Under review as a conference paper at ICLR 2026

FLOWRL: MATCHING REWARD DISTRIBUTIONS FOR
LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose FlowRL: matching the full reward distribution via flow balancing in-
stead of solely maximizing rewards in large language model (LLM) reinforcement
learning (RL). Recent advanced reasoning LLMs adopt reward-maximizing meth-
ods (e.g., PPO and GRPO), which tend to over-optimize dominant reward signals
while neglecting less frequent but valid reasoning paths, thus reducing diversity.
In contrast, we transform scalar rewards into a normalized target distribution us-
ing a learnable partition function, and then minimize the reverse KL divergence
between the policy and the target distribution. We implement this idea as a flow-
balanced optimization method that promotes diverse exploration and generalizable
reasoning trajectories. We conduct experiments on both math and code reasoning
tasks: FlowRL achieves a significant average improvement of 10.0% over GRPO
and 5.1% over PPO on math benchmarks, and performs consistently better on
code reasoning tasks. These results highlight reward distribution-matching as a
key step toward efficient exploration and diverse reasoning of LLM reinforcement

learning.
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Figure 1: Top: Comparison between distribution-matching and reward-maximizing approaches.
FlowRL (left) learns to match the full reward distribution, maintaining diversity across multiple
modes with low KL divergence. In contrast, reward-maximizing methods (right) such as RE-
INFORCE++ (R++; Sutton et al., 1999b; Hu et al., 2025), PPO (Schulman et al., 2017), and
GRPO (Shao et al., 2024) concentrate on a single high-reward peak, leading to mode collapse and
higher KL divergence. Bottom: Performance comparison. FlowRL consistently outperforms GRPO
across math and code domains.
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1 INTRODUCTION

Reinforcement learning (RL) plays a crucial role in the post-training of large language mod-
els (LLMs) (Zhang et al., 2025b). A series of powerful reasoning models (Guo et al., 2025;
Kavukcuoglu, 2025; Rastogi et al., 2025) have employed large-scale reinforcement learning to
achieve strong performance on highly challenging benchmarks. The evolution of RL algorithms
for LLM reasoning has progressed through several key stages: REINFORCE (Sutton et al., 1999a)
provides a solid baseline that is easy to implement and efficient in simple settings; PPO (Schulman
et al., 2017) improves upon REINFORCE with better stability and efficiency in complex settings;
GRPO (Shao et al., 2024) simplifies PPO training by eliminating the learning of a separate value
function and relying on group comparisons. However, all these methods share a fundamental limi-
tation in their reward-maximizing objective.

Reward-maximizing RL methods tend to overfit to the dominant mode of the reward distribu-
tion (Skalse et al., 2022; Pan et al., 2022; Zelikman et al., 2022; Gao et al., 2023). As illustrated in
Figure 1, representative RL methods such as GRPO neglect other meaningful modes, which often
results in limited diversity among generated reasoning paths and reduces generalization to less fre-
quent yet valid logical outcomes (Hu et al., 2023). These drawbacks become especially pronounced
in complex long-chain-of-thought (CoT; Wei et al., 2022) reasoning, where capturing a diverse dis-
tribution of plausible solutions is essential for effective generalization (Liu et al., 2025a). Recent
approaches adjust the clip ratio (Yu et al., 2025b), apply entropy-based advantage shaping (Cheng
et al., 2025), or selectively promote high-entropy tokens (Wang et al., 2025), thereby dynamically
adapting the data distribution and implicitly increasing diversity. This raises a fundamental question:
How can we promote diverse exploration to prevent convergence to dominant solution patterns in
RL training?

In this paper, we propose FlowRL, a policy optimization algorithm that aligns the policy model
with the full reward distribution, encouraging mode coverage. FlowRL achieves more efficient
exploration by fundamentally shifting from reward maximization to reward distribution matching,
thereby addressing the inherent mode-collapse limitations of previous RL approaches. As illustrated
in Figure 1, the core idea of FlowRL is to introduce a learnable partition function that normalizes
scalar rewards into a target distribution, and to minimize the reverse KL divergence between the
policy and this reward-induced distribution. We develop this KL objective based on the trajectory
balance formulation from GFlowNets (Bengio et al., 2023b), providing a gradient equivalence proof
that bridges generative modeling and policy optimization. To address the challenges of long CoT
training, we introduce two key technical solutions: length normalization to tackle gradient explosion
issues that occur with variable-length CoT reasoning, and importance sampling to correct for the
distribution mismatch between generated rollouts and the current policy.

We compare FlowRL with mainstream RL algorithms for LLM reasoning, including REIN-
FORCE++ (Hu et al., 2025), PPO, and GRPO, across math and code domains, using both base
and distilled LLMs with 7B or 32B parameters. In the math domain, FlowRL outperforms GRPO
and PPO by 10.0% and 5.1%, respectively, demonstrating consistent improvements on six chal-
lenging math benchmarks (MAA, 2025; 2023; Lightman et al., 2023a; Lewkowycz et al., 2022; He
et al., 2024). Furthermore, FlowRL surpasses both PPO and GRPO on three challenging coding
benchmarks (Jain et al., 2024; Penedo et al., 2025; Chen et al., 2021), highlighting its strong gener-
alization capabilities in code reasoning tasks. To understand what drives these performance gains,
we analyze the diversity of generated reasoning paths and confirm that FlowRL produces substan-
tially more diverse rollouts than the baseline methods, thereby validating the effectiveness of our
approach in exploring multiple solution strategies.

Contributions. We summarize the key contributions of this work as follows:

* We propose FlowRL, a policy optimization algorithm that shifts from reward maximization to
reward distribution matching via flow balancing, encouraging diverse reasoning path exploration
while addressing the inherent mode-collapse limitations of existing RL methods.

* We introduce length normalization and importance sampling to enable effective training on
variable-length CoT reasoning, addressing gradient explosion and sampling mismatch issues.

* FlowRL outperforms GRPO and PPO by 10.0% and 5.1% respectively across math benchmarks
and demonstrates strong generalization on code reasoning tasks, with diversity analysis confirming
substantially more diverse solution exploration.
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2 PRELIMINARIES

Reinforcement Learning for Reasoning. We formulate reasoning as a conditional generation
problem, where the policy model receives a question x € X and generates an answer y € ). The
objective is to learn a policy 7y (y|x) that produces high-quality answers under task-specific reward
signals r. To better illustrate the policy optimization procedure, we provide a detailed formulation
of GRPO below. For each question x, GRPO samples a group of answers {y1,ys,...,y¢} from

old policy mg,,, and updates the model by maximizing the following objective:
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where € and )\ are hyper-parameters. Here, A; denotes the advantage, computed by normalizing
the group reward values {ry,7s,...,7g} as A; = ri—mean({ri,ra, w6 ) Compared to GRPO,

std({r1,r2,,7c})
REINFORCE applies the policy gradient directly, without advantage normalization, clipping, or KL

regularization. PPO uses a critic model to estimate the advantage and employs importance sampling
to stabilize policy updates.

GFlowNets. Generative Flow Networks
(GFlowNets; Bengio et al.,, 2023a) are a
probabilistic framework for training stochastic
policies to sample discrete, compositional
objects (e.g., graphs, sequences) in proportion
to a given reward. As shown in Figure 2, the
core principle of GFlowNets is to balance the
forward and backward probability flows at each
state, inspired by flow matching (Bengio et al.,
2021). The initial flow is estimated by Z,(so)
at the initial state sg. The output flow is equal
to the outcome reward 7(sy) conditioned at
the final state sy. Following Lee et al. (2024),
we use a 3-layer MLP to parameterize Z.
This flow-balancing mechanism facilitates the
discovery of diverse, high-reward solutions
by ensuring proper exploration of the solution
space. See Appendix C for detailed GFlowNets
background.

Figure 2: GFlowNets (Bengio et al., 2023a), a
flow-balance perspective on reinforcement learn-
ing. The initial flow Z4(so) injects probability
mass into the environment, which is transported
through intermediate states by the policy my and
accumulated at terminal states in proportion to the
scalar rewards.

3 METHODOLOGY

In this section, we first formulate distribution matching in reinforcement learning through reverse
KL divergence and establish its connection to trajectory balance from GFlowNets. To address the
challenges of gradient explosion and sampling mismatch encountered during long CoT training, we
further incorporate length normalization and importance sampling. Using this enhanced framework,
we derive a flow-balanced objective, termed FlowRL.

3.1 FROM REWARD MAXIMIZATION TO DISTRIBUTION MATCHING

As illustrated in Figure 1, recent powerful large reasoning models typically employ reward-
maximizing RL algorithms, such as PPO or GRPO. However, these methods tend to optimize toward
the dominant reward mode, frequently resulting in mode collapse and the neglect of other plausible,
high-quality reasoning paths. To address this fundamental limitation, we propose optimizing the
policy by aligning its output distribution to a target reward distribution. A simple yet effective way
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to achieve this is to minimize the reverse KL divergence' between the policy and this target. How-
ever, in long CoT reasoning tasks, the available supervision in RL is a scalar reward, rather than a
full distribution. Moreover, enumerating or sampling all valid trajectories to recover the true reward
distribution is computationally intractable.

Inspired by energy-based modeling (Hinton et al., 1995; Du & Mordatch, 2019), we introduce a
learnable partition function Z4(x) to normalize scalar rewards into a valid target distribution. This
allows us to minimize the reverse KL divergence between the policy and the reward-weighted dis-
tribution, formalized as:

, exp(Br(x,

min Dy, | mo(y | x) exp(Fr(x,y)) =  my(y | x) x exp(Br(x,y)), ()
0 Z(x)

where r(x,y) is the reward function, 3 is a hyperparameter, Z,(x) is the learned partition function,

W. This objective encourages

the policy to sample diverse, high-reward trajectories in proportion to their rewards, rather than
collapsing to dominant modes as in standard reward maximization.

and the resulting target distribution is defined as 7 (y | x) =

While the KL-based formulation provides a principled target distribution, we derive a more practical,
RL-style objective that facilitates efficient policy optimization.

Proposition 1. In terms of expected gradients, minimizing the KL objective in Eq. 2 is equivalent
to minimizing the trajectory balance loss used in GFlowNet (Malkin et al., 2022; 2023; Lee et al.,
2024, Bartoldson et al., 2025):

exp(Br(x,y))

II%iH DKL <’/T9(y ‘ X) Z¢(X)

> — mein (log Zy(x) +log me(y | x) — pr(x, Y))2

Trajectory Balance

3)

Remark 2 (Trajectory balance as a practical surrogate for KL minimization). Given the equivalence
established in Proposition 1, the KL-based distribution matching objective can be reformulated as
the trajectory balance loss. This reformulation provides a practical optimization approach by using
a stable squared loss form rather than direct KL optimization, and by treating Z,;(x) as a learnable
parameter rather than requiring explicit computation of the intractable partition function. The trajec-
tory balance objective thus serves as a tractable surrogate for reward-guided KL minimization that
can be directly integrated into existing RL frameworks.

3.2 FLOwRL

As established in Proposition 1, the target reward distribution can be approximated by optimizing
the trajectory balance objective. However, applying this objective directly to long CoT reasoning
introduces two key challenges:

Problem I: Exploding gradients from long trajectories. Trajectory balance is a sequence-level
objective, and applying it to long CoT reasoning with up to 8K tokens leads to exploding gradients
and unstable updates. This issue is not observed in prior GFlowNets works, which typically operate
on short trajectories in small discrete spaces. Specifically, the log-probability term log my(y | x)
decomposes into a token-wise sum, ) _, log mg(y; | y<¢, X), causing the gradient norm to potentially
scale with sequence length.

Problem II: Sampling mismatch. Mainstream RL algorithms such as PPO and GRPO commonly
perform micro-batch updates and reuse trajectories collected from an old policy my,,, enabling data-
efficient training. In contrast, the KL-based trajectory balance objective assumes fully on-policy
sampling, where responses are drawn from the current policy. This mismatch poses practical limita-
tions when integrating trajectory balance into existing RL pipelines.

These limitations motivate our reformulation that retains the benefits of distribution matching while
addressing key practical challenges. To enable this reformulation, we first redefine the reward func-
tion following established practices in GFlowNets literature (Lee et al., 2024; Bartoldson et al., 2025;

"We use reverse KL since we can only sample from the policy model, not the target reward distribution.
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Yu et al., 2025a) by incorporating a reference model as a prior constraint on the reward distribution.
Specifically, we modify the original exp(8r(x,y)) to include the reference model:

exp (B r(X,y)) - et (¥ | X), 4

where r(x,y) denotes the outcome reward commonly used in reinforcement learning and ¢ is the
initial pre-trained model. We follow Guo et al. (2025) to use outcome-based reward signals, and
apply group normalization to r(x,y) as #; = (r; — mean(r))/std(r), where r = {ry,72,...,7¢}
denotes the set of rewards within a sampled group. By substituting the redefined reward formulation
Eq. 4 into Eq. 3, we derive the following objective’:

mein (log Zy(x) +logma(y | x) — B 7:(x,y) — log mrer (¥ | X))2 (5)

Remark 3 (Reward shaping via length normalization). Trajectory balance treats both the initial
flow and the outcome reward as sequence-level quantities. In contrast, standard policy optimization
methods such as PPO or GRPO assign rewards at the token level and compute gradients at each
step. However, for trajectories of varying lengths (e.g., CoT responses), this mismatch can cause

the log-probability term log mp(y | x) = ZP!1 log 7o (y: | y<t,X) to scale with sequence length.
To address this, we apply a form of reward shaping by normalizing log-probabilities with respect to
sequence length. Specifically, we rescale the term as ﬁ log e(y | x), balancing the contributions
of long and short sequences and stabilizing the learning signal.

Remark 4 (Importance sampling for data-efficient training). To mitigate sampling mismatch, we
employ importance sampling inspired by PPO to stabilize policy updates with off-policy data. We
re-weight stale trajectories using the importance ratio w = 7y (y | X)/moa(y | X), which serves as a
coefficient in the surrogate loss. Since our objective focuses on optimizing trajectory balance rather
than expected return, we detach the gradient from the current policy to prevent excessive policy drift:

w = detach[my(y | x)]/7oa(y | x). For additional stability, we incorporate PPO-style clipping to

detach
bound the importance weights: w = clip (;j’d((g";)) ,1—e1+4 e) .

Incorporating these improvements into Eq. 5, we arrive at the following FlowRL objective:

1 1 2
Cronr, = (1og o Ty BN S L S x>) ®)

lyl |yl

where the clipped importance weight w and normalized reward 7(x,y) are defined as:
mo(y | X) r; — mean(r)
Tola(y | %) std(r)

We use this objective to update the policy parameters ¢ during training, and refer to this strategy as
FlowRL. Implementation details and theoretical analysis are provided in § 4 and § B, respectively.

w = clip( 1— €14 e)uch o o

4 EXPERIMENT SETTINGS

Backbone Models. There are two learnable modules in Eq. 6: the policy model my and the
partition function Zg. For the policy model 7y, we use Qwen—-2.5-7B/32B (Team, 2024) for
math tasks and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-Al, 2025) for code tasks, re-
spectively. The reference model 7. is the corresponding fixed pretrained model. For partition
function Zy, following Lee et al. (2024), we use a randomly initialized 3-layer MLP with hidden
dimensions matching those of the base model. The input to Z is the mean of the language model’s
hidden states after encoding the input x, and the output is a scalar value. We detail the implemen-
tation of Zy in § F. All training scripts are based on the veRL (Sheng et al., 2024). For the reward
function, following Lee et al. (2024), we set the hyperparameter 8 = 15.

*The substitution replaces 8r(x,y) in trajectory balance objective Eq. 3 with 8r(x,y) + log et (¥ | X)
to incorporate the reference model constraint.
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Table 1: Results on math reasoning benchmarks. We report Avg@16 accuracy with relative
improvements shown as subscripts. Positive gains are shown in green and negative changes in red.
FlowRL outperforms all baselines across both 7B and 32B model scales.

Models \ AIME24 AIME25 AMC23 MATHS500 Minerva Olympiad \ Avg
Qwen2.5-32B-Base, Max Response Len = 8K tokens
Backbone | 4.58 2.08 28.59 52.48 26.99 21.37 22.68
R++ 14.79+w.21 9.17+7,()g 52.65+24.[](; 44.35_g.13 17.37_9.4 24.52 3 15 27.14
PPO 26.8712000 20411833 76.40 4781 6917 1660 28.79;180 37.9011653 | 43.25
GRPO 231211854 1458119250 76.87 14808 61.6049 12 18.95_5.04 34.94 . 1557 | 38.34
FlowRL ‘ 23.95+15)_;57 21.87+15)_7g) 73-75+"15.16 80.75+25_27 38‘21+1 1.22 51.83A3(J_,15 ‘ 48.39
Qwen2.5-7B-Base, Max Response Len = 8K tokens
Backbone | 4.38 2.08 30.78 54.47 22.38 24.03 23.02
R++ 11.04 6,66 5.41 333 66.71, 3503 54.25_0.22 24.37 199 27.3313.30 31.52
PPO 9.38.5.00 7.29.591 63.43: 3265 57.98.351 26.5314.15 27.25.3.99 31.98
GRPO 13.54. 9 16 9.794 771 64.53 13375 57.0512 58 23.06. 0.6 26.88.9 85 32.48
FlowRL ‘ 15.414,11_03 10.83+8.75 54.53+23_75 6696+u19 31‘41+9_03 34‘61A1(J_58 ‘ 35.63

Table 2: Results on code benchmarks. We report metrics with relative improvements shown as
subscripts. Positive gains are shown in green and negative changes in red. FlowRL achieves the
strongest performance across all three benchmarks.

Models | LiveCodeBench | CodeForces | HumanEval+
| Avg@16 Pass@16 | Rating Percentile | Avg@16
DeepSeek-R1-Distill-Qwen-7B, Max Response Len = 8K tokens
Backbone | 30.68 49.46 886.68 19.4% 80.90
R++ 3046 .02  52.68,3590 | 1208.03 32135  56.8%.37.49 | 76.61_429
PPO 3510+442 54.48+5,()2 1403.07+51(;_39 737% +54.3% 82.32_1_42

GRPO 327,007 52.32.056 | 13138240714 67.1%. 4770 | 80.13 017
FlowRL ‘ 37.43+(5_75 56.27+(§_31 ‘ 1549.47+(5(;2_7g) 83'3%+(53§,0% ‘ 83428+2_;;g

Baselines. We compare our method against three representative reward-maximization RL base-
lines: REINFORCE++ (R++; Sutton et al., 1999b; Hu et al., 2025), PPO (Schulman et al., 2017),
and GRPO (Shao et al., 2024). All baselines follow the official veRL recipes, with consistent train-
ing configurations. For fair comparison, all methods use the same learning rate, batch size, and
training steps, and are evaluated at convergence using identical step counts.

Training Configuration. We experiment on both math and code domains. For the math domain,
we use the training set collected from DAPO (Yu et al., 2025b). For the code domain, we follow
the setup of DeepCoder (Luo et al., 2025), using their training set. For 7B model training, we
use a single node equipped with 8 NVIDIA H800 GPUs (80GB memory each). For 32B model
training, we scale to 4 nodes with 32 GPUs to accommodate the larger memory requirements. All
experiments use max_prompt_length =2048 and max_response_length = 8192 across both
model sizes. We use a batch size of 512 for math reasoning tasks and 64 for code reasoning tasks.
We set the learning rate to 1e-6 and enable dynamic batch sizing in veRL for efficient training. For
GRPO and FlowRL, we configure rollout_n = 8, meaning each prompt generates 8 response
rollouts as the group size.

Evaluation Configuration. For the math domain, we evaluate on six challenging benchmarks:
AIME 2024/2025 (MAA, 2025), AMC 2023 (MAA, 2023), MATH-500 (Lightman et al., 2023a),
Minerva (Lewkowycz et al., 2022), and Olympiad (He et al., 2024). For the code domain, we evalu-
ate on LiveCodeBench (Jain et al., 2024), CodeForces (Penedo et al., 2025), and HumanEval+ (Chen
et al., 2021). For all evaluation datasets, we perform 16 rollouts and report the average Pass@1
accuracy, denoted as Avg@ 16. We further report rating and percentile for Codeforces. During gen-
eration, we use sampling parameters of temperature =0.6 and top_p = 0.95 for all evaluations.
The response length for evaluation is set to 8,192 tokens, consistent with the training configuration.
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Table 3: Ablation study on FlowRL with Qwen2.5-7B as the base model. Avg@16 accuracy is
reported across six math reasoning benchmarks. IS denotes importance sampling.

Method \ AIME 2024 AIME 2025 AMC 2023 MATH-500 Minerva Olympiad \ Avg
FlowRL 15.41 10.83 54.53 66.96 31.41 34.61 35.63
w/o IS 6.25 7.91 41.40 56.97 22.19 25.52 26.71
Zhang et al. (2025a) \ 10.41 6.66 53.75 66.50 30.97 33.72 \ 33.67
5 RESULTS

Main Results. Our experimental results, summarized in Table 1 and Table 2, demonstrate that
FlowRL consistently outperforms all reward-maximization baselines across both math and code
reasoning domains. Table 1 reports results on math reasoning benchmarks using both 7B and 32B
base models, while Table 2 presents the corresponding results on code reasoning tasks. On math
reasoning tasks, FlowRL achieves the highest average accuracy of 35.6% with the 7B model and
48.4% with the 32B model, surpassing PPO by 5.1% and GRPO by 10.1% on the 32B model.
FlowRL shows strong improvements on challenging benchmarks like MATH-500 and Olympiad
problems, demonstrating consistent gains across diverse mathematical domains. On code genera-
tion tasks, FlowRL achieves compelling improvements with the highest Avg@16 score of 37.43%
on LiveCodeBench, a Codeforces rating of 1549.47 with 83.3% percentile ranking, and 83.28% ac-
curacy on HumanEval+, outperforming all baselines across the board. These consistent performance
gains across both domains and model scales provide strong empirical evidence that FlowRL’s flow-
balanced optimization successfully enhances generalization. This improvement comes from pro-
moting diverse solution exploration compared to previous reward-maximizing RL approaches.

Ablation Studies. We conduct ablation studies on

importance sampling and the 3 hyperparameter. For 37

importance sampling, we compared the performance 36 35.63

with and without it, and implemented a combined 35.09
loss approach proposed by Zhang et al. (2025a) that 7 33 34.41

simultaneously optimizes both GFlowNets and PPO § 34 4

objectives. This combined loss focuses on optimiz- ﬁ

ing diffusion models, and we adapt it to long CoT @ 331

reasoning tasks for comparison. Table 3 demon- @ 324 37134

strates that importance sampling substantially im- Ed 31

proves FlowRL performance across all math rea-

soning benchmarks. Compared to Zhang et al. 30 BIS 3 o T " 20

(2025a), using importance sampling as a trajectory-
level ratio is more suitable than the combined loss of ~Figure 3: Ablation study on the /5 in FlowRL.
GFlowNets and PPO. The performance drop with- /3 = 15 (highlighted in blue) achieves the
out importance sampling (from 35.63% to 26.71%) best performance.

highlights the critical role of correcting for distribu-

tion mismatch between rollout generation and policy training. For the hyperparameter 3, we conduct
a series of parameter ablation studies, and Figure 3 shows that § = 15 achieves optimal performance,
with detailed results shown in Table 7.

6 ANALYSIS

Diversity Analysis. To assess solution diversity, we follow the approach of Yu et al. (2025a) and
employ GPT-4o0-mini (OpenAl, 2024) to evaluate all responses generated by each method on
AIME 24/25. The evaluation prompt is shown in Appendix H. As shown in Figure 4, FlowRL
achieves higher diversity scores compared to baseline methods. This demonstrates that FlowRL
improves sample diversity compared to baselines, which tend to exhibit repetitive solution patterns.
This diversity evaluation reveals significant differences in exploration patterns across methods. This
nearly doubling of diversity score compared to the strongest baseline (PPO) indicates that FlowRL
generates qualitatively different solution approaches rather than minor variations of the same strat-
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Table 4: Case study comparing GRPO and FlowRL rollouts on an AIME problem. GRPO exhibits
repetitive patterns (AM-GM X 3, identity loops x2), while FlowRL follows a more diverse solution
path.

Content (boxed = actions; “x k” = repeated; *...”” = omitted)

Question Let B be the set of rectangular boxes with surface area 54 and volume 23. Let r
be the radius of the smallest sphere that can contain each box in B. If r? = % with

ged(p,q) = 1, findp + q.

GRPO “ denote a,b,c ... 2(ab+bec+ca) = 54, abe = 23
d=vVa2+b2+c2,r=4d/2 ... (a+b+c)? = a®>+b*+c? + 2(ab+be+tca)
AM-GM| x3: AM-GM ()| ... AM-GM (2)| ... AM-GM (3)
(a+b+c)? identity loop| x2: loop (1)| ... lloop (@) ... \@ = b = c (contradiction) ...

back to (a+b+c)? ... no factorization ...”

FlowRL “. let a,b,c  with ‘2(ab+bc+ca) = 54, abc = 23‘
‘d =vVa2+ b2+ r= d/2‘ ‘(a+b+c)2 = a?+b*+c? = s — 54‘
‘a?’ —27a+ 46 = 0‘ [rational root a = 2|
[factor (a — 2)(a® + 2a — 23)| ... lbranch a = —1 + 2v/|
‘back-sub c= 23/a2‘... ‘a2+b2+c2 = %‘... ‘7“2 = %’—47‘... |Answer 721|...”

egy. The diversity analysis provides empirical validation of our core hypothesis that flow-balanced
optimization promotes mode coverage in complex reasoning tasks.

Case Study. Table 4 illustrates the behavioral dif-

ferences between GRPO and FlowRL on a repre- 25F 7 ‘ ‘ b
sentative AIME problem. GRPO exhibits repetitive
patterns, applying AM-GM three times and getting
stuck in identity loops, failing to solve the prob-
lem. FlowRL explores more diverse actions: it sets
a = b, derives a cubic equation, finds the rational
root, and reaches the correct answer. This shows
that FlowRL successfully avoids the repetitive ex-
ploration patterns. The contrast reveals fundamen-
tal differences in exploration strategies: GRPO’s
reward-maximizing approach leads to exploitation 0.0 ‘ ‘ ;
of familiar techniques (AM-GM inequality) with- R++  GRPO  PPO

out exploring alternatives, eventually reaching con- Figure 4: GPT-judged diversity scores on
tradictory conclusions like a = b = ¢. In con- rollouts of AIME 24/25 problems. FlowRL
trast, FlowRL’s distribution-matching enables strate- ~generates more diverse solutions than R++,
gic decisions such as the symmetry assumption a = GRPO, and PPO.

b, which transforms the problem into a tractable cu-

bic equation a® — 27a + 46 = 0, allowing systematic solution through rational root testing and
polynomial factorization.
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7 RELATED WORK

Our work relates to GFlowNets, Flow-Matching Policies, Length Normalization and KL Regular-
ization. We discuss three topics that relate most closely to our work in this section, and the other
topics are included in Appendix E.

Reinforcement Learning for LLM Reasoning. RL has emerged as a powerful approach for LLM
post-training on reasoning tasks (Sutton et al., 1999b; Schulman et al., 2017; Lightman et al., 2023b;
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Shao et al., 2024; Guo et al., 2025). Most approaches employ reward-maximizing RL to optimize
expected cumulative returns. Entropy regularization (Haarnoja et al., 2018; Ahmed et al., 2019;
Cheng et al., 2025) is a classical technique for mitigating mode collapse by promoting diversity in
the policy’s output distribution, and has also been shown to enhance reasoning capabilities in var-
ious settings (Eysenbach & Levine, 2021; Chao et al., 2024). However, for long CoT reasoning,
the extended trajectory length (e.g., more than 8k tokens) makes it difficult for the regularization
signal to effectively influence reward-maximizing learning. Recent work (Cheng et al., 2025; Wang
et al., 2025; Cui et al., 2025; Dong et al., 2025) has discovered that training with more diverse or
high-entropy training data can further enhance training effectiveness. Compared to traditional en-
tropy regularization, the above methods explicitly increase the proportion of low-probability (i.e.,
high-entropy) tokens in the training data. In our work, we address the mode-collapse problem by
fundamentally shifting from reward maximization to reward distribution matching in our RL formu-
lation. See Appendix E for detailed comparisons.

GFlowNets. GFlowNets (Bengio et al., 2023a) represent a class of diversity-driven algorithms
designed to balance probability flows across states. They have rich connections to probabilistic
modeling methods (Zhang et al., 2022a;b; 2024a; Zimmermann et al., 2022; Malkin et al., 2023; Ma
et al.), and control methods (Pan et al., 2023b;c;d; Zhang et al., 2024b; Tiapkin et al., 2024). This
advantage has enabled GFlowNets to achieve successful applications in multiple downstream tasks,
such as molecular drug discovery (Jain et al., 2022; 2023b; Liu et al., 2022; Jain et al., 2023a; Shen
et al., 2023; Pan et al., 2023a; Kim et al., 2023; 2024), phylogenetic inference (Zhou et al., 2024),
and combinatorial optimization (Zhang et al., 2023a;b). For generative Al, GFlowNets provide a
powerful approach to align pretrained models in scenarios such as image generation (Zhang et al.,
2025a; Yun et al., 2025) and language model fine-tuning (Hu et al., 2024; Yu et al., 2025a; Lee
et al., 2024). Another line of work primarily focuses on the theoretical aspects of GFlowNets. Re-
cent theoretical studies have interpreted GFlowNets as solving a maximum entropy reinforcement
learning problem within a modified Markov Decision Process (MDP) (Tiapkin et al., 2024; Deleu
et al., 2024; Mohammadpour et al., 2024). These theoretical contributions have inspired us to en-
hance reinforcement learning from a more foundational standpoint using GFlowNets principles. A
comprehensive overview of GFlowNets theory can be found in Appendix C.

Flow-Matching Policies. Flow matching simplifies diffusion-based approaches by learning vector
fields that transport samples from prior to target distributions (Lipman et al., 2023). Recent work
has explored flow matching for policy optimization. McAllister et al. (2025) reformulates policy
optimization using advantage-weighted ratios from conditional flow matching loss, enabling flow-
based policy training without expensive likelihood computations. Pfrommer et al. (2025) explored
reward-weighted flow matching for improving policies beyond demonstration performance. Park
et al. (2025) uses a separate one-step policy to avoid unstable backpropagation through time when
training flow policies with RL. Zhang et al. (2025a) proposed a combined loss function integrating
PPO and GFlowNets to optimize diffusion model alignment. Lv et al. (2025) integrates flow-based
policy representation with Wasserstein regularized optimization for online reinforcement learning.
However, these approaches focus on continuous control, image generation, or vision-action models,
rather than addressing mode-collapse limitations in reward-maximizing RL. Inspired by flow match-
ing principles, our work improves upon RL training to enhance training stability while promoting
diverse solution exploration.

8 CONCLUSION

In this work, we introduce FlowRL, which transforms scalar rewards into normalized target distri-
butions using a learnable partition function and minimizes the reverse KL divergence between the
policy and target distribution. We demonstrate that this approach is theoretically equivalent to trajec-
tory balance objectives from GFlowNets and implicitly maximizes both reward and entropy, thereby
promoting diverse reasoning trajectories. To further address gradient explosion and sampling mis-
match issues in long CoT reasoning, we incorporate importance sampling and length normalization.
Through experiments on math and code reasoning benchmarks, FlowRL achieves consistent im-
provements across all tasks compared to GRPO and PPO. Our diversity analysis and case studies
confirm that FlowRL generates more varied solution approaches while avoiding repetitive patterns.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work presents FlowRL, a reinforcement learning algorithm for improving reasoning in large
language models. Our focus on mathematical and logical problem-solving directly supports ben-
eficial applications in education, scientific research, and decision-support systems. We use estab-
lished public benchmarks to ensure transparent and unbiased evaluation, and minimize computa-
tional waste through efficient configurations, demonstrating our commitment to environmentally
conscious and reproducible research.

REPRODUCIBILITY STATEMENT

We provide comprehensive details to ensure reproducibility: implementation specifics in Section 4
(model architectures, training configurations, hyperparameters), complete algorithmic formulation
in Eq. 6, experimental setup covering datasets and evaluation benchmarks, baseline implementa-
tions following official veRL recipes, and evaluation methodology. All mathematical formulations,
implementation details, and experimental configurations necessary for reproduction are included in
the paper.
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A PROOF OF PROPOSITION 1

We begin by analyzing the gradient of the Kullback—Leibler (KL) divergence between the policy
7o(y | x) and the target reward distribution SRLrY)).

Zy(x)
VoDxk1, (Tre(y | x) || %)

- vg/m(y | x) log {%)(XZ;’))(;{)} !

= [ Famaty 1010s | 2200 0 gy [ty gyt | 200y L

= /ﬂ'@(y | x) Vglog mg(y | x) log {%] dy + /71'9(}’ | x) Vglogmg(y | x)dy (8)

=V [ 7o (y[x) dy=Ve1=0
= /m(y | x) Vglog mg(y | x) log {%] dy
Zy(x)mo(y | x)

oy ) Toloamatr )]

=Eymo (%) {10% (

Next, consider the trajectory balance objective used in GFlowNets learning (Bengio et al., 2023b;
Lee et al., 2024; Bartoldson et al., 2025), defined as:

0 = (100 Z2X) mo(y | X) ’
Ly.x:8) = <1 & exp(Br(x,y)) ) ' ©

Taking the gradient of this objective with respect to € yields:

VoL(0) =2 Eymry(x) Klog W) - Vg logme(y | X)} (10)

Thus, minimizing the KL divergence is equivalent (up to a constant) to minimizing the trajectory
balance loss, confirming Proposition 1.

B THEORETICAL ANALYSIS

We conduct an interpretation of FlowRL that clarifies the role of each component in the objective.

Proposition 5. Minimizing the KL divergence in Eq. 5 is equivalent (in terms of gradients) to jointly
maximizing reward and policy entropy:

max Eyor, |B7(x,y)—log Zs(x) + log met(y|x) | + H(mo) - (11)
0 —— ——"
reward entropy

Remark 6 (FlowRL beyond reward maximization). Proposition 5 reveals that FlowRL can be inter-
preted as jointly maximizing expected reward and policy entropy. This formulation encourages the
policy to explore a broader set of high-quality solutions, enabling more diverse and generalizable
behaviors on reasoning tasks. Our interpretation also aligns with prior work that views GFlowNets
training as a form of maximum entropy RL (Mohammadpour et al., 2024; Deleu et al., 2024).

The proof of Proposition 5 is provided as below.

Recall from Eq. 3 and Eq. 5 that the FlowRL objective is sourced from the minimization of a KL
divergence:

oy ERBreey) mely [\ [ Zo(®)maly | %)
DKL(am 1 pa ) [ty | )1g[exp(ﬂr(xjy)),mef(y|X)(1d2y)
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Rearranging the terms, we obtain:

€Xp (ﬁ T(X7 y)) ) 7Tref(y | X))
Zs(x)

=argmin [ 7 x) 1o Zy(x)mo(y | %)
= arg /9(}’| )1g[exp(ﬁr(x,y))-mef(y\x)}dy

argemin Dk (7r9(y | x) |l

(8 1(x,¥)) - Tty | %) 4
ex r(x, CTre x
= arg max {Eywﬂgux) log { P Y 1y } — /Wa(y | x)logme(y | x)dy}
0 Zy(x)

., . exp (B r(x,y)) - met(y | X)

= drgénax {]Ey,vm(.|x> log { Zo(x) + H(mg)
Finally, we express the FlowRL objective in its compact form:

max By ., x) [ Br(x,y) —log Zg(x)+ logmer(y|x) + H(mp) . (14)
o —_— Y= — S~

reward normalization reference model constraint entropy

Therefore, minimizing the FlowRL objective can be interpreted as jointly maximizing reward and
entropy, while also aligning the policy with a structured prior. The reward term drives task perfor-
mance, while the normalization term Z,(x) ensures consistency with a properly normalized target
distribution. This encourages the policy 7y to cover the entire reward-weighted distribution rather
than collapsing to a few high-reward modes. The reference policy 7. provides inductive bias that
regularizes the policy toward desirable structures, and the entropy term H (7p) encourages diversity
in sampled solutions. Together, these components promote better generalization of FlowRL.

C GFLOWNETS

We follow the notation of (Madan et al., 2023; He et al., 2025) to introduce the fundamentals of
GFlowNets. Let X’ denote the compositional objects and R be a reward function that assigns non-
negative values to each object z € X'. GFlowNets aim to learn a sequential, constructive sampling
policy 7 that generates objects = with probabilities proportional to their rewards, i.e.,m(z) < R(x).
This process can be represented as a directed acyclic graph (DAG) G = (S, .A), where the vertices
s € § are referred to as states, and the directed edges (v — v) € A are called actions. The
generation of an object z € X corresponds to a complete trajectory 7 = (sg — -+ — Sp,) € T
within the DAG, beginning at the initial state sg and ending at a terminal state s,, € &X'. The state flow
F(s) is defined as a non-negative weight assigned to each state s € S. The forward policy Pr(s’ | )
specifies the transition probability to a child state s’, while the backward policy Pg(s | s’) specifies
the transition probability to a parent state s. To this end, detailed balance objective enforces local
flow consistency across every edge (s — s') € A:

V(s —s)ed Fyp(s)Pr(s']|s;0) = Fy(s')Pg(s|s';0). (15)

To achieve this flow consistency, GFlowNets employ training objectives at different levels of granu-
larity, including detailed balance (Bengio et al., 2023b), trajectory balance (Malkin et al., 2022), and
sub-trajectory balance (Madan et al., 2023). Leveraging their diversity-seeking behavior, GFlowNets
have been successfully applied across a range of domains, including molecule generation (Cretu
et al., 2024), diffusion fine-tuning (Liu et al., 2025b; Zhang et al., 2025a), and amortized reason-
ing (Hu et al., 2024; Yu et al., 2025a). Among various training objective in GFlowNets, trajectory
balance maintains flow consistency at the trajectory level, defined as:

Zo [ Pr(se | s:-1:0) = R(x) [[ Po(si-1 | 5::6). (16)
t=1 t=1
Furthermore, sub-trajectory balance achieves local balance on arbitrary subpaths 7,.; = {s; —

- — s;}, offering a more stable and less biased learning signal. We build on trajectory balance
to extend our KL-based objective through a gradient-equivalence formulation (Prop. 1), and further
improve it to better support long CoT reasoning in RL.
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Table 5: Math reasoning performance (Avg@64) at temperature = 0.6. Relative improvements are
shown as subscripts, with positive gains in green and negative changes in red. FlowRL consistently
outperforms all baselines and achieves the best average score under this low-temperature setting.

Models \ AIME 2024 AIME 2025 AMC 2023 MATH-500 Minerva Olympiad \ Avg
Qwen2.5-7B Base Model

Backbone | 4.37 2.08 30.78 54.48 22.38 24.02 23.02

R++ 10~57+G.21) 5.10A3_(D2 66.02%5:,_-2,1 54.2970_19 24.47A2_(;9 27.30+;;_23 31.29

PPO 995 +5.58 734 +5.26 6363 +32.85 5772 +3.24 2622 +3.84 2735 +3.33 3203

GRPO 14.01+$)_(;4 1073-({()') 64.10+3.">..">2 57.41*,2‘93 23.17_[)_79 27.114,;;‘[){) 32.76

FlowRL ‘ 14.32+9.9_’, 10.05_7”1)7 55.08+Q4.:§() 66.78+12';;“ 31.52_5)14 34.60+1(),3g ‘ 35.39

Table 6: Math reasoning performance (Avg@64) at temperature = 1.0. Relative improvements
are shown as subscripts, with positive gains in green. FlowRL maintains robust performance under

higher generation randomness and continues to outperform all baselines on average.

Models ‘ AIME 2024 AIME 2025 AMC 2023 MATH-500 Minerva Olympiad ‘ Avg
Qwen2.5-7B Base Model

Backbone | 3.39 1.51 23.90 45.18 16.98 18.27 18.20

R++ 10631724  4.63;3.12 66.99, 4300 54.364918  23.89,.691  26.65,533 | 31.19

PPO 10.52, 713 6.51,5.00 63.04, 3914 574611228 25.91,593 27164889 | 31.77

GRPO 12504911 10104859  64.7214082 5715411197 23.281630  26.901563 | 32.44

FIOWRL ‘ 14-22+1(]_8.", 9-58+3.()7 52.92-2{)_()2 66.20+2L()2 30.32+13_34 34-47+L(i.2(] ‘ 34.62

Table 7: Ablation study on the effect of the 5 parameter in FlowRL. We report Avg@ 16 accuracy
across six math reasoning benchmarks for different values of 3.

Models | AIME 2024 AIME 2025 AMC 2023 MATH-500 Minerva Olympiad | Avg

B=5 13.54 10.00 56.09 58.91 20.79 28.72 31.34
B8=10 14.79 10.20 59.53 64.30 25.27 32.39 34.41
B=15 15.41 10.83 54.53 66.96 31.41 34.61 35.63
B =30 15.00 10.83 50.62 69.02 30.03 35.03 35.09

D HUMAN STUDY AND CROSS-DOMAIN EVALUATION

Human Evaluation. We conduct a comprehensive human evaluation that demonstrates strong
agreement with GPT—-40-mini assessments. We use the same rollouts from the GPT-40-mini
diversity experiment (Sec 6) to further validate diversity. As shown in Table 8, both evaluators
independently identify FlowRL as the most diverse method and R++ as the least diverse, with GRPO
and PPO showing intermediate diversity levels.

Human Instruction: As a human evaluator, assess the diversity of solutions for each problem by
examining 16 solution attempts per method. Rate diversity on a 1-3 scale based on the following
criteria:

* Score 1 (low diversity): 13+ responses use essentially identical approaches with only trivial dif-
ferences in arithmetic, notation, or wording.

* Score 2 (moderate diversity): 7-12 responses use the most common approach, with 2-4 responses
showing distinct alternative strategies.

 Score 3 (high diversity): <6 responses use the same method, with 4+ distinctly different solution
strategies present.

Other Domain Evaluation. We conduct additional experiments on MMLU (Hendrycks et al.,
2020) and GPQA (Rein et al., 2024) to demonstrate FlowRL’s effectiveness extends beyond math-
ematical reasoning to other domains. We use Qwen-2.5-7B as the base model and follow the math
training setup described in Sec 4. As shown in Table 9, FlowRL achieves the highest overall
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scores on both benchmarks (72.13% on MMLU and 36.87% on GPQA). These results demonstrate
FlowRL’s strong generalization capability across different domains beyond the originally tested
mathematical reasoning tasks.

Table 8: Human-evaluated diversity scores Table 9: MMLU and GPQA benchmark per-
(Mean =+ Std). formance.
Method Score Method MMLU GPQA
R++ 1.10 + 0.20 R++ 71.82 27.02
GRPO 1.42 £ 0.42 GRPO 71.87 33.08
PPO 1.67 +0.39 PPO 72.10 33.84
FlowRL 2.45+0.35 FlowRL  72.13 36.87

E EXTENDED RELATED WORK AND COMPARISONS

Recent notable works have addressed similar challenges in large language model reinforcement
learning from different perspectives and across various domains. We provide a detailed comparison
below to highlight key distinctions and commonalities with existing methods.

Length Normalization. Dr. GRPO (Liu et al., 2025c) proposes an unbiased optimization method
that improves token efficiency by removing standard normalization terms from the advantage calcu-
lation and removing length terms from the loss objective, while focusing primarily on mathematical
reasoning improvements. SRPO (Zhang et al., 2025c) addresses length conflicts through a two-
stage training approach (math-first, then coding) and history resampling to filter zero-advantage
samples. GSPO (Zheng et al., 2025) conducts gradient analysis and applies length normalization

We‘,m(yilm)) vi1) to avoid unstable training, particu

larly crucial for MoE model training. FlowRL operates as a trajectory-level flow-balance objective
that initially faced gradient explosion issues during long CoT reasoning. To overcome this chal-
lenge, FlowRL integrates length normalization (ﬁ log 7y (y|x)) directly into the trajectory balance
formulation, ensuring training stability and enabling effective scaling to extended CoT sequences.
Unlike approaches requiring domain-specific training strategies, FlowRL’s unified formulation nat-
urally handles variable sequence lengths through principled reward shaping within the flow-balance
framework, achieving stable optimization across diverse reasoning tasks.

in the sequence-level importance ratio (s;(0) = (

KL-Related Policy Optimization Methods. Kimi-K1.5 (Team et al., 2025) employs on-
policy sampling with KL regularization and uses empirical mean of sampled rewards (¥ =
mean(r(x,y1,y*), ..., 7(z, Yk, ¥*))) to approximate the normalizing constant Z. This objective has
a closed form solution that introduces log Z, where « is a parameter controlling the degree of reg-
ularization, maintaining the traditional reward maximization framework. IPO (Azar et al., 2024)
addresses overfitting in preference-based learning by using identity mapping (¥ = I) to maintain
effective KL regularization with deterministic preferences, targeting preference-based alignment
problems. FlowRL differs by deriving its objective from reverse KL divergence minimization, shift-
ing from reward maximization to reward distribution matching via flow balance. This approach
employs a learnable partition function Z4(x) parameterized by a 3-layer MLP and incorporates
importance sampling for the entire trajectory balance objective. This approach provides both theo-
retical rigor through generative flow networks and practical effectiveness across diverse reasoning
tasks without requiring preference data or domain-specific training paradigms.

F IMPLEMENTATION OF PARTITION FUNCTION Z,

We detail the implementation of the partition function Z, covering theoretical foundations and
practical aspects.
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From the flow perspective: Z, measures the probability flow from the initial state Sy. Intuitively, it
estimates the denominator—the sum of rewards across all possible paths—enabling conversion to a

T . r(x,y)

probability distribution via Z,(x)

From the implementation perspective: Since the input of Zy4 corresponds to the initial state, we
utilize the prompt representation from the language model. Specifically, we extract the hidden states
from the final layer of the language model for all prompt tokens, and compute their mean to obtain
a fixed-dimensional representation. This averaged hidden state vector serves as the input feature for
computing the scalar partition function value Zy(x).

We conduct comprehensive ablation studies examining: (1) MLP architecture depth (1/3/5 layers);
(2) Removing Z entirely: to quantify how much Z4 contributes to the overall performance im-
provement; (3) Replacing Z4 with a constant value: to assess whether adaptivity is necessary or a
simple approximation suffices.

The results demonstrate that the learnable partition function Zy is essential for FlowRL’s perfor-
mance. As shown in Table 10, varying MLP depth has minimal impact, with 3-layer MLP per-
forming slightly better. Table 11 shows that removing Zy4 causes significant drops (-5.62 on AIME
2024, -6.25 on AIME 2025), while using a constant Z; performs even worse (-7.91 and -8.75 re-
spectively). These results confirm that Z is critical. Theoretically, it is essential for matching the
reward distribution.

Table 10: MLP Architecture Depth. Table 11: Partition Function Z.
Z4 Arch. AIME 2024 AIME 2025 Method AIME 2024 AIME 2025
1-layer MLP 12.79 8.12 FlowRL 15.41 10.83
3-layer MLP 15.41 10.83 w/o Zy 9.79 4.58
5-layer MLP 10.49 6.77 w/ constant Z 7.50 2.08

G TRAINING ANALYSIS

Training Dynamics We analyze model evolution during training by tracking AIME 2025 accuracy
and response length. As shown in Figure 5, FlowRL gradually outperforms GRPO during training.

FlowRL’s response length grows faster than GRPO, reaching approximately 2000 tokens by step
100 compared to GRPO’s ~1200 tokens. Correspondingly, FlowRL achieves higher AIME 2025
accuracy, with the performance gap widening as training progresses, particularly after step 75 where
FlowRL begins to consistently outperform GRPO.
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Figure 5: Training dynamics on Qwen2.5-7B, including AIME 2025 Acc@8 (left) and response
length (right).

Reward Distribution Analysis. We analyze reward distribution statistics during training on
Qwen-2.5-32B. FlowRL maintains higher variance than GRPO, indicating exploration of diverse
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solutions. Specifically, FlowRL achieves higher variance, aligning with flow matching theory that
encourages exploration of multiple solution paths.

Table 12: Reward Distribution Statistics.

Step GRPO Std FlowRL Std

0 0.1087 0.1087
50 0.1714 0.1341
100 0.0000 0.1165
150 0.0323 0.1664
200 0.1630 0.0730
245 0.0509 0.2341

Length Normalization Ablation. We conduct an ablation study on the length normalization term
(1/|y]). The results demonstrate that length normalization is essential for stable training.

Without it, training becomes highly unstable: at step 10, generation length explodes to 1827 tokens
with gradient norm spiking to 4.6M; at step 50, length collapses to only 9 tokens, confirming that
length normalization is critical for FlowRL'’s stability.
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Figure 6: Ablation study on length normalization term (1/|y|). Left: average response length.
Right: gradient norm (log scale). Without length normalization, training exhibits severe instability
with length explosion/collapse and gradient spikes.

H THE USE OF LARGE LANGUAGE MODELS

LLMs (specifically GPT-40-mini) are used as a judge to evaluate the diversity of solution approaches
in our diversity analysis (Figure 4), following Yu et al. (2025a). All core research ideas, theoretical
derivations, experimental design, and algorithmic innovations are developed by the authors without
LLM assistance. The mathematical formulations and proofs are entirely the work of the human
researchers. LLMs do not contribute to the fundamental conceptual development of FlowRL or the
core insights about reward distribution matching via flow balance.
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Diversity Evaluation Prompt

System: You are evaluating the DIVERSITY of solution approaches for a mathematics competi-
tion problem. Focus on detecting even SUBTLE differences in methodology that indicate different
problem-solving strategies.
PROBLEM:
{problem}
16 SOLUTION ATTEMPTS:
{formatted_responses}
EVALUATION CRITERIA - Rate diversity from 1 to 5:
Score 1 - Minimal Diversity:
* 14+ responses use essentially identical approaches
« Same mathematical setup, same variable choices, same solution path
* Only trivial differences (arithmetic, notation, wording)
* Indicates very low exploration/diversity in the generation process
Score 2 - Low Diversity:
* 11-13 responses use the same main approach
 1-2 alternative approaches appear but are rare
* Minor variations within the dominant method (different substitutions, orderings)
* Some exploration but heavily biased toward one strategy
Score 3 - Moderate Diversity:
¢ 7-10 responses use the most common approach
» 2-3 distinct alternative approaches present
* Noticeable variation in problem setup or mathematical techniques
* Balanced mix showing reasonable exploration
Score 4 - High Diversity:
* 4-6 responses use the most common approach
¢ 3-4 distinct solution strategies well-represented
* Multiple mathematical techniques and problem framings
 Strong evidence of diverse exploration strategies
Score 5 - Maximum Diversity:
* No single approach dominates (<3 responses use same method)
4+ distinctly different solution strategies
* Wide variety of mathematical techniques and creative approaches
* Excellent exploration and generation diversity
IMPORTANT: Focus on the DIVERSITY of the attempted approaches. Return ONLY a number from
1to5.
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