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Abstract

Contextual linear optimization (CLO) uses predictive contextual features to reduce
uncertainty in random cost coefficients and thereby improve average-cost perfor-
mance. An example is the stochastic shortest path problem with random edge
costs (e.g., traffic) and contextual features (e.g., lagged traffic, weather). Existing
work on CLO assumes the data has fully observed cost coefficient vectors, but in
many applications, we can only see the realized cost of a historical decision, that
is, just one projection of the random cost coefficient vector, to which we refer as
bandit feedback. We study a class of offline learning algorithms for CLO with
bandit feedback, which we term induced empirical risk minimization (IERM),
where we fit a predictive model to directly optimize the downstream performance
of the policy it induces. We show a fast-rate regret bound for IERM that allows
for misspecified model classes and flexible choices of the optimization estimate,
and we develop computationally tractable surrogate losses. A byproduct of our
theory of independent interest is fast-rate regret bound for IERM with full feedback
and misspecified policy class. We compare the performance of different modeling
choices numerically using a stochastic shortest path example and provide practical
insights from the empirical results.

1 Introduction

Contextual linear optimization (CLO) models the use of predictive features (context variables) to
improve decision making in linear optimization with random coefficients. In CLO, we consider a
decision z ∈ Z that incurs an uncertain cost Y ⊤z determined by a random cost vector Y ∈ Rd that is
not observed at decision time. We do, however, observe predictive features X ∈ Rp prior to decision,
which help reduce uncertainty. CLO can be expressed either as a contextual stochastic optimization
problem or a linear optimization problem where the cost vector is a conditional expectation:

v∗(x) = minz∈Z E
[
Y ⊤z | X = x

]
= minz∈Z f0(x)

⊤z, where f0(x) = E[Y | X = x]. (1)

We assume throughout that Z is a polytope (Z = Conv(Z∠) for some vertex set
∣∣Z∠

∣∣ < ∞ with
supz∈Z∠∥z∥ ≤ B) and Y is bounded (without loss of generality, Y ∈ Y = {y : ∥y∥ ≤ 1}).

CLO has been the focus of much recent work [e.g., 9, 11, 14, 27, 30], due to its relevance to data-
driven operational decision making in many applications such as network optimization, portfolio
optimization, product recommendation, etc. The key question in these is how to use data to learn a
good policy, π : Rp → Z , mapping feature observations to effective decisions. All of this literature
studies an offline setting, where a batch of existing data (Xi, Yi) for i = 1, . . . , n is observed. These
data are viewed as random draws from the joint distribution of (X,Y ), and the goal is to learn an
effective decision policy from them. Crucially, this assumes that we fully observe the random cost
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vector Yi’s, meaning that we fully know the corresponding costs Y ⊤
i z for any potential decision z.

This may be unrealistic in many applications.

Consider for example the instantiation of Eq. (1) as a stochastic shortest path problem of transporting
one unit from a start node to a desired end node, where Y contains the travel time on each of d edges,
z the binary decision whether to traverse each edge, and Z constrains flow conservation. The data we
would need in order to apply existing approaches here would consist of simultaneous observations
of the travel times on every single edge, encapsulated in the elements of Yi’s. However, such ideal
observations may not be available. Indeed, modern travel time prediction models are often based on
data from historical individual trips. For example, such is the case with Uber Movement data [26, 33],
which is based on the total length of historical rides. Namely, instead of observing the entire Yi, we
only observe the total travelling time Ci = Y ⊤

i Zi for the path Zi in a historical trip i. We term this
observation model bandit feedback as it corresponds to observing the cost only of a given decision
and not the counterfactual cost of any alternative decision, as in bandit problems [25].

In this paper, we study the contextual linear optimization problem with bandit feedback and make
several contributions. First, we adapt the end-to-end induced empirical risk minimization approach
to the bandit feedback setting. This approach allows us to optimize decision policies by directly
targeting the decision objective. We provide three different methods to identify the expected cost
of any given policy and show how to estimate the expected decision cost from bandit-feedback
data. Second, we derive upper bounds on the regret (i.e., decision sub-optimality) of the policy
that minimizes the estimated objective. Our regret analysis accounts for the misspecification of the
policy class and incorporates a margin condition that potentially enables a faster regret rate. This
significantly extends existing theory for full-feedback CLO, and as a byproduct, we provide a novel
fast rate bound for full-feedback CLO with misspecification. Finally, we demonstrate that existing
surrogate losses for full-feedback CLO (such as the well-known SPO+ loss in [11]) can be adapted to
our setting, enabling efficient policy optimization. We empirically test this in simulated shortest path
problems and provide practical insights.

1.1 Background: The Full Feedback Setting

We first review two major approaches to the CLO problem with full feedback: an estimate-then-
optimize (ETO) approach and an end-to-end induced empirical risk minimization (IERM) approach.
To this end, we need to define the generic plug-in policy πf for any given f : Rp → Rd:

πf (x) ∈ argminz∈Z f(x)⊤z. (2)

Note that for any given covariate value x, this corresponds to a linear programming problem with
coefficients given by f(x). An optimal policy in Eq. (1) corresponds to πf0 . Without loss of
generaility, we restrict the value of πf (x) to the set of vertices Z∠ of the polytope Z with ties broken
according to some fixed rule (e.g., a total ordering over Z∠ such as lexicographic).

The ETO approach starts with estimating f0 in Eq. (1) by any supervised learning method for
predicting Y given X . This can, e.g., be implemented by minimizing a prediction fitness criterion
(e.g., sum of squared errors) over a hypothesis class of functions F ⊆ [Rp → Rd] (e.g., linear
functions, decision trees, neural networks). After training an estimator f̂ of f0, the ETO approach
then makes decisions according to the induced policy πf̂ . This approach is a straightforward two-step

approach, but it ignores the downstream optimization task in choosing f̂ ∈ F .

In contrast, some recent literature propose to integrate the estimation and the optimization, directly
searching for a decision policy to minimize the decision cost. Following [14], we consider an IERM
formulation that minimizes the sample average cost over the class of plug-in policies induced by F :

π̂F ∈ argminπ∈ΠF
1
n

∑n
i=1 Y

⊤
i π(Xi), where ΠF = {πf : f ∈ F}. (3)

This approach is end-to-end in that it directly targets the decision-making objective. Recent literature
demonstrates that end-to-end approaches like IERM often outperform the ETO approach [12]. The
benefits of end-to-end approaches are significant especially in the misspecified setting - that is, when
the function class F fails to contain the true expected cost function f0, and the policy class ΠF
does not include the globally optimal decision policy πf0 [e.g., 11, 14]. While Eq. (3) involves a
challenging bi-level optimization due to the definition of ΠF , practical computational approximations
have been proposed [11, 16].
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Nonetheless, the IERM formulation in Eq. (3) requires observing the full feedback Yi’s in the data.
In this paper, we study how to extend this approach to the setting with bandit feedback.

1.2 Our Problem: CLO with Bandit Feedback

We now formally define the data generating process in the bandit feedback setting. Assume we
have an offline dataset consisting of n data points D = {(X1, Z1, C1), . . . , (Xn, Zn, Cn)} that are
independent draws from a distribution P on (X,Z,C) generated in the following way. We first
draw (X,Z, Y ) where the (X,Y ) distribution is as in the full feedback setting and Z is generated
according to some historical decision policies for data collection. Then we set C = Z⊤Y and omit
the full Y . Below we impose some basic assumptions on the generating process of the historical
decision Z.
Assumption 1. The data generating process satisfies the following two properties:

1. (Ignorability) E[C | Z,X] = Z⊤f0(X) (which could follow from Z ⊥⊥ Y | X).

2. (Coverage) infz∈span(Z):∥z∥=1 E[(Z⊤z)2 | X] > 0 almost surely.

The ignorability condition is a common assumption that plays a fundamental role in learning with
partial feedback and causal inference (see the literature in Section 1.3). This condition requires that
the assignments of the historical decisions Z do not depend on any unobserved factor potentially
dependent on Y . The coverage condition requires that given the covariates X , historical decisions Z
can explore all directions of the linear span of the constraint set Z; otherwise it may be impossible to
evaluate certain policies from the observed costs of historical decisions. This is an analogue of the
overlap assumption in learning with partial feedback and causal inference [17].

The learning task is to use these data D to come up with a data-driven policy π̂(x) that has low regret

Reg(π) = EX

[
f0(X)⊤π(X)−minz∈Z f0(X)⊤z

]
= V (π)− V (πf0), (4)

where V (π) = EX

[
f0(X)⊤π(X)

]
.

1.3 Background: Off-Policy Evaluation and Optimization

An important special case is when Z∠ = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} is the canonical basis and
Z is the simplex. This corresponds to choosing one of d actions (or randomizing between them). The
full-feedback problem in this case is cost-sensitive classification [10]. In the bandit feedback case,
with the restriction Z ∈ Z∠, it is known as a logged or offline contextual bandit, and a long line of
literature studies the problems of estimating and optimizing V (π) [1, 8, 18–20, 23, 24, 32, 34–36, 42–
45]. It is closely related to causal inference, viewing each component of Y as the potential outcome
for the corresponding action (or treatment), where we only see the realized outcome C corresponding
to the factual action with index 1 in Z ∈ Z∠ and see nothing about counterfactual actions Z∠\{Z}.
Two key differentiating characteristics of our problem with a general polytope constraint Z are the
opportunity to leverage the linear cost structure to extrapolate from the costs of historical decisions to
costs of other decisions, and the presence of non-trivial constraints on the output of decision policies.

Going beyond just finite discrete arms, [21, 22, 29] consider the logged contextual bandit with a
continuum of arms, which is not generally representable in terms of the problem in Section 1.2.
These works make no restrictions on the relationship between the expected potential outcome and
the corresponding action except generic smoothness, and leverage nonparametric approaches such
as kernel weighting. Closest to our work is [6], which imposes a semiparametric assumption on
this relationship. This includes our problem (Section 1.2) as a special case under the restriction that,
conditional on X , expected outcomes are linear in actions (note that our E[C | Z,X] is linear in Z
according to ignorability in Section 1.2). Relative to this work, our unique contributions are the use
of induced policy classes to naturally deal with the constraints in Z , the adaptation of computational
approximation such as SPO+, and obtaining the fast rates for the regret under misspecification.

2 Induced Empirical Risk Minimization with Bandit Feedback

Our IERM approach in the bandit setting follows the same idea of Eq. (3), directly minimizing an
estimate of expected costs. However, since we do not observe Yi in our data, it is not as straightforward
as a sample average,

∑n
i=1 Y

⊤
i π(Xi)/n. Instead, we need alternative ways to identify V (π).
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Define Σ0(X) = E
[
ZZ⊤ | X

]
and recall f0(X) = E[Y | X] , which we will use to characterize the

policy value V (π). We refer to these functions as nuisance functions following the existing literature
on off-policy evaluation and learning in contextual bandits or reinforcement learning [39], because
they are not directly used for decision-making but serve merely as intermediaries for evaluating the
policy value. Let θ(x, z, c; f,Σ) be a score function such that

EP

[
θ(X,Z,C; f0,Σ0)

⊤π(X)
]
= V (π), ∀ fixed policy π, (5)

where EP denotes taking expectation over P . Proposition 1 summarizes a few possible choices.
Proposition 1. The following choices of θ(x, z, c; f,Σ) all satisfy Eq. (5):

1. (Direct Method) θDM(x, z, c; f,Σ) = f(x);

2. (Inverse Spectral Weighting) θISW(x, z, c; f,Σ) = Σ†(x)zc;

3. (Doubly Robust) θDR(x, z, c; f,Σ) = f(x) + Σ†(x)z(c− z⊤f(x)).

Here Σ† denotes the Moore–Penrose pseudo-inverse of matrix Σ.

The doubly robust identification in Proposition 1 is a generalization of the identification in [6] in that
we allow for rank-deficient Σ0 by using a pseudo-inverse. Otherwise, our work significantly differs
from [6] in terms of policy class specification, computation and theoretical analyses (see Section 1.3).
Note that identification in Proposition 1 exploits the linearity of the decision cost, which significantly
improve upon algorithms that ignore the linear structure and naively extend existing offline bandit
learning using discrete actions Z∠; see Section 5 and Appendix C.2 for numerical evidence.

It remains to estimate Eq. (5), since we know neither P nor the nuisance functions f0,Σ0. Following
the approach of [1, 45] for logged contextual bandits, we adapt the cross-fitting procedure advocated
in [5]. For simplicity, we focus on the twofold version and assume n is even. The extension to K-fold
version is straightforward.

First, we split D into two equal-sized subsamples, D1 and D2, each with n/2 data points. We can use
D1 as an auxiliary sample to estimate the nuisance functions f0 and Σ0, denoting the estimates as f̂1
and Σ̂1. We then use D2 as a main sample to obtain an estimate of V (π) using f̂1 and Σ̂1:

2
n

∑
i∈D2

θ(Xi, Zi, Ci; f̂1, Σ̂1)
⊤π(Xi).

Of course, we can switch the roles of D1 and D2, i.e., we use D2 to get nuisance estimates f̂2 and
Σ̂2, then use D1 to estimate V (π). Finally, given an induced policy class ΠF , the IERM policy π̂
minimizes the average of the above two V (π) estimates over ΠF :

π̂ ∈ argminπ∈ΠF
1
n

∑2
j=1

∑
i∈Dj

θ(Xi, Zi, Ci; f̂3−j , Σ̂3−j)
⊤π(Xi). (6)

Remark 1 (Estimation of f0). The estimator f̂(x) can be obtained by minimizing the least square
loss over some appropriate function class FN:

f̂ ∈ argminf∈FN
∑

i∈D
(
Ci − Z⊤

i f(Xi)
)2
. (7)

Note that two places in Eq. (6) require the specification of a function class for modeling f0: the F
class used to induce the policy class ΠF , and the FN class used to construct nuisance estimators
to evaluate the expected cost of induced policies. In practice, we do not need to use the same class
for F and FN. In fact, it might be desirable to use a more flexible function class for FN to make
sure it is well-specified for accurate policy evaluation, and a simpler class for F to make the policy
optimization more tractable. We numerically test out different choices of F and FN in Section 5.
Remark 2 (Estimation of Σ0). There are multiple ways to estimate Σ0. For example, [6] suggest
estimating Σ0 by running a multi-task regression for all (j, k) entries to the matrix over some
appropriate hypothesis spaces Sjk: Σ̂ = argminΣ11∈S11,...,Σdd∈Sdd

∑
i∈D ∥ZiZ

⊤
i − Σ(Xi)∥2Fro.

To ensure a positive semi-definite estimator, we may posit each hypothesis Σ to be the outer product
of some matrix-valued hypothesis of appropriate dimension. Alternatively, we may only need to
consider finitely many feasible decisions z1, . . . , zm, such as the feasible paths for stochastic shortest
path problems (see experiments in Section 5) or more generally the vertices in Z∠. Then we can first
estimate the propensity scores e0(z | X) for z = z1, . . . , zm using an suitable estimator ê(z | X)

and then estimate Σ0(X) =
∑m

j=1 zjz
⊤
j e0(zj | X) by Σ̂(X) =

∑m
j=1 zjz

⊤
j ê(zj | X).
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3 Theoretical Analysis

In this section, we provide a theoretical regret analysis for the IERM approach with bandit feedback,
allowing for model misspecification in the induced policy class ΠF . That is, we allow the globally
optimal policy πf0 to be not included in the class ΠF . We derive an upper bound on the regret of the
IERM approach, in terms of the complexity of the policy class ΠF , its misspecification bias, and the
estimation errors of nuisance functions.

Before stating the main theorem, we define a few important notations. Let π̃∗ be the best-in-class
policy that minimizes expected regret over ΠF :

π̃∗ ∈ argminπ∈ΠF E
[
f0(X)⊤π(X)

]
.

We note that π̃∗ can be different from the global optimal policy πf0 if πf0 ̸∈ ΠF , and Reg(π̃∗)
characterizes the extent of misspecification in the induced policy class ΠF . For j = 1, 2, we define
the function class

Gj =

{
(x, z, c) → θ(x, z, c; f̂j , Σ̂j)

⊤(π(x)− π̃∗(x))ρ

2BΘ
: π ∈ ΠF , ρ ∈ [0, 1]

}
. (8)

For any function class G : X × Z × C → R, we define the local Rademacher complexity as

Rn(G, r) = E
[
supg∈G,∥g∥2≤r

∣∣ 1
n

∑n
i=1 ϵig(Xi, Zi, Ci)

∣∣],
where ϵi are i.i.d. Rademacher variables, and ∥g∥2 =

√
EP [g2(X,Z,C)].

Throughout Section 3, we impose two assumptions. Assumption 2 concerns the algorithms we use to
estimate the nuisance functions f0,Σ0. It requires that the nuisance estimates are close enough to
their true values, and ∥θ(x, z, c; f̂ , Σ̂)∥ is bounded.

Assumption 2 (Nuisance Estimation). The nuisance estimators f̂ , Σ̂ trained on a sample of size n

satisfy that ∥θ(x, z, c; f̂ , Σ̂)∥ ≤ Θ for all x, z, c, and for any δ ∈ (0, 1) and π ∈ ΠF , with probability
at least 1− δ,

EP

[(
θ(X,Z,C; f0,Σ0)− θ(X,Z,C; f̂ , Σ̂)

)⊤
(π(X)− π̃∗(X))

]
≤ RateN(n, δ).

In Section 3.1, we will relate RateN(n, δ) to the errors in estimating the individual nuisance functions
f0 and Σ0 for different choices of score function θ.

Assumption 3, which we term the margin condition, controls the density of the sub-optimality gap
near zero in the CLO problem instance and allows us to get faster regret rates. This type of condition
was originally considered in the binary classification literature [2, 38]. It is recently extended to
contextual linear optimization by [14], which we describe below.
Assumption 3 (Margin Condition). Let Z∗(x) = argminz∈Z f0(x)

⊤z, and ∆(x) =
infz∈Z∠\Z∗(x) f0(x)

⊤z − infz∈Z f0(x)
⊤z if Z∗(x) ̸= Z and ∆(x) = 0 otherwise. Assume for

some α, γ ≥ 0,
PX(0 < ∆(X) ≤ δ) ≤ (γδ/B)α ∀δ > 0.

Lemmas 4 and 5 in [15] show that Assumption 3 generally holds with α = 1 for sufficiently well-
behaved f0 and continuous X and with α = ∞ for discrete X . Moreover, any CLO instance
trivially satisfies α = 0. Overall, a larger α means that the sub-optimality gap between the best and
second-best decisions tends to be large in more contexts, so it is easier to distinguish the optimal
decisions from others. We will show that a larger α parameter could lead to faster regret rates.

3.1 Main Theorem

We now provide an upper bound on the regret of the IERM policy π̂ in Eq. (6).
Theorem 1. Suppose Assumptions 2 and 3 hold, and Z∗(X) defined in Assumption 3 is a singleton
almost surely. Suppose there exists a positive number r̃ (that depends on n) that upper bounds the
critical radii of the function classes G1,G2 almost surely (i.e., Rn/2(G1, r̃) ≤ r̃2 and Rn/2(G2, r̃) ≤
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r̃2) and satisfies the inequalities 3nr̃2/128 ≥ log log2(1/r̃), and 2 exp
(
−3nr̃2/128

)
≤ δ/4. Then,

there exists a positive constant C̃(α, γ) such that with probability at least 1− δ, we have

Reg(π̂) ≤B

(
12Θ

√
C̃(α, γ)r̃

) 2α+2
α+2

+ 24BΘ

(√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃ + r̃2

)
+ 2RateN(n/2, δ/4) + 2Reg(π̃∗).

The upper bound in Theorem 1 involves several different types of error terms. The first type is the
critical radii r̃ that characterize the complexity of the function classes G1,G2. This is a common
complexity measure for function classes in statistics and machine learning [41]. For example, as we
will discuss below, the critical radii scale as Õ(

√
η/n) if G1,G2 are VC subgraph classes of dimension

η. The second type is the term RateN(n/2, δ/4) resulted from the errors in estimating the nuisance
functions f0,Σ0. Similar nuisance estimation errors also appear in the previous literature on offline
contextual bandit learning [1, 5, 45] or more general learning problems that involve nuisance functions
[13]. Below we will further discuss this term for different choices of score functions θ. The third type
is the misspecification error term Reg(π̃∗). It is natural to expect a bigger decision regret when the
misspecification error Reg(π̃∗) is higher. In particular, when the policy class ΠF is well-specified, i.e.,
πf0 ∈ ΠF , we would have Reg(π̃∗) = 0, and the regret upper bound would scale with the function
class complexity through a fast rate O(r̃

2α+2
α+2 ). For VC subgraph classes with r̃ = Õ(

√
η/n), the

rate can range from Õ(
√
η/n) for α = 0 to Õ(η/n) for α = ∞. However, if the policy class is

misspecified so that Reg(π̃∗) > 0, then the dominating term related to r̃ would be a slow rate O(r̃).
This reveals an interesting phase transition between the correctly specified and misspecified settings,
which is not discovered in the previous theory that considers only well-specification [14].
Remark 3. The constant coefficients in the regret upper bound can be improved when 2(1 + α)/α is
an integer (which accommodates the case of α = 1 justified in [15]):

Reg(π̂) ≤B

(
12Θ

√
C̃(α, γ)r̃

) 2α+2
α+2

+
24(α+ 1)

α+ 2
BΘ

(√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃ + r̃2

)

+
2α+ 2

α+ 2
RateN(n/2, δ/4) + Reg(π̃∗).

Notably, the constant in front of the misspecification error Reg(π̃∗) becomes 1 instead of 2, which
we believe is tight. This upper bound follows from nearly the same proof as Theorem 1 except
that it handles an inequality slightly differently. Specifically, the proof of Theorem 1 involves a
transcendental inequality of the form Reg(π̂) ≤ c1Reg(π̂)

α
2(1+α) r̃ + c2 for certain positive terms

c1, c2. This inequality is difficult to solve exactly, so we can only get an upper bound on its solution.
It turns out that we can get a better upper bound when 2(1 + α)/α is an integer.

The nuisance estimation rate. We now show that RateN(n, δ) can be effectively controlled for the
DM, ISW and DR score functions. In pariticular, RateN(n, δ) is can be bounded by the estimation
errors of the nuisance functions f0 and Σ0.
Proposition 2. For any given δ ∈ (0, 1), let χn,δ be a positive sequence converging to 0 as n → ∞,
such that the mean square errors of the nuisance estimates satisfy the following with probability at
least 1− δ:

max
{
EX [∥Projspan(Z)(f̂(X)− f0(X))∥2],EX [∥Σ̂†(X)− Σ†

0(X)∥2Fro]
}
≤ χ2

n,δ,

where Projspan(Z)(f̂(X)− f0(X)) is the projection of f̂(X)− f0(X) onto span(Z). Then,

1. If we take θ = θDM, we have RateN
DM(n, δ) = O(χn,δ);

2. If we take θ = θISW, we have RateN
ISW(n, δ) = O(χn,δ);

3. If we take θ = θDR, we have RateN
DR(n, δ) = O(χ2

n,δ).

Compared to the DM and ISW scores, the impact of the estimation errors of the nuisances in the DR
score is of only second order, i.e., O(χ2

n,δ) instead of O(χn,δ). This echos the benefit of DR methods
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in causal inference and offline contextual bandit learning [1, 5, 6]. Notably, here we only need to
bound the projected error on the nuisance estimator f̂ , which handles the setting when span(Z) does
not cover the whole Rd space, as is the case with the shortest path problem in Section 5.

Computing the critical radius. The critical radius, r̃ characterizes the complexity of the function
classes G1 and G2 defined in Eq. (8). The next proposition shows that r̃ is of order Õ(1/

√
n) if the

function classes have finite VC-subgraph dimensions. For simplicity, we focus on G1 only.
Proposition 3. Suppose G1 has VC-subgraph dimension η almost surely. Then for any δ ∈ (0, 1),
there exists a universal positive constant C̃ such that

r̃ = C̃
√

η log(n+1)+log(8/δ)
n (9)

satisfies the inequalities Rn(G1, r̃) ≤ r̃2, 3nr̃2/64 ≥ log log2(1/r̃), and 2 exp
(
−3nr̃2/64

)
≤ δ/4.

3.2 Byproduct: Fast Rates in the Full Feedback Setting with Misspecification

Although our main theorem is stated for the bandit feedback setting, our regret analysis techniques
can be easily adapted to the full feedback setting. The following theorem states a similar regret upper
bound. To our best knowledge, this is the first result for CLO that shows a margin-dependent fast rate
with potential policy misspecification in the full feedback setting.
Theorem 2. Suppose Z∗(X) defined in Assumption 3 is a singleton almost surely. Define

GF =
{
(x, y) → y⊤(π(x)−π̃∗(x))ρ

2B : π ∈ ΠF , ρ ∈ [0, 1]
}

and r̃F be any solution to the inequality Rn(GF, r) ≤ r2 satisfying 3n(r̃F)2/64 ≥ log log2(1/r̃
F)

and 2 exp
(
−3n(r̃F)2/64

)
≤ δ. If Assumption 3 further holds, then, with probability at least 1− δ,

Reg(π̂F) ≤ B

(
12
√
C̃(α, γ)r̃F

) 2α+2
α+2

+ 24B

(√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃F + (r̃F)2
)
+ 2Reg(π̃∗).

The regret bound is similar to that in Theorem 1 for the bandit setting, except that it does not have
the nuisance error term 2RateN(n/2, δ/4). This is because, in the full feedback setting, we observe
the entire Y vector, so we do not need to estimate any nuisance functions and can consider the
nuisance estimation error term RateN(n/2, δ/4) as zero. When ΠF is a well-specified VC-subgraph
class with dimension η, we have Reg(π̃∗) = 0, and r̃F = Õ(

√
η/n), so the bound in Theorem 2

reduces to O((η/n)(α+1)/(α+2) + η/n). This bound interpolates between O(n−1/2) and O(n−1)
according to the margin parameter α, recovering the fast rate in the full-feedback setting without
misspecification as given in [14]. In contrast, our bound in Theorem 2 additionally quantifies the
impact of policy misspecification, and its generalization Theorem 1 further incorporates the impact
of nuisance estimation errors in the bandit-feedback setting.

4 Computationally Tractable Surrogate Loss

The IERM objective is generally nonconvex in f ∈ F , making it computationally intractable to
optimize. In the full feedback setting, tractable surrogate losses have been proposed [11, 16]. In this
section, we briefly explain the SPO+ loss in [11] and how it can be used in the bandit setting.

The full feedback IERM problem in Eq. (3) can be viewed as minimizing the following loss over F :

minf∈F
1
n

∑n
i=1 lIERM(f(Xi), Yi), where lIERM(f(x), y) = y⊤πf (x)−minz∈Z y⊤z.

This IERM loss is equivalent to the “smart predict-then-optimize” (SPO) loss in Definition 1 of [11].
Letting z∗(y) ∈ argminz∈Z y⊤z with the same tie-breaking rule as in πf , [11] propose the SPO+
surrogate loss:

minf∈F
1
n

∑n
i=1 lSPO+(f(Xi), Yi), where lSPO+(f(x), y) = maxz∈Z (y − 2f(x))

⊤
z − (y − 2f(x))

⊤
z∗(y).

The SPO+ loss has many desirable properties: given any fixed y, it is an upper bound for the IERM
loss, it is convex in f(x), and its subgradient at f(x) has a closed form 2(z∗(y)− z∗(2f(x)− y)).
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Figure 1: Stochastic Shortest path prob-
lem on a 5 × 5 grid with uncertain
edge cost Yj and decision zj for j =
1, . . . , 40.

Methods Training Data n
400 1000 1600

ETO 3.34% 0.74% 0.35%
SPO+ DM 2.30% 0.36% 0.16%

SPO+ DR PI 2.47% 0.59% 0.32%
SPO+ DR Lambda 2.23% 0.40% 0.18%

SPO+ DR Clip 2.29% 0.44% 0.20%

Naive ETO 15.03% 12.12% 3.53%
Naive SPO+ DM 15.05% 12.85% 5.08%
Naive SPO+ DR 14.99% 13.00% 5.56%

Table 1: Average relative regret ratio of different meth-
ods over 50 replications when both the policy-inducing
model and the nuisance model are correctly specified.
The logging policy is a random policy.

In the bandit setting, although Yi is not observed, the score θ(Xi, Zi, Ci; f̂ , Σ̂) plays the same role
(see Eqs. (3) and (6)). So it is natural to adapt the SPO+ loss to the bandit setting by replacing the
unobserved cost vector Yi by the corresponding score θ(Xi, Zi, Ci; f̂ , Σ̂):

f̂SPO+ ∈ argminf∈F
1
n

∑
j=1,2

∑
i∈Dj

lSPO+

(
f(Xi), θ(Xi, Zi, Ci; f̂3−j , Σ̂3−j)

)
.

Then we use the plug-in policy πf̂SPO+
as the decision policy. This is implemented in the experiments

in Section 5. We can similarly adapt any surrogate loss for the full-feedback IERM problem to the
bandit feedback setting, simply replacing the cost vector Yi’s by the corresponding scores.

5 Numerical Experiments

We now test the performance of our proposed methods in a simulated stochastic shortest path problem
following [11, 14]. Specifically, we aim to go from the start node s to the end node t on a 5× 5 grid
consisting of d = 40 edges, where the costs of traveling on the edges are given by the random vector
Y ∈ R40 (see Fig. 1). We consider covariates X ∈ R3 and a function f0(x) = E[Y | X = x] whose
components are cubic polynomials. The corresponding shortest path problem can be easily formulated
into a CLO problem with the constraint set Z given by standard flow preservation constraints. The
resulting optimal solution z belongs to {0, 1}40, indicating whether passing each edge or not. We
note that there are m = 70 feasible paths z1, . . . , zm ∈ Z from the source node to the target node,
and the feasible paths are linearly dependent with a rank of 18.

We consider a bandit feedback setting, observing only the total traveling costs C of the historical
decisions Z generated by a certain logging policy but not the edge-wise costs Y . We consider different
types of logging policies that generate the decisions in the observed data. In this section, we report
results using a random logging policy that picks a path from all feasible ones at random regardless
of the covariate value. In Appendix C, we further study the performance of two different covariate-
dependent logging policies: one that picks paths according to the sign of the first covariate X1, and
one that depends on the signs of both X1 and X2. The empirical insights from the covariate-dependent
logging policies are qualitatively the same as those for the random logging policy.

We numerically evaluate the performance of the ETO approach and the IERM approach2. For both
approaches, we use the same class F to construct the decision policies. We consider three different
classes for F : a correctly specified polynomial class, a misspecified class that omits two high-order
terms (termed degree-2 misspecification), and a misspecified class that omits four high-order terms
(termed degree-4 misspecification). For the IERM approach, we consider DM and DR here but defer
the results of ISW to Appendix C.2 Table 3 for its significantly worse performance. In both DM
and DR, the nuisance f0 is estimated by a bandit-feedback regression given in Eq. (7) with a ridge
penalty, and we test out the three aforementioned function classes for the nuisance class FN as well.
In DR, the nuisance Σ0(x) is estimated by the propensity score approach described in Remark 2,

2The code scripts for all experiments can be found at https://github.com/CausalML/CLOBandit.
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with the propensity scores estimated by either sample frequencies (for the random logging policy) or
suitable decision tree models (for covariate-dependent logging policies). We further consider three
variants when plugging Σ̂ into the doubly robust score: pseudo-inverse (DR PI) as in the original θDR
definition; lambda regularization (DR Lambda), where we replace Σ† with (Σ + λI)−1 for a positive
constant λ; and clipping (DR Clip), where eigenvalues of Σ below a certain threshold are clipped
to the threshold before taking the pseudo-inverse. For all IERM variants, we optimize the SPO+
losses as discussed in Section 4. Further details on the experimentation setup and implementation
are summarized in Appendix C. Finally, we consider some naive extensions of the offline contextual
bandit learning with finite discrete actions (Naive ETO and Naive SPO+), where we view the feasible
paths as separate discrete actions, without considering the linear structure of the decision-making
problem. See Appendix A for details and Section 1.3 for background on offline bandits.

We test the performance of different methods on an independent testing sample of size 2000, and
evaluate the ratio of their regrets relative to the expected cost of the global optimal policy πf0 . Table 1
shows the average relative regret ratios of different methods across 50 replications of the experiment
for a random logging policy. Due to space limitations, we include results for the training data size
n = 400, 1000, 1600, and defer results for other sizes to Appendix C.2. The relative regret of all
methods properly decrease with the training data size n. In particular, the SPO+ approximation for
the end-to-end IERM approach perform better than the ETO method. Among the SPO+ methods,
the DM score achieves the best performance, while the DR score based pesudo-inverse performs
the worst. Through a close inspection, we found that the bias adjustment term that involves the
pseudo-inverse in the DR score causes a significant variance inflation. In fact, the ISW score also
performs badly due to the high variance (see Appendix C.2). The Lambda regularization and Clip
techniques can effectively reduce the variance and result in improved decision-making. Moreover, the
naive benchmarks that ignore the linear structure of the decision costs have much worse performance.
This shows the importance of leveraging the linear problem structure.

Methods Training Data n Training Data n
400 1000 1600 400 1000 1600

ETO F misspecified degree 2 F misspecified degree 4

11.04% 9.14% 8.34% 12.35% 11.42% 10.39%

Well-specified
Nuisance Model

FN

F misspecified degree 2 F misspecified degree 4

SPO+ DM 2.81% 0.80% 0.54% 4.06% 2.21% 2.06%
SPO+ DR PI 3.27% 1.36% 1.05% 4.83% 2.95% 2.71%

SPO+ DR Lambda 2.83% 0.97% 0.73% 4.33% 2.45% 2.25%
SPO+ DR Clip 3.05% 1.09% 0.84% 4.59% 2.62% 2.38%

Well-specified
Policy-inducing

Model F

FN misspecified degree 2 FN misspecified degree 4

SPO+ DM 10.01% 8.37% 7.47% 12.51% 11.22% 9.68%
SPO+ DR PI 9.11% 7.02% 6.44% 11.69% 10.19% 9.02%

SPO+ DR Lambda 9.05% 7.52% 6.68% 12.31% 10.38% 8.96%
SPO+ DR Clip 9.02% 7.28% 6.36% 11.87% 10.04% 8.70%

Both F ,FN

Misspecified

F ,FN misspecified degree 2 F ,FN misspecified degree 4

SPO+ DM 9.90% 8.34% 7.41% 12.45% 11.16% 9.69%
SPO+ DR PI 9.15% 7.23% 6.52% 11.92% 10.46% 9.42%

SPO+ DR Lambda 9.03% 7.46% 6.74% 12.01% 10.72% 9.25%
SPO+ DR Clip 8.97% 7.22% 6.46% 11.75% 10.31% 8.95%

Table 2: Mean relative regret ratio of different methods when the nuisance model FN and the policy-
inducing model F are misspecified to differrent degrees. The logging policy is a random policy.

In Table 2, we show the performance of different methods when either the policy-inducing model
F or the nuisance model FN or both are misspecified. We observe that when the policy-inducing
model is misspecified, the end-to-end SPO+ methods perform much better than the ETO method,
provided that the nuisance model for SPO+ is correctly specified. This is consistent with the findings
in the previous full-feedback CLO literature [e.g., 11, 12, 14], showing the benefit of integrating
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estimation and optimization for misspecified policy models. However, the advantage of the end-
to-end approaches is weakened dramatically once the nuisance model is misspecified. In this case,
the evaluation of decision policies is biased, so the end-to-end approaches also target a “wrong”
objective that may not accurately capture the decision quality. Moreover, we observe that when the
nuisance model is misspecified, the DR score can somewhat outperform the DM score, because it can
debias the misspecified nuisance to some extent. These results demonstrate new challenges with the
bandit-feedback CLO: the end-to-end approaches are sensitive to the misspecification of nuisance
models, and the DM and DR scores face different bias-and-variance tradeoffs under nuisance model
misspecification. Therefore, in practice we may prefer more flexible models for accurate nuisance
modeling, while using simpler policy-inducing models for tractable end-to-end optimization.

6 Conclusions

This paper studies the bandit-feedback setting for contextual linear optimization for the first time. We
adapt the induced empirical risk minimization approach to this setting, provide a novel theoretical
analysis for the regret of the resulting policies, leverage surrogate losses for efficient optimization,
and empirically demonstrate the performance of the proposed methods across different model
specifications. Our paper has a few limitations that we aim to address in the future. First, we primarily
consider parametric induced policy classes, and it would be interesting to accommodate more general
nonparametric classes. Second, we focus mainly on the SPO+ surrogate loss, and investigating other
surrogate losses in the bandit feedback setting would also be of great interest.
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A Naive Extensions of Offline Contextual Bandit Learning

In this section, we show some alternative approaches to solve the stochastic shortest path problem in
Section 5. These approaches can be viewed as naive extensions of offline contextual bandit learning
with discrete actions.

Specifically, consider the feasible paths z1, . . . , zm for m = 70. We can view them as separate
discrete actions, and a feasible decision policy π is a mapping from the covariates X to one of the
m = 70 feasible paths. We now adopt one-hot-encoding for the decisions. Consider a simplex
Zsimplex in Rm and zero-one vector z̃ ∈ {0, 1}m that takes the value 1 on one and only one of its
coordinate. Each feasible decision in z1, . . . , zm corresponds to one vector z̃, e.g., the decision zj
corresponds to the z̃ vector whose j-th entry is 1 and other entries are all 0.

Our decision-making problem restricted to the feasible decisions z1, . . . , zm can be written as follows:

min
z̃∈Zsimplex

m∑
j=1

z̃jE[C | Z = zj , X = x] ⇐⇒ min
z̃∈Zsimplex

z̃⊤f̃0(x),

where f̃0(x) = (E[C | Z = z1, X = x], . . . ,E[C | Z = zm, X = x])⊤. For any given x, the result-
ing decision will be an one-hot vector that corresponds to an optimal decision at x (which can be
equivalently given by πf0(x) for an plug-in policy in Eq. (2) at the true f0(x) = E[Y | X = x]).
In this formulation, we view the decisions z1, . . . , zm as separate discrete actions, and we do not
necessarily take into account the linear structure of the decision cost.

We can easily adapt the bandit-feedback ETO to this new formulation. Specifically, we can first

construct an estimator ˆ̃
f for the f̃0 function. For offline bandit learning with discrte actions, this

would usually be implemented by regressing the observed total cost C with respect to the covariates

X , within each subsample for each of the feasible decisions respectively. Given the estimator ˆ̃
f , we

can then solve the optimization problem minz̃∈Zsimplex z̃⊤
ˆ̃
f0(x). We finally inspect which coordinate

of the resulting solution is equal to 1 and choose it as the decision.

To adapt the IERM approach, we similarly define the plug-in policy for any given hypothesis
f̃(x) : Rp → Rm for the function f̃0(x) = (E[C | Z = z1, X = x], . . . ,E[C | Z = zm, X = x])⊤:

π̃f̃ (x) ∈ arg min
z̃∈Zsimplex

f̃(x)⊤z̃,

where ties are again broken by some fixed rules. Given a function class F̃ , we can then consider the
induced policy class Π̃F̃ = {π̃f̃ : f̃ ∈ F̃}. For any policy π̃ ∈ Π̃F̃ , its output is an one-hot vector,
whose entry with value 1 corresponds to the chosen decision among z1, . . . , zm. For any observed
decision Z ∈ {z1, . . . , zm}, we denote its one-hot transformation Z̃ as the zero-one vector whose
value-one entry corresponds to the value of Z. For a given observed total cost C, we denote C̃ as the
vector all of whose entries are equal to C. In the lemma below, we show that the value of each policy
π̃ can be also identified by some score funtions.
Lemma 1. For any given policy π̃ that maps any covariate value x to an m-dimensional one-hot
vector, its policy value can be written as follows:

V (π̃) = E
[
θ̃(X, Z̃, C̃; f̃0, ẽ0)

⊤π̃(X)
]
,

where f̃0(x) = (E[C | Z = z1, X = x], . . . ,E[C | Z = zm, X = x])⊤

ẽ0(x) = (e0(z1 | x, . . . , e0(zm | x)))⊤, e0(z | x) = P(Z = zj | X = x),

and the score function θ̃ can take three different forms:

1. (Direct Method) θ̃DM(x, z̃, c̃; f̃ , ẽ) = f̃(x);

2. (Inverse Propensity Weighting) θ̃IPW(x, z̃, c̃; f̃ , ẽ) =
z̃

ẽ(x) c̃;

3. (Doubly Robust) θDR(x, z̃, c̃; f̃ , ẽ) = f̃(x) + z̃
ẽ(x) (c̃− f̃(x)).

In the three score functions above, all vector operations are entry-wise operations.
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From Lemma 1, the new formulations above have very similar structure as our previous formulation in
Section 2 Proposition 1. The major differences are that we restrict to the discrete actions z1, . . . , zm,
redefine certain variables accordingly, and consider a simplex set as the constraint. We note that the
identification in Lemma 1 mimics the DM, IPW and DR identification in offline contextual bandit
learning [e.g., 1, 7, 43]. Since the identification formulae are analogous to those in Section 2, we can
easily apply the same policy learning methods in Section 2 and the SPO+ relaxation in Section 4.

B Omitted Proofs

B.1 Supporting Lemmas

Lemma 2 (Talagrand’s inequality, [4, 31, 37]). Let Ui, i = 1, . . . , n be independent U -valued random
variables. Let H be a countable family of measurable real-valued functions on U such that ∥h∥∞ ≤ v
and E[h(U1)] = · · · = E[h(Un)] = 0, for all h ∈ H. Define

vn = 2vE

[
sup
h∈H

∣∣∣∣∣
n∑

i=1

h(Ui)

∣∣∣∣∣
]
+

n∑
i=1

sup
h∈H

E
[
h2(Ui)

]
.

Then, for all t ≥ 0,

P

(
sup
h∈H

∣∣∣∣∣
n∑

i=1

h(Ui)

∣∣∣∣∣ ≥ E

[
sup
h∈H

∣∣∣∣∣
n∑

i=1

h(Ui)

∣∣∣∣∣
]
+ t

)
≤ exp

(
−t2

2vn + 2tv/3

)
.

Lemma 3. Fix functions f,Σ independent of {(Xi, Zi, Ci)}ni=1 such that ∥θ(x, z, c; f,Σ)∥ ≤ Θ for
all x, z, c. Define the function class

G =

{
(x, z, c) → θ(x, z, c; f,Σ)⊤(π(x)− π̃∗(x))ρ

2BΘ
: π ∈ ΠF , ρ ∈ [0, 1]

}
.

Let r̃ be any solution to the inequality Rn(G, r) ≤ r2 satisfying 3nr̃2/64 ≥ log log2(1/r̃). Then we
have

P
(
sup
g∈G

|(En − EP )g|
∥g∥2 + r̃

≥ 6r̃

)
≤ 2 exp

(
− 3

64
nr̃2
)
,

where

En(g) =
1

n

n∑
i=1

g(Xi, Zi, Ci).

Proof of Lemma 3. When supg∈G |(En − EP )g|/(∥g∥2 + r̃) > 6r̃, one of the following two events
must hold true:

E1 =
{
|(En − EP )g| ≥ 6r̃2 for some g ∈ G such that ∥g∥2 ≤ r̃

}
,

E2 = {|(En − EP )g| ≥ 6∥g∥2r̃ for some g ∈ G such that ∥g∥2 ≥ r̃}.

Define

Zn(r) = sup
g∈G,∥g∥2≤r

|(En − EP )g|.

Note that ∥g∥2 ≤ r implies E[(g − EP (g))
2] ≤ r2, and we also have ∥g − EP (g)∥∞ ≤ 2. By

Talagrand’s inequality (Lemma 2) over the function class {g − EP (g) : g ∈ G},

P(Zn(r) ≥ E[Zn(r)] + t) ≤ exp

(
− nt2

8E[Zn(r)] + 2r2 + 4t/3

)
.

We now bound the expectation E[Zn(r)]. Since G is star-shaped3, by [41, Lemma 13.6], r →
Rn(G, r)/r is non-increasing. Thus, for any r ≥ r̃,

E[Zn(r)] ≤ 2Rn(G, r) ≤
2r

r̃
Rn(G, r̃) ≤ 2rr̃,

3A function class G is star-shaped if for any g ∈ G and ρ ∈ [0, 1], we have ρg ∈ G.
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where the first inequality comes from a symmetrization argument, the second inequality uses the fact
that r → Rn(G, r)/r is non-increasing, and the third inequality is by definition of r̃.

The Talagrand’s then implies

P(Zn(r) ≥ 2rr̃ + t) ≤ exp

(
− nt2

16rr̃ + 2r2 + 4t/3

)
. (10)

We first bound P(E1). Taking r = r̃ and t = 4r̃2 in Eq. (10), we get

P(E1) ≤P
(
Zn(r̃) ≥ 6r̃2

)
≤ exp

(
−24

35
nr̃2
)
.

We now bound P(E2). Note that

P(E2) ≤ P(Zn(∥g∥2) ≥ 6∥g∥2r̃ for some g ∈ G, ∥g∥2 ≥ r̃).

Define

Gm =
{
g ∈ G : 2m−1r̃ ≤ ∥g∥2 ≤ 2mr̃

}
.

Since ∥g∥2 ≤ 1, there exists M ≤ log2(1/r̃) such that

G ∩ {g : ∥g∥2 ≥ r̃} ⊆ ∪M
m=1Gm.

Therefore,

P(E2) ≤
M∑

m=1

P(Zn(∥g∥2) ≥ 6∥g∥2r̃ for some g ∈ Gm).

We now bound each term in the summation above. If there exists g ∈ Gm such that Zn(∥g∥2) ≥
6∥g∥2r̃, then we have

Zn(2
mr̃) ≥ Zn(∥g∥2) ≥ 6∥g∥2r̃ ≥ 3 · 2mr̃2.

Thus,

P(Zn(∥g∥2) ≥ 6∥g∥2r̃ for some g ∈ Gm) ≤ P
(
Zn(2

mr̃) ≥ 3 · 2mr̃2
)
.

Now, taking r = 2mr̃ and t = 2mr̃2 in Eq. (10), we get

P
(
Zn(2

mr̃) ≥ 3 · 2mr̃2
)
≤ exp

(
− 3nr̃2

13 · 22−m + 6

)
≤ exp

(
− 3

32
nr̃2
)
.

Therefore, if 3
64nr̃

2 ≥ log log2(1/r̃), then

P(E2) ≤ M exp

(
− 3

32
nr̃2
)

≤ exp

(
− 3

64
nr̃2
)
.

Combining the bounds on P(E1) and P(E2) leads to the final conclusion.

Lemma 4. Suppose Assumption 3 holds and P(|Z∗(X)| > 1) = 0. Then there exists a constant
C̃(α, γ) such that for any π ∈ ΠF ,

P(π(X) ̸= πf0(X)) ≤ C̃(α, γ)

(
Reg(π)

B

) α
1+α

.

Proof of Lemma 4. This follows directly from [14, Lemma 1].

Lemma 5. Let c1, c2, r be positive constants. For any α > 0, if a positive number x satisfies

x ≤ c1x
α

2(1+α) r + c2,

we have

x ≤ (c1r)
2α+2
α+2 + 2c2.

15



Proof of Lemma 5. First, note that

∂

∂y

(
y − c1y

α
2(1+α) r − c2

)
= 1− c1rα

2(1 + α)
y−

2+α
2+2α .

The derivative is strictly increasing in y and is eventually positive. Note the function y −
c1y

α/(2+2α)r − c2 takes a negative value at y = 0. Then as y increases, the value of
y − c1y

α/(2+2α)r − c2 first decreases and then increases. Therefore, if y > 0 satisfies the in-
equality y − c1y

α/(2+2α)r − c2 ≥ 0, then such y also provides an upper bound on x. Hence it is
sufficient to show that y = (c1r)

2α+2
α+2 + 2c2 satisfies the inequality, or equivalently,

(c1r)
2α+2
α+2 + c2 ≥ c1

(
(c1r)

2α+2
α+2 + 2c2

) α
2(1+α)

r. (11)

Suppose α/(2 + 2α) is a rational number. In this case, we can write α/(2 + 2α) = m1/m2, where
m1 and m2 are positive integers such that m2 ≥ 2m1 + 1. Eq. (11) is then equivalent to(

(c1r)
m2

m2−m1 + c2

)m2

≥ cm2
1

(
(c1r)

m2
m2−m1 + 2c2

)m1

rm2 . (12)

Using the multinomial theorem, we have(
(c1r)

m2
m2−m1 + c2

)m2

− cm2
1

(
(c1r)

m2
m2−m1 + 2c2

)m1

rm2

>

m1∑
i=0

(
m2!

(i+m2 −m1)!(m1 − i)!
− m1!2

m1−i

(m1 − i)!i!

)
(c1r)

im2
m2−m1

+m2cm1−i
2 .

Since m2 ≥ 2m1 + 1, we have for any i = 0, . . . ,m1,

m2!

(i+m2 −m1)!(m1 − i)!
≥ m1!2

m1−i

(m1 − i)!i!
.

This can be proved by showing the ratio of LHS over RHS is larger than 1. Hence, Eq. (11) holds
true when α/(2 + 2α) is a rational number.

Finally, note that

(c1r)
2α+2
α+2 + c2 − c1

(
(c1r)

2α+2
α+2 + 2c2

) α
2(1+α)

r

is continuous in α. Since any real number α can be viewed as the limit of a sequence of rational
numbers and Eq. (11) holds for all rational numbers, it also holds true for all α > 0.

Lemma 6. Let c1, c2, r, y, z be positive constants, and let α be a positive constant such that 2(1 +
α)/α is an integer. If a positive number x satisfies

x ≤ c1x
α

2(1+α) r + c1y
α

2(1+α) r + c2r
2 + z + y,

we have

x ≤ c
2α+2
α+2

1 r
2α+2
α+2 +

2α+ 2

α+ 2
c1y

α
2α+2 r +

2α+ 2

α+ 2
c2r

2 +
2α+ 2

α+ 2
z + y.

Proof of Lemma 6. Let 2(α+ 1)/α = m, where m is an integer by assumption. Using similar argu-

ments as in the proof of Lemma 5, it is sufficient to show that for w = c
2α+2
α+2

1 r
2α+2
α+2 + 2α+2

α+2 c1y
α

2α+2 r+
2α+2
α+2 c2r

2 + 2α+2
α+2 z + y and c′2 = c1y

α
2(1+α) r + c2r

2 + z + y, we have

w − c1w
α

2(1+α) r − c′2 ≥ 0.

This is equivalent to showing

c
2α+2
α+2

1 r
2α+2
α+2 +

2α+ 2

α+ 2
c1y

α
2α+2 r +

2α+ 2

α+ 2
c2r

2 +
2α+ 2

α+ 2
z + y

≥c1

(
c

2α+2
α+2

1 r
2α+2
α+2 +

2α+ 2

α+ 2
c1y

α
2α+2 r +

2α+ 2

α+ 2
c2r

2 +
2α+ 2

α+ 2
z + y

) α
2(1+α)

r + c1y
α

2(1+α) r + c2r
2 + z + y.
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Since α = 2/(m− 2), the above inequality is equivalent to(
c

m
m−1

1 r
m

m−1 +
1

m− 1
c1y

1
m r +

1

m− 1
c2r

2 +
1

m− 1
z

)m

≥cm1 rm
(
c

m
m−1

1 r
m

m−1 +
m

m− 1
c1y

1
m r +

m

m− 1
c2r

2 +
m

m− 1
z + y

)
.

Using the multinomial theorem, it is easy to see that the expansion of LHS contains all terms on the
RHS (plus additional positive terms). This finishes proving our conclusion.

B.2 Proof of Main Theorem

Proof of Theorem 1. To simplify notation, we define

Enj

[
θ(X,Z,C; f̂3−j , Σ̂3−j)

⊤(π̂(X)− π̃∗(X))
]

=
2

n

∑
i∈Dj

θ(Xi, Zi, Ci; f̂3−j , Σ̂3−j)
⊤(π̂(Xi)− π̃∗(Xi)).

We can decompose the regret as

Reg(π̂) =EP

[
f0(X)⊤(π̂(X)− πf0(X))

]
=EP

[
θ(X,Z,C; f0,Σ0)

⊤(π̂(X)− π̃∗(X))
]
+ E

[
f0(X)⊤(π̃∗(X)− πf0(X))

]
≤1

2

2∑
j=1

EP

[(
θ(X,Z,C; f0,Σ0)− θ(X,Z,C; f̂j , Σ̂j)

)⊤
(π̂(X)− π̃∗(X))

]

+
1

2

2∑
j=1

(EP − Enj
)
[
θ(X,Z,C; f̂3−j , Σ̂3−j)

⊤(π̂(X)− π̃∗(X))
]

+ Reg(π̃∗),

where the inequality follows from the definition of π̂.

By Assumption 2, with probability at least 1− δ/2,

1

2

2∑
j=1

EP

[(
θ(X,Z,C; f0,Σ0)− θ(X,Z,C; f̂j , Σ̂j)

)⊤
(π̂(X)− π̃∗(X))

]
≤ RateN(n/2, δ/4).

We now bound (EP − En1
)
[
θ(X,Z,C; f̂2, Σ̂2)

⊤(π̂(X)− π̃∗(X))
]
. By Lemma 3 and the assump-

tion that 2 exp
(
−3nr̃2/128

)
≤ δ/4, we have that with probability at least 1− δ/4,

sup
g∈G2

|(En1
− EP )g|

∥g∥2 + r̃
≤ 6r̃. (13)

Assuming Eq. (13) holds,

(EP − En1)
[
θ(X,Z,C; f̂2, Σ̂2)

⊤(π̂(X)− π̃∗(X))
]

≤12BΘ

(∥∥∥∥∥θ(X,Z,C; f̂2, Σ̂2)
⊤(π̂(X)− π̃∗(X))

2BΘ

∥∥∥∥∥
2

r̃ + r̃2

)

≤12BΘ

(∥∥∥∥∥θ(X,Z,C; f̂2, Σ̂2)
⊤(π̂(X)− πf0(X))

2BΘ

∥∥∥∥∥
2

r̃ +

∥∥∥∥∥θ(X,Z,C; f̂2, Σ̂2)
⊤(πf0(X)− π̃∗(X))

2BΘ

∥∥∥∥∥
2

r̃ + r̃2

)
.

(14)
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For any π ∈ ΠF ,∥∥∥∥∥θ(X,Z,C; f̂2, Σ̂2)
⊤(π(X)− πf0(X))

2BΘ

∥∥∥∥∥
2

2

=E

(θ(X,Z,C; f̂2, Σ̂2)
⊤(π(X)− πf0(X))

2BΘ

)2

I{π(X) ̸= πf0(X)}


≤P(π(X) ̸= πf0(X))

≤C̃(α, γ)

(
Reg(π)

B

) α
1+α

,

where the last inequality follows from Lemma 4.

Applying the inequality above for both π̂ and πf0 and plug the bounds into Eq. (14), we get

(EP − En1
)
[
θ(X,Z,C; f̂2, Σ̂2)

⊤(π̂(X)− π̃∗(X))
]

≤12BΘ

(√
C̃(α, γ)

(
Reg(π̂)

B

) α
2(1+α)

r̃ +

√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃ + r̃2

)
.

We can similarly bound (EP − En2
)
[
θ(X,Z,C; f̂1, Σ̂1)

⊤(π̂(X)− π̃∗(X))
]
.

Combining all pieces together, we get that with probability at least 1− δ,

Reg(π̂)
B

≤12Θ

(√
C̃(α, γ)

(
Reg(π̂)

B

) α
2(1+α)

r̃ +

√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃ + r̃2

)

+
RateN(n/2, δ/4)

B
+

Reg(π̃∗)

B
.

Solving the above inequality with respect to Reg(π̂)/B using Lemma 5, we have

Reg(π̂) ≤B

(
12Θ

√
C̃(α, γ)r̃

) 2α+2
α+2

+ 24BΘ

(√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃ + r̃2

)
+ 2RateN(n/2, δ/4) + 2Reg(π̃∗).

B.3 Proofs of Propositions

Proof of Proposition 1. For direct method, the conclusion is obvious.

For ISW, we have for any Σ,

E
[(
Σ+(X)ZC

)⊤
π(X)

]
− E

[
f0(X)⊤π(X)

]
= E

[
f0(X)⊤(I − Σ+(X)Σ0(X))⊤π(X)

]
.

Let M(x) be a matrix whose columns include all basis vectors of the span of Z . Then π(X) ∈
Range(M(x)). According to the coverage assumption, the column space of Σ0(x) is identical to
the column space of M(x). By the property of pseudo-inverse, the column space of (I − Σ†

0Σ0) is
orthogonal to the column space of M . Therefore, (I − Σ+(X)Σ0(X))⊤π(X) = 0 for any π ∈ Z .

For doubly robust score, we have that for any function f,Σ,

E
[
π(X)⊤

(
f(X) + Σ(X)+Z(C − Z⊤f(X))

)]
− E[π(X)⊤f0(X)]

=E
[
π(X)⊤

(
(I − Σ+(X)Σ0(X))(f(X)− f0(X))

)]
.

Taking either f = f0 or Σ = Σ0 gives 0.
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Proof of Proposition 2. Because π(x)− π̃∗ ∈ span(Z), for the DM score we have

EP

[(
θDM (X,Z,C; f0,Σ0)− θDM (X,Z,C; f̂ , Σ̂)

)⊤
(π(X)− π̃∗(X))

]
≤EP

[
Projspan(Z)

(
θDM (X,Z,C; f0,Σ0)− θDM (X,Z,C; f̂ , Σ̂)

)⊤
(π(X)− π̃∗(X))

]
≤2B

{
EX [∥Projspan(Z)(f̂(X)− f0(X))∥2]

}1/2

= O(χn,δ).

For the ISW score, we have

EP

[(
θISW (X,Z,C; f0,Σ0)− θISW (X,Z,C; f̂ , Σ̂)

)⊤
(π(X)− π̃∗(X))

]
≤2B

{
EX [∥(Σ̂†(X)− Σ†

0(X))Σ0(X)∥2Fro]
}1/2

= O(χn,δ).

For the doubly robust score, we can easily get

EP

[(
θDR(X,Z,C; f0,Σ0)− θDR(X,Z,C; f̂ , Σ̂)

)⊤
(π(X)− π̃∗(X))

]
=EP

[
(π(X)− π̃∗(X))

⊤
(
I − Σ̂+(X)Σ0(X)

)
(f̂(X)− f0(X))

]
=EP

[
(π(X)− π̃∗(X))

⊤
(
Σ+

0 (X)− Σ̂+(X)
)
Σ0(X)(f̂(X)− f0(X))

]
=EP

[
(π(X)− π̃∗(X))

⊤
(
Σ+

0 (X)− Σ̂+(X)
)
Σ0(X) ProjSpan(Z)(f̂(X)− f0(X))

]
≲
{
EX [∥(Σ̂†(X)− Σ†

0(X))Σ0(X)∥2Fro]
}1/2{

EX [∥Projspan(Z)(f̂(X)− f0(X))∥2]
}1/2

= O(χ2
n,δ).

Here the second equation holds because π(x) − π̃∗(x) belongs to the linear span of Z , but I −
Σ+

0 (x)Σ0 is orthogonal to the linear span of Z , as we already argued in the proof of Proposition 1.
The third equation holds because the column space of Σ0(X) is identical to span(Z) according to
the coverage assumption.

Proof of Proposition 3. Define

Ψ(t) =
1

5
exp(t2).

Note that whenever EΨ(|W |/w) ≤ 1 for some random variable W , we have by Markov’s inequality
that

P(|W | > t) ≤ 5 exp(−t2/w2),

E|W | =
∫ ∞

0

P(|W | > t)dt ≤ 5w. (15)

Throughout the proof, we condition on the event that G1 has VC-subgraph dimension η. We finish
the proof in three steps.

Step I: Critical radius for empirical Rademacher complexity. Define the localized empirical
Rademacher complexity

R̂n(G1, r) = Eϵ

[
sup

g∈G,∥g∥n≤r

∣∣∣∣∣ 1n
n∑

i=1

ϵig(Xi, Zi, Ci)

∣∣∣∣∣
]
,

where ϵ1, . . . , ϵn are i.i.d. Rademacher random variables, and ∥g∥n =
√∑n

i=1 g
2(Xi, Zi, Ci)/n.

Let r̂∗n be the smallest positive solution to R̂n(G1, r) ≤ r2/32. In what follows, we show that there
exists a universal constant C such that

P

(
r̂∗n ≤ C̃

√
η log(n+ 1)

n

)
= 1. (16)
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For any g ∈ G1, define set

G = {(g(X1, Z1, C1), . . . , g(Xn, Zn, Cn)) : g ∈ G1, ∥g∥n ≤ r}.
Let D(t,G) be the t-packing number of G and N(t,G) be the t-covering number. Note that
∥g∥ ≤

√
nr for all g ∈ G. By [28, Theorem 3.5],

EϵΨ

(
1

J
sup

g∈G1,∥g∥n≤r

∣∣∣∣∣
n∑

i=1

ϵig(Xi, Zi, Ci)

∣∣∣∣∣
)

≤ 1,

where

J = 9

∫ √
nr

0

√
logD(t,G)dt.

So by Eq. (15),

R̂n(G1, r) ≤
5

n
J.

Consider the function class

G′
1 = {g : g ∈ G1, ∥g∥n ≤ r}.

Note that
√
nr is the envelope of G′

1 on (X1, Z1, C1), . . . , (Xn, Zn, Cn). Applying [40, Theorem
2.6.7] gives

D(
√
nrt,G) ≤ N(

√
nrt/2,G)

≤ C̃(η + 1)(16e)η+1

(
4n

t2

)η

for a universal constant C̃. Thus,

J =9
√
nr

∫ 1

0

√
logD(

√
nrt,G)dt

≤9
√
nr

∫ 1

0

√
logC + log(η + 1) + (η + 1) log(16e) + η log n+ η log 4− 2η log tdt

≤9

∫ 1

0

√
2 logC + 15− 3 log tdt

√
η log(n+ 1)nr,

where
∫ 1

0

√
2 logC + 15− 3 log tdt < ∞. We then obtain that for a (different) universal constant C̃,

R̂n(G1, r) ≤
C̃

32

√
η log(n+ 1)

n
r.

Therefore, for any samples (Xi, Zi, Ci)
n
i=1, any r̂n ≥ C

√
η log(n+ 1)/n is a valid solution to

R̂n(G1, r) ≤ r2/32, which implies Eq. (16).

Step II: Critical radius for Rademacher complexity. Let r∗n be the smallest positive solution to
the inequality Rn(G1, r) ≤ r2/32. We now bound r∗n.

For any t > 0, define the random variable

Wn(t) = Eϵ

[
sup

g∈G1,∥g∥2≤t

∣∣∣∣∣ 1n
n∑

i=1

ϵig(Xi, Zi, Ci)

∣∣∣∣∣
]
,

so that Rn(G1, r) = EP [Wn(r)] by construction. Define the events

E3(t) =
{
|Wn(t)−Rn(G1, t)| ≤

r∗nt

112

}
,

E4 =

 sup
g∈G1

∣∣∣∥g∥2n − ∥g∥22
∣∣∣

∥g∥22 + (r∗n)
2

≤ 1

2

.
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Following the proof of [14, Lemma EC.12],

P
(
r∗n
5

≤ r̂∗n ≤ 3r∗n

)
≥ P(2E3(r∗n) ∩ E3(7r∗n) ∩ E4).

[14, Lemma EC.10] implies that

P(Ec
4) ≤ 2e−c̃1n(r

∗
n)

2

for some universal constant c̃1 > 0. Moreover, for any ζ ≥ 1, we have Rn(G1, ζr
∗
n) ≥ Rn(r

∗
n) ≥

(r∗n)
2/32. By [3, Theorem 16],

P(Ec
3(ζr

∗
n)) ≤ 2e−c̃2n(r

∗
n)

2

for some universal constant c̃2 > 0. Combining all pieces we have

P
(
r∗n
5

≤ r̂∗n ≤ 3r∗n

)
≥ 1− 6e−(c̃1∧c̃2)n(r

∗
n)

2

. (17)

By step I in the proof, P
(
r̂∗n ≤ C̃0

√
η log(n+ 1)/n

)
= 1 for some constant C̃0. Let C̃ > 5C̃0

be a constant such that 2−C̃(c̃1∧c̃2) < 1/6. If r∗n > C
√
η log(n+ 1)/n, by Eq. (17) we have

P
(
r̂∗n > C̃0

√
η log(n+ 1)/n

)
> 0, which leads to contradiction. Thus,

r∗n ≤ C̃
√
η log(n+ 1)/n.

Finally, any r ≥ C̃
√
η log(n+ 1)/n solves the inequality Rn(G1, r) ≤ r2.

Step III: Checking other conditions. The other two inequalities, 3nr̃2/64 ≥ log log2(1/r̃) and
2 exp

(
−3nr̃2/64

)
≤ δ/2, are easily satisfied as long as we take C̃ big enough.

B.4 Proof for Full Feedback Setting

Proof of Theorem 1. To simplify notation, we write

En

[
Y ⊤(π̂F(X)− π̃∗(X)

)]
=

1

n

n∑
i=1

Y ⊤
i

(
π̂F(Xi)− π̃∗(Xi)

)
.

We can decompose the regret as

Reg
(
π̂F) =EP

[
Y ⊤(π̂F(X)− πf0(X)

)]
=EP

[
Y ⊤(π̂F(X)− π̃∗(X)

)]
+ E

[
Y ⊤(π̃∗(X)− πf0(X))

]
≤(EP − En)

[
Y ⊤(π̂F(X)− π̃∗(X)

)]
+ Reg(π̃∗),

where the inequality follows from the definition of π̂F.

We now bound (EP − En)
[
Y ⊤(π̂F(X)− π̃∗(X)

)]
. Following a similar proof as in the proof of

Lemma 3, we have that with probability at least 1− δ,

sup
g∈G

|(En − EP )g|
∥g∥2 + r̃F ≤ 6r̃F. (18)

Assuming Eq. (18) holds,

(EP − En)
[
Y ⊤(π̂F(X)− π̃∗(X)

)]
≤12B

(∥∥∥∥∥Y ⊤(π̂F(X)− π̃∗(X)
)

2B

∥∥∥∥∥
2

r̃F + (r̃F)2

)

≤12B

(∥∥∥∥∥Y ⊤(π̂F(X)− πf0(X)
)

2B

∥∥∥∥∥
2

r̃F +

∥∥∥∥Y ⊤(πf0(X)− π̃∗(X))

2B

∥∥∥∥
2

r̃F + (r̃F)2

)
.
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For any π ∈ ΠF ,∥∥∥∥Y ⊤(π(X)− πf0(X))

2B

∥∥∥∥2
2

=E

[(
Y ⊤(π(X)− πf0(X))

2B

)2

I{π(X) ̸= πf0(X)}

]
≤P(π(X) ̸= πf0(X))

≤C̃(α, γ)

(
Reg(π)

B

) α
1+α

,

where the last inequality follows from Lemma 4. Thus,

(EP − En)
[
Y ⊤(π̂F(X)− π̃∗(X)

)]
≤12B

(√
C̃(α, γ)

(
Reg(π̂F)

B

) α
2(1+α)

r̃F +

√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃F + (r̃F)2

)
.

Combining all pieces together, we get that with probability at least 1− δ,

Reg(π̂F)

B
≤12

(√
C̃(α, γ)

(
Reg(π̂F)

B

) α
2(1+α)

r̃F +

√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃F + (r̃F)2

)

+
Reg(π̃∗)

B
.

Solving the above inequality with respect to Reg(π̂F)/B using Lemma 5, we have

Reg(π̂F) ≤ B

(
12

√
C̃(α, γ)r̃F

) 2α+2
α+2

+ 24B

(√
C̃(α, γ)

(
Reg(π̃∗)

B

) α
2(1+α)

r̃F + (r̃F)2

)
+ 2Reg(π̃∗).

C Additional Experimental Details

In Section 5, we provide experimental results for different methods under various model specifications
and different logging policies. In this section, we further explain the details of experiment setup,
implementation, and provide additional experimental results. All experiments in the paper are
implemented on a cloud computing platform with 128 CPUs of model Intel(R) Xeon(R) Platinum
8369B CPU @ 2.70GHz, 250GB RAM and 500GB storage. The experiment for each specification of
F and FN and each logging policy takes around 2 days of running time based on parallel computing
on 100 CPUs.

C.1 Experimental Setup and Implementation Details

Data generating process. We first generate i.i.d draws of the covariates X = (X1, X2, X3)
⊤ ∈ R3

from independent standard normal distribution. Then we simulate the full feedback Y according
to the equation Y = f0(X) + ϵ, where f0(X) = 3 + W ∗

1X1 + W ∗
2X2 + W ∗

3X3 + W ∗
4X1X2 +

W ∗
5X2X3+W ∗

6X1X3+W ∗
7X1X2X3 for coefficient vectors W ∗

1 , . . . ,W
∗
7 ∈ Rd and a random noise

ϵ drawn from the Unif[−0.5, 0.5]. To fix the coefficient vectors W ∗
1 , . . . ,W

∗
7 , we draw their entries

independently the from the Unif[0, 1] distribution once, and then use the resulting fixed coefficient
vectors throughout the experiment. We sample observed decisions Z from the set of all feasible path
decisions {z1, . . . , zm} for m = 70, according to different logging policies that will be described
shortly. Then the total cost C = Y ⊤Z is recorded in the observed data.

We consider three different logging policies. One is a random logging policy that uniformly samples
each decision from the feasible decisions, regardless of the covariate value. The other two are
covariate-dependent logging policies. For these two policies, we first remove 20 feasible decisions
that correspond to the optimal decisions for some covariate observations in the testing data, and then
randomly sample the observed decisions from the rest of 50 feasible decisions according to different
rules. This means that many promising decisions are not explored by the logging policies at all. We
hope to use these logging policies to demonstrate the value of leveraging the linear structure of the
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decision-making problem, since exploiting the linear structure allows to extrapolate the feedback
from the logged decisions to decisions never explored by the policies. Specifically, we further divide
the remaining 50 feasible decisions into two even groups. Then the two different logging policies
sample decisions from the two groups according to different rules depending on the covariate value.

• One covariate-dependent logging policy samples the decisions according to the sign of
the first covariate X1. When X1 > 0, the logging policy chooses the first group with
probability 2/3 and the second group with probability 1/3. When X1 ≤ 0, the logging
policy chooses the first group with probability 1/3 and the second group with probability
2/3. Once deciding the group, the policy then uniformly samples one decision from the
chosen group. For concreteness, we will refer to this policy as the X1-policy.

• The other covariate-dependent policy samples the decisions according to the signs of both
X1 and X2. When X1 > 0 and X2 > 0, the logging policy chooses the two groups with
probabilities 2/3 and 1/3 respectively. When X1 > 0 and X2 ≤ 0, the logging policy
chooses the two groups with probabilities 1/3 and 2/3 respectively. When X1 ≤ 0 and
X2 > 0, the policy chooses the two groups with probabilities 3/4 and 1/4 respectively.
When X1 ≤ 0 and X2 ≤ 0, the policy chooses the two groups with probabilities 1/4 and
3/4 respectively. Once deciding the group, the policy again uniformly samples one decision
from the chosen group. We will refer to this policy as the X1X2-policy.

Specification of the policy-inducing model and nuisance model. For the policy-inducing model
and nuisance model, we consider three different classes. One is the correctly specified class
{(x1, x3, x3) 7→ W0 + W1x1 + W2x2 + W3x3 + W4x1x2 + W5x2x3 + W6x1x3 + W7x1x2x3 :
W0, . . . ,W7 ∈ R}. The second model class {(x1, x3, x3) 7→ W0 + W1x1 + W2x2 + W3x3 +
W4x1x2 + W5x2x3 : W0, . . . ,W5 ∈ R} omits two interaction terms and is thus misspeci-
fied (which we refer to as degree-2 misspecification). The third model class {(x1, x3, x3) 7→
W0 +W1x1 +W2x2 +W3x3 : W1,W2,W3 ∈ R} omits all four interaction terms (which we refer
to as degree-4 misspecification).

Nuisance estimation for the SPO+ methods. The SPO+ methods involve two different nuisances.
One is the function f0(x) = E[Y | X = x]. We estimate this by the least squares regression in Eq. (7),
with the FN class being one of the three classes described above (i.e., correct specification, degree-2
misspecification, degree-4 misspecification). We incorporate an additional ridge penalty with a
coefficient 1. We estimate the the nuisance Σ0(x) using the propensity score approach described
in Remark 2, so we need to estimate the propensity scores P(Z = zj | X = x) for j = 1, . . . ,m.
For the random logging policy, we simply estimate P(Z = zj | X = x) for any x by the empirical
frequency of the decision zj in the observed data. For the X1-policy and X1X2-policy, we estimate
the propensity scores by classification decision trees of depth 3 trained to classify each instance to
one of the observed classes among z1, . . . , zm. These nuisances are all estimated using the two-fold
cross-fitting described in Section 1.2.

Since the Σ0 matrix is rank-deficient, we cannot directly invert it. Besides taking the pseudo-inverse,
we also implement the Lambda regularization and clipping techniques described in Section 5. For
Lambda regularization, we set the regularization parameter λ to 1. For the clipping technique, we
consider the eigen-decomposition of Σ0, set all eigenvalues below 1 to 1, and then take a pseudo-
inverse of the transformed matrix. These two lead to the SPO+ DR Lambda and SPO+ DR Clip
methods in Section 5 and this section.

Naive Benchmarks. We also implemented the benchmarks in Appendix A. For ETO, SPO+ DM,
and SPO+ DR, we estimate f̃0(x) by regressing C with respect to X using data for each observed
decision respectively. The regression function class uses similar correctly specified class, degree-2
misspecified class, degree-4 misspecified class mentioned above, with only slight difference in the
dimension since the output of f̃0 is m-dimensional while the output of f0 is d-dimensional. For
SPO+ DR and SPO+ IPW, we need to estimate the propensity scores. These are again estimated by
either sample frequency or decision trees. Note that some feasible decisions are never observed in the
training data. For these decisions, the corresponding component of f̃0 is heuristically imputed by a
pooled regression of C against X using all observed data. For SPO+ IPW and SPO+ DR, although
the propensity scores for the unseen decisions are zero, they do not impact the policy evaluation since
they only need the propensity score for decisions observed in the data.
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SPO+ Tuning and Optimization. We need to solve the SPO+ optimization problem in Section 4
for the DM and DR scores. Following [11], we incorporate an additional ridge penalty on the
coefficients of the hypotheses. We select the penalty coefficient from a grid of 0, 0.001, 0.01 and 10
points distributed uniformly on the logarithmic scale over 0.1 to 100. This is done by minimizing the
out-of-sample error on an independent validation dataset with size equal to the corresponding training
data. The penalty coefficient is finally set as the half of the value chosen by this validation procedure.

To optimize the SPO+ loss, [11] recommend applying standard convex optimization solvers to a
dual reformulation, or by running stochastic subgradient descents. We tried both approaches and
found that the stochastic subgradient descent method with the default hyperparameters in [11, 14]
(number of iterations, step size, batch size) runs much faster, while performing similarly to the dual
reformulation method.

C.2 Additional Experimental Results

In this section, we provide some additional experimental results. Specifically, Tables 3 and 4 are
extensions of Tables 1 and 2 for the random logging policy. In particular, Table 3 shows additional
results on ISW and IPW methods. They are generally worse than other alternative methods. Table 4
additionally show results for the naive benchmarks under model misspecification, and further confirm
their worse performance. Tables 5 to 8 provide results for two covariate-dependent logging policies,
the X1-policy and X1X2-policy respectively. The performance of different methods tend to remain
similar or slightly degrade under these more complicated logging policies. However, the comparisons
of different methods remain qualitatively the same.

Methods Training Data n
400 600 800 1000 1200 1400 1600

ETO 3.34% 1.86% 1.04% 0.74% 0.50% 0.41% 0.35%
SPO+ DM 2.30% 1.14% 0.64% 0.36% 0.25% 0.20% 0.16%

SPO+ DR PI 2.47% 1.44% 0.86% 0.59% 0.45% 0.39% 0.32%
SPO+ DR Lambda 2.23% 1.15% 0.64% 0.40% 0.27% 0.23% 0.18%

SPO+ DR Clip 2.29% 1.22% 0.69% 0.44% 0.31% 0.25% 0.20%
SPO+ ISW 15.00% 15.52% 15.11% 15.02% 14.98% 15.03% 15.11%

Naive ETO 15.03% 15.26% 14.74% 12.12% 8.45% 5.17% 3.53%
Naive SPO+ DM 15.05% 15.46% 14.92% 12.85% 9.81% 6.63% 5.08%
Naive SPO+ DR 14.99% 15.42% 14.97% 13.00% 10.10% 6.98% 5.56%
Naive SPO+ IPW 15.56% 15.77% 16.06% 16.06% 16.06% 15.96% 15.96%

Table 3: Mean relative regret ratio of different methods when the nuisance model FN and the policy-
inducing model F are correctly specified. The logging policy is a random policy.
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Methods Training Data n Training Data n
400 1000 1600 400 1000 1600

ETO F misspecified degree 2 F misspecified degree 4

11.04% 9.14% 8.34% 12.35% 11.42% 10.39%

Well-specified
Nuisance Model

FN

F misspecified degree 2 F misspecified degree 4

SPO+ DM 2.81% 0.80% 0.54% 4.06% 2.21% 2.06%
SPO+ DR PI 3.27% 1.36% 1.05% 4.83% 2.95% 2.71%

SPO+ DR Lambda 2.83% 0.97% 0.73% 4.33% 2.45% 2.25%
SPO+ DR Clip 3.05% 1.09% 0.84% 4.59% 2.62% 2.38%

Naive SPO+ DM 14.97% 12.78% 5.68% 15.27% 13.20% 6.42%
Naive SPO+ DR 15.00% 13.03% 6.31% 15.27% 13.48% 7.26%

Well-specified
Policy-inducing

Model F

FN misspecified degree 2 FN misspecified degree 4

SPO+ DM 10.01% 8.37% 7.47% 12.51% 11.22% 9.68%
SPO+ DR PI 9.11% 7.02% 6.44% 11.69% 10.19% 9.02%

SPO+ DR Lambda 9.05% 7.52% 6.68% 12.31% 10.38% 8.96%
SPO+ DR Clip 9.02% 7.28% 6.36% 11.87% 10.04% 8.70%

Naive SPO+ DM 15.56% 14.23% 12.96% 15.22% 14.51% 13.85%
Naive SPO+ DR 15.64% 14.36% 13.31% 15.17% 14.67% 14.12%

Both F ,FN

Misspecified

F ,FN misspecified degree 2 F ,FN misspecified degree 4

SPO+ DM 9.90% 8.34% 7.41% 12.45% 11.16% 9.69%
SPO+ DR PI 9.15% 7.23% 6.52% 11.92% 10.46% 9.42%

SPO+ DR Lambda 9.03% 7.46% 6.74% 12.01% 10.72% 9.25%
SPO+ DR Clip 8.97% 7.22% 6.46% 11.75% 10.31% 8.95%

Naive SPO+ DM 15.65% 14.23% 13.02% 15.16% 14.53% 13.84%
Naive SPO+ DR 15.63% 14.42% 13.33% 15.26% 14.74% 13.95%

Table 4: Mean relative regret ratio of different methods when the nuisance model FN and the policy-
inducing model F are misspecified to differrent degrees. The logging policy is a random policy.

Methods Training Data n
400 600 800 1000 1200 1400 1600

ETO 3.20% 1.83% 1.05% 0.72% 0.56% 0.47% 0.38%
SPO+ DM 2.16% 1.12% 0.60% 0.40% 0.30% 0.25% 0.20%

SPO+ DR PI 2.51% 1.50% 0.97% 0.73% 0.59% 0.50% 0.44%
SPO+ DR Lambda 2.14% 1.10% 0.62% 0.41% 0.34% 0.28% 0.23%

SPO+ DR Clip 2.15% 1.18% 0.65% 0.44% 0.37% 0.31% 0.26%
SPO+ ISW 15.49% 15.39% 15.46% 15.43% 15.63% 15.75% 15.75%

Naive ETO 15.44% 14.92% 10.77% 6.56% 4.59% 3.39% 2.87%
Naive SPO+ DM 15.46% 15.21% 11.56% 7.49% 5.57% 4.32% 3.67%
Naive SPO+ DR 15.47% 15.19% 11.91% 8.09% 6.04% 4.81% 4.18%
Naive SPO+ IPW 15.57% 15.67% 15.71% 15.74% 15.66% 15.79% 15.80%

Table 5: Mean relative regret ratio of different methods when the nuisance model FN and the policy-
inducing model F are correctly specified. The logging policy is a X1-policy.

25



Methods Training Data n Training Data n
400 1000 1600 400 1000 1600

ETO F misspecified degree 2 F misspecified degree 4

11.55% 9.56% 8.68% 11.41% 10.03% 9.60%

Well-specified
Nuisance Model

FN

F misspecified degree 2 F misspecified degree 4

SPO+ DM 2.86% 1.10% 0.86% 4.19% 2.53% 2.27%
SPO+ DR PI 3.57% 1.74% 1.39% 5.11% 3.36% 3.10%

SPO+ DR Lambda 2.93% 1.26% 1.03% 4.45% 2.79% 2.53%
SPO+ DR Clip 3.05% 1.34% 1.11% 4.57% 2.98% 2.66%

Naive SPO+ DM 15.59% 7.80% 4.37% 15.43% 8.08% 5.19%
Naive SPO+ DR 15.60% 8.45% 5.00% 15.38% 8.83% 5.90%

Well-specified
Policy-inducing

Model F

FN misspecified degree 2 FN misspecified degree 4

SPO+ DM 10.47% 8.31% 7.68% 10.77% 9.37% 8.82%
SPO+ DR PI 9.32% 7.48% 6.97% 10.69% 9.80% 9.43%

SPO+ DR Lambda 9.15% 7.48% 6.98% 10.36% 9.10% 8.72%
SPO+ DR Clip 9.23% 7.37% 6.78% 10.37% 8.94% 8.46%

Naive SPO+ DM 15.63% 14.58% 13.78% 14.93% 13.08% 12.71%
Naive SPO+ DR 15.56% 14.54% 13.95% 14.92% 13.57% 13.30%

Both F ,FN

Misspecified

F ,FN misspecified degree 2 F ,FN misspecified degree 4

SPO+ DM 10.36% 8.27% 7.58% 10.66% 9.35% 8.90%
SPO+ DR PI 9.19% 7.21% 6.46% 10.35% 8.96% 8.55%

SPO+ DR Lambda 9.24% 7.47% 6.98% 10.36% 9.18% 8.75%
SPO+ DR Clip 9.38% 7.39% 6.76% 10.28% 8.94% 8.55%

Naive SPO+ DM 15.61% 14.56% 13.88% 14.96% 13.25% 12.77%
Naive SPO+ DR 15.49% 14.62% 14.12% 14.96% 13.48% 13.23%

Table 6: Mean relative regret ratio of different methods when the nuisance model FN and the policy-
inducing model F are misspecified to differrent degrees. The logging policy is a X1-policy.

Methods Training Data n
400 600 800 1000 1200 1400 1600

ETO 3.09% 1.92% 1.28% 0.86% 0.58% 0.41% 0.34%
SPO+ DM 2.19% 1.19% 0.66% 0.43% 0.32% 0.24% 0.19%

SPO+ DR PI 2.49% 1.42% 1.00% 0.72% 0.60% 0.46% 0.45%
SPO+ DR Lambda 2.08% 1.15% 0.67% 0.46% 0.35% 0.26% 0.21%

SPO+ DR Clip 2.17% 1.21% 0.73% 0.51% 0.36% 0.30% 0.25%
SPO+ ISW 14.57% 14.65% 14.49% 14.04% 14.36% 14.26% 14.30%

Naive ETO 14.30% 13.99% 11.01% 7.55% 5.21% 3.76% 3.11%
Naive SPO+ DM 14.31% 14.21% 11.89% 8.44% 6.16% 4.69% 3.97%
Naive SPO+ DR 14.29% 14.23% 12.12% 8.77% 6.52% 5.12% 4.45%
Naive SPO+ IPW 15.52% 15.64% 15.64% 15.66% 15.76% 15.74% 15.70%

Table 7: Mean relative regret ratio of different methods when the nuisance model FN and the policy-
inducing model F are correctly specified. The logging policy is a X1X2-policy.
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Methods Training Data n Training Data n
400 1000 1600 400 1000 1600

ETO F misspecified degree 2 F misspecified degree 4

10.08% 8.86% 8.18% 12.03% 11.15% 11.03%

Well-specified
Nuisance Model

FN

F misspecified degree 2 F misspecified degree 4

SPO+ DM 2.91% 1.10% 0.83% 4.32% 2.56% 2.24%
SPO+ DR PI 3.55% 1.73% 1.42% 5.27% 3.36% 3.04%

SPO+ DR Lambda 2.91% 1.28% 1.01% 4.50% 2.78% 2.49%
SPO+ DR Clip 3.07% 1.37% 1.12% 4.67% 2.94% 2.69%

Naive SPO+ DM 14.32% 8.92% 4.69% 14.52% 9.32% 5.46%
Naive SPO+ DR 14.34% 9.33% 5.37% 14.56% 9.78% 6.13%

Well-specified
Policy-inducing

Model F

FN misspecified degree 2 FN misspecified degree 4

SPO+ DM 8.78% 7.90% 7.11% 11.93% 11.08% 10.55%
SPO+ DR PI 8.23% 6.97% 6.51% 11.91% 11.36% 11.07%

SPO+ DR Lambda 8.28% 7.14% 6.60% 11.92% 11.01% 10.38%
SPO+ DR Clip 8.19% 7.04% 6.37% 11.72% 10.95% 10.36%

Naive SPO+ DM 14.86% 12.50% 12.07% 14.68% 13.84% 13.09%
Naive SPO+ DR 14.77% 12.78% 12.26% 14.65% 14.19% 13.70%

Both F ,FN

Misspecified

F ,FN misspecified degree 2 F ,FN misspecified degree 4

SPO+ DM 8.75% 7.83% 7.09% 11.95% 11.07% 10.53%
SPO+ DR PI 8.07% 6.66% 6.03% 11.79% 10.84% 10.40%

SPO+ DR Lambda 8.23% 7.14% 6.58% 11.90% 10.87% 10.43%
SPO+ DR Clip 8.09% 6.95% 6.41% 11.90% 10.74% 10.22%

Naive SPO+ DM 14.85% 12.66% 12.14% 14.70% 14.02% 13.11%
Naive SPO+ DR 14.75% 12.78% 12.26% 14.67% 14.17% 13.41%

Table 8: Mean relative regret ratio of different methods when the nuisance model FN and the policy-
inducing model F are misspecified to differrent degrees. The logging policy is a X1X2-policy.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide the new methodology in Section 2, main theoretical results in
Section 3, and numerical findings in Section 5.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our paper in Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our main theoretical results are in Section 3, and we have a proposition in
Section 2. All detailed proofs are provided in Appendix B.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide open access to data and code at https://github.com/
CausalML/CLOBandit.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to data and code at https://github.com/
CausalML/CLOBandit

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed explanations for the experiment setup in Section 5 and Ap-
pendix C.2.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We have statistical significance results in our experiments, and all our results
are significant. We did not report them in the paper due to limited space, but can provide
them upon request.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: Computer resources are reported in Appendix C.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and the research
conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is foundational research and not tied to particular applications.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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