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Abstract

Reinforcement learning (RL) provides a normative computational framework for1

reward-based decision making, where world models play a central role in enabling2

efficient learning and flexible planning. Classical RL algorithms are based on3

experienced outcomes, whereas humans and animals may generalize learning to4

unexperienced events based on internal world models, so-called fictive learning.5

We propose a simple, brain-inspired fictive learning rule to augment model-based6

RL and use the rodent two-step task to examine whether fictive learning can7

better explain the observed behavior and improve performance by better sample8

efficiency. The learning rule uses the same reward prediction error (RPE) to update9

both experienced and unexperienced states and actions, with scaling by the event10

correlation inferred from the internal model for fictive update. Through simulations,11

we show that this model achieves the highest accuracy and better reproduces12

key behavioral traits observed in the two-step task. Model fitting validates its13

superior fit over existing alternatives. Furthermore, the model replicates striatal14

dopaminergic dynamics observed in the same task, suggesting the brain might15

operate fictive learning for reward-based learning. The fictive learning observed16

here is conceptually analogous to approaches in machine learning, such as off-17

policy learning and counterfactual reasoning. These results suggest that fictive18

learning could be an inherent advantage of world models, highlighting its role as19

both a natural component of model-based decision making and an indispensable20

principle for more efficient learning algorithms utilizing world models.21

1 Introduction22

Learning from history to improve future decisions is the key to adaptation. Reinforcement learning23

(RL) [18] is the canonical theory to describe reward-based learning. An RL agent learns to predict24

the future outcome from experience and takes the difference between the prediction and the actual25

outcome, the reward prediction error(RPE), to update the prediction. Within RL, world models play a26

central role in enabling future prediction, long-term planning, and credit assignment for optimizing27

decisions. There have been great successes in applying RL to study how animals and humans28

utilize internal models to guide decisions. Especially, the distinction between the model-based and29

model-free RL has been intensively studied using the two-step task [2, 4, 8, 13], which serves as a30

benchmark paradigm for probing how agents exploit world models in decision-making.31

We performed a two-step task experiment in mice [4], and found that the mice’s behaviors were32

difficult to reproduce by standard model-free, model-based, or hybrid RL algorithms. We hypothesize33

that the capability of fictive learning, a possible inherent advantage of possessing the world model,34

underlies this mismatch. Humans and animals often learns by asking, "If I did something different,35

what outcome would I have gotten?" [6, 9, 14]. Specifically, they learn about non-encountered events36
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by imagining their potential returns based on the information from experience, which requires the37

correlation between experienced and non-encountered events informed by an adequate world model38

[6, 14]. Payoffs between options are often anticorrelated in two-step tasks in rodents [2, 4], which39

encourages fictive learning. The commonly observed win-stay-lose-shift strategy might result from40

the fictive learning from the option’s anticorrelation.41

Fictive reward-related signals were found in the regions that are responsible for factual RPE compu-42

tation, including striatum [12, 7], and orbital frontal cortex [1], where neurons encoding different43

actions and states overlap [16, 11]. Factual RPE might be generalized as fictive RPE by the inferred44

event correlation determined by the co-activation (or mutual inhibition) or overlapping of neurons45

encoding multiple actions and states in those regions.46

Fictive learning is not just a behavioral trait that naturally arises from world models. Related principles47

have also been proposed in machine learning for causal inference [19], efficient policy learning [5],48

and credit assignment [10], all of which exploit world models to improve efficiency and performance.49

This convergence suggests that fictive learning is also a computational benefit inherent to world50

models. Fictive learning allows for the model-based updating of non-experienced events, leading to51

better sample efficiency. Motivated by this view, we study whether fictive learning can resolve the52

mismatch between current theories and experimental observation in the two-step task, which would53

contribute to the understanding of model-based decision making.54

We implement fictive learning in model-based RL by the generalized RPE and conduct simulation55

and animal experiments in a two-step task. Our model exploits the factual RPE computed in factual56

learning, scaled by a variable event correlation to ensure its flexibility. Previous studies often either57

explicitly instructed the options anticorrelation (buying and selling in the stock market [12]) or had58

no correlation [3]. In our experiment, animals were not instructed of anticorrelation, allowing us to59

examine whether fictive learning would naturally arise in reward-based learning.60

In the following sections, we first describe the experiment design and model. We then simulated61

existing models without fictive learning to show that they fail to explain the experimental result. Next,62

we show that a fictive model-based RL fits the observation by simulation, followed by the explanation.63

The model fitting confirmed that the fictive MB model fit the behavior better than others. Finally, we64

conclude with a discussion of the implications and hypotheses for further validation of the model.65

2 Methodology66

2.1 Experiment design67

a b

c

Figure 1: a, Task structure. After initiation, a first-step choice between left and right is presented,
followed by up or down state with either common (80%) or rare (20%) probability. Two states are
rewarded with different probabilities. b, Example behavior. The exponential moving average of
animal choice (black line) traces the reward setting (blue bar). c, reward settings. Reward probabilities
change in blocks anticorrelated.

We trained 10 mice (C47/BL background) with the two-step task (Fig. 1a) [2, 4]. The mice freely68

chose between the left and right options in ∼ 75 % trials (mice were forced to choose left or right69

otherwise), which led to either an up or a down state with either common (80%) or rare (20%)70

probability. The transition probability matrix was fixed between subjects and counterbalanced across71

subjects. That is, the left option commonly leads to the up state in some animals, and vice versa in72

others. Reward is delivered probabilistically at each state, and the reward probabilities of up and73
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Table 1: Reward Probability
Block Up Down Neutral

Outcome Reward Omission Reward Omission Reward Omission

Up state 0.8 0.2 0.2 0.8 0.5 0.5
Down state 0.2 0.8 0.8 0.2 0.5 0.5

down states are different in three block types (Table. 1). The reward settings changed block-wise.74

In a non-neutral (up or down) block, block changes after 5 - 15 trials once the exponential moving75

average of the correct response (i.e., the option that commonly leads to the state with higher reward76

probability) in the last eight free-choice trials reached 0.75. The reward settings changed after 20 - 3077

trials in the neutral block.78

2.2 Model description79

We included some canonical models from relevant literature as the baseline for model comparison,80

including three model-free, two model-based, and six mixture models. We then integrate our fictive81

learning with those baseline models to demonstrate how the fictive learning component could affect82

the simulation behavior and fit to the real data. We simulated 7 agents in Fig.2 and conducted a model83

fit with 19 models (7 fictive learning models) (A.2).84

2.2.1 Baseline models85

In the task, the agent chooses an action a ∈ (left, right), which leads to the second-step state86

s ∈ (up, down), where the outcome r ∈ (0, 1) is delivered. Agents learn the action value Q(a)87

differently, yet the action selection follows the softmax function.88

P (a) =
eβQ(a)∑

i∈Left,Right e
βQ(i)

(1)

The model-free models have the same learning rule but different eligibility trace parameter, λ. The89

MF(lambda) agent updates its action value of chosen options Qmf (a) and state value of experienced90

state V (s) by the RPEs as follow,91

V (s)← V (s) + αδs (2)
92

δs = r − V (s) (3)
93

Qmf (a)← Qmf (a) + α(δa + λδs) (4)
94

δa = V (s)−Qmf (a) (5)

The model is termed MF and MF(memory) when the eligibility trace λ is 1 or 0, respectively.95

The model-based, MB, and the Bayesian hidden state model, hidden state, in which agents exploit96

the learned model, the transition matrix between actions and state (P (s|a)). The MB agent learns the97

state value by Equation (2) and then computes the action value by,98

Qmb(a)←
∑
s

P (s|a)V (s) (6)

The hidden state agent (A.1) assumes that there are two hidden states in which either of the two99

second-step states is better and updates the beliefs of being one hidden state (h ∈ hup, hdown) using100

Bayesian inference [4]. Specifically, the agent estimates the P (hup) by Bayesian inference with101

likelihood P (r|s, hup) being the reward probability in the experiment (Table.1).102

Therefore, the state values are updated as,103

V (s) = P (r|s, hup)P (hup) + P (r|s, hdown)P (hdown) (7)

And the action is updated as in the MB model (6).104
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We also included the asymmetric hidden state model for comparison [4]. In this model, the agent105

treats the omission in up and down states as the same observation by using the likelihood table (A.1),106

while other components remain the same.107

A hybrid model consists of both model-free and model-based models by,108

Qhybrid = ϵQmf + (1− ϵ)Qmb (8)

2.2.2 Fictive learning109

The fictive learning is implemented by updating the state value of the unvisited state (V (s−)) and110

the action value of the unchosen option (Q(a−)), by the RPE from visited state (V (s+)) and chosen111

option (Q(a+)) in Equation (2) and (4). The proportion of updating depends on the inferred event112

correlation of reward probability ηs between states and ηa between options by,113

Q(a−)← Q(a−) + α(ηaδa + ληsδs) (9)
114

V (s−)← V (s−) + αηsδs (10)
The event correlation factors η are zero when the agent believes the reward probability of two actions115

and states change independently (as in baseline models), negative if anticorrelated, and positive if116

changing in the same direction.117

In model simulation and fitting, since the transition matrix was fixed and well-instructed, we assumed118

that the agent believes the correlations between states and actions are the same (i.e., ηs = ηa = η).119

Note that our model is different from [3, 15]. Specifically, we did not assume a separate learning120

rate for fictive updating. And, event correlation is a free meta-parameter learned and developed over121

sessions. Besides, the agent infers the fictive RPE instead of the fictive reward.122

2.3 Analysis method123

Analyses used custom Python, R, and Matlab scripts. For normally distributed data, we use the124

paired t-tests when within-subject comparison with equal sample size and unpaired t-tests otherwise.125

Otherwise, we used Wilcoxon signed-rank tests and Mann-Whitney U-tests, respectively.126

We built the generalized linear mixed model (GLMM) using fitglme (Matlab 2023b) to predict the127

stay/switch behavior in free-choice trials with the logit link function. A full random effects matrix128

with subjects as grouping factors was included for all variables and the intercept. The model structure129

is,130

stay/switch ∼ intercept + trials + choice + ∆value + trans. + out × trans. + (variables | subject)131

• stay/switch: 1 if the animal stayed at the same choice as the last trial and 0 otherwise.132

• trials: number of trials experienced in the session.133

• choice: previous action, 0.5 if the previous choice was left, -0.5 otherwise.134

• ∆Value: inferred value difference. The estimated difference in reward probabilities between135

the chosen and unchosen options prior to the current trial (for calculation, see A.3).136

• Trans.: 0.5 if the previous transition is common, -0.5 if rare.137

• Out × Trans.: 0.5 if the previous trial was a common/reward transition or a rare/omission138

transition, -0.5 otherwise.139

3 Result140

3.1 Existing model fails to explain the experimental result141

10 mice were tested to perform 17.600 ± 3.720 sessions, and were able to perform 425.500 ± 57.642142

trials and completed 8.290 ± 1.645 of non-neutral blocks per session. Animals learned to optimize143

the choice (Fig. 1b) with 64.95% of correct choices.144

In simulation, models from the MB and MF classes show distinct stay probabilities and GLMM coef-145

ficients (Fig. 2a). MB and hidden state model switch frequently after a rare/reward and common/no-146

reward trials, leading to the positive coefficient of interaction of outcome and transition in GLMM147
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Figure 2: a, b, Behavior in simulation (a) and experiment (b). Top, the stay probability after trials
with different outcome-transition pairs. Dots show each subject, and the error bar shows the between-
subject mean ± s.e.m.. Bottom, GLMM result. The error bar shows the estimated coefficient ±SE,
and the star represents the significance. *, 0.01 ≤ p ≤ 0.05; **, 0.001 ≤ p ≤ 0.01, and ***
≤ 0.001.c, d, stay probability (c) and GLMM result (d) of fictive learning agent. e, The accuracy of
included agents.

(Out × Trans.. MB: β = 0.684, SE = 0.026, t = 25.925, p < 0.001; hidden state: β = 0.678, SE =148

0.016, t = 43.616, p < 0.001). Such a tendency reverses or disappears in the stay probability and149

GLMM for MF (β = -0.072, SE = 0.017, t = -4.183, p < 0.001) and MF (memory) (β = 0.018, SE150

= 0.015, t = 1.184, p = 0.236). The stay behavior depends heavily on the reward prediction of the151

chosen one over the unchosen ones based on the reward history (i.e., ∆Value) in model-free models152

(MF: β = 2.691, SE = 0.026, t = 102.09, p < 0.001; MF(memory): β = 0.920, SE = 0.020, t = 45.136,153

p < 0.001) than model-based models (MB: β = 0.922, SE = 0.020, t = 45.738, p < 0.001; hidden state:154

β = 0.226, SE = 0.018, t = 12.679, p < 0.001), as it essentially captures the direct reinforcement155

of the outcome on the action. Besides, all models show a similar tendency to repeat actions (i.e.,156

intercept) and no or a marginal effect of transition type (Trans. MF(memory): β = 0.095, SE = 0.018,157

t = 5.370, p < 0.001).158

Animal behavior is different from the above agents (Fig. 2b). Animals show the highest stay159

probability after the common/reward trial (84.923 ± 3.910%), resulting from the effect of value160

history (∆Value: β = 0.623, SE = 0.086, t = 7.265, p < 0.001). However, animals were likely to161

switch following the rare/reward trial, and the stay probability is marginally lower after common/no-162

reward trials (61.863 ±2.763%) than rare/no-reward trials (65.513 ± 3.973%)(stat = 5.00, p = 0.020,163

Wilcoxon test), suggesting the effect of the interaction of outcome and transition type (Out ×Trans.:164

β = 0.613, SE = 0.061, t = 10.080, p < 0.001) and the involvement of model-based learning. Besides,165

transition type strongly modulates the stay probability, mainly after a rewarded trial, whereas it only166

has a subtle effect after the unrewarded trials, leading to a significant positive coefficient of transition167

type in GLMM (Trans.: β = 0.666, SE = 0.062, t = 10.696, p < 0.001).168

The existing models cannot replicate the observation. Animals’ stay probability after common/reward169

trials is higher than all model predicts. Animals are more likely to switch after rare/reward trials than170

after common/no-reward trials. By contrast, the model-based models showed the equal stay probabil-171

ity in two cases, and the model-free and hybrid models showed the opposite pattern. Therefore, none172

of those models shows a strong positive coefficient of transition type.173
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3.2 Fictive learning agent fits the experiment result174

Including fictive learning with anticorrelation (i.e., η = -1), MB(fictive -) generates behavior similar175

to animal behavior in the stay probability (Fig. 2c) and the GLMM coefficients (Fig. 2d). This model176

also achieves the highest accuracy (71.793 ±1.252 %)(Fig. 2e). By contrast, MB(fictive +) (i.e.,177

η = 1) shows seemingly random behavior, yet GLMM reveals a significant coefficient of outcome178

transition type interaction (β = 0.041, SE = 0.017, t = 2.489, p = 0.013).179

c

d

a

b

Figure 3: a,b, The action value update in common/reward trials. When the left option was chosen,
followed by a common transition to the up state, and a reward. Action values of chosen and
unchosen options get updated by 0.8αδs and 0.2αδs in MB (a) and 0.6αδs and -0.6αδs in MB(fictive-
) (b)(Created in BioRender. https://BioRender.com/e8qv5x0). c,d, Action updating in MB (a), and
MB(fictive -) (b) in four transition/outcome pairs.

Table 2: Action updating table
MB MB (fictive –)

CR RR CN RN CR RR CN RN

∆Q(a+) 0.8αδs 0.2αδs 0.8αδs 0.2αδs 0.6αδs -0.6αδs 0.6αδs -0.6αδs
∆Q(a−) 0.2αδs 0.8αδs 0.2αδs 0.8αδs -0.6αδs 0.6αδs -0.6αδs 0.6αδs

We examine why MB(fictive -) behaves differently from MB by analyzing how action value is180

updated (for complete derivation, see A.4). As an example, we domesticate the value updating after181

common/reward trials, assuming the agent chose the left (L) and visited the up state (D) (Fig. 3a,b).182

The action value of chosen (Q(a+)) and unchosen options (Q(a−)) are updated via the transition183

matrix in MB and MB(fictive -) by different magnitudes (Table. 2). The MB model updates the184

Q(a+) with δs scaled by 80% common probability and Q(a−) by 20% rare probability(Fig. 3c). In185

MB(fictive -), action value updates by two opposite δs, resulting in the simultaneous reinforcing of186

Q(a+) and fictive punishing Q(a−)(Fig. 3d).187

After a rare/reward trial, preference reversal happens with distinct rationales in the two models. The188

MB model (Fig. 3c) learns to increase the action value of both options, but with a larger magnitude189

for the Q(a−), leading to the takeover in action value and a switch choice. MB(fictive -) (Fig. 3d)190

decreases the Q(a+) but increases the Q(a−). Thus, the takeover in action value is more substantial191

in MB (fictive -) and leads to a lower stay probability than MB (Fig. 2a,c).192

After common/no-reward trials, two models update the action value by the negative RPE differently.193

In the MB model, Q(a+) decreases dramatically, yet Q(a−) drops modestly, leading to the preference194

reversal (Fig. 3c). In MB(fictive -) model (Fig. 3d), Q(a+) decreases and Q(a−) increases. Since the195

agent and animals performed the task well, getting a reward omission after a common transition, an196

incorrect choice, is not due to insufficient learning, but likely happened because omission happened197

with 20% probability, or block change. In either case, Q(a+) should be substantially higher than198
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Q(a−), and hence one-shot updating is not enough to trigger the preference reversal but only199

attenuates the difference between action values.200

After rare/no-reward trials, in MB model (Fig. 3c), an omission causes a negative RPE, leading to a201

notable decrease in Q(a+) and a slight decrease in Q(a−) without preference reversal. However, in202

the MB(fictive -) model (Fig. 3d), a rare transition usually directs the agent to an infavored state with203

negative state value by fictive punishment (i.e., given the negative correlation between state, since204

the visited state gives fascinate outcome, being unvisited state might give a punishment), implying205

the RPE can be positive in some cases. Hence, the action value difference was equalized, but no206

preference reversal happened.207

3.3 Fictive Model-based agent fits the observation better208

a

e

b

dc

Figure 4: a, Model comparison of single baseline models. The ∆BIC score is the BIC score
normalized by the BIC score of the winning model per subject/session. The MB model achieves
the lowest ∆BIC score. b, Model comparison of MF, MB, and mixture classes. MB classes fit the
data better. c, Model comparison between all baseline models and their variants with extra fictive
learning. Extra fictive learning improves model fit. d, Model comparison between MB (fictive)
and asymmetric hidden state model. MB (fictive) fits the data better in general. e, estimated event
correlation parameter η in each mouse (gray) and its group mean (blue). η tends to decrease to around
-1 with considerable individual variance.

The Bayesian modeling and model comparison suggest observed behavior is likely to be model-209

based and captured well by fictive learning. Amoing baseline model, MB model provides better fits210

in general (∆ BIC: 38.587 ± 28.149) (Fig. 4a,b), suggesting that model-based learning is indeed211

dominant. Adding fictive learning causes a significant decrease in BIC score (Fig. 4c) (baseline model:212

56.970 ±25.994; fictive agent: 18.545 ±8.201; stat = 0, p < 0.001, Wilcoxon test). A hidden state213

model that learns differently from reward and omission could also predict a similar behavior pattern214

[4]. Yet, MB(fictive) shows a better fit than it suggested by absolute BIC score (Fig. 4d) (asymmetric215

hidden state model: 374.183 ±97.681; MB (fictive): 355.407 ±90.124; stat = 9521.000, p < 0.001,216

Wilcoxon test), despite having the same number of hyperparameters. Consistent with simulation and217

task setting, estimated η is negative overall (-0.906 ±0.248) (Fig. 4e) and shows a decreasing pattern218

over sessions, implying that animals learned the event anticorrelation by experience, with notable219

individual differences that might result from the learning speed or prior knowledge.220

3.4 RPE explains the striatal dopaminergic activity221

The RPE from MB(fictive -) is consistent with the dopaminergic (DA) activity in the nucleus222

accumbens in mice performing the same task [4]. Strital DA dynamics are believed to signal the223

RPE modulated by the last outcome. Blanco-Pozo et al. [4] reported the reversal in the coefficient of224

the last outcome predicting the DA activity in the current trial. It was negative when the second-step225

state was revealed, but positive during the outcome period, if the presented state was the same as in226
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Figure 5: a, b, The coefficient of last outcome predicting the hypothetical dopamine signal derived
from RPE in MB (fictive -), MB and MB (fictive +), when the same (a) or different (b) second-step
state is presented. All three models predict the same pattern when the same state is presented.
However, only MB (fictive -) predicts the same pattern as observed in dopamine release when the
different state is presented. Arrows show the direction of the coefficient predicting the dopamine signal
at the nucleus accumbens recorded in [4]. Transition RPE is the difference between the state value
before and after the updating in the last trial of the current presented state, V (s+, t)− V (s+, t− 1),
and the outcome RPE is the difference between the outcome and the state value, r(t)− V (s+, t).

the last trial. Yet, it shows a negative-to-positive reversal when experiencing the state that was not227

visited before, for which the classical MB model fails to reproduce.228

To examine if our model would reproduce this phenomenon, we derive the RPE as a proxy of the229

dopaminergic signal and predict it by the last outcome. In Fig. 5a, when experiencing the same state,230

all models replicate the same reversal observed in real DA activity. However, when experiencing the231

different state (Fig. 5b), MB(fictive -) reproduces the observed pattern. Furthermore, MB(fictive +)232

predicts the positive-to-negative reversal in both cases. This analysis suggests that the fictive learning233

might also underlie the neural computation.234

4 Discussion235

This study introduces a novel model that integrates fictive learning with the model-based RL model.236

This model achieves superior performance against others in the two-step task. It learn the task237

efficiently by exploiting the internal model. The simultaneous reinforcing and punishing mechanism238

facilitates learning, leading to superior accuracy. After understanding the task, the fictive learning239

agent could stay at the optimal choice more deterministically by enlarging the contrast between240

choices two-fold compared to other agents, and avoid exploration by explicitly updating the unvisited241

state and unchosen choice. It also fits the observed behavior in the two-step task better. The presented242

model provides a simpler, more integrated interpretation than the conventional view of model-based,243

model-free tradeoff [8, 2]. This study is also different from the previous literature in model design.244

Instead of deriving the fictive error as the outcome difference between the chosen and optimal action,245

which is often unknown [12, 7], or assumes the fixed and absolute anticorrelation [3, 15], our model246

exploits the factual RPE with scaling by an inferred correlation from learning.247

Model comparison and possible biological mechanism Our model explains the animal behavior248

and neural activities in the two-step task. The asymmetric hidden state model [4], one Bayesian249

inference model, shows similar performance, yet we argue that the presented model might be favored.250

Both models reproduce the observed behavior. However, the significant difference in stay probability251

after common/no-reward and rare/no-reward trials is not consistent with the assumption that agents252

treat the reward omission in up and down states as the same observation in the asymmetric hidden253

state model. Hence, our model provides a lower BIC in model comparison.254

More broadly, the fictive model-based model reproduces the RPE that fits the dynamics of striatal DA,255

which were argued to only be explained by the Bayesian inference model [4]. The previous unvisited256

state is not involved in factual learning. So when the previously unvisited state is presented, the257

dopamine activity can only be replicated by fictive learning or, Bayesian inference which implicitly258

implements the update of unvisited states and unchosen options by assuming that one state (and hence259

option) is better than the other. Similarly, after switching the choice in a rodent two-arm bandit task,260
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NAc DA activity is more intense if more rewards were obtained by the previously chosen option,261

implying the action value of the current chosen option (i.e., the previously unchosen one) decreased262

before [15]. They [15] shows only the Bayesian inference model, or the fictive learning-based model263

replicates this activity pattern. Together, that evidence highlights the parallel factual and fictive264

updating, which does not specifically favor the Bayesian inference model.265

In fact, the Bayesian inference model only allows for the negative fictive update, whereas our model266

provides a more generic rule allowing for other variants. And the reward likelihood is essential for267

the Bayesian inference model, which will be intractable in a more realistic setting with more hidden268

states. However, our model only requires the factual RPE to be broadcast and a rough estimate of269

event correlation, which is computationally and biologically plausible. Such fictive learning could270

naturally arise from Hebbian and anti-Hebbian plasticity. The co-activation or mutual inhibition271

between neurons that represent experienced and non-encountered events develops from learning and272

allows for fictive learning. Furthermore, since anticorrelation between options is embedded in most273

behavioral tasks, the observation that some neurons represent different options or states [16] might274

be a result of fictive learning.275

Hypotheses for future validation Our model makes hypotheses to examine whether the brain276

really performs fictive learning. In behavior, when correlation changes from negative to independent277

to positive, our model predicts the stay probability, from the pattern observed here, to an inverted-U278

shape, to seemingly random. The GLMM result would also change as the coefficient of transition279

type and value history diminishes. In neural activity, the fictive learning predicts that the coefficient280

of the last outcome on dopamine release is modulated by whether the same state is presented. This281

modulation disappears when event correlation is positive. Besides, co-activation between neurons282

or the proportion of neurons representing multiple options or states gets weaker or smaller when283

correlation is weakened.284

Limitation The proposed model has its limitations. Animals appeared to learn this event correlation285

over sessions, with an unknown mechanism. A model-free RL or Bayesian updating rule might track286

this correlation online on a slow time scale. This approach imposes low cognitive and computational287

demands, but it is vulnerable to rapid environmental change. A computationally demanding Dyna-288

style architecture [17] can capture the correlation more robustly by mentally replaying past events. A289

more plausible compromise might be to maintain slow online tracking and trigger Dyna-like sampling290

selectively when predictions become unreliable (e.g., after multiple large RPEs). Fictive learning291

can also backfire if the estimate of the correlation is biased. Fictive learning’s involvement might be292

modulated by the confidence of the estimate, which essentially depends on the learning of the world293

model. A hypothesis for further examination is that the transition from model-free to model-based294

systems would accompany or even drive the use of fictive learning. Besides, whether this model can295

also be generalized to a multi-bandit case demands further validation. A foreseen difficulty is how to296

infer and formalize the event correlation when the action space is large.297

Fictive learning and the world model Our results highlight fictive learning as an important and298

natural way in which world models could improve learning and decisions. It accelerates adaptation299

by exploiting the feedback with better sample efficiency, avoiding unnecessary exploration. This300

illustrates how the benefits of maintaining a world model extend beyond long-horizon planning or301

efficient credit assignment. Fictive learning also has its own challenges. It requires an additional302

meta-learning to infer the event correlation, which can be computationally expensive and intractable303

in a complex environment. The performance will also be seriously degraded by biased estimates of304

correlation. These limitations suggest that fictive learning is an important but non-trivial extension of305

model-based RL, which requires careful design of the learning algorithm.306

5 Conclusion307

In conclusion, we integrate model-based RL with fictive learning and conduct in-silico and animal308

experiments to examine its ability to learn faster and explain animal behavior. We found that fictive309

learning facilitates learning while being algorithmically simple and biologically plausible. Model310

simulation and fitting show that it describes the behavior and dopamine dynamics in the two-step task311

better than the existing model. The presented result contributes to filling the gap between biological312

learning and the current RL theories.313
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A Technical Appendices and Supplementary Material374

A.1 Hidden state model375

The hidden state agent assumes that there are two hidden states in which either of the two second-step376

states is better and updates the beliefs of being one hidden state (h ∈ hup, hdown) using Bayesian377

inference [4].378

Specifically, the agent estimates the P (hup) by,379

P (hup)←
P (r|s, hup)P (hup)

P (r)
(1)

where the likelihood P (r|s, hup) is the reward probability in experiment (Table. 1).380

The marginal likelihood P (r) is calculated as,381

P (r) = P (hup)P (r|s, hup) + P (hdown)P (r|s, hdown) (2)

The agent might assume that the block type would change with a certain probability τ . Hence, the382

posterior is updated as,383

P (hup)← (1− τ)P (hup) + τP (hdown) (3)

Therefore, the state values are updated as,384

V (s) = P (r|s, hup)P (hup) + P (r|s, hdown)P (hdown) (4)

And the action is updated as in the MB model (6).385

Table 1: Reward Probability
Block Up block Down block

Outcome Reward Omission Reward Omission

Up state 0.4 0.5 0.1 0.5Down state 0.1 0.4

In the asymmetric hidden state model, the agent exploits the reward likelihood in table 1.386

A.2 Model simulation and fitting procedure387

To examine which model will behave similarly to the experimental observation, we simulated 7388

agents in table.2. To cover a wide range of hyperparameters, we added a noise term noise ∼389

N (0, 0.05 × |hyperparameter|) for each agent. For each model, we simulated 15 agents for 20390

sessions, and each session contained 400 free-choice trials, which is the typical length in animal391

experiments.392
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Table 2: Model and hyperparameter settings
Model β α λ τ ϵ η

MF 3 0.4 1
MF (memory) 3 0.4 0

MB 3 0.4
Hidden state 3 0.2

MF+MB 3 0.4 1 0.5
MB (fictive -) 3 0.4 1 -1
MB (fictive +) 3 0.4 1

We implemented the Bayesian fitting with Rstan 2.32.6 with 4 MCMC chains for 2000 iterations (500393

warm-up runs). We included 11 baseline models, an asymmetric hidden state model, and 7 fictive394

learning models. The hidden state model implicitly implements fictive learning by anticorrelation, so395

we did not add fictive learning to the 4 baseline models in which the hidden state model is involved to396

prevent confounding. The model fitting was performed for each subject and session to account for397

high subject/session-level variability and examine how η is learned over time. Events in force-choice398

trials are only used in updating the action value and state value, but do not contribute to the likelihood399

calculation. BIC score was used for model evaluation.400

A.3 Inferred value difference calculation401

∆V aluet = Pa=at−1,t − Pa ̸=at−1,t (5)
where,402

Pa,t =
αa,t

αa,t + βa,t
(6)

where,403

αa,t+1 = decay ∗ αa,t + rt (7)
404

βa,t+1 = decay ∗ βa,t + (1− rt) (8)
The decay is set as 0.5 to ensure the results’ generalizability.405

A.4 Proof of value updating rule406

Model-based agents In the main text, we define an MB agent that updates the state value of visited407

V (s+) and unvisited state V (s−) by,408

V (s+)← V (s+) + αδs, (9)
409

V (s−)← V (s−), (10)
and compute the action value via the transition matrix P (s|a) by,410

Qmb(a)←
∑
s

P (s|a)V (s) (11)

By definition 11, let Qmb,new(a) and Qmb,old(a) be action value before and after the state update in411

9 and 10,412

Qmb,new(a) =
∑
s

P (s|a)Vnew(s) =
∑
s−

P (s−|a)V (s−) + P (s+|a)Vnew(s+)

=
∑
s−

P (s−|a)V (s−) +
∑
s+

P (s+|a)
[
V (s+) + αδs

]
=

∑
s

P (s|a)V (s)︸ ︷︷ ︸
=Qmb,old(a)

+P (s+|a)αδs. (12)

Therefore,413

Qmb(a)← Qmb(a) + P (s+|a)αδs (13)

This update weight P (s+|a) is the common/rare transition probability: actions more likely to lead to414

the reached state receive a larger portion of the prediction error.415
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Model-based agent with fictive learning MB(fictive-) agent updates both states by,416

V (s+)← V (s+) + αδs, (14)

V (s−)← V (s−) + ηαδs, (15)

Similarly, action value is updated by,417

Qmb,new(a) = P (s+|a)
[
V (s+) + αδs

]
+

∑
s−

P (s−|a)
[
V (s−) + ηαδs

]
=

[
P (s+|a)V (s+) +

∑
s−

P (s−|a)V (s−)
]

︸ ︷︷ ︸
=Qmb,old(a)

+αδs

[
P (s+|a) + η

∑
s−

P (s−|a)
]
. (16)

Using
∑

s P (s|a) = 1, we have
∑

s−
P (s−|a) = 1− P (s+|a), so (16) becomes,418

Qmb,new(a) = Qmb,old(a) + αδs

[
P (s+|a) + η

(
1− P (s+|a)

)]
= Qmb.old(a) + αδs

[
η + (1− η)P (s+|a)

]
. (17)

Therefore,419

Q(a)← Q(a) +
[
η + (1− η)P (s+|a)

]
αδs (18)
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NeurIPS Paper Checklist420

The checklist is designed to encourage best practices for responsible machine learning research,421

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove422

the checklist: The papers not including the checklist will be desk rejected. The checklist should423

follow the references and follow the (optional) supplemental material. The checklist does NOT count424

towards the page limit.425

Please read the checklist guidelines carefully for information on how to answer these questions. For426

each question in the checklist:427

• You should answer [Yes] , [No] , or [NA] .428

• [NA] means either that the question is Not Applicable for that particular paper or the429

relevant information is Not Available.430

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).431

The checklist answers are an integral part of your paper submission. They are visible to the432

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it433

(after eventual revisions) with the final version of your paper, and its final version will be published434

with the paper.435

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.436

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a437

proper justification is given (e.g., "error bars are not reported because it would be too computationally438

expensive" or "we were unable to find the license for the dataset we used"). In general, answering439

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we440

acknowledge that the true answer is often more nuanced, so please just use your best judgment and441

write a justification to elaborate. All supporting evidence can appear either in the main paper or the442

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification443

please point to the section(s) where related material for the question can be found.444

IMPORTANT, please:445

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",446

• Keep the checklist subsection headings, questions/answers and guidelines below.447

• Do not modify the questions and only use the provided macros for your answers.448

1. Claims449

Question: Do the main claims made in the abstract and introduction accurately reflect the450

paper’s contributions and scope?451

Answer: [Yes]452

Justification: The paper presented a new model-based reinforcement learning with fictive453

learning and a rodent two-step task to demonstrate that it assists the model-based learning454

and explains the real behavior well, as stated in the abstract and introduction.455

Guidelines:456

• The answer NA means that the abstract and introduction do not include the claims457

made in the paper.458

• The abstract and/or introduction should clearly state the claims made, including the459

contributions made in the paper and important assumptions and limitations. A No or460

NA answer to this question will not be perceived well by the reviewers.461

• The claims made should match theoretical and experimental results, and reflect how462

much the results can be expected to generalize to other settings.463

• It is fine to include aspirational goals as motivation as long as it is clear that these goals464

are not attained by the paper.465

2. Limitations466

Question: Does the paper discuss the limitations of the work performed by the authors?467

Answer: [Yes]468
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Justification: The paper highlights the limitation of the current study in 4.469

Guidelines:470

• The answer NA means that the paper has no limitation while the answer No means that471

the paper has limitations, but those are not discussed in the paper.472

• The authors are encouraged to create a separate "Limitations" section in their paper.473

• The paper should point out any strong assumptions and how robust the results are to474

violations of these assumptions (e.g., independence assumptions, noiseless settings,475

model well-specification, asymptotic approximations only holding locally). The authors476

should reflect on how these assumptions might be violated in practice and what the477

implications would be.478

• The authors should reflect on the scope of the claims made, e.g., if the approach was479

only tested on a few datasets or with a few runs. In general, empirical results often480

depend on implicit assumptions, which should be articulated.481

• The authors should reflect on the factors that influence the performance of the approach.482

For example, a facial recognition algorithm may perform poorly when image resolution483

is low or images are taken in low lighting. Or a speech-to-text system might not be484

used reliably to provide closed captions for online lectures because it fails to handle485

technical jargon.486

• The authors should discuss the computational efficiency of the proposed algorithms487

and how they scale with dataset size.488

• If applicable, the authors should discuss possible limitations of their approach to489

address problems of privacy and fairness.490

• While the authors might fear that complete honesty about limitations might be used by491

reviewers as grounds for rejection, a worse outcome might be that reviewers discover492

limitations that aren’t acknowledged in the paper. The authors should use their best493

judgment and recognize that individual actions in favor of transparency play an impor-494

tant role in developing norms that preserve the integrity of the community. Reviewers495

will be specifically instructed to not penalize honesty concerning limitations.496

3. Theory assumptions and proofs497

Question: For each theoretical result, does the paper provide the full set of assumptions and498

a complete (and correct) proof?499

Answer: [Yes]500

Justification: The theoretical derivation of the updating rule is included in appendix A.4,501

and the reasoning is explained in 3.2.502

Guidelines:503

• The answer NA means that the paper does not include theoretical results.504

• All the theorems, formulas, and proofs in the paper should be numbered and cross-505

referenced.506

• All assumptions should be clearly stated or referenced in the statement of any theorems.507

• The proofs can either appear in the main paper or the supplemental material, but if508

they appear in the supplemental material, the authors are encouraged to provide a short509

proof sketch to provide intuition.510

• Inversely, any informal proof provided in the core of the paper should be complemented511

by formal proofs provided in appendix or supplemental material.512

• Theorems and Lemmas that the proof relies upon should be properly referenced.513

4. Experimental result reproducibility514

Question: Does the paper fully disclose all the information needed to reproduce the main ex-515

perimental results of the paper to the extent that it affects the main claims and/or conclusions516

of the paper (regardless of whether the code and data are provided or not)?517

Answer: [Yes]518

Justification: The paper contained all the details to reproduce the model and the animal519

experiment.520

Guidelines:521
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• The answer NA means that the paper does not include experiments.522

• If the paper includes experiments, a No answer to this question will not be perceived523

well by the reviewers: Making the paper reproducible is important, regardless of524

whether the code and data are provided or not.525

• If the contribution is a dataset and/or model, the authors should describe the steps taken526

to make their results reproducible or verifiable.527

• Depending on the contribution, reproducibility can be accomplished in various ways.528

For example, if the contribution is a novel architecture, describing the architecture fully529

might suffice, or if the contribution is a specific model and empirical evaluation, it may530

be necessary to either make it possible for others to replicate the model with the same531

dataset, or provide access to the model. In general. releasing code and data is often532

one good way to accomplish this, but reproducibility can also be provided via detailed533

instructions for how to replicate the results, access to a hosted model (e.g., in the case534

of a large language model), releasing of a model checkpoint, or other means that are535

appropriate to the research performed.536

• While NeurIPS does not require releasing code, the conference does require all submis-537

sions to provide some reasonable avenue for reproducibility, which may depend on the538

nature of the contribution. For example539

(a) If the contribution is primarily a new algorithm, the paper should make it clear how540

to reproduce that algorithm.541

(b) If the contribution is primarily a new model architecture, the paper should describe542

the architecture clearly and fully.543

(c) If the contribution is a new model (e.g., a large language model), then there should544

either be a way to access this model for reproducing the results or a way to reproduce545

the model (e.g., with an open-source dataset or instructions for how to construct546

the dataset).547

(d) We recognize that reproducibility may be tricky in some cases, in which case548

authors are welcome to describe the particular way they provide for reproducibility.549

In the case of closed-source models, it may be that access to the model is limited in550

some way (e.g., to registered users), but it should be possible for other researchers551

to have some path to reproducing or verifying the results.552

5. Open access to data and code553

Question: Does the paper provide open access to the data and code, with sufficient instruc-554

tions to faithfully reproduce the main experimental results, as described in supplemental555

material?556

Answer: [No]557

Justification: The code and dataset are related to another work in progress. Both will be558

released as soon as possible.559

Guidelines:560

• The answer NA means that paper does not include experiments requiring code.561

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/562

public/guides/CodeSubmissionPolicy) for more details.563

• While we encourage the release of code and data, we understand that this might not be564

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not565

including code, unless this is central to the contribution (e.g., for a new open-source566

benchmark).567

• The instructions should contain the exact command and environment needed to run to568

reproduce the results. See the NeurIPS code and data submission guidelines (https:569

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.570

• The authors should provide instructions on data access and preparation, including how571

to access the raw data, preprocessed data, intermediate data, and generated data, etc.572

• The authors should provide scripts to reproduce all experimental results for the new573

proposed method and baselines. If only a subset of experiments are reproducible, they574

should state which ones are omitted from the script and why.575
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• At submission time, to preserve anonymity, the authors should release anonymized576

versions (if applicable).577

• Providing as much information as possible in supplemental material (appended to the578

paper) is recommended, but including URLs to data and code is permitted.579

6. Experimental setting/details580

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-581

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the582

results?583

Answer: [Yes]584

Justification: The detailed are provided in 2 and the hyperparameter settings of simulation is585

listed in A.2.586

Guidelines:587

• The answer NA means that the paper does not include experiments.588

• The experimental setting should be presented in the core of the paper to a level of detail589

that is necessary to appreciate the results and make sense of them.590

• The full details can be provided either with the code, in appendix, or as supplemental591

material.592

7. Experiment statistical significance593

Question: Does the paper report error bars suitably and correctly defined or other appropriate594

information about the statistical significance of the experiments?595

Answer: [Yes]596

Justification: The statistics are reported with the necessary information.597

Guidelines:598

• The answer NA means that the paper does not include experiments.599

• The authors should answer "Yes" if the results are accompanied by error bars, confi-600

dence intervals, or statistical significance tests, at least for the experiments that support601

the main claims of the paper.602

• The factors of variability that the error bars are capturing should be clearly stated (for603

example, train/test split, initialization, random drawing of some parameter, or overall604

run with given experimental conditions).605

• The method for calculating the error bars should be explained (closed form formula,606

call to a library function, bootstrap, etc.)607

• The assumptions made should be given (e.g., Normally distributed errors).608

• It should be clear whether the error bar is the standard deviation or the standard error609

of the mean.610

• It is OK to report 1-sigma error bars, but one should state it. The authors should611

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis612

of Normality of errors is not verified.613

• For asymmetric distributions, the authors should be careful not to show in tables or614

figures symmetric error bars that would yield results that are out of range (e.g. negative615

error rates).616

• If error bars are reported in tables or plots, The authors should explain in the text how617

they were calculated and reference the corresponding figures or tables in the text.618

8. Experiments compute resources619

Question: For each experiment, does the paper provide sufficient information on the com-620

puter resources (type of compute workers, memory, time of execution) needed to reproduce621

the experiments?622

Answer: [Yes]623

Justification: All simulations and data analyses that run on a standard PC or laptop. No624

special hardware is required, and each run finishes within a few minutes to a few hours.625

Guidelines:626
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• The answer NA means that the paper does not include experiments.627

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,628

or cloud provider, including relevant memory and storage.629

• The paper should provide the amount of compute required for each of the individual630

experimental runs as well as estimate the total compute.631

• The paper should disclose whether the full research project required more compute632

than the experiments reported in the paper (e.g., preliminary or failed experiments that633

didn’t make it into the paper).634

9. Code of ethics635

Question: Does the research conducted in the paper conform, in every respect, with the636

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?637

Answer: [Yes]638

Justification: The study was conducted wit the NeurIPS code of Ethics.639

Guidelines:640

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.641

• If the authors answer No, they should explain the special circumstances that require a642

deviation from the Code of Ethics.643

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-644

eration due to laws or regulations in their jurisdiction).645

10. Broader impacts646

Question: Does the paper discuss both potential positive societal impacts and negative647

societal impacts of the work performed?648

Answer: [NA]649

Justification: There is no societal impact.650

Guidelines:651

• The answer NA means that there is no societal impact of the work performed.652

• If the authors answer NA or No, they should explain why their work has no societal653

impact or why the paper does not address societal impact.654

• Examples of negative societal impacts include potential malicious or unintended uses655

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations656

(e.g., deployment of technologies that could make decisions that unfairly impact specific657

groups), privacy considerations, and security considerations.658

• The conference expects that many papers will be foundational research and not tied659

to particular applications, let alone deployments. However, if there is a direct path to660

any negative applications, the authors should point it out. For example, it is legitimate661

to point out that an improvement in the quality of generative models could be used to662

generate deepfakes for disinformation. On the other hand, it is not needed to point out663

that a generic algorithm for optimizing neural networks could enable people to train664

models that generate Deepfakes faster.665

• The authors should consider possible harms that could arise when the technology is666

being used as intended and functioning correctly, harms that could arise when the667

technology is being used as intended but gives incorrect results, and harms following668

from (intentional or unintentional) misuse of the technology.669

• If there are negative societal impacts, the authors could also discuss possible mitigation670

strategies (e.g., gated release of models, providing defenses in addition to attacks,671

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from672

feedback over time, improving the efficiency and accessibility of ML).673

11. Safeguards674

Question: Does the paper describe safeguards that have been put in place for responsible675

release of data or models that have a high risk for misuse (e.g., pretrained language models,676

image generators, or scraped datasets)?677

Answer: [NA]678
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Justification: The paper poses no such risks.679

Guidelines:680

• The answer NA means that the paper poses no such risks.681

• Released models that have a high risk for misuse or dual-use should be released with682

necessary safeguards to allow for controlled use of the model, for example by requiring683

that users adhere to usage guidelines or restrictions to access the model or implementing684

safety filters.685

• Datasets that have been scraped from the Internet could pose safety risks. The authors686

should describe how they avoided releasing unsafe images.687

• We recognize that providing effective safeguards is challenging, and many papers do688

not require this, but we encourage authors to take this into account and make a best689

faith effort.690

12. Licenses for existing assets691

Question: Are the creators or original owners of assets (e.g., code, data, models), used in692

the paper, properly credited and are the license and terms of use explicitly mentioned and693

properly respected?694

Answer: [Yes]695

Justification: All existing assets are cited.696

Guidelines:697

• The answer NA means that the paper does not use existing assets.698

• The authors should cite the original paper that produced the code package or dataset.699

• The authors should state which version of the asset is used and, if possible, include a700

URL.701

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.702

• For scraped data from a particular source (e.g., website), the copyright and terms of703

service of that source should be provided.704

• If assets are released, the license, copyright information, and terms of use in the705

package should be provided. For popular datasets, paperswithcode.com/datasets706

has curated licenses for some datasets. Their licensing guide can help determine the707

license of a dataset.708

• For existing datasets that are re-packaged, both the original license and the license of709

the derived asset (if it has changed) should be provided.710

• If this information is not available online, the authors are encouraged to reach out to711

the asset’s creators.712

13. New assets713

Question: Are new assets introduced in the paper well documented and is the documentation714

provided alongside the assets?715

Answer: [NA]716

Justification: The paper does not release new assets.717

Guidelines:718

• The answer NA means that the paper does not release new assets.719

• Researchers should communicate the details of the dataset/code/model as part of their720

submissions via structured templates. This includes details about training, license,721

limitations, etc.722

• The paper should discuss whether and how consent was obtained from people whose723

asset is used.724

• At submission time, remember to anonymize your assets (if applicable). You can either725

create an anonymized URL or include an anonymized zip file.726

14. Crowdsourcing and research with human subjects727

Question: For crowdsourcing experiments and research with human subjects, does the paper728

include the full text of instructions given to participants and screenshots, if applicable, as729

well as details about compensation (if any)?730
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Answer: [NA]731

Justification: The paper does not involved corwdsourcing nor research with human subjects.732

Guidelines:733

• The answer NA means that the paper does not involve crowdsourcing nor research with734

human subjects.735

• Including this information in the supplemental material is fine, but if the main contribu-736

tion of the paper involves human subjects, then as much detail as possible should be737

included in the main paper.738

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,739

or other labor should be paid at least the minimum wage in the country of the data740

collector.741

15. Institutional review board (IRB) approvals or equivalent for research with human742

subjects743

Question: Does the paper describe potential risks incurred by study participants, whether744

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)745

approvals (or an equivalent approval/review based on the requirements of your country or746

institution) were obtained?747

Answer: [NA]748

Justification: The paper does not involve crowdsourcing nor research with human subjects.749

Guidelines:750

• The answer NA means that the paper does not involve crowdsourcing nor research with751

human subjects.752

• Depending on the country in which research is conducted, IRB approval (or equivalent)753

may be required for any human subjects research. If you obtained IRB approval, you754

should clearly state this in the paper.755

• We recognize that the procedures for this may vary significantly between institutions756

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the757

guidelines for their institution.758

• For initial submissions, do not include any information that would break anonymity (if759

applicable), such as the institution conducting the review.760

16. Declaration of LLM usage761

Question: Does the paper describe the usage of LLMs if it is an important, original, or762

non-standard component of the core methods in this research? Note that if the LLM is used763

only for writing, editing, or formatting purposes and does not impact the core methodology,764

scientific rigorousness, or originality of the research, declaration is not required.765

Answer: [NA]766

Justification: The core method development does not involve LLMs.767

Guidelines:768

• The answer NA means that the core method development in this research does not769

involve LLMs as any important, original, or non-standard components.770

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)771

for what should or should not be described.772

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Experiment design
	Model description
	Baseline models
	Fictive learning

	Analysis method

	Result
	Existing model fails to explain the experimental result
	Fictive learning agent fits the experiment result
	Fictive Model-based agent fits the observation better
	RPE explains the striatal dopaminergic activity

	Discussion
	Conclusion
	Technical Appendices and Supplementary Material
	Hidden state model
	Model simulation and fitting procedure
	Inferred value difference calculation
	Proof of value updating rule


