., ns = 1, = 71). Note
that our model is different from [3,[16]. Specifically, we did not assume a separate learning rate for
fictive updating. And, event correlation is a free meta-parameter learned and developed over sessions.
Besides, the agent infers the fictive RPE instead of the fictive reward.

2.3 Analysis method

Analyses used custom Python, R, and Matlab scripts. For normally distributed data, we use the
paired z-tests when within-subject comparison with equal sample size and unpaired 7-tests otherwise.
Otherwise, we used Wilcoxon signed-rank tests and Mann-Whitney U-tests, respectively.

We built the generalized linear mixed model (GLMM) using fitglme (Matlab 2023b) to predict the
stay/switch behavior in free-choice trials with the logit link function. A full random effects matrix
with subjects as grouping factors was included for all variables and the intercept. The model structure
is stay/switch ~ intercept + trials + choice + Avalue + trans. + out X trans. + (variables | subject),

* stay/switch: 1 if the animal stayed at the same choice as the last trial and 0 otherwise.
* trials: number of trials experienced in the session.
* choice: previous action, 0.5 if the previous choice was left, -0.5 otherwise.

* AValue: inferred value difference. The estimated difference in reward probabilities between
the chosen and unchosen options prior to the current trial (for calculation, see[A.3).

* Trans.: 0.5 if the previous transition is common, -0.5 if rare.

* QOut X Trans.: 0.5 if the previous trial was a common/reward transition or a rare/omission
transition, -0.5 otherwise.

3 Result

3.1 Existing model fails to explain the experimental result

10 mice were tested to perform 17.600 £ 3.720 sessions, and were able to perform 425.500 4 57.642
trials and completed 8.290 £ 1.645 of non-neutral blocks per session. Animals learned to optimize
the choice (Fig. ) with 64.95% of correct choices.
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Figure 2: a, b, Behavior in simulation (a) and experiment (b). Top, the stay probability after trials
with different outcome-transition pairs. Dots show each subject, and the error bar shows the between-
subject mean =+ s.e.m.. Bottom, GLMM result. The error bar shows the estimated coefficient +SE,
and the star represents the significance. *, 0.01 < p < 0.05; **, 0.001 < p < 0.01, and ***
< 0.001.c, d, stay probability (c) and GLMM result (d) of fictive learning agent. e, The accuracy of
included agents.

In simulation, models from the MB and MF classes show distinct stay probabilities and GLMM coef-
ficients (Fig. 2h). MB and hidden state model switch frequently after a rare/reward and common/no-
reward trials, leading to the positive coefficient of interaction of outcome and transition in GLMM
(Out x Trans.. MB: 8 = 0.684, SE = 0.026, t = 25.925, p < 0.001; hidden state: 3 = 0.678, SE =
0.016, t =43.616, p < 0.001). This tendency reverses or disappears in the stay probability and GLMM
for MF (8 =-0.072, SE=0.017, t =-4.183, p < 0.001) and MF (memory) (3 =0.018, SE =0.015, ¢ =
1.184, p = 0.236). The stay behavior depends heavily on the reward prediction of the chosen one over
the unchosen ones based on the reward history (i.e., AValue) in model-free models (MF: 5 = 2.691,
SE = 0.026, t = 102.09, p < 0.001; MF(memory): § = 0.920, SE = 0.020, ¢ = 45.136, p < 0.001) than
model-based models (MB: 5 = 0.922, SE = 0.020, ¢t = 45.738, p < 0.001; hidden state: 5 = 0.226, SE
=0.018, ¢t =12.679, p < 0.001), as it essentially captures the direct reinforcement of the outcome on
the action. Besides, all models show a similar tendency to repeat actions (i.e., intercept) and no or a
marginal effect of transition type (Trans. MF(memory): 8 =0.095, SE =0.018, ¢t = 5.370, p < 0.001).

Animal behavior is different from the above agents (Fig. 2b). Animals show the highest stay
probability after the common/reward trial (84.923 + 3.910%), resulting from the effect of value
history (AValue: 8 = 0.623, SE = 0.086, ¢t = 7.265, p < 0.001). However, animals were likely to
switch following the rare/reward trial, and the stay probability is marginally lower after common/no-
reward trials (61.863 £2.763%) than rare/no-reward trials (65.513 3= 3.973%)(stat = 5.00, p = 0.020,
Wilcoxon test), suggesting the effect of the interaction of outcome and transition type (Out xTrans.:
£ =0.613, SE =0.061, ¢t = 10.080, p < 0.001) and the involvement of model-based learning. Besides,
transition type strongly modulates the stay probability, mainly after a rewarded trial, whereas it only
has a subtle effect after the unrewarded trials, leading to a significant positive coefficient of transition
type in GLMM (Trans.: 8 = 0.666, SE = 0.062, ¢t = 10.696, p < 0.001).

The existing models cannot replicate the observation. Animals’ stay probability after common/reward
trials is higher than all model predicts. Animals are more likely to switch after rare/reward trials than
after common/no-reward trials. By contrast, the model-based models showed the equal stay probabil-
ity in two cases, and the model-free and hybrid models showed the opposite pattern. Therefore, none
of those models shows a strong positive coefficient of transition type.



3.2 Fictive learning agent fits the experiment result

Including fictive learning with anticorrelation (i.e., n = -1), MB(fictive -) generates behavior similar
to animal behavior in the stay probability (Fig. 2k) and the GLMM coefficients (Fig. 2d). This model
also achieves the highest accuracy (71.793 +1.252 %)(Fig. ). By contrast, MB(fictive +) (i.e.,
1 = 1) shows seemingly random behavior, yet GLMM reveals a significant coefficient of outcome
transition type interaction (3 = 0.041, SE = 0.017, ¢ = 2.489, p = 0.013).
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Figure 3: a,b, The action value update in common/reward trials. When the left option was chosen,
followed by a common transition to the up state, and a reward. Action values of chosen and
unchosen options get updated by 0.8ads and 0.2ad in MB (a) and 0.6ad and -0.6a0s in MB(fictive-
) (b)(Created in BioRender. https://BioRender.com/e8qv5x0). ¢,d, Action updating in MB (a), and
MB(fictive -) (b) in four transition/outcome pairs.

Table 2: Action updating table
MB MB (fictive —)
CR RR CN RN CR RR CN RN

AQ(ay) 0.8ads; 02ad0s 0.8ads; 02a0s 0.6ads -0.6ad; 0.6ad; -0.6ad
AQ(a-) 02ads 0.8ads 02ad; 0.8ads -0.6ad; 0.6ad; -0.6ads 0.6ad

We examine why MB(fictive -) behaves differently from MB by analyzing how action value is
updated (for complete derivation, see[A4). As an example, we domesticate the value updating after
common/reward trials, assuming the agent chose the left (L) and visited the up state (D) (Fig. Eh,b).
The action value of chosen (Q (a4 )) and unchosen options (Q(a_)) are updated via the transition
matrix in MB and MB(fictive -) by different magnitudes (Table. [2). The MB model updates the
Q(a4) with &, scaled by 80% common probability and Q(a_) by 20% rare probability(Fig. [3f). In
MB(fictive -), action value updates by two opposite 5, resulting in the simultaneous reinforcing of
Q(a4) and fictive punishing Q(a— )(Fig. 3d).

After a rare/reward trial, preference reversal happens with distinct rationales in the two models. The
MB model (Fig. [Bk) learns to increase the action value of both options, but with a larger magnitude
for the Q(a_), leading to the takeover in action value and a switch choice. MB(fictive -) (Fig. )
decreases the (Q(a.) but increases the Q(a_ ). Thus, the takeover in action value is more substantial
in MB (fictive -) and leads to a lower stay probability than MB (Fig. [Zh,c).

After common/no-reward trials, two models update the action value by the negative RPE differently.
In the MB model, Q(a ) decreases dramatically, yet Q(a_ ) drops modestly, leading to the preference
reversal (Fig. ). In MB(fictive -) model (Fig.), Q) (a4 ) decreases and (a_) increases. Since the
agent and animals performed the task well, getting a reward omission after a common transition, an
incorrect choice, is not due to insufficient learning, but likely happened because omission happened
with 20% probability, or block change. In either case, (a4 ) should be substantially higher than



Q(a_), and hence one-shot updating is not enough to trigger the preference reversal but only
attenuates the difference between action values.

After rare/no-reward trials, in MB model (Fig.[3c), an omission causes a negative RPE, leading to a
notable decrease in (a4 ) and a slight decrease in ()(a_ ) without preference reversal. However, in
the MB(fictive -) model (Fig. [3d), a rare transition usually directs the agent to an infavored state with
negative state value by fictive punishment (i.e., given the negative correlation between state, since
the visited state gives fascinate outcome, being unvisited state might give a punishment), implying
the RPE can be positive in some cases. Hence, the action value difference was equalized, but no
preference reversal happened.

3.3 Fictive Model-based agent fits the observation better

a 150 b
§
8 100
0
E 0=
@ 50 ’(1_‘ 7 L 72 ]
° MF MF(memory) MF (lambda) MB Hidden MF MB Mixture
— State .
C.s0 ok d 00 e n across sessions
g E 0.5 === Mean
g 100 S 400 0
o 0
= o I~
":] 50 @ 200 -0.5
ia ’50-0\.
[ ™= | 1 VAN N :

Base Fictive I?llB(fictive) Hidden

state (Asym.) Session

Figure 4: a, Model comparison of single baseline models. The ABIC score is the Bayesian Informa-
tion Criterion (BIC) score normalized by the BIC score of the winning model per subject/session.
The MB model achieves the lowest ABIC score. b, Model comparison of MF, MB, and mixture
classes. MB classes fit the data better. ¢, Model comparison between all baseline models and their
variants with extra fictive learning. Extra fictive learning improves model fit. d, Model comparison
between MB (fictive) and asymmetric hidden state model. MB (fictive) fits the data better in general.
e, estimated event correlation parameter 7 in each mouse (gray) and its group mean (blue). 7 tends to
decrease to around -1 with considerable individual variance.

The Bayesian modeling and model comparison suggest observed behavior is likely to be model-
based and captured well by fictive learning. Amoing baseline model, MB model provides better fits
in general (A BIC: 38.587 + 28.149) (Fig. fia,b), suggesting that model-based learning is indeed
dominant. Adding fictive learning causes a significant decrease in BIC score (Fig.[f) (baseline model:
56.970 4+25.994; fictive agent: 18.545 £+8.201; stat = 0, p < 0.001, Wilcoxon test). A hidden state
model that learns differently from reward and omission could also predict a similar behavior pattern
[4]. Yet, MB(fictive) shows a better fit than it suggested by absolute BIC score (Fig. Eh) (asymmetric
hidden state model: 374.183 +97.681; MB (fictive): 355.407 +90.124; stat = 9521.000, p < 0.001,
Wilcoxon test), despite having the same number of hyperparameters. Consistent with simulation and
task setting, estimated 1) is negative overall (-0.906 +0.248) (Fig.[dg) and shows a decreasing pattern
over sessions, implying that animals learned the event anticorrelation by experience, with notable
individual differences that might result from the learning speed or prior knowledge.

3.4 RPE explains the striatal dopaminergic activity

The RPE from MB(fictive -) is consistent with the dopaminergic (DA) activity in the nucleus
accumbens in mice performing the same task [4]]. Strital DA dynamics are believed to signal the
RPE modulated by the last outcome. Blanco-Pozo et al. [4] reported the reversal in the coefficient of
the last outcome predicting the DA activity in the current trial. It was negative when the second-step
state was revealed, but positive during the outcome period, if the presented state was the same as in
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Figure 5: a, b, The coefficient of last outcome predicting the hypothetical dopamine signal derived
from RPE in MB (fictive -), MB and MB (fictive +), when the same (a) or different (b) second-step
state is presented. All three models predict the same pattern when the same state is presented.
However, only MB (fictive -) predicts the same pattern as observed in dopamine release when the
different state is presented. Arrows show the direction of the coefficient predicting the dopamine signal
at the nucleus accumbens recorded in [4]. Transition RPE is the difference between the state value
before and after the updating in the last trial of the current presented state, V (sy,t) — V(sq,t — 1),
and the outcome RPE is the difference between the outcome and the state value, r(t) — V(s4,t).

the last trial. Yet, it shows a negative-to-positive reversal when experiencing the state that was not
visited before, for which the classical MB model fails to reproduce.

To examine if our model would reproduce this phenomenon, we derive the RPE as a proxy of the
dopaminergic signal and predict it by the last outcome. In Fig. [5h, when experiencing the same state,
all models replicate the same reversal observed in real DA activity. However, when experiencing the
different state (Fig. Eb), MB(fictive -) reproduces the observed pattern. Furthermore, MB(fictive +)
predicts the positive-to-negative reversal in both cases. This analysis suggests that the fictive learning
might also underlie the neural computation.

4 Discussion

This study introduces a novel model that integrates fictive learning with the model-based RL model.
This model achieves superior performance against others in the two-step task. It learn the task
efficiently by exploiting the internal model. The simultaneous reinforcing and punishing mechanism
facilitates learning, leading to superior accuracy. After understanding the task, the fictive learning
agent could stay at the optimal choice more deterministically by enlarging the contrast between
choices two-fold compared to other agents, and avoid exploration by explicitly updating the unvisited
state and unchosen choice. It also fits the observed behavior in the two-step task better. The presented
model provides a simpler, more integrated interpretation than the conventional view of model-based,
model-free tradeoff [8} [2]]. This study is also different from the previous literature in model design.
Instead of deriving the fictive error as the outcome difference between the chosen and optimal action,
which is often unknown [12}[7], or assumes the fixed and absolute anticorrelation [3![16], our model
exploits the factual RPE with scaling by an inferred correlation from learning.

Model comparison and possible biological mechanism Our model explains the animal behavior
and neural activities in the two-step task. The asymmetric hidden state model [4], one Bayesian
inference model, shows similar performance, yet we argue that the presented model might be favored.
Both models reproduce the observed behavior. However, the significant difference in stay probability
after common/no-reward and rare/no-reward trials is not consistent with the assumption that agents
treat the reward omission in up and down states as the same observation in the asymmetric hidden
state model. Hence, our model provides a lower BIC in model comparison.

More broadly, the fictive model-based model reproduces the RPE that fits the dynamics of striatal DA,
which were argued to only be explained by the Bayesian inference model [4]]. The previous unvisited
state is not involved in factual learning. So when the previously unvisited state is presented, the
dopamine activity can only be replicated by fictive learning or, Bayesian inference which implicitly
implements the update of unvisited states and unchosen options by assuming that one state (and hence
option) is better than the other. Similarly, after switching the choice in a rodent two-arm bandit task,



NAc DA activity is more intense if more rewards were obtained by the previously chosen option,
implying the action value of the current chosen option (i.e., the previously unchosen one) decreased
before [16]. They [16] shows only the Bayesian inference model, or the fictive learning-based model
replicates this activity pattern. Together, that evidence highlights the parallel factual and fictive
updating, which does not specifically favor the Bayesian inference model.

The Bayesian model only allows for the negative fictive update, whereas our model provides a more
generic rule for other variants. And the reward likelihood is essential for the Bayesian model, which
will be intractable in a realistic setting with more hidden states. However, our model only requires
the factual RPE to be broadcast and a rough estimate of event correlation, which is computationally
and biologically plausible. Such fictive learning could naturally arise from Hebbian and anti-Hebbian
plasticity. The co-activation or mutual inhibition between neurons that represent experienced and
non-encountered events develops from learning and allows for fictive learning. Furthermore, since
anticorrelation between options is embedded in most behavioral tasks, the observation that some
neurons represent different options or states [[17] might be a result of fictive learning.

Hypotheses for future validation Our model makes hypotheses to examine whether the brain
really performs fictive learning. In behavior, when correlation changes from negative to independent
to positive, our model predicts the stay probability, from the pattern observed here, to an inverted-U
shape, to seemingly random. Meanwhile, the GLMM coefficient of transition type and value history
diminishes. In neural activity, the coefficient of the last outcome on dopamine release is modulated
by whether the same state is presented. This modulation might disappear when event correlation is
positive. Besides, co-activation between neurons or the proportion of neurons representing multiple
options or states gets weaker or smaller when correlation is weakened.

Limitation The proposed model has its limitations. Animals appeared to learn this event correlation
over sessions, with an unknown mechanism. A model-free RL or Bayesian updating rule might track
this correlation online on a slow time scale. This approach imposes low cognitive and computational
demands, but it is vulnerable to rapid environmental change. A computationally demanding Dyna-
style architecture [18]] can capture the correlation more robustly by mentally replaying past events. A
more plausible compromise might be to maintain slow online tracking and trigger Dyna-like sampling
selectively when predictions become unreliable (e.g., after multiple large RPEs). Fictive learning
can also backfire if the estimate of the correlation is biased. Fictive learning’s involvement might be
modulated by the confidence of the estimate, which essentially depends on the learning of the world
model. A hypothesis for further examination is that the transition from model-free to model-based
systems would accompany or even drive the use of fictive learning. Besides, whether this model can
also be generalized to a multi-bandit case demands further validation. A foreseen difficulty is how to
infer and formalize the event correlation when the action space is large.

Fictive learning and the world model Our results highlight fictive learning as an important and
natural way in which world models could improve learning and decisions. It accelerates adaptation
by exploiting the feedback with better sample efficiency, avoiding unnecessary exploration. This
illustrates how the benefits of maintaining a world model extend beyond long-horizon planning or
efficient credit assignment. Fictive learning also has its own challenges. It requires an additional
meta-learning to infer the event correlation, which can be computationally expensive and intractable
in a complex environment. The performance will also be seriously degraded by biased estimates of
correlation. These limitations suggest that fictive learning is an important but non-trivial extension of
model-based RL, which requires careful design of the learning algorithm.

5 Conclusion

In conclusion, we integrate model-based RL with fictive learning and conduct in-silico and animal
experiments to examine its ability to learn faster and explain animal behavior. We found that fictive
learning facilitates learning while being algorithmically simple and biologically plausible. Model
simulation and fitting show that it describes the behavior and dopamine dynamics in the two-step task
better than the existing model. The presented result contributes to filling the gap between biological
learning and the current RL theories.
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A Technical Appendices and Supplementary Material

A.1 Hidden state model

The hidden state agent assumes that there are two hidden states in which either of the two second-step
states is better and updates the beliefs of being one hidden state (h € hyyp, haown) Using Bayesian
inference [4].

Specifically, the agent estimates the P(h,,) by,
718, hup) P(hup)

P(hyp) < P

P(r) M
where the likelihood P(r|s, ) is the reward probability in experiment (Table. [T).
The marginal likelihood P(r) is calculated as,
P(r) = P(hyup)P(7|8, hup) + P(hdown) P (7|, haown) )

The agent might assume that the block type would change with a certain probability 7. Hence, the
posterior is updated as,
P(hyp) < (1 = 7)P(hyp) + 7P (Pdown) 3)

Therefore, the state values are updated as,

V(S) = P(T|Sa hup)P(hup) + P(T‘S, hdown)P(hdown) (4)
And the action is updated as in the MB model ().
In the asymmetric hidden state model, the agent exploits the reward likelihood in table
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Table 1: Reward Probability

Block Up block Down block
Outcome Reward Omission Reward Omission
Up state 0.4 0.1

Down state 0.1 0.5 0.4 0.5

Table 2: Model and hyperparameter settings

Model 5 a AN T € 7
MF 3 04 1
MF (memory) 3 04 O
MB 3 04
Hidden state 3 0.2
MF+MB 3 04 1 0.5
MB (fictive-) 3 04 1 -1
MB (fictive+) 3 04

A.2 Model simulation and fitting procedure

To examine which model will behave similarly to the experimental observation, we simulated 7
agents in table[2] To cover a wide range of hyperparameters, we added a noise term noise ~
N(0,0.05 x |hyperparameter|) for each agent. For each model, we simulated 15 agents for 20
sessions, and each session contained 400 free-choice trials, which is the typical length in animal
experiments.

We implemented the Bayesian fitting with Rstan 2.32.6 with 4 MCMC chains for 2000 iterations (500
warm-up runs). We included 11 baseline models, an asymmetric hidden state model, and 7 fictive
learning models. The hidden state model implicitly implements fictive learning by anticorrelation, so
we did not add fictive learning to the 4 baseline models in which the hidden state model is involved to
prevent confounding. The model fitting was performed for each subject and session to account for
high subject/session-level variability and examine how 7 is learned over time. Events in force-choice
trials are only used in updating the action value and state value, but do not contribute to the likelihood
calculation. BIC score was used for model evaluation.

A.3 Inferred value difference calculation

A‘/aluet - Pa:at,l,t - Pa;ﬁat,l,t (5)
where,
Qg t
Py = — ot ©)
! aa,t + Ba,t
where,
Qg 41 = decay * gt + 14 (7)
Ba,i+1 = decay * Ba + (1 — 1) (8)

The decay is set as 0.5 to ensure the results’ generalizability.

A.4 Proof of value updating rule

Model-based agents In the main text, we define an MB agent that updates the state value of visited
V' (s4) and unvisited state V(s_) by,

V(sy) ¢ V(sy) + ads, ©
Vi(s—) «+ V(s_), (10)

and compute the action value via the transition matrix P(s|a) by,
Qmp(a) < Y P(sla)V(s) (11)
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By definition |11} let Q. new (@) and Qb o1a(a) be action value before and after the state update in

Pland[T0]
Qmibnew(@) =Y P(s|a)Vaew(s) =Y Pls_|a)V(s_) + P(s4|a)Vew(s1)

= Z P(s_|a)V(s_) + ZP(S+|G) [V(st) + ads]

= ZP(S|CE)V(S) +P(sy|a)ads. (12)
=Qmb,otd(a)
Therefore,
me(a) <~ me(a) + P(s+|a)oz53 (13)

This update weight P (s |a) is the common/rare transition probability: actions more likely to lead to
the reached state receive a larger portion of the prediction error.

Model-based agent with fictive learning MB(fictive-) agent updates both states by,
V(sy) « V(ss) +ads, (14)

Vi(s_) + V(s=) + nads, (15)
Similarly, action value is updated by,

Qubmew(a) = P(syla) [V(sy) +ads] + Y P(s_|a) [V(s_) + nad,]

= [P(ssla) V(s4) + Y Pls-la) V(s-)| +ad, [P(si|a) + 1" Pls-|a)]. (16)

S

=Qmb,ota(a)
Using ), P(s|a) =1, wehave >, P(s_|a) =1— P(s4|a), so (I6) becomes,
me,new (a) = me,old(a) + 0455 |:P(S+|a) + 77(1 - P(S+|a‘))}
= Qmb.old(a) + ads {17 +(1- n)P(5+|a)]. (17)

Therefore,
Qla) - Q(a) + [+ (1 =) P(s1]a)] ad (18)
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper presented a new model-based reinforcement learning with fictive
learning and a rodent two-step task to demonstrate that it assists the model-based learning
and explains the real behavior well, as stated in the abstract and introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper highlights the limitation of the current study in[4]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical derivation of the updating rule is included in appendix
and the reasoning is explained in[3.2]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper contained all the details to reproduce the model and the animal
experiment.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code and dataset are related to another work in progress. Both will be
released as soon as possible.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed are provided in[2]and the hyperparameter settings of simulation is

listed in[A2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The statistics are reported with the necessary information.
Guidelines:

e The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All simulations and data analyses that run on a standard PC or laptop. No
special hardware is required, and each run finishes within a few minutes to a few hours.

Guidelines:
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10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The study was conducted wit the NeurIPS code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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14.

Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All existing assets are cited.
Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

19


paperswithcode.com/datasets

15.

16.

Answer: [NA]
Justification: The paper does not involved corwdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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