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ABSTRACT

Data valuation has found many real-world applications, e.g., data pricing and
data selection. However, the most adopted approach – Shapley value (SV) – is
computationally expensive due to the large number of model trainings required.
Fortunately, most applications (e.g., data selection) require only knowing the m
data points with the highest data values (i.e., top-m data values), which implies the
potential for fewer model trainings as exact data values are not required. Existing
work formulates top-m Shapley value identification as top-m arms identification in
multi-armed bandits (MAB). However, the proposed approach falls short because it
does not utilize data features to predict data values, a method that has been shown
empirically to be effective. A recent top-m arms identification work does consider
the use of arm features while assuming a linear relationship between arm features
and rewards, which is often not satisfied in data valuation. To this end, we propose
the GPGapE algorithm that uses the Gaussian process to model the non-linear
mapping from data features to data values, removing the linear assumption.
We theoretically analyze the correctness and stopping iteration of GPGapE in
finding an (ε, δ)-approximation to the top-m data values. We further improve the
computational efficiency, by calculating data values using small data subsets to
reduce the computation cost of model trainings. We empirically demonstrate that
GPGapE outperforms other baselines in top-m data values identification, noisy
data detection, and data subset selection on real-world datasets.

1 INTRODUCTION

Data is essential to obtaining a good-performing machine learning (ML) model. Data
valuation (Ghorbani & Zou, 2019) quantifies the contribution of each data point to the model
performance. The contribution estimate (i.e., data value) can be used in data pricing in the data
marketplace (Agarwal et al., 2019), data debugging by identifying noisy data (Koh & Liang, 2017;
Kwon & Zou, 2021), data selection (Nohyun et al., 2022) to select high-quality data, and fairly
incentivizing the participants in collaborative machine learning (CML) (Sim et al., 2020; Xu et al.,
2021). The most commonly adopted data valuation approaches (Ghorbani & Zou, 2019; Jia et al.,
2019b; Kwon & Zou, 2021) are based on the Shapley value (SV) due to its desirable properties (e.g.,
fairness) and good empirical performance in downstream tasks (Ghorbani & Zou, 2019; Kwon &
Zou, 2021). Specifically, the data value, precisely Shapley value, is defined as the (weighted average
of) changes in model performance (i.e., marginal contribution) when the data point is removed from
different subsets of the training dataset (see Equ. (1)). However, the computation of exact data values
requires n! (where n is # data points) model trainings, posing a significant challenge to applying it
to real-world large datasets. Although existing approaches have explored several sampling-based
approximations (Ghorbani & Zou, 2019; Okhrati & Lipani, 2021), the computational cost remains
high, especially when complex models such as neural networks (NNs) are used.

Fortunately, most applications only require knowing the m data points with the highest data values
(i.e., top-m data values). For example, in data marketplaces, buyers with limited budgets will only
buy data with the largest m data values (Ghorbani et al., 2022). In noisy data detection, noisy data
are specified by data with m lowest data values (Wang et al., 2020; Schoch et al., 2022). In CML,
some incentive designs reward only the top-m highest contributing participants (Zhang et al., 2021).
Certain fairness properties are preserved when using top-m data values in incentive design (see
Appendix A.5). Intuitively, identifying the top-m data values can incur a lower computational cost
than directly approximating data values since it does not require either approximating the exact data
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values well or knowing the exact ranking of these data values. How to obtain top-m data values
efficiently without directly approximating the exact data values?

An existing work (Ghorbani et al., 2022) has empirically shown that data features are predictive of
the data value of the corresponding data point. Intuitively, data points with similar data features will
have similar data values (see Lemma A.1). On the other hand, existing work (Kolpaczki et al., 2021)
has proposed to use the top-m arms identification in multi-armed bandits (MAB) to identify top-m
players (via Shapley value) in cooperative games. However, the proposed algorithm does not use the
data features and hence fails to identify top-m data values efficiently (see Sec. 5). The work of Réda
et al. (2021) proposes top-m arms identification using linear bandit that assumes a linear relationship
between arm features (i.e., data features here) and rewards (i.e., data values). This assumption does
not apply to highly complex functions such as the function mapping data features to data values,
especially when the datasets are highly complex (e.g., image datasets). Therefore, its theoretical
results and empirical efficiency are not applicable to data valuation (as empirically demonstrated in
Sec. 5.1).

To this end, building on Réda et al. (2021), we propose our GPGapE algorithm to identify top-m
data values, which uses the Gaussian process (GP) (Seeger, 2004) to model highly complex and
non-linear functions (Seeger, 2004; Bui et al., 2016), i.e., the mapping of data features to data values.
We theoretically analyze the correctness of GPGapE in identifying an (ε, δ)-approximation to the
top-m data values and provide a worst-case upper bound on the stopping iteration (i.e.,O(n logd+1 n)
where d is the dimension of the GP input).

On the other hand, the diminishing return of data in ML models has been observed in real-world
datasets (Beleites et al., 2013; Mahajan et al., 2018). To elaborate, the improvement of model
performance (i.e., marginal contribution) is less when adding a data point to a large dataset compared
to a small one (see Fig. 1). The exact data values require computing the marginal contributions to
data subsets of all sizes (including the large ones). Therefore, repeated model trainings on large data
subsets are performed, but contribute little to the final data values since the magnitudes of these
marginal contributions tend to be small. Existing work (Ghorbani & Zou, 2019) accelerates data
value approximation by discarding the marginal contributions to large data subsets. However, it is
unclear how to utilize this observation to accelerate the top-m data values identification. We propose
to define the data values on small subsets and draw a connection between the top-m data values on
small subsets identification and the top-m data values identification. Empirical results show that this
approach improved GPGapE by 16 .5× in query efficiency w.r.t. marginal contributions (see Table 1)
and 1 .91× in running time (see Table 2). Overall, GPGapE achieves up to 50× better in query
efficiency (see Table 1) compared to existing approaches in achieving the same quality of top-m data
values identification. Our contributions are:

• Proposing the GPGapE algorithm that uses the Gaussian process to effectively model the function
mapping data features to data values to identify top-m data values.

• Analyzing the correctness of GPGapE in getting an (ε, δ)-approximation and establishing a
near-linear upper bound of stopping iteration.

• Defining data values on small subsets and drawing its connection to top-m identification of the
original data values which is used to further accelerate our GPGapE.

• Empirically showing that GPGapE outperforms other data value approximations in top-m data
values identification, noisy data detection, and data subset selection.

2 SETTING AND PRELIMINARIES

2.1 DATA VALUATION AND SHAPLEY VALUE

The most adopted definitions of data values use SV (Ghorbani & Zou, 2019) and its variants (e.g.,
Banzhaf value (Wang & Jia, 2023) and other semivalues (Kwon & Zou, 2021)) since they provide
desirable properties (e.g., symmetry, strict desirability (Ghorbani & Zou, 2019; Sim et al., 2020)).
Denote an index set as N := {1, 2, . . . , n} and a dataset DN := {zi}i∈N where zi := (xi, yi) is a
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data point with xi ∈ X , yi ∈ Y . SV for a data point zi is:

φi :=

n∑
l=1

w(l)

n

∑
S⊆N\{i}
|S|=l−1

[U(S ∪ {i})− U(S)] (1)

where w(l) = 1/
(
n−1
l−1

)
and U : 2N 7→ R is a utility function. Specifically, U(S) measures the utility

of the data subset DS , S ⊆ N and is usually defined as the validation performance of the model
trained on data subset DS (Ghorbani & Zou, 2019). Put simply, SV of zi is a weighted average of its
marginal contributions (i.e., U(S ∪ {i})− U(S)) to different data subsets DS .

Probabilistic formulation of SV. SV defined in Equ. (1) can be rewritten as:

φi = ES∼Pw [U(S ∪ {i})− U(S)] (2)

where Pw is a discrete distribution over S ⊆ N \ {i} with the probability of S being sampled as
w(|S|+1)

n . Therefore existing works apply Monte-Carlo (Maleki et al., 2013; Ghorbani & Zou, 2019)
to approximate SV. The semivalue is defined as any w(l) that satisfies

∑n
l=1

(
n−1
l−1

)
w(l) = n. Some

works define data values using other semivalues (Kwon & Zou, 2021; Wang & Jia, 2023), but we
restrict our discussion to SV and thus use SV and data value interchangeably for simplicity. Our
approach is applicable to all semivalues with minor changes.1

2.2 SETTINGS

We assume that the data value of zi is labeled by a function f : X × Y → R mapping data points to
data values, i.e., f(zi) = φi. For notational simplicity and w.l.o.g., we arrange data points such that
φ1 ≥ φ2 ≥ · · · ≥ φm > φm+1 ≥ φm+2 ≥ · · · ≥ φn. We assume that φm > φm+1 to guarantee
the uniqueness of the exact top-m data values. Since data value is the expectation of marginal
contributions (i.e., U(S ∪ {i})− U(S)), we view a marginal contribution as a noisy observation of
the data value φi. Specifically, at each time step t we select a data point zt := zi to query its marginal
contribution: U(S ∪ {i})− U(S) = f(zi) + ηt where the randomness of noise ηt comes from the
random sampling of the subset S from Pw at time t. Denote S∗,εm := {a ∈ N : φa ≥ φm − ε} which
contains no less than m elements. Denote S∗m := S∗,0m as the top-m data values. Denote the output of
an algorithm as Ŝm.

Definition 2.1 ((ε, δ)-approximation to the top-m data values). 2 An algorithm gives an
(ε, δ)-approximation to top-m data values if its output Ŝm satisfies Ŝm ⊆ N, |Ŝm| = m, and
P(Ŝm ⊆ S∗,εm ) ≥ 1− δ.

Our objective is to obtain an (ε, δ)-approximation to the top-m data values with as few marginal
contributions (i.e., queries) as possible to reduce the computational cost of model training.

Gaussian process (GP) Let k(·, ·) be a kernel function. Assume the initial prior distribution for
a function f over the dataset D ⊂ Rd for GP is GPD(0, v2k(·, ·)) where v is a scaling parameter.
Given query points (z1, z2, . . . , zt) in domain D with observations y′1:t = [y′1, . . . , y

′
t]
T , vector

kt(z) = [k(z1, z), . . . , k(zt, z)]
T , matrix Kt = [k(zi, zj)]

t
i,j=1, and noise parameter λ for GP, the

posterior over g at iteration t is GPD(µt(·), v2kt(·, ·)), where

µt(z) := kt(z)
T (Kt + λI)−1y′1:t, kt(zi, zj) := k(zi, zj)− kt(zi)T (Kt + λI)−1kt(zj) . (3)

The GP model is shown to be able to model complex functions with different selections of the kernel
function k(·, ·) and is a key component in our GPGapE algorithm.

R-sub-Gaussian The distribution of a random variable X is R-sub-Gaussian if E[eαX ] ≤
exp((α2R2)/2),∀α ∈ R.

1This is achieved by adjusting the sampling probability to w′(|S|+1)
n

, where w′(·) specifies the semivalue.
2The randomness can be from the algorithm or the random sampling of marginal contributions.
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3 RELATED WORKS

SV and data value approximation. Existing works have proposed several approaches to directly
approximate SV. For example, the works of Maleki et al. (2013); Ghorbani & Zou (2019)
propose a Monte-Carlo-based SV approximation. Other similar sampling-based approaches are
proposed (Castro et al., 2017; Okhrati & Lipani, 2021; Mitchell et al., 2022). The work of Covert
& Lee (2021) proposes a regression-based SV approximation and Li & Yu (2023) further improves
upon it. The work of Kolpaczki et al. (2024) proposes an SV approximation without dependency on
marginal contributions. Some other works approximate data values using specific characteristics of
ML. Specifically, the works of Jia et al. (2019a); Wang et al. (2023); Castro et al. (2017) propose
model-specific approximations to data values. However, they are only applicable to the k-nearest
neighbor model (or its variants). The work of Jia et al. (2019b) proposes a group testing-based data
value approximation. However, its theoretical result is w.r.t. the l2 norm approximation to SV under
bounded utility assumption which is not applicable here. In general, these works approximate data
values directly and hence their efficiency in identifying top-m data values is unclear, which we will
show in Sec. 5. Some other data value approximations rely on utility approximation (Wang et al.,
2021; Wu et al., 2022), and hence are complementary with our work since they can be used to further
accelerate our GPGapE.

Top-m SVs identification. The work of Suri & Narahari (2008) proposes to identify the top-m
nodes in social network via identifying top-m SVs. However, they use Monte-Carlo approximation
which is not effective. The work of Kolpaczki et al. (2021) first proposes to identify top-m SVs
using MAB. However, it is not for identifying top-m data values and hence does not use the data
features, failing to identify the top-m data values efficiently (see Sec. 5). Our work is the first to study
the problem of top-m data values identification and propose the GPGapE algorithm that uses data
features with theoretical analysis.

Multi-armed bandits (MAB). The majority of MAB works consider the best arm
identification (Camilleri et al., 2021; Zhu et al., 2021) instead of top-m arms identification. The work
of Kalyanakrishnan & Stone (2010); Kalyanakrishnan et al. (2012) explore the extension of best arms
identification to top-m arms identification and recent work (Réda et al., 2021) has improved the query
efficiency by considering top-m arms identification in linear bandit. However, the work of Réda et al.
(2021) requires the linear assumption between arm features and rewards, hence making its theoretical
results and empirical efficiency not applicable to data valuation (see Sec. 5). The work of Mason et al.
(2022) studies the level set estimation problem which aims to find arms with rewards more than a
specific value, hence a different problem from our top-m data values identification. Our work extends
the work of Réda et al. (2021) by using GP to model the underlying mapping function to better utilize
the data features for top-m data values identification and obtain new theoretical results.

4 TOP-m DATA VALUES IDENTIFICATION

We will describe our GPGapE algorithm and its theoretically analysis in Sec. 4.1. After that, we will
discuss how to further accelerate the top-m data values identification by defining the data values on
small subsets and drawing the connection between identifying top-m data values on small subsets
and top-m data values in Sec. 4.2.

4.1 GPGAPE ALGORITHM

We introduce the GPGapE algorithm, an adaptation of the top-m linear bandit algorithm (i.e.,
m-LinGapE (Réda et al., 2021)) to use the Gaussian process (GP) to model the function mapping
data features to data values, replacing the original linear model.

Our GPGapE requires the gap index, which is an upper confidence bound on the difference of data
values between two data points. Specifically, denote the true gap of the data values between two data
points zi and zj as G(zi, zj) := φi − φj and its estimates at time t as Ĝt(zi, zj) := µt(zi)− µt(zj).
Denote σ2

t (z) := kt(z, z). The gap index Bt(zi, zj) is defined as:

Bt(zi, zj) := Ĝt(zi, zj) + Cδ,tWt(zi, zj), Wt(zi, zj) :=
√
σ2
t (zi) + σ2

t (zj)− 2kt(zi, zj) (4)
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whereCδ,t is a weighting parameter discussed in Theorem 4.1. Intuitively, Ĝt(zi, zj) is the estimation
of the gap of two data values φi and φj using the GP posterior mean in time t and Wt(zi, zj) is the
standard deviation of the gap estimate. Therefore, the gap index is an upper confidence bound of
the gap between φi and φj . The gap index is crucial in the design of our algorithm when actively
finding the next data point to compute its marginal contributions. Define Gi := φi − φm+1 if i ≤ m,
φm − φi otherwise. Denote argmax

[m]
j∈N µt(zj) the indices in N with top-m µt(zj). Denote the

stopping iteration for GPGapE as τδ , the pseudo-code for GPGapE is in Algorithm 1.

Algorithm 1 GPGapE for top-m data values identification

input {zi}i∈N : Data points to be evaluated; ε: Stopping threshold; m: Number of largest data values
to be identified; δ: Parameter for Cδ,t; U : 2N → R, utility function; λ: Noise parameter for GP.

1: t← 0
2: repeat
3: t← t+ 1
4: Select candidate set for top-m data values: J(t)← argmax

[m]
j∈N µt−1(zj)

5: bt = argmaxj∈J(t) maxi/∈J(t)Bt−1(zi, zj)

6: ct = argmaxa/∈J(t)Bt−1(za, zbt)

7: Decide the data point to query its marginal contribution: at = argmaxi∈{bt,ct} σt−1(zi)

8: y′t = U(S ∪ {at})−U(S) where U(S) is obtained by training a ML model on a sampled DS

9: Update GP with data feature-marginal contribution pairs {(za1 , y′1), ..., (zat , y′t)} (see Equ. (3))
10: τδ ← t
11: until Bt(zct , zbt) ≤ ε
12: return The identified top-m data values: Ŝτδm ← argmax

[m]
j∈N µt(zj)

To elaborate, at time t, we select the top-m data points with the largest GP posterior mean as the
candidate set J(t) (in line 4 of Algorithm 1). After that, we find bt ∈ J(t) and ct ∈ N \ J(t) such
that Bt(zct , zbt) is maximized. Intuitively, Bt(zct , zbt) is the upper confidence bound of φct − φbt .
A larger Bt(zct , zbt) means that zct potentially has a high data value but has not been selected
in J(t) and hence challenges the potentially low data value data point zbt from the candidate set
J(t). Therefore, more marginal contributions are needed for these two data points (decided by the
GP posterior variance in line 7) to get more information for improving candidate set J(t). The
subset S ⊆ N \ {at} is sampled from Pw (described in Sec. 2). GP posterior is updated using the
data feature-marginal contribution pairs {(za1 , y′1), . . . , (zat , y′t)} and hence is able to model the
function mapping from data points to data values. Our GPGapE stops when the stopping condition
holds and outputs Ŝτδm as the identified top-m data values. We theoretically show that Ŝτδm is an
(ε, δ)-approximation to top-m data values under the stopping condition in Algorithm 1.

Theorem 4.1 (Correctness of GPGapE). Assume that {ηt}∞t=1 are R-sub-Gaussian. Let k(·, ·) be a
positive-semidefinite kernel function and let δ ∈ (0, 1]. Assume that f is a member of the reproducing
kernel Hilbert space (RKHS) corresponding to the kernel function k with RKHS norm bounded by B.
With probability at least 1− δ, the output of our GPGAPE algorithm (when the stopping condition
holds) satisfies Ŝτδm ∈ S∗,εm when the parameter Cδ,t = B +R

√
2(γt + 1 + ln(1/δ)) where γt is the

maximum information gain (Srinivas et al., 2010) after t steps and the parameter λ in GP is set to be
1 + 2/τδ .

The proof is in Appendix C. Our assumption on {ηt}∞t=1 is reasonable under data valuation.
Specifically, the distribution of the marginal contribution is sub-Gaussian when U is validation
accuracy. To elaborate, for a bounded random variable within [a, b], the variable is
b−a
2 -sub-Gaussian (Arinaldo, 2018). In our case, the marginal contribution is the random variable,

and the utility function outputs are within [0, 1] when it is validation accuracy. Since the marginal
contribution is the difference between two evaluations of the utility function, it will be within [−1, 1].
Consequently, the distribution of marginal contribution defined by validation accuracy is trivially
1-sub-Gaussian. Since ηt = U(S ∪ {at})− U(S)− f(zat) (i.e., marginal contribution shifted by a
constant mean), it is also sub-Gaussian when the marginal contribution is sub-Gaussian. Moreover,
even if other utility functions (e.g., negative cross-entropy loss for classification) are used, which are
not necessarily bounded, our result holds as long as the marginal contribution is sub-Gaussian.
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As for the assumption for the mapping function f , when k(·, ·) is specified as a non-linear kernel
function (e.g., radial basis function kernel, Matérn kernel), the function that lives in its corresponding
RKHS can be highly non-linear and complex. Moreover, existing works have shown that f in RKHS
specified by some special kernels, the outputs of GP resemble NN outputs (Arora et al., 2019).
Therefore, our GPGapE is applicable to highly complex functions. As a result, our theoretical result
is not restricted to linear functions as in Réda et al. (2021). We provide more detailed discussions and
empirical verifications on why GP is a good design choice for modeling the function mapping from
data features to data values in Appendix A. Let R+ denote the set of positive real values.
Theorem 4.2 (Upper bound of the stopping iteration τδ). Given that the assumptions in Theorem 4.1
hold, with probability at least 1− δ, the stopping iteration τδ of our GPGapE algorithm satisfies

τδ ≤ inf{u ∈ R+ : u > 1 +
∑
a∈N

12C2
δ,u/max(ε,

ε+Ga
3

)2} . (5)

The proof of Theorem 4.2 is in Appendix C. From Equ. (5), if Ga is large for all a ∈ N , a smaller
u is needed for the inequality to hold. Consequently, fewer iterations are needed for the algorithm
to learn an (ε, δ)-approximation to the top-m data values. Intuitively, large Ga means that all other
data values are very far away from the m-th and (m+ 1)-th data values, making it easier to identify
the top m-data values. On the other hand, from Equ. (5), a better approximation (i.e., a smaller ε)
requires performing more iterations of the algorithm.
Proposition 4.3 (Query complexity of GPGapE). Let D ⊂ Rd (defined in Sec. 2) be compact and
convex. Assume that the kernel function satisfies ∀z, z′, k(z, z′) ≤ 1. Given that the assumptions
in Theorem 4.1 hold, τδ = O(n log n) if k is the linear kernel function and τδ = O

(
n logd+1(n)

)
if

k is the radial basis function (RBF).

The proof is in Appendix C. Proposition 4.3 gives the query complexity of our GPGapE w.r.t. # data
points n. Note that since we only evaluate the utility function once in each iteration, the stopping
iteration equals the number of total queries to utility functions. It shows that our algorithm is efficient
with a near-linear complexity in the worst case (O

(
n logd+1(n)

)
when RBF is used). Note that

in Theorem 4.2, the upper bound is problem-dependent. Put differently, it studies how changes in the
parameters, ε,Ga, for the problem itself affect the efficiency of our algorithm. While Proposition 4.3
does not focus on problem-dependent parameters (by bounding them with some constants) and gives
a result on how the query complexity scales w.r.t. n. We empirically verify the efficiency of our
GPGapE in Sec. 5.

4.2 ACCELERATION BY QUERYING MARGINAL CONTRIBUTIONS ONLY ON SMALL SUBSETS
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Figure 1: Diminishing return of adding a randomly selected data point i to the data subset when the
size of the data subset increases. Marginal contributions are computed via the validation accuracy
(details in Appendix A).

ML models are known to have diminishing returns (Beleites et al., 2013; Mahajan et al., 2018),
meaning that adding new data to a larger dataset will have a lower benefit (e.g., a lower increase in
model accuracy) than adding the same data to a smaller dataset. We exploit this property to further
accelerate our GPGapE. Specifically, we denote ∆l

i := ES⊆N\{i},|S|=l−1[U(S ∪ {i}) − U(S)]
which is the expected marginal contribution of the data point zi to (l − 1)-sized data subsets. SV
can be rewritten as φi = n−1

∑n
l=1 ∆

l
i. In this case, SV is computed as the average of expected

marginal contribution ∆l
i over different sizes of S. Empirically (see Fig. 1), we observe that |∆l

i| is
monotonically decreasing w.r.t. l and ∆l

i will be close to 0 when S is large. This inspires us to define:

φi(p) := (1/p)
∑p
l=1 ∆

l
i (6)
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where p ≤ n. φi(p) only averages the marginal contributions to data subsets with sizes no larger than
p (i.e., data value on small subsets).

Assumption 4.4. Assume that ∃p ∈ N such that |∆l
i| ≤ ε′,∀l ∈ {p, . . . , n},∀i ∈ N .

Assumption 4.4 assumes that the return |∆l
i| of a data point i be less than ε′ when the size of the data

subset l is larger than p. Note that this does not require the return to be monotonically decreasing
w.r.t. l but just not exceed a certain value after a certain size. Consequently, this assumption is looser
than the diminishing return, making it easier to hold empirically. We draw the following connection
given the assumption above holds:
Proposition 4.5 (Connection between the top-m identification of {φi}i∈N and top-m identification
of {φi(p)}i∈N ). Given that Assumption 4.4 holds, an (np ε−

2(n−p)
p ε′, δ)-approximation of top-m

of {φi(p)}i∈N is an (ε, δ)-approximation of top-m of {φi}i∈N .
Remark 4.6. When ε′ is approaching 0, it seems that the former problem becomes easier than the
latter since n

p ε ≥ ε. This is because the magnitude of the {φi(p)}i∈N is larger than the {φi}i∈N
in general. On the other hand, when ε′ ≤ ε/2, np ε−

2(n−p)
p ε′ is monotonically decreasing w.r.t. p.

This implies that a smaller p will make the problem easier (due to higher np ε−
2(n−p)

p ε′) while still
maintaining its equivalence to an (ε, δ)-approximation of {φi}i∈N .

The proof for Proposition 4.5 is in Appendix C. From Proposition 4.5, we can run our GPGapE
on identifying top-m of {φi(p)}i∈N to obtain an (ε, δ)-approximation of {φi}i∈N , meaning that
only marginal contributions for small datasets are required. Specifically, for a data point zat , a data
subset DS ⊆ DN \ {zat}, |DS | ≤ p is sampled with probability w(|S|+1)

p in line 7 of Algorithm 1.
The training time complexity of the ML model is usually O(n2) (e.g., kernelized support vector
machine) and O(n3) (e.g., kernel ridge regression). Therefore, the expected time complexities of
computing marginal contribution are O(n2) and O(n3) respectively. This implies that if p is selected
as ⌊n/10⌋, the expected time complexity will potentially be reduced by 100× and 1000× respectively.
Surprisingly, as we will see in Sec. 5, with the same number of marginal contribution computations,
querying marginal contributions on small subsets will not only reduce the running time but also
perform better than the original GPGapE algorithm.

5 EXPERIMENTS
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Figure 2: Recall of top-m data values using different approximation approaches.

We demonstrate the effectiveness of GPGapE through experiments on top-m data values identification
(Sec. 5.1), noisy data detection (Sec. 5.2) (Wang et al., 2020; Schoch et al., 2022), and data subset
selection (Sec. 5.3) (Ghorbani & Zou, 2019; Ghorbani et al., 2022).

Baselines. 3 (a) MC, the Monte-Carlo sampling approach (Castro et al., 2009; Ghorbani & Zou,
2019). (b) Owen, a multi-linear extension approach (Owen, 1972; Okhrati & Lipani, 2021). (c)
Sobol, a permutation sampling approach using the Sobol sequence (Mitchell et al., 2022). (d)
Stratified, a stratified sampling approach (Castro et al., 2017). (e) KernelSHAP, a regression-based
approach (Covert & Lee, 2021). (f) GapE, MAB algorithm from Kolpaczki et al. (2021). (g) BUS,

3We do not compare with Jia et al. (2019b) here as they do not publicize their codes. We provide a separate
comparison with our implementation of Jia et al. (2019b) in Appendix B.
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MAB algorithm from Kolpaczki et al. (2021). (h) m-LinGapE, linear bandit algorithm (Réda et al.,
2021). (i) GPGapE, our approach in Algorithm 1. (j) GPGapE-Small, GPGapE accelerated by
querying marginal contributions on small subsets.

5.1 TOP-m DATA VALUES IDENTIFICATION

Game with easy-to-compute closed-form SV. A game with easy-to-compute closed-form SV
is needed to inspect the quality of top-m data values identification for large datasets. Specifically,
to inspect the quality of top-m data values identification, we need the ground truth top-m SV.
However, knowing the exact top-m SV for a dataset with a large number of data points (e.g., 10k)
is computationally infeasible since n! of model training is required. We propose to define a game
with a utility function specific to ML which enables us to derive an easy-to-compute closed-form
SV. Denote g : X × Y → Rd′ a function mapping a data point zi into a d′-dimensional latent space.
Denote DV as the validation dataset. We define the following utility function:

U(S) := 1
|DV |

∑
zi∈DV

1
(
g(zi) ∈M(DS , ε)

)
, M(DS , ε) :=

⋃
zj∈DS

{z′ ∈ Rd : ρ(z′, g(zj)) ≤ ε} (7)

where 1() is the indicator function and ρ(·, ·) is a distance measure. To elaborate, M(DS , ε) is the
union of closed ε-balls defined by each data point in DS . U(S) is the fraction of data points (in
the validation dataset) within the union of ε-balls formed by DS . Intuitively, if zi in the validation
dataset is within an ε-ball defined by a training data point zj , the model trained on the dataset with
zj is more likely to predict the label of zi correctly. Therefore, the utility function here means how
well the training dataset can generalize to the validation dataset and is similar to “coverage” from
existing active learning works (Joshi et al., 2012; Katragadda et al., 2022) which show that “coverage”
is predictive of model performance.

Denote D′
V = {zj ∈ DV |∃zk ∈ DN , ρ(g(zk), g(zj)) ≤ ε}. With the utility specified as Equ. (7):

φi = 1/|DV |
∑

zj∈D′
V

1

(
ρ
(
g(zj), g(zi)

)
≤ ε

)
/|{zk ∈ DN : ρ

(
g(zk), g(zj)

)
≤ ε}| . (8)

This result is derived using the axioms of SV (see Appendix C). We can now obtain the exact SV
efficiently (i.e., with a complexity of O(|DN ||DV |)) to examine the quality of the top-m data values
identified by different approaches. Note that the design of this game is to benchmark the performance
of different approaches. We also consider other scenarios without access to ground truth SV and use
other evaluation metrics in Sec. 5.2 and Sec. 5.3.

We perform experiments on top-m data values identification with closed-form SV. We use the MNIST
dataset with 10k data points in the training dataset and 10k data points in the validation dataset.
We train an NN with a three-layer multilayer perception (MLP). For a data point z, we use the last
hidden layer representation of the NN as g(z) in Equ. (7). We also use the same representation as
the data point features used in our GP to update the GP posterior. We use the RBF kernel for GP
and follow Lemma C.7 to set Cδ,t = 1 +

√
(ln t)d+1 (i.e., the same scale as the theoretical Cδ,t

w.r.t. t). Empirically, we update the GP posterior every 100 queries to marginal contributions to save
computation. We set p = ⌊0.1n⌋ in GPGapE-small.

We use recall of ground truth top-m data values S∗m as the metric to evaluate the performance of
different approaches. Fig. 2 shows that the recall of GPGapE increases quickly with only a few
queries to the marginal contributions in the beginning while the recall for other approaches (e.g.,
KernelSHAP and Owen) improves very slowly. MC achieves better recall compared to KernelSHAP
and Owen. Sobol achieves slightly better performance than MC. This is because Sobol is able to
sample more diverse permutations, hence improving the sampling efficiency (Mitchell et al., 2022).
Stratified sometimes performs better than Sobol while not in some others. Note that Stratified will
focus on sampling different strata at different stages. When it samples the marginal contributions
on large subsets, the data values approximation quality improves marginally, and vice versa (as we
discussed in Sec. 4.2). Our GPGapE and GPGapE-Small perform better than all other baselines.
Table 1 shows the query efficiency by different approaches to achieve the same recall, GPGapE-Small
achieves the same recall as other baselines with 50× fewer queries when m = 1000. GPGapE-Small
performs better than GPGapE with smaller computational costs (see Table 1 and Table 2).

Fig. 3 shows the frequency of being queried for different data points by our GPGapE. The data
points around the ground-truth m-th valued data point are queried more frequently than other data

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 5000 10000
Rank index

0

500

1000

# 
qu

er
ie

s m=1000

0 5000 10000
Rank index

0

200

400

# 
qu

er
ie

s m=3000

0 5000 10000
Rank index

0

200

400

# 
qu

er
ie

s m=5000

0 5000 10000
Rank index

0

500

# 
qu

er
ie

s m=7000

Figure 3: # queries for different data points of GPGapE. Data points are ranked by ground truth SV
(high to low from left to right). Vertical dashed line is the position of the m-th largest SV.

points and the frequency drops when a data point is further away from the m-th valued data point in
ranking. It means our algorithm does not waste the query budget on non-ambiguous data points as
other approaches (e.g., MC). Instead, GPGapE samples marginal contributions around the ground
truth m-th valued data point adaptively, thus achieving better query efficiency.
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Figure 4: Precision under different ε for GPGapE.
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Figure 5: Recall of top-m data values using
GPGapE and other bandit algorithms.

Fig. 4 shows the precision of top-m data values identified by GPGapE under different ε where
Precision = |Ŝ∗

m ∩ S∗,ε
m |/|Ŝ∗

m|. When ε is higher, GPGapE converges faster, aligning with our
analysis in Theorem 4.2. Fig. 4 also shows that GPGapE can terminate with an (ε, δ)-approximation
in a finite step since the precision reaches 1.0.

Comparison with other existing bandit algorithms. We perform experiments on comparing
GPGapE with existing top-m arms identification algorithms. Fig. 5 shows that m-LinGapE
outperforms GapE and BUS when few queries are made. This is because m-LinGapE uses arm
features to model the mapping function from data features to data values while GapE and BUS do
not (Réda et al., 2021). GPGapE performs significantly better than all existing bandit algorithms
including m-LinGapE. This is because m-LinGapE assumes a linear relationship between arm
features and rewards which is not applicable in data valuation. This is especially true when the dataset
used is highly complex (e.g., image dataset here). Consequently, the data values approximated by
m-LinGapE are not accurate which directly leads to poor performance. We provide an additional
comparison with m-LinGapE in the simulated scenario in which the simulated mapping function is
linear in Appendix B.

5.2 NOISY DATA DETECTION
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Figure 6: Recall of top-m data values by different approaches in noisy data detection for logistic
regression (row 1) and NN (row 2). More results in Appendix B.
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Figure 7: Validation accuracy of the data subset specified by top-m data values by different approaches
for logistic regression (row 1) and NN (row 2). More results in Appendix B.

We perform noisy data detection on MNIST, FashionMNIST, and CIFAR10. Specifically, we select 3k
data points from each dataset to perform top-m identification. We consider the logistic regression and
NN models. For NN, we use a two-layer MLP for MNIST and FashionMNIST, and a convolutional
neural network (CNN) with two convolutional layers followed by a three-layer MLP. We specify
U(S) as the validation accuracy of the model trained on DS (Ghorbani & Zou, 2019; Wu et al., 2022).
We select 500 data points in each dataset to add Gaussian noise N (0, 2) to the images as the noisy
data. We identify lowest-m data values (by taking the negative of marginal contributions in GPGapE)
instead to detect noisy data since the noisy data are expected to have low data values. We use the
recall of the noisy data points as the evaluation metric. From Fig. 6, GPGapE and GPGapE-small get
the best performance on all datasets and models. Note that slow increase of recalls for other baselines
makes their lines flat (see Fig. 12 with more queries). We update the GP posterior every 10 queries to
save computation. We use principal component analysis to reduce the images to 32 dimensions as the
data points features used in GP for logistic regression model and the last hidden representation of NN
as the data points features used in GP for NN model. We set p = ⌊0.3n⌋ in GPGapE-small. More
details in Appendix A.

5.3 DATA SUBSET SELECTION

We perform experiments using top-m data values to select a data subset of size m. We follow the
same setting as Sec. 5.2 (i.e., datasets, models, and utility function). We use the validation accuracy
on the data subsets specified by the top-m data values from the different approaches as the evaluation
metric. Fig. 7 shows that our GPGapE and GPGapE-Small perform the best among all approaches.

6 CONCLUSION AND LIMITATION

We propose the GPGapE algorithm for top-m data values identification. We theoretically demonstrate
the correctness of GPGapE and analyze its stopping iteration. Moreover, we exploit the diminishing
return of ML models and hence propose to further accelerate our GPGapE by sampling marginal
contributions on small data subsets. We empirically show the effectiveness of our GPGapE in top-m
data values identification, noisy data detection, and data subset selection on multiple real-world
datasets. Of note, further improvements can still be made to our algorithm: 1) Better selection of data
point features for GP in our GPGapE; 2) Approximate the utility function to further accelerate our
algorithm. However, these are not the focus of our work and can be explored in future works.

7 REPRODUCIBILITY STATEMENT

The source code for our experiments is included in the supplemental materials to ensure reproducibility.
Details of datasets, computational resources, and hyper-parameters are provided in Appendix A.
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A ADDITIONAL DETAILS ON EXPERIMENT SETTINGS

A.1 LICENSE FOR DATASETS

MNIST (LeCun et al., 1990): Attribution-Share Alike 3.0 License; CIFAR10 (Krizhevsky, 2009):
MIT License; FashionMNIST (Xiao et al., 2017): MIT License.

A.2 COMPUTATIONAL RESOURCES

Experiments are run on a server with AMD EPYC 7763 64-Core Processor, 1008GB RAM, and 8
NVIDIA L40 GPUs.

A.3 ADDITIONAL DETAILS ON EXPERIMENTAL SETTINGS

Data and model training. For training the logistic regression model, we apply principal component
analysis (PCA) (Wold et al., 1987) on the training dataset to reduce the dimension to 32, hence
reducing the running time of each logistic regression training. We randomly sample 1k data points as
the validation dataset to further accelerate the utility evaluation (i.e., computation of model accuracy).
Note that the same validation dataset is given to different approaches. The recall of noisy data
detection is calculated based on the lowest-1000 data values identified by different approaches which
is not the same as the ground truth 500. This is to simulate real-world scenarios when we do not have
access to the number of noisy data points beforehand.

Hyper-parameters. For logistic regression, we set the number of principal components as 32. For
training MLP on MNIST, we set the learning rate to be 0.01, and the number of epochs to be 10. For
training MLP on FashionMNIST and CNN on CIFAR10, the learning rate is 0.001, and the number
of epochs is 30. We use a batch size of 200 and use Adam optimizer (Kingma & Ba, 2014) for all
NN training. We use the RBF kernel as the kernel function k for our GP. The length scale parameter
of RBF is searched over [0.5, 1, 10] and the noise parameter λ = [1, 5, 10]. We randomly select 100
data points to query one marginal contribution to initialize the GP posterior. Note that this is included
in our query budget.

Experimental setting for Fig. 1. To examine the diminishing return of machine learning
model (Beleites et al., 2013; Mahajan et al., 2018), we compute the expected marginal contribution
for data subsets of different sizes. Specifically, we perform our experiments on MNIST, CIFAR10,
and FashionMNIST. For each dataset, we randomly select 25 data points from the original dataset to
inspect their marginal contributions to different sizes of data subsets. For a fixed data subset size l,
we randomly select 30 data subsets with size l from the original dataset to approximate the expected
marginal contribution for a data point to size l data subsets. We range l from 0− 10k to obtain the
plot in Fig. 1. The results are averaged over these 25 selected data points.

A.4 ON THE RATIONALE OF CHOOSING GP TO MODEL THE DATA VALUE MAPPING FUNCTION

We provide theoretical and empirical justification on why similar data points will have similar Shapley
values.

Theoretical justification. The difference of Shapley value of i and j can be bounded by the distance
of the data point i and data point j according to the following:

Lemma A.1. (Xu et al., 2024, Lemma 6) For all i, j ∈ N ,
(
∀S ⊆ N \ {i, j}) |U(S ∪ {i}) −

U(S ∪ {j})| ≤ Ld(i, j)
)
=⇒ |ψi −ψj | ≤ ZLd(i, j) where L ≥ 0 is a constant and d(i, j) is some

distance measure between i and j, and Z is the linear scaling parameter.

The condition for the Lemma A.1 to hold is that if two data points i and j are similar in data space,
the performance of dataset S ∪ {i} and S ∪ {j} should be similar. This should be trivially true since
these two data points contribute similar information to the model (e.g., data from a specific subgroup
in the data space) and hence the model performance should be similar.
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Empirical justification. To give an empirical verification, we compute the distance of Shapley
value and the distance of data feature for randomly sampled data point pairs from the dataset. Fig. 8
shows that when the distance of the data feature increases, the distance of Shapley values also
increases, which validates the theoretical result above.

Figure 8: Shapley value distance and data feature distance for randomly selected data point pairs.
l − 2 norm is used as the distance measure.

Since similar data points have similar Shapley values, GP is a good design choice for modeling the
mapping function. Specifically, GP essentially uses the kernel-based method for prediction, and the
idea of kernel function is based on the belief that similar input should have similar function output.
Consequently, GP is a good choice for modeling the mapping function.

A.5 FAIRNESS PROPERTIES OF TOP-m DATA VALUES

Top-m data values are not only useful empirically in data subset selection and noisy data detection.
We show that the resulting data values defined by the identified top-m data values inherit several
fairness properties of the exact data values. We define the data values with the exact top-m data
values S∗m as:

φ
(m)
i =

{
U(N)/m, if i ∈ S∗m
0, if i /∈ S∗m

(9)

Proposition A.2 (Fairness properties of φ(m)
i ). Assume that we can arrange φ1 ≥ φ2 ≥ · · · ≥

φm > φm+1 ≥ φm+2 ≥ · · · ≥ φn for m ∈ {1, . . . , n − 1} (i.e., assuming the uniqueness of the
top-m data values) and U(N) > 0. φ(m)

i satisfies the following fairness properties:

• Efficiency.
∑
i∈N φ

(m)
i = U(N).

• Symmetry. (∀S ∈ N \ {i, j}, U(S ∪ {i}) = U(S ∪ {j})) =⇒ φ
(m)
i = φ

(m)
j .

• Strict m-th desirability. (∃B ∈ N \ {i, j}, U(B ∪ {i}) > U(B ∪ {j})) ∧ (∀C ∈
N \ {i, j}, U(B ∪ {i}) ≥ U(B ∪ {j}) ∧ (φj = φm+1) =⇒ φ

(m)
i > φ

(m)
j .

To elaborate, efficiency means that the utility obtained by the grand coalition N will be all allocated
to different participants (i.e., data points in our case). Symmetry means that two data points that
always have the same utility when added to different subsets S will get the same data value. Strict
m-th desirability means that if a data point contributes strictly more to a subset S than the data points
whose original data value φ is equal to the m+1-th data value and contribute no less in other subsets,
then it will receive strictly better value than data point with original data value as φm+1. These
fairness properties are useful for incentive mechanism designs in collaborative machine learning (Sim
et al., 2020; Tay et al., 2022).

B ADDITIONAL EXPERIMENTAL RESULTS

Table 1 shows the speedup of our GPGapE and GPGapE-Small when compared to other existing
data value approximation approaches. The setting is exactly the same as Fig. 2. We can see that
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m Best recall
by other approaches

# queries
other approaches

# queries
GPGapE

Speedup:
GPGapE

compared to
other approaches

# queries
GPGapE-Small

Speedup:
GPGapE-Small

compared to other approaches
(compared to GPGapE)

1000 0.441 1000k 330k 3.03× 20k 50.00×(16.50×)
3000 0.625 1000k 220k 4.55× 40k 25.00×(5.50×)
5000 0.750 1000k 380k 2.63× 100k 10.00×(3.80×)
7000 0.867 1000k 230k 4.35× 80k 12.50×(2.88×)

Table 1: Speedup in # of queries by our GPGapE and GPGapE-Small compared with other approaches.
The best recall in the second column is the best recall achieved by other approaches in 1000k queries.
The # queries show the number of queries that different approaches achieve this recall in the second
column, the lower the better. The speedup of GPGapE and GPGapE-Small is compared with other
approaches, the higher the better.

GPGapE-Small is 50× better in query efficiency than other existing data value approximation
approaches when m = 1000 and is 16.5× better than GPGapE in query efficiency when m = 1000.

Dataset Running time of GPGapE (mins) Running time of GPGapE-Small (mins) Speedup
MNIST 8.13(0.53) 4.89(0.48) 1.66×

CIFAR10 35.44(1.55) 18.53(0.41) 1.91×

Table 2: Speedup in the running time of our GPGapE-Small compared with GPGapE.

Table 2 shows the actual running time of GPGapE and GPGapE-Small on MNIST and CIFAR10
when NN is used when the same number of queries are used. Compared to GPGapE, GPGapE-Small
is 1.91× faster than GPGapE. This speedup will be more significant when p is set to a smaller value
and when the dataset or model is larger.
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Figure 9: Validation accuracy of the data subset specified by top-m data values by different approaches
for logistic regression (row 1) and NN (row 2).
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Figure 10: Validation accuracy of the data subset specified by top-m data values by different
approaches. The number of data points to be evaluated is 10k.
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Fig. 9 is a more complete version of Fig. 7 for data subset selection since it includes the results for
all datasets. Fig. 10 is the data subset selection results on a larger dataset with 10k data points for
logistic regression. Our GPGapE-Small still performs the best among all approaches.
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Figure 11: Recall of top-m data values by different approaches in noisy data detection for logistic
regression (row 1) and NN (row 2).

Fig. 11 is a more complete version of Fig. 6 for noisy data detection since it includes the results for
all datasets.
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Figure 12: Recall of top-m data values using different approximation approaches in noisy data
detection with 30k number of queries.

Fig. 12 is the result for the same setting as Fig. 6, except that it shows more iterations. As we can see
that the performance for other existing data value approximation approaches increases very slowly
compared to our GPGapE in Fig. 6.

Additional comparison with Jia et al. (2019b). We provide an additional comparison with the
group testing method (GroupTest) proposed in Jia et al. (2019b). Since the code of GroupTest is not
released, especially the solver used to solve the linear programming in GroupTests is not provided, we
use the most used solver provided by scipy library (i.e., scipy.optimize.linprog). However, since there
is n(n− 1) number of constraints, solving the programming for n = 10k (i.e. almost 100 million
constraints) takes a lot of time (i.e., 7 hours for the solving step alone), therefore, we are unable
to provide the progressive result in Fig. 2 which requires solving the programming after every new
query. Therefore, we provide the performance (i.e., recall) after all the queries are done in Table 3.

To also provide a progressive result as Fig. 2, we perform experiments on n = 1000 (since the
running time of the solver is manageable when n = 1000), the result is in Fig. 13.

Additional comparison with m-LinGapE algorithm. We provide an additional comparison with
m-LinGapE in the simulated scenario in which the function mapping from data feature to data
values is simulated to be a linear function. In this case, GPGapE is expected to perform similarly to
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m GroupTest GPGapE
1000 0.1170 0.2150
3000 0.2967 0.5130
5000 0.4940 0.6340

Table 3: Recall of top-m data values identified by GroupTest and GPGapE after 100000 queries for
n = 10k on MNIST dataset.

Figure 13: Comparison of our GPGapE and the GroupTest method in Jia et al. (2019b) on MNIST
dataset. The number of data points in the dataset is 1000.

m-LinGapE (which assumes linearity). This is because when GP uses the linear kernel function (i.e.,
k(x1, x2) = xT1 x2), GP posterior mean is exactly the closed-form of linear regression.

We use a linear function y = θTx where x, θ ∈ R10 to simulate the ground truth mapping function.
The number of data points x is 10k. Both x and θ are randomly sampled from the standard Gaussian.
A noise randomly sampled fromN (0, 1e− 4) is used to simulate the noisy observation. The result in
Fig. 14 shows that GPGapE performs similarly to m-LinGapE.

Figure 14: Comparison of our GPGapE and the m-LinGapE when the mapping function is a linear
function.

Note that in real data valuation scenarios, the linearity between the data features and the data values
usually does not hold and hence our GPGapE is able to outperform m-LinGapE in our top-m data
values identification experiments.

Additional investigation of the diminishing return for top-m data points. To investigate whether
the diminishing return is applicable for the data points with top-m data values, we plot the |∆l

i| w.r.t.
different sizes of data subset l for top-10 data points in the MNIST dataset in Fig. 15. The result
is consistent with Fig. 1. Note that for each individual point (Fig. 15 left), even though |∆l

i| is not
monotonically decreasing, the general trend is decreasing with minor ups and downs, which still
supports our assumption of ∃p ∈ N such that |∆l

i| ≤ ε′,∀l ∈ {p, . . . , n} for Prop. 4.5.
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Figure 15: Diminishing return of adding a top-m data point to the data subset when the size of the
data subset increases. The result for each individual top-m data point is on the left and the result for
the average (over top-m data points) is on the right. Marginal contributions are computed via the
validation accuracy (details in Appendix A).

C PROOFS FOR THE THEORETICAL RESULTS

C.1 PROOF FOR THEOREM 4.1

Our proof requires the following results from the existing work (Réda et al., 2021):

Definition C.1. (Réda et al., 2021, Definition 1) Let us denote

ξm := ∩
t>0

∩
j∈(S∗,ε

m )c
∩

k∈S∗
m

(Bt(zk, zj) ≥ φk − φj) .

A good choice of gap indices {Bt(zi, zj)}i,j∈N,t>0 satisfies P(ξm) ≥ 1− δ.

Lemma C.2. (Réda et al., 2021, Theorem 1) On the event ξm defined in Definition C.1, when
the stopping condition Bt(zct , zbt) ≤ ε holds with bt = argmaxj∈J(t) maxi/∈J(t)Bt−1(zi, zj) and
ct = argmaxa/∈J(t)Bt−1(za, zbt), Ŝ

τδ
m ⊆ S∗,εm .

We need to proof the following lemma first:

Lemma C.3. Assume that {ηt}∞t=1 are R-sub-Gaussian. Let k(·, ·) be a positive-semidefinite
kernel function and let δ ∈ (0, 1]. Assume that f is a member of the reproducing kernel Hilbert
space (RKHS) H corresponding to the kernel function k with RKHS norm bounded by B. The
{Bt(zi, zj)}i,j∈N,t>0 defined in Equ. (4) is a good choice of gap indices (i.e., P(ξm) ≥ 1− δ) when
the noise parameter λ is set to be 1 + 2/τδ and

Cδ,t = B +R
√

2(γt + 1 + ln(1/δ)) .

Proof. The proof is inspired by (Chowdhury & Gopalan, 2017). Define ψ(z) as a mapping function
where ψ : X × Y → H maps any data point z to the RKHS associated with k. For any two members
g, h ∈ H , define the inner product ⟨g, h⟩k as gTh and the RHKS norm ∥g∥k as

√
gT g. Since f is

a member of H , we can write f(z) = ⟨f, ψ(z)⟩k = fTψ(z). Define Ψt := [ψ(z1)
T , . . . , ψ(zt)

T ]T .
We have that the kernel matrix is Kt = ΨtΨ

T
t , kt(z) = Ψtψ(z). Since (ΨTt Ψt + λI)ΨTt =

ΨTt (ΨtΨ
T
t +λI) and they are both strictly positive definite, we have ΨTt (ΨtΨ

T
t +λI)

−1 = (ΨTt Ψt+
λI)−1ΨTt . From the definition, we have (ΨTt Ψt + λI)ψ(z) = ΨTt kt(z) + λψ(z). Hence we have

ψ(z) = (ΨTt Ψt + λI)−1ΨTt kt(z) + λ(ΨTt Ψt + λI)−1ψ(z) ,

which gives

ψ(z)Tψ(z) = kt(z)
T (ΨtΨ

T
t + λI)−1kt(z) + λψ(z)T (ΨTt Ψt + λI)−1ψ(z) .

This will give us

λψ(z)T (ΨTt Ψt + λI)−1ψ(z) = k(z, z)− kt(z)T (ΨtΨTt + λI)−1kt(z) = σ2
t (z) .

Similarly, we have

λψ(zi)
T (ΨTt Ψt + λI)−1ψ(zj) = k(zi, zj)− kt(zi)T (ΨtΨTt + λI)−1kt(zj) = k2t (zi, zj) .
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We observe that

f(z)− kt(z)T (Kt + λI)−1f1:t =ψ(z)
T f − ψ(z)TΨTt (ΨtΨTt + λI)−1Ψtf

=ψ(z)T f − ψ(z)T (ΨTt Ψt + λI)−1ΨTt Ψtf

=λψ(z)T (ΨTt Ψt + λI)−1f .

Hence we have that

|
(
f(zi)− kt(zi)T (Kt + λI)−1f1:t

)
−
(
f(zj)− kt(zj)T (Kt + λI)−1f1:t

)
|

=|λ(ψ(zi)− ψ(zj))T (ΨTt Ψt + λI)−1f |
≤∥λ(ΨTt Ψt + λI)−1(ψ(zi)− ψ(zj))∥k∥f∥k

=∥f∥k
√
λ(ψ(zi)− ψ(zj))T (ΨTt Ψt + λI)−1λI(ΨTt Ψt + λI)−1(ψ(zi)− ψ(zj))

≤B
√
λ(ψ(zi)− ψ(zj))T (ΨTt Ψt + λI)−1(ΨTt Ψt + λI)(ΨTt Ψt + λI)−1(ψ(zi)− ψ(zj))

=B
√
λ(ψ(zi)− ψ(zj))T (ΨTt Ψt + λI)−1(ψ(zi)− ψ(zj))

=B
√
λψ(zi)T (ΨTt Ψt + λI)−1ψ(zi) + λψ(zj)T (ΨTt Ψt + λI)−1ψ(zj)− 2λψ(zi)T (ΨTt Ψt + λI)−1ψ(zj)

=B
√
σ2
t (zi) + σ2

t (zj)− 2kt(zi, zj) .

Furthermore, we have that

|kt(zi)T (Kt + λI)−1η1:t − kt(zi)T (Kt + λI)−1η1:t|
=|(ψ(zi)− ψ(zj))TΨTt (ΨtΨTt + λI)−1η1:t|
=|(ψ(zi)− ψ(zj))T (ΨTt Ψt + λI)−1ΨTt η1:t|
≤
∥∥(ΨTt Ψt + λI)−1/2(ψ(zi)− ψ(zj))

∥∥
k

∥∥(ΨTt Ψt + λI)−1/2ΨTt η1:t
∥∥
k

=
√

(ψ(zi)− ψ(zj))T (ΨTt Ψt + λI)−1(ψ(zi)− ψ(zj))
√
(ΨTt η1:t)

T (ΨTt Ψt + λI)−1ΨTt η1:t

=λ−1/2
√
σ2
t (zi) + σ2

t (zj)− 2kt(zi, zj)
√
η1:tΨtΨTt (ΨtΨ

T
t + λI)−1η1:t

=λ−1/2
√
σ2
t (zi) + σ2

t (zj)− 2kt(zi, zj)
√
η1:tKt(Kt + λI)−1η1:t .

According to the previous two inequality derived with previous definition of y′t = f(zt)+ηt in Sec. 2,
we have

|
(
µt(zi)− µt(zj)

)
−(f(zi)− f(zj))|

=|
(
kt(zi)

T (Kt + λI)−1(f1:t + η1:t)− kt(zj)T (Kt + λI)−1(f1:t + η1:t)
)
−(f(zi)− f(zj))|

≤|
(
kt(zi)

T (Kt + λI)−1f1:t − kt(zj)T (Kt + λI)−1f1:t
)
−(f(zi)− f(zj))|

+ |kt(zi)T (Kt + λI)−1η1:t − kt(zj)T (Kt + λI)−1η1:t|
=|

(
f(zi)− kt(zi)T (Kt + λI)−1f1:t

)
−
(
f(zj)− kt(zj)T (Kt + λI)−1f1:t

)
|

+ |kt(zi)T (Kt + λI)−1η1:t − kt(zj)T (Kt + λI)−1η1:t|

≤
(
B + λ−1/2

√
η1:tKt(Kt + λI)−1η1:t

)√
σ2
t (zi) + σ2

t (zj)− 2kt(zi, zj) .

Let λ = 1 + ω where ω > 0. Let K = Kt + ωI and hence K is reversible, K(K + I)−1 =
((K + I)K−1)−1 = (I +K−1)−1. Replacing K = Kt + ωI , we have

(Kt + ωI)(Kt + (1 + ω)I)−1 = ((Kt + ωI)−1 + I)−1 .

By using the above equation, We have

η1:tKt(Kt + λI)−1η1:t ≤ η1:t(Kt + ωI)(Kt + (1 + ω)I)−1η1:t = η1:t((Kt + ωI)−1 + I)−1η1:t
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Using Theorem 1 from Chowdhury & Gopalan (2017), with probability at least 1− δ, ∀t > 0,∀z ∈
X × Y , we have

√
η1:t((Kt + ωI)−1 + I)−1η1:t ≤ R

√
2 ln

√
det((1 + ω)I +Kt)

δ

= R

√
2 ln

√
det(I + (1 + ω)−1Kt) det((1 + ω)I)

δ

= R
√

ln(det((1 + ω)I +Kt)) + t ln(1 + ω) + 2 ln(1/δ)

≤ R
√

2γt + ωt+ 2 ln(1/δ) .

We choose a small ω = 2/τδ where τδ is the termination iteration for the algorithm. Hence we get√
η1:t((Kt + ωI)−1 + I)−1η1:t ≤ R

√
2(γt + 1 + ln(1/δ)) .

Therefore, we have that with probability at least 1− δ, ∀t > 0,∀z ∈ X × Y , we have

|
(
µt(zi)−µt(zj)

)
−(f(zi)−f(zj))| ≤

(
B+R

√
2(γt + 1 + ln(1/δ))

)√
σ2
t (zi) + σ2

t (zj)− 2kt(zi, zj) .

Rearrange the above equation, we get:

φi−φj ≤ µt(zi)−µt(zj)+
(
B+R

√
2(γt + 1 + ln(1/δ))

)√
σ2
t (zi) + σ2

t (zj)− 2kt(zi, zj) = Bt(zi, zj)

whereBt(zi, zj) is defined withCδ,t =
(
B+R

√
2(γt + 1 + ln(1/δ))

)
. According to Definition C.1,

Bt(zi, zj) is a good choice of gap indices.

Proof of Theorem 4.1. Combining Lemma C.3 and Lemma C.2, we have that the output by GPGapE
Ŝτδm ∈ S∗,εm with probability at least 1− δ.

C.2 PROOF FOR THEOREM 4.2

We need the following results from the existing work (Réda et al., 2021):

Lemma C.4. (Réda et al., 2021, Lemma 4) In Algorithm 1, for any selection rule, on event
ξ := ∩

t>0
∩

i,j∈N
(G(zi, zj) ∈ [−Bt(zi, zj), Bt(zi, zj)]), with the form of Bt(zi, zj) = Ĝt(zi, zj) +

Wt(zi, zj), for all t > 0, Bt(zct , zbt) ≤ min(−max(Gbt , Gct) + 2Wt(zbt , zct), 0) +Wt(zbt , zct) .

Lemma C.5. (Réda et al., 2021, Lemma 6) Let T ∗ : N × (0, 1) × N∗ → R+ be a function that
is nondecreasing in t, and It is the set of pulled arms at time t. Let ξ be an event that for all
t < τδ, δ ∈ (0, 1),∃at ∈ It the number of arm pulls Nt(at) at time t for the arm at satisfies
Nt(at) ≤ T ∗(at, δ, t). Then it holds on the event ξ that τδ ≤ T (µ, δ) where

T (µ, δ) := inf{u ∈ R+ : u > 1 +
∑
a∈N

T ∗(a, δ, u)} .

We need to proof the following lemma first:

Lemma C.6. ∀t > 0, τδ > t,Nt(at) ≤ T ∗(at, δ, t), where at ∈ N is the index of a queried point at
time t and Nt(at) is number of queries done for at during time 1 : t, and

T ∗(at, δ, t) = 12C2
δ,tmax(ε,

ε+Gat
3

)−2 .

Proof. Since at the stopping iteration τδ we have

ε ≤ Bt(zct , zbt) ≤ min(−max(Gbt , Gct) + 3Wt(zbt , zct),Wt(zbt , zct)) .
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The inequality above is from Lemma C.4. Hence we have

max(ε,
ε+Gbt

3
,
ε+Gct

3
) ≤Wt(zbt , zct) = Cδ,t

√
σ2
t (zbt) + σ2

t (zct)− 2kt(zct , zbt)

≤ 2Cδ,tσt(zat)

(where at = max
a∈{bt,ct}

σt(za))

= 2Cδ,t

√
λψ(zat)

T (ΨTt Ψt + λI)−1ψ(zat)

= 2λ1/2Cδ,t∥ψ(zat)∥(ΨT
t Ψt+λI)−1

= 2λ1/2Cδ,t∥ψ(zat)∥(∑a∈N Nt(a)ψ(za)ψ(za)T+λI)−1

≤ 2λ1/2Cδ,t
∥ψ(zat)∥k√

Nt(at)∥ψ(zat)∥k

= 2λ1/2Cδ,t
1√

Nt(at)
.

Hence we have,

Nt(at) ≤
4λC2

δ,t

max(ε,
ε+Gat

3 )2

≤
12C2

δ,t

max(ε,
ε+Gat

3 )2
= T ∗(at, δ, t) .

The last inequality is because λ = 1 + 2/τδ ≤ 3 (see the proof for Theorem 4.1).

Proof of Theorem 4.2. Combining Lemma C.5 and Lemma C.6, we get the result that

τδ ≤ inf{u ∈ R+ : u > 1 + 12
∑
a∈N

max(ε,
ε+Ga

3
)−2C2

δ,u} . (10)

C.3 PROOF FOR PROPOSITION 4.3

Our proof relies on the following results:

Lemma C.7. (Srinivas et al., 2010, Theorem 5) Let D ⊂ Rd be compact and convex, denote the
dimension of z as d ∈ N. Assume that the kernel function satisfies ∀z, z′, k(z, z′) ≤ 1.

• If k is the linear kernel function: γt = O(d log t).

• If k is the RBF kernel function: γt = O
(
(log t)d+1

)
.

Lemma C.8. (Chatzigeorgiou, 2013, Theorem 1) The Lambert function W−1(−e−x−1) for x > 0 is
bounded as follows

−1−
√
2x− x < W (−e−x−1) < −1−

√
2x− 2

3
x .

Proof of Proposition 4.3. When k is the RBF kernel function, since γt = O
(
(log t)d+1

)
according

to Lemma C.7, we can find an c0 and a t0 such that when t ≥ t0, γt ≤ c0(ln t)d+1. We have:

C2
δ,t = (B +R

√
2(γt + 1 + ln(1/δ)))2

≤ (B +R
√
2((c0 ln t)d+1 + 1 + ln(1/δ)))2
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where recall that B is the upper bound for the norm of f and R is the parameter for the sub-Gaussian.
Denote M := maxa∈N (max(ε, ε+Ga

3 )−2). From Equ. (10), we have:

τδ ≤ inf{u ∈ R+ : u > 1 + 12
∑
a∈N

max(ε,
ε+Ga

3
)−2C2

δ,u}

≤ inf{u ∈ R+ : u > 1 + 12nC2
δ,uM}

≤ inf{u ∈ R+ : u > 1 + 12n
(
B +R

√
2
(
(c0 lnu)d+1 + 1 + ln(1/δ)

))2

M︸ ︷︷ ︸
O(n(lnu)d+1)

} .

We can see that the right-hand side of the inequality in the brackets is O(n(lnu)d+1). Therefore,
there exists a c1 > 0 and a t1 > 0 such that when u ≥ t1, we have the right-hand side of the inequality
in the brackets is no larger than c1n(lnu)d+1. Therefore, we have:

τδ ≤ inf{u ∈ R+ : u > c1n(lnu)
d+1}

= inf{u ∈ R+ :
u

(lnu)d+1
> c1n}

(11)

Let a function h(u) = u/(lnu)d+1. We have:

∂h(u)

∂u
=

ln(u)− (d+ 1)

lnd+2(u)
.

Therefore, when u < ed+1, h(u) is monotonically decreasing. When u ≥ ed+1, h(u) is monotonically
increasing. Since the upper bound the τδ is the minimum u such that h(u) > c1n (according
to Equ. (11)). Therefore, we have τδ ≤ ⌈τ ′⌉ where h(τ ′) = c1n and τ ′ > ed+1. Consequently, we
have:

ln(τ ′)d+1 = τ ′/c1n

ln(τ ′) = τ ′1/(d+1)/(c1n)
1/(d+1) .

Denote τ̃ := τ ′1/(d+1) (monotonically increasing w.r.t. τ ′). We have:

ln(τ̃ (d+1)) = τ̃ /(c1n)
1/(d+1)

(d+ 1) ln(τ̃) = τ̃ /(c1n)
1/(d+1)

ln(τ̃) = τ̃ /
(
(d+ 1)(c1n)

1/(d+1)
)

τ̃ = e
τ̃

(d+1)(c1n)1/(d+1)

Here, we introduce Lambert W function x = W (y), s.t. y = xex. Let y = −1/c and x = −x
′

c ,
we have that x′ = −cW (−1/c), s.t. 1 = −x′

ex′/c . Therefore, we have that τ̃ = −c2W (−1/c2) where
c2 = (d+ 1)(c1n)

1/(d+1). Since −1/2 ≤ −1/c2 ≤ 0 and according to (Chatzigeorgiou, 2013), W
has two real-valued branch W0 and W−1 and W0(x) ≥ −1 in this case. Therefore, if W = W0,
we have τ̃ ≤ −c2 ∗ (−1) = c2. In this case τ̃ = O(n1/(d+1)). Therefore, τ ′ = τ̃d+1 = O(n).
Consequently τδ = O(n). If W =W−1, according to Lemma C.8 where we let x = ln(c2)− 1, we
have:

W (−1/c2) > −1−
√

2(ln(c2)− 1)− (ln(c2)− 1) .

Hence
τ̃ = −c2W (−1/c2) <c2 + c2

√
2(ln(c2)− 1) + c2(ln(c2)− 1) .

Therefore, we get τ̃ = O
(
c2 ln(c2)

)
= O

(
n1/(d+1) log(n)

)
. Consequently, τ ′ = τ̃d+1 =

O
(
n logd+1(n)

)
. Hence we have τδ = O

(
n logd+1(n)

)
. Following the same proof technique,

we have that when k is a linear kernel, τδ = O(n log n).

C.4 PROOF FOR PROPOSITION 4.5

We need to proof the following result first:
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Lemma C.9. For an ranked values φ1 ≥ φ2 ≥ φm > φm+1 ≥ · · · ≥ φn, each element φi is added
with a number bi which satisfies |bi| ≤ ε′ and hence results in φ′

i = φi + bi. Rank the new values
{φ′

i}i∈N from high to low and denote the m-th ranked value as φ′
om . We have that |φ′

om −φm| ≤ ε
′.

Proof. Denote the I∗m = {1, . . . ,m} and denote I ′m the indices of the top-m values among {φ′
i}i∈N

where |I ′m| = m. Note that I ′m might not be unique. Denote i′ = argmini∈I′
m
φ′
i. We consider the

following situations

(a) If i′ ≤ m, we have that φi′ ≥ φm. According to the definition of i′, we have that φ′
om =

φi′ + bi′ ≤ φm + bm. Hence φ′
om − φm ≤ bm. We have that φ′

om = φi′ + bi′ ≥ φm + bi′ . Hence,
we have φ′

om − φm ≥ bi′ . Consequently, we have that |φ′
om − φm| ≤ max(|bm|, |bi′ |) ≤ ε′.

(b) If i′ > m, there exits j ∈ I∗m such that φj + bj ≤ φ′
om . This is because intuitively i′ ∈ N \ I∗m

is included in I ′m and hence there exists at least an element in I∗m will be excluded from I∗m and to
be included in N \ I ′m such that |I ′m| = m. Hence φ′

om − φj ≥ bj . Since we have that φi′ < φm
according to the definition, φ′

om = φi′ + bi′ < φm + bi′ . Consequently, we have φ′
om − φm < bi′ .

Finally, we get |φ′
om − φm| ≤ max(|bj |, |bi′ |) ≤ ε′.

Therefore, in all cases, |φ′
om − φm| ≤ ε

′.

Proof of Proposition 4.5. Denote φom(p) the m-th largest value among {φi(p)}i∈N . Define the
following value:

φ′
i(p) =

1

n

p∑
k=1

∆k
i .

Denote I an (ε, δ)-approximation to the top-m of {φi(p)}i∈N where I is the index set with |I| = m.
Hence we have that with probability at least 1− δ

φj(p) ≥ φom(p)− ε, ∀j ∈ I .

Since φi(p) = p
nφ

′
i(p), we have that pnφj(p) ≥

p
nφom −

p
nε, which gives

φ′
j(p) ≥ φ′

om(p)− p

n
ε,∀j ∈ I .

Since |∆k
i | ≤ ε′,∀k ∈ {p, . . . , n} according to the assumption, we have

|φi − φ′
i(p)| = |

1

n

n∑
k=p+1

∆k
i |

≤ 1

n

n∑
k=p+1

|∆k
i |

≤ n− p
n

ε′ .

According to Lemma C.9 we have

|φ′
om(p)− φm| ≤

n− p
n

ε′

Hence, we get the following

φj +
n− p
n

ε′ ≥ φ′
j(p) ≥ φ′

om(p)− p

n
ε ≥ φm −

n− p
n

ε′ − p

n
ε,∀j ∈ I .

Hence, with probability at least 1− δ

φj ≥ φm −
2(n− p)

n
ε′ − p

n
ε, ∀j ∈ I .

In other words, I is an ( 2(n−p)n ε′ + p
nε, δ)-approximation to the top-m of {φj}j∈N . Equivalently,

we have that an (np ε −
2(n−p)

p ε′, δ)-approximation to the top-m of φi(p)i∈N is also an
(ε, δ)-approximation of the top-m of {φi}i∈N .
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C.5 PROOF FOR EQU. (8)

Proof. We restate the efficiency, symmetry, and additivity axioms of SV from (Shapley et al., 1953;
Roth, 1988):

• Efficiency. The sum of SV equals the utility of the grand coalition, i.e.,
∑
i∈N φi = U(N).

• Symmetry. If U(S ∪ {i}) = U(S ∪ {j}),∀S ∈ N \ {i, j}, we have φi = φj .

• Null player. If U(S ∪ {i}) = U(S),∀S ∈ N \ {i}, we have φi = 0.

• Additivity. Denote φ(j)
i SV defined by Uj . If U(S) =

∑
j Uj(S),∀S ⊆ N , we have

φi =
∑
j φ

(j)
i .

Since our utility function defined in Equ. (7) can be rewritten as:

U(S) =
∑

zj∈DV

Uj(S) ,

Uj(S) :=
1

|DV |
1
(
g(zi) ∈M(DS , ε)

)
.

(12)

Therefore, according to the additivity of SV, we have φi =
∑
j φ

(j)
i where φ(j)

i is SV defined by
Uj(S) in Equ. (12).

Denote D′
V = {zj ∈ DV |∃zk ∈ DN , ρ(g(zk), g(zj)) ≤ ε}, i.e., data points in the validation dataset

that have at leat one data point from the training dataset DN that is within ε distance to them. In this
case we have Uj(N) = 1

|DV | ,∀zj ∈ D
′
V . Denote the set D′

j = {zk ∈ DN : ρ(g(zk), g(zj)) ≤ ε}
where zj ∈ D′

V . In this case since every zk ∈ DV , zk /∈ D′
j we have Uj(S ∪ {k}) = Uj(S).

According to null player,
φ
(j)
k = 0,∀zk ∈ DV , zk /∈ D′

j . (13)

While for zk, zl ∈ D′
j , we have thatU(S∪{k}) = U(S∪{l}),∀S ⊆ N{k, l}, and hence φ(j)

k = φ
(j)
l

for all zk, zl ∈ D′
j (i.e., symmetry). We have that

∑
k∈N φ

(j)
k = Uj(N) = 1

|DV | (i.e., efficienty).
Therefore we have:

φ
(j)
k =

1

|D′
j ||DV |

,∀zk ∈ D′
j (14)

Combining Equ. (13) and Equ. (14), we have:

φ
(j)
k =

1

(
ρ
(
g(zk), g(zj)

)
≤ ε

)
|D′

j ||DV |
,∀zj ∈ D′

V . (15)

Similarly, for zj /∈ D′
V , zj ∈ DV , we have that Uj(N) = 0 and according to the efficiency and

symmetry, we have that φ(j)
k = 0,∀k ∈ N . According to the additivity, we have that:

φk =
∑

zj∈DV

φ
(j)
k =

∑
zj∈D′

V

φ
(j)
k =

∑
zj∈D′

V

1

(
ρ
(
g(zk), g(zj)

)
≤ ε

)
|D′

j ||DV |
,∀k ∈ N .

C.6 PROOF FOR PROPOSITION A.2

Proof. Efficiency. According to the definition in Equ. (9), we have∑
i∈N

φ
(m)
i =

∑
i∈S∗

m

U(N)/m = U(N) .

Therefore efficiency holds.
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Symmetry. According to the symmetry of SV, if U(S∪{i}) = U(S∪{j}),∀S ⊆ N \{i, j}, we have
φi = φj . According to the assumption that φ1 ≥ φ2 ≥ · · · ≥ φm > φm+1 ≥ φm+2 ≥ · · · ≥ φn,
e have that either i, j ∈ S∗m or i, j /∈ S∗m, in either case, we have φ(m)

i = φ
(m)
j according to the

definition in Equ. (9).

Strict m-th desirability. According to the strict desirability of SV (Maschler & Peleg, 1966), we
have that (∃B ∈ N \ {i, j}, U(B ∪ {i}) > U(B ∪ {j})) ∧ (∀C ∈ N \ {i, j}, U(B ∪ {i}) ≥
U(B ∪ {j})) =⇒ φi > φj . Therefore, we have that (∃B ∈ N \ {i, j}, U(B ∪ {i}) > U(B ∪
{j}))∧(∀C ∈ N \{i, j}, U(B∪{i}) ≥ U(B∪{j}))∧(φj = φm+1) =⇒ φi > φm+1. According
to the assumption that φ1 ≥ φ2 ≥ · · · ≥ φm > φm+1 ≥ φm+2 ≥ · · · ≥ φn, we have i ∈ S∗m
and j /∈ S∗m (since φj = φm+1). Therefore, φ(m)

i = U(N)
m > 0 (since U(N) > 0 according to the

assumption) and φ(m)
j = 0 according to the definition in Equ. (9). Hence φ(m)

i > φ
(m)
j .
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