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ABSTRACT

This paper studies noise-resistant deep model training for the fine-grained image
retrieval task, which has an unconstrained target label space and suffers from the
difficulty of acquiring accurate fine-grained labels. A Neighbor-Attention Label
Correction (NALC) model is proposed based on the meta-learning framework to
correct labels during the training stage. A training batch and a validation batch are
sampled from the training set, which hence allows to optimize the NALC model
by referring to the validation batch. We also propose a novel nested optimization
for the meta-learning framework to enhance the optimization efficiency. The
training procedure consistently boosts the label accuracy in the training batch,
which in turn ensures a more accurate training set. Experiments results show
that our method boosts the label accuracy from 70% to 97+% and it outperforms
recent works up to 11.5% in rank1 accuracy on various fine-grained image retrieval
tasks, e.g., fine-grained instance retrieval on CUB200 and CARS, as well as person
re-identification, respectively. Ablation studies also show the NALC generalizes
well on different types of noises, e.g., Asymmetric, Pair-Flip, Pattern noises, etc.

1 INTRODUCTION

Fine-grained image retrieval aims to query images from the gallery with the same fine-grained label,
e.g. person identities (Zheng et al., 2015; Wei et al., 2018), bird species (Wah et al., 2011), or
car models (Krause et al., 2013), etc. It is more appealing than general image retrieval due to the
capability of differentiating visually similar objects. Compared with image classification, it features
an unconstrained target label space, and thus is expected to present better generalization capability on
large-scale test sets. This task has attracted increasing attention in recent years. For instance, lots of
efforts are conducted on instance re-identification (re-id) (Luo et al., 2019; He et al., 2020; Liu et al.,
2019).

Most current fine-grained image retrieval works train deep models as feature extractors. Clean datasets
can be hard to acquire in real scenarios, because of the difficulty in differentiating fine-grained labels.
This issue has been noticed by the community, where many unsupervised training strategies are
proposed (Wei et al., 2018; Zhong et al., 2019). Unsupervised methods have achieved significant
performance gains (Xuan & Zhang, 2021; Chen et al., 2021). Fig. 1 shows the performance of
supervised training, where 20% label noise leads to a lower performance than a recent unsupervised
training method (Chen et al., 2021). Another category of works tends to eliminate noisy samples
during training (Wang et al., 2019; Yu et al., 2019; Ye & Yuen, 2020; Zhang et al., 2021; Liu et al.,
2021). Fig. 1 shows their performance upper bound, which outperforms unsupervised training till
40% noisy images are removed. However, the upper-bound drops substantially for higher noisy rates
due to the lack of training data. It is hence appealing to study noise-resistant training to 1) leverage
correct annotations, meanwhile 2) correct noisy labels.

Most current noise-resistant training research focuses on the classification task and can be summarized
into two categories, i.e., noise ignoring and noise correcting, respectively. Noisy ignoring reduces
the influence of noisy samples by either explicitly discriminating noisy samples (Wu et al., 2020;
Lee et al., 2018) or implicitly eliminating their interference (Li et al., 2020a; Han et al., 2018).
Noise correction recovers noisy samples by either calibrating the training loss (Patrini et al., 2017;
Hendrycks et al., 2018) or correcting the target labels (Zheng et al., 2021; Yi & Wu, 2019). Noise
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Figure 1: Comparison of rank-1 accuracy on person re-id dataset Market1501. Baseline trains
ResNet50 on the noisy training set with various noise ratios. ICE (Chen et al., 2021) is a recent
unsupervised method. Noisy sample elimination removes noisy labels referring to ground truth
annotations. NALC is our method, which performs the best. See Sec. 6 for more details.

ignoring could deal with out-of-distribution noises. Noise correction could make better use of training
data, especially when a large portion of noise exists. Sec. 2 presents a more detailed review.

Different from classification, retrieval commonly features an unconstrained target label space. This
difference leads to the failure of existing noise-resistant training methods on retrieval tasks. As
training and testing sets in retrieval do not share the same label space, it degrades the effectiveness
of methods (Patrini et al., 2017; Hendrycks et al., 2018) which optimize the classifier layers. Meth-
ods (Zheng et al., 2021; Yi & Wu, 2019) which use parametric methods to recover the complete label
space could be expensive to compute and hard to converge on a large number of training categories
in retrieval. Moreover, due to the high annotation cost, lots of training categories in retrieval may
contain a few samples. Too few samples lead to biased distribution (Li et al., 2019a) and degrade the
effectiveness of noise ignoring methods (Wu et al., 2020; Lee et al., 2018).

This paper aims to correct labels for fine-grained image retrieval by referring to neighbor cues of each
training sample. CNN pre-trained on large image classification datasets like ImageNet can initialize a
reasonable feature space, which guarantees the reasonable and robust neighbor cues among sample
features. It is also indicated that the memorization effect of CNN tends to ignore hard noisy labels
during the initial training stage (Li et al., 2020a). We hence propose a Neighbor-Attention Label
Correction (NALC) model to directly generate corrected labels in the label space. In other words, the
corrected label of each sample is computed by referring to labels of its neighbors, a more efficient
way than previous works that build a complicated mapping from feature space to label space.

The NALC model is end-to-end optimized in a meta-learning framework to chase better performance
and generalization capability. We sample a training batch and a validation batch from the training
data and optimize the NALC on the validation batch. As NALC trains a better feature extractor
by correcting noisy labels, it in turn decreases the loss on validation batch, which makes nested
optimization to NALC possible. Implicit function theorem (IFT) and Neumann approximation are
used in this procedure. Former works (Lorraine et al., 2020; Gudovskiy et al., 2021) use a fixed
hyperparameter α in Neumann approximation, which cannot adapt the variance of the Hessian
matrix during the training stage. We propose the adaptive Neumann approximation according to the
estimation of L2-norm, leading to a more stable and accurate nested optimization of NALC.

The proposed methods are evaluated on various fine-grained image retrieval datasets under different
noise rates ranging from 0% to 50%. As shown in Fig. 1, NALC achieves promising performance,
and outperforms the upper bound of noise elimination methods. NALC is capable of boosting label
accuracy from 70% to 97.9% and enhances the rank1 accuracy from 82.3% to 93.8% on Market1501
dataset. Experiments on other datasets suggest similar conclusions. To the best of our knowledge,
this is an original research on label correction for fine-grained image retrieval. It leverages neighbour
cues to correct labels in the label space, which enjoys high efficiency and substantially outperforms
previous noise-resistant fine-grained retrieval methods. Our proposed nested optimization algorithm
also guarantees a stable and efficient optimization of NALC in the meta-learning framework.
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2 RELATED WORK

This work is related to research on noise-resistant learning and Differentiable hyper-parameter
optimization. This section briefly views those works.

Noise-resistant learning: Most noise-resistant methods are designed for classification. We di-
vide them into two categories, i.e., noise correction and noise ignoring. Former noise correction
methods (Patrini et al., 2017; Hendrycks et al., 2018) correct the loss functions by multiplying the
Sym-flipping transition matrix (Rooyen et al., 2015) to the original loss function. Some recent
methods try to correct labels. PENCIL (Yi & Wu, 2019) and Joint Optimization (Tanaka et al.,
2018) set corrected labels as parameters, and apply regularization between corrected loss and original
loss to prevent collapsing. MLC (Zheng et al., 2021) and AutoDO (Gudovskiy et al., 2021) use
meta-learning to supervise backbone and correction models with different data. Noise ignoring for
classification includes global, class-based, and neighbour-based methods. Global methods directly
takes use of the memorization effect. A deep model is more likely to learn from clean samples than
from noisy ones in the early training stage (Li et al., 2020a). Class-based methods (Li et al., 2019a;
Han et al., 2018; Li et al., 2019b; Ren et al., 2018) identify label noises according to the membership
in their classes. Neighbour-based methods (Li et al., 2019b; Wu et al., 2020) use neighbor clues to
identify label noise.

Some noise-resistant methods are designed for fine-grained image retrieval. Most of them work by
ignoring noisy samples. PurifyNet (Ye & Yuen, 2020) uses a regularization term to refine the falsely
annotated labels and fine-tunes the model with hard-aware instance re-weighting. OSM-CAA (Wang
et al., 2019) trains a proxy for each class and adjusts the weight of outliers to eliminate their effects.
PRISM (Liu et al., 2021) uses memory features of the same category to identify noisy samples.
One4More (Zhang et al., 2021) learns a data sampler to reduce the sampling frequency on noisy
samples. DNet (Yu et al., 2019) introduce variance to make noisy samples have less influence on the
training process. Unsupervised learning is another way to deal with noisy labels. Related works fall
into two categories: domain transfer and pseudo label based methods. Domain transfer either transfers
images from the source domain to the target domain (Wei et al., 2018), or transfers images from the
original camera style to other camera styles (Zhong et al., 2019). Pseudo label based methods (Ge
et al., 2020a;b; Chen et al., 2021) use clustering to generate labels for training.

Differentiable hyper-parameter optimization: Our NALC affects the feature extractor by correct-
ing labels, which in turn changes the validation loss. The optimization to NALC can be achieved by a
nested optimization, which is widely used in AutoML (Liu et al., 2018; Li et al., 2020b; Gudovskiy
et al., 2021). Hyper-parameter can be updated after several iterations or after several epochs. The
former (Zheng et al., 2021; Shu et al., 2019) computes gradients of hyper-parameters more easily,
but degrades the training stability. The latter (Lorraine et al., 2020; Gudovskiy et al., 2021; Bi et al.,
2019) is more stable, but requires an inverse Hessian matrix for gradient computation, which is
expensive to compute. Some works (Lorraine et al., 2020; Gudovskiy et al., 2021) use Neumann
series to approximate it.

Relationship with previous works: This method trains a fine-grained image retrieval model by
1) leveraging correct labels and 2) correcting noisy ones. It differs from previous noise-resistant
retrieval methods and unsupervised methods, which mostly ignore noisy labels, or correct labels. The
MLC (Zheng et al., 2021) and neighbour-based methods (Li et al., 2019b; Wu et al., 2020) designed
for image classification are related to our work. As the fine-grained retrieval task involves a larger
category number, NALC uses neighbour features rather than label embeddings as the input, and
introduces attention parameters to compute neighbour cues. Experiments with different setups show
the promising performance of NALC.

3 PROBLEM STATEMENT

Given a training set T containing images and their labels, fine-grained image retrieval aims to train
a backbone model F(·; θ), where θ denotes learnable parameters. For any query image xq, the
backbone model is expected to produce a feature vector fq = F(xq; θ) to retrieve the gallery image
xg having the same label with xq from a gallery set G. The backbone model should be optimized to
guarantee features of xq and xg to be more similar than other image pairs. The training objective of
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Figure 2: (a): Illustration of data flow to compute the gradients of label correction model G(·) (red
arrows) and backbone F(·) (black arrows). (b): Training loss and corrected label accuracy at different
training epochs on Market1501 with noise ratio=30%.

fine-grained image retrieval can be conceptually denoted as,

θ∗ = arg minθ(dist(fq, fg)− dist(fq, fi)), xi ∈ G, i 6= g, (1)

where dist(·) is the distance metric, e.g., the L2 distance, fg and fi are features of gallery images.

Given a training set T containing images and their labels, fine-grained image retrieval aims
to train a backbone model F(·; θ), where θ denotes learnable parameters. The general train-
ing objective is to During training, labels and images in G are commonly unknown. We rea-
sonably assume that T and G present similar feature distributions and optimize θ by assuming
T = {(x1, y1), (x2, y2), · · · , (xn, yn)} as the gallery set, where n denotes image number and image
label yi ∈ {0, 1}C is a C-dim one-hot vector if T contains C classes. The general training loss
function on training set, i.e., Lt(θ, T ) can be denoted as

θ∗ = arg minθ Lt(θ, T ). (2)

Eq. (2) is commonly used in previous retrieval works, where T is accurately annotated. For the case
with noisy labels, we denote the training set as T̄ = {(x1, ȳ1), (x2, ȳ2), · · · , (xn, ȳn)}, where the
annotated label ȳi may differ from the correct label yi. As shown in Fig. 1, noisy labels substantially
degrade the performance of supervised training as in Eq. (2).

This work aims to train a label correction model G(·;λ) with parameters λ to generate corrected
labels for each training sample, i.e., ỹi = G(i;λ). It produces a corrected training set T̃ , which hence
replaces the original T̄ for supervised training. The training objective of the backbone can be denoted
as,

θ∗ = arg minθ Lt(θ, T̃ (λ)), (3)

where T̃ is written as an implicit function of parameter λ in label correction model G(·).

Eq. (3) indicates that the training loss Lt on T̃ is affected by both θ and λ. Direct end-to-end
optimization to θ and λ on the same training set will lead to the collapse of the model, e.g., corrected
labels by G(·) and predicted labels by F(·) could converge to a trivial solution like an identical label
or all zero vector.

The above issue can be addressed by optimizing λ and θ on different datasets. We sample a training
batch and a validation batch from the original training set, and optimize the λ on the validation batch.
As λ is updated, G(·;λ) corrects labels on the training batch, which supervise the learning of θ. We
hence also denote θ∗ as an implicit function of λ, i.e., θ∗ = θ∗(λ). The training of λ can be regarded
as a nested optimization and the corresponding validation loss Lv is denoted as

λ∗ = arg minλ Lv(θ∗(λ)). (4)

θ and λ are optimized in two different loops, respectively. The training loop only optimizes the
backbone parameter θ. The validation loop fixes θ and updates label correction parameter λ. The
data flows to compute the gradients of G(·) and F(·) are illustrated in Fig. 2(a). Following sections
present details of G(·) and its optimization, respectively.
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(a) initialization (b) baseline (c) NALC

Figure 3: t-SNE visualization of features in a training set containing 30% noises. Color denotes the
correct category label, ‘×’ and ‘·’ denote noisy and clean labels, respectively. Features in (a) and (b)
are extracted by the initialized model and baseline model after training for 30 epochs, respectively.
15 categories are sampled from the Market1501 dataset.

4 NEIGHBOUR-ATTENTION LABEL CORRECTION

As discussed in previous works (Li et al., 2020a), CNN pre-trained on ImageNet gains reasonably
good discriminative power. E.g., features of the same class in Fig. 3 (a) are roughly gathered together
even though they are labeled differently. CNN also tends to ignore hard noisy labels at the early
training stage. Trained by the baseline method for 30 epochs in Fig. 3 (b), those features can be
clustered together. This observation indicates robust neighbour cues in the early training stage. We
hence propose label correction model referring to neighbour cues. For an image xi, we denote its
K-Nearest Neighbour set as KNNi. Referring to Fig. 3 (b), a simple way of label correction for xi is
voting labels according to the feature similarities in the neighbor. We denote the corrected label yvotei
as,

yvotei =
∑

j∈KNNi

exp(τfTi fj)ȳj . (5)

This simple voting model is not robust in leveraging neighbour cues, e.g., it is difficult to tune
parameter K and temperature τ . A smaller K should be set for categories containing a few samples
and larger τ is required to prevent the corrected labels over smooth.

We implement the label correction model G(·) based on neighbor-attention, which produces corrected
labels for xi referring to labels and features of its neighbouring samples. We first transform features
of xi and its neighbours with fully connected layers φ, ψ, respectively, then compute the feature
similarities. After learning φ, ψ through end-to-end training to enhance the retrieval performance, we
adopt the resulting feature similarities to represent neighbour relation cues. The corrected labels can
be computed by taking feature similarities as fusion weights, i.e.,

ỹi =
∑

j∈KNNi

exp(φ(fi)
Tψ(fj))ȳj . (6)

Because Eq. (6) uses learnable similarity as voting weights, it is not sensitive to the parameter K.
We fix K as 9, and have tested other selections in the appendices. As shown in Fig. 3 (c) our NALC
presents a promising performance in label correction.

Optimizing φ, ψ in G(·) leads to continuously updated F(·) and sample features. Repetitively
extracting and updating all sample features makes KNN computation expensive. To reduce the
computational complexity, we maintain a first-in first-out memory bankM to store historic features
of training samples. The length ofM equals to the size of the training set. After every iteration in the
training loop, we use features in current iteration to updateM, and search for their KNNs fromM.

5 NESTED OPTIMIZATION TO NALC

Training Loss: We follow fine-grained retrieval methods and fuse proxy-based loss and pair-based
loss as the training loss Lt. Since our corrected labels are soft labels, we use KL loss LKL and soft
softmax-triplet loss LST (Ge et al., 2020a) to implement Lt, i.e., Lt = LKL + LST , and

LKL = ỹT (log(ỹ)− log(o)), LST = Lbce(
exp(dn)

exp(dn) + exp(dp)
,max(ỹ)), (7)
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, ȳ )

:
, (x , ȳ
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Algorithm 1 NALC

where o is the prediction output of the classifier, Lbce denotes the binary cross entropy loss, dn and dp
denote the distance of hardest negative and positive pairs, respectively. max(·) returns the maximum
value in a vector. Lt is hence adopted to optimize parameter θ through back-propagated with Eq 3.

Validation Loss: In Eq. (4), θ∗ is written as an implicit function of λ, i.e., θ(λ). λ influences the Lv
through the backbone. The gradient of Lv with respect to λ can be computed as,

∂Lv(θ)
∂λ

=
∂Lv(θ∗)
∂λ

+
∂Lv(θ∗)
∂θ∗T

∂θ

∂λ
=

∂Lv
∂θ∗T

∂θ

∂λ
, (8)

where ∂Lv(θ
∗)

∂λ = 0 and ∂Lv

∂θ∗T
can be easily computed.

To compute ∂θ
∂λ , we assume that ∂Lt

∂θ = 0 and ∂2Lt

∂θ∂θT
6= 0. To make this assumption reasonable, we

update λ after getting the optimal θ on the training stage, which effectively guarantees ∂LT

∂θ ≈ 0.
According to the Implicit Function Theorem (IFT) (Lorraine et al., 2020; Gudovskiy et al., 2021)
∂θ
∂λ = −[ ∂

2Lt

∂θ∂θT
]−1 ∂

2Lt

∂θ∂λ . So the gradient of Lv w.r.t. λ can be written as

∂Lv(θ)
∂λ

= −gTv H−1
∂2Lt
∂θ∂λ

, (9)

where gv denotes ∂Lv

∂θ∗ ,H denotes the Hessian matrix ∂2Lt

∂θ∂θT
.

Adaptive Neumann Approximation of H−1: It is difficult to directly compute the inverse of the
whole Hessian matrix. Since vector-Hessian products (Pearlmutter, 1994) have been implemented by
PyTorch (Paszke et al., 2017), we use Neumann Series to approximate the inverse Hessian Matrix:

gTv H−1 = gTv α(I − (I − αH))−1 = α

k0−1∑
k=0

(
k0
k+1

)
gTv (−αH)k + gTv (I − αH)k0H−1, (10)

where k0 denotes the number of iterations to approximate the inverse Hessian, and α is a key weight
for convergence. Recent works (Lorraine et al., 2020; Gudovskiy et al., 2021) set α as a fixed value,
i.e. 0.01. But a fixed value cannot approximate the inverse Hessian throughout the whole training
process. In this paper, we use an adaptive way to determine the value of α to further approximate the
inverse Hessian.

To decrease the residual term in Eq. (10), we minimize the L2-norm of (I−αH). Sagun et al. (Sagun
et al., 2016) discovered that almost all eigenvalues of the Hessian after training are no less than zero.
So we can diagonalizeH to UΣUT . Then I −αH = U(I −αΣ)UT . We can set α as approximated
maximum eigenvalue of H. Here we use power method to approximate the maximum eigenvalue.
The final weight α = ‖gTv Hk0−1‖/‖gTv Hk0−2‖.
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Table 1: Rank@1/mAP(%) under different noise ratios on Market1501 and MSMT17.

Method Market1501 MSMT17
0% 10% 20% 50% 0% 10% 20% 50%

BOT 94.4/86.1 90.4/75.4 87.0/67.4 69.2/43.2 74.1/50.2 68.3/41.2 61.2/33.1 33.2/13.8
SBS 95.4/88.2 88.6/69.7 77.4/50.5 61.6/34.4 81.8/58.4 68.6/41.2 60.9/32.5 33.1/ 13.0
SpCL 88.1/73.1 42.3/19.1
ICE 92.0/79.5 59.0/29.8
Forward 94.0/84.9 90.5/74.8 87.6/67.8 71.5/45.0 71.0/45.3 66.1/44.8 61.5/32.4 34.6/14.5
GLC 94.1/85.3 90.6/75.2 88.4/71.0 75.4/49.7 74.9/49.5 68.1/51.2 62.2/36.3 45.7/15.3
Co-teach 72.9/52.0 73.2/52.3 72.7/52.3 / / / / /
UbiW 87.9/71.2 84.2/64.3 83.1/63.1 / / / / /
DNet 87.3/70.8 82.3/61.5 77.0/53.4 65.1/35.1 / / / /
PurifyNet 88.4/72.1 84.2/64.3 83.1/63.1 / / / / /
CORE 89.6/74.6 85.5/67.7 84.1/66.2 / / / / /
One4More 94.9/88.9 88.2/69.7 / / / / / /
BOT+NALC 94.6/86.0 94.3/84.9 94.0/84.3 91.2/79.4 74.3/49.3 73.2/48.0 72.3/47.2 65.6/37.4
SBS+NALC 95.3/86.7 95.0/84.8 94.6/83.6 90.9/78.6 79.3/56.2 76.3/51.6 75.0/50.6 70.3/44.2

Algorithm 1 summarizes the training procedure for our backbone and label correction model.
Fig. 2(b) visualizes the training loss and label accuracy at different training epochs. It also compares
with the supervised training baseline and the label correction method in Eq. (5). It is clear that, our
method is more effective in decreasing the training loss and correcting labels.

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAILS

We evaluate the proposed methods in fine-grained image retrieval on Market1501 (Zheng et al.,
2015), MSMT17 (Wei et al., 2018), CUB (Wah et al., 2011) and CARS (Krause et al., 2013). More
details are described in the appendices. We randomly select a certain percentage of training images
and assign them with wrong labels. The above modifications are only applied to the training set.
The original testing sets are adopted to evaluate the retrieval performance. ResNet50 pre-trained
on ImageNet is adopted as our backbone. We use two one-layer fully-connection (fc) layers to
implement feature transforms φ and ψ in Eq. (6). Their output dimension is equal to the input feature
dimension. Those two fc layers are initialized as identity matrices. Therefore, the corrected label
by the initialized NALC is equivalent to the feature similarity weighted soft label. The Memory
BankM is randomly initialized. The loss computation in baseline is adopted as our validation loss.
The max training epoch is set to 60 and meta optimization starts after the 20th epoch, i.e., ‘E’ in
Algorithm 1 is set to 20. We set batch size to 32/64 and input size to 256×128/224× 224 for person
re-identification/other datasets, respectively. ADAM is used as our optimizer for the backbone and
meta-learning framework. Its initial learning rate is set to 3 × 10−4. At the 20th and 40th epoch,
learning rate is multiplied by 0.1.

6.2 COMPARISON WITH RECENT METHODS

We test our method with different noise ratios ranging from 0 to 50% on four datasets, and compare it
against recent noise-resistant learning methods. Note that, our method is a label correction method, it
is hence compatible to different baselines and backbones.

On person re-identification datasets, we adopt two baselines, i.e. BOT (Luo et al., 2019) and
SBS (He et al., 2020), respectively. Table 1 summarizes the comparison. We compare with two
recent unsupervised re-id methods SpCL (Ge et al., 2020b) and ICE (Chen et al., 2021). Five noise-
resistant methods designed for classification tasks are also compared, including Forward Correction
(FC) (Patrini et al., 2017), GLC (Hendrycks et al., 2018), MLC (Zheng et al., 2021), co-teach (Han
et al., 2018) and UbiW (Li et al., 2019a), respectively. The first three are label correction methods
and the rest two are noise ignoring methods. Table 1 also compares three noise-resistant re-id
methods including DNet (Yu et al., 2019), PurifyNet (Ye & Yuen, 2020), CORE (Ye et al., 2022) and
One4More (Zhang et al., 2021). The performance of co-teach and UbiW is reported in PurifyNet (Ye
& Yuen, 2020). It is interesting to observe that, strong algorithms for clean person re-id datasets like
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Table 2: Precision@1 (%) under different noise ratio on CUB and CARS.

Method CUB CARS
0% 10% 20% 50% 0% 10% 20% 50%

nSoftmax 67.8 65.6 63.6 55.5 87.5 85.4 80.7 64.7
Forward 66.2 64.1 63.4 59.5 84.9 81.6 78.4 66.8
GLC 67.5 66.0 64.9 61.3 87.1 85.7 81.0 69.9
Co-teach / 53.7 51.1 45.0 / 73.5 70.4 59.6
Proxy Anchor 69.2 67.1 65.3 59.0 87.6 85.6 80.8 65.7
Circle Loss 66.7 47.5 45.3 13.0 83.4 71.0 56.2 15.2
PRISM / 58.8 58.7 56.0 / 80.0 78.0 72.9
NALC 67.5 67.2 66.9 63.5 87.0 86.0 82.1 74.9

SBS (He et al., 2020) cannot maintain their advantages on noisy training data. Their performances
become worse than unsupervised methods when the noise ratio is larger than 20%. This could be
because those methods do not differentiate noisy labels, which leads to biased models during training.
Unsupervised methods perform worse on MSMT17 than on Market1501, indicating the increased
difficulty of label prediction on more challenging datasets. NALC outperforms these unsupervised
methods by clear margins even at noise ratio = 50%.

Table 2 summarizes the comparison on two fine-grained instance retrieval datasets. We apply NALC to
nSoftmax implemented by Pytorch Metric Learning (Musgrave et al., 2020). In the table, FC (Patrini
et al., 2017), GLC (Hendrycks et al., 2018), MLC (Zheng et al., 2021), co-teach (Han et al., 2018)
are noise-resistant methods designed for classification. Table 2 also compares with three deep metric
learning methods. Proxy Anchor (Kim et al., 2020) and Circle Loss (Sun et al., 2020) are proxy-based
and pair-based methods, respectively. PRISM (Liu et al., 2021) is a noise-resistant method which
replaces individual data points with class centers. Among those three methods, Proxy Anchor shows
the best performance on a clean training set. It also demonstrates better label noise robustness than
Circle Loss. It is interesting to observe that, higher noise ratio severely degrades the performance
of Circle Loss. This is because pair-based loss is more sensitive to label noises, e.g., on a dataset
containing 50% noisy labels, the portion of correct sample pairs is 25%. In Table 2, our NALC also
achieves the best performance. Table 1 and Table 2 present similar conclusions, i.e., our method gets
the best performance for different datasets and noise ratios.

6.3 ABLATION STUDY

Comparison with other label correction methods: Table 3a compares NALC with several neighbor-
aware label correction methods. “Label vote” is the simple label correction in Eq. (5). It follows
the similar process of ’Update backbone model’ in Algorithm 1. “Single projection” shares the
parameters of two projection functions, i.e. φ on current features and ψ on memory features. “Label
vote” brings a significant improvement over the baseline, e.g., boosts the label accuracy from 70%
to 94.8%. This shows the effectiveness of neighbour cues in label correction. “Single projection”
achieves better label accuracy and rank1 accuracy by learnable projection. NALC achieves the best
performance. It indicates that model features and memory features requires separate projections.

Test on meta learning strategy: Eq. (9) and Eq. (10) implement our nested optimization to the label
correction model. Table 3b compares our algorithm against several variants. “No meta” updates the
label correction model through end-to-end training without using meta-learning. It leads to model
collapse. H−1 → I replaces the inverse Hessian with an identity matrix. “Fixed α” fixes α as 0.01
referring to (Lorraine et al., 2020). “Adaptive α” denotes our method. Our training strategy achieves
the best performance.

Test on loss function: Table 3c tests the validity of our loss function, which fuses proxy-based
loss and pair-based loss. It is clear that, fusing those two types of loss functions achieves the best
performance. Note that, corrected labels in Eq. (6) are soft labels. As the conversion from soft-labels
to one-hot labels is not differentiable. Our loss functions are computed with soft labels. Table 3c
further tests the hard-label version of our loss function, which only updates θ but can not be adopted
to optimize λ. It is clear that, the hard version leads to lower performance.
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Table 3: Ablation studies of our proposed NALC on individual components. Market1501 with 30%
noise ratio is adopted as the dataset. “Label Accuracy” is computed by first converting each predicted
soft label into a one-hot label, then comparing it with its ground-truth.

(a) different label correction methods.

Model Rank@1 Label Accuracy
Baseline 82.3 70.0
Label vote 91.9 94.8
Single projection 92.7 97.2
NALC 93.8 97.9

(b) different nested optimization strategies.

Method Rank@1 Label Accuracy
No meta 0.1 0.2
H−1 → I 92.0 95.5
Fixed α 92.3 95.7
Adaptive α 93.8 97.9

(c) different loss functions.

Proxy-based Pair-based Rank@1 mAP
Hard Hard 92.8 82.5
Hard Soft 92.5 82.6
Soft Hard 93.4 83.1
Soft Soft 93.8 83.2

(d) different validation set selection methods.

Validation set Rank@1
10% clean 93.2

10% separated 92.5
20% separated 92.3
100% shared 93.8

Table 4: Rank-1 accuracy and mAP on Market1501 under different noise types and ratios.

Noise Type Noise Ratio 10% 20% 30% 50%

Asymmetric
Baseline 90.8/77.3 89.1/72.8 88.3/70.4 87.1/67.6
Label vote 93.1/82.7 91.6/79.3 89.6/73.9 85.8/67.3
NALC 94.2/84.5 94.0/82.4 93.0/78.4 91.1/74.2

Pair-Flip
Baseline 91.1/76.3 89.0/72.4 87.8/69.9 87.9/69.2
Label vote 92.6/82.4 91.4/78.6 88.8/74.0 86.2/67.5
NALC 94.0/84.1 92.4/81.6 91.2/75.6 89.3/71.8

Pattern
Baseline 92.1/78.4 89.0/73.9 87.0/70.3 83.0/63.9
Label vote 94.7/84.6 94.2/84.1 93.9/82.6 91.1/75.4
NALC 95.3/86.1 95.0/84.7 94.5/83.0 92.3/77.3

Test on validation set selection methods: “10% clean” in Table 3d samples 10% clean samples with
true labels and uses the rest 90% as training set. “x% separated” randomly selects x% samples for
validation and uses the rest for training. “10% separated” performs worse than “10% GT”. Further
enlarging the validation set decreases the size of training set, hence is harmful to the performance.
“100% shared” uses two independent data loaders on a shared noisy training set to select training
samples and validation samples. “100% shared” performs the best and is adopted in our method.

Test on other noise types: To test the generalization capability of NALC to different label noises,
Table 4 compares it with several label correction methods under different noise types and ratios. We
follow CDR (Xia et al., 2021) to generate Asymmetric and Pair-Flip noises and follow DNet (Yu
et al., 2019) to generate Pattern noises. Asymmetric noise flips labels within a set of class pairs.
Pair-Flip noise flips each class to its adjacent classes in the feature space. Pattern noise flips the label
of the sample to its nearest negative class, and leads to the worst baseline performance. Under these
noise types, our method consistently outperforms baseline and “Label vote”. For instance, on the
Asymmetric noise, our method outperforms the “Label vote” by clear margins at various noise ratios.
Especially for the case with 50% noises, NALC outperforms “Label vote” by 6.9% in mAP.

7 CONCLUSION

This paper proposes Neighbor-Attention Label Correction (NALC) for noise-resistant fine-grained
image retrieval. Different from previous works that ignore noisy labels, this work corrects and
leverages those labels to chase better retrieval performance. Our label correction model computes
neighbor relationships to infer corrected labels and is optimized by a meta learning framework on a
validation batch. We also propose a novel nested optimization referring to Implicit Function Theorem
and adaptive Neumann approximation to enhance the optimization efficiency. Extensive experiments
on four datasets and various types of noises show the remarkable performance of our method.
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Table 5: Rank-1 accuracy of different neighbor size K for both the non-parametric label voting
method and NALC

neighbor size K Label vote NALC
30 50 30 50

5 91.9 87.0 93.5 90.1
9 91.3 88.4 93.8 91.2
13 90.4 87.8 93.7 91.1

A DETAILED DESCRIPTION OF THE DATASETS

We evaluate the proposed methods in fine-grained image retrieval on four datasets, including two
person re-identification datasets and two fine-grained instance retrieval datasets, respectively. They
are Market1501 (Zheng et al., 2015), MSMT17 (Wei et al., 2018), CUB (Wah et al., 2011) and
CARS (Krause et al., 2013). Among them, Market1501,CUB and CARS can be directly downloaded
from the homepage of the project. MSMT17 (Wei et al., 2018) is available after we sign the agreement.
We are required not to further distribute, publish, copy, or further disseminate the database.

Person re-id datasets: Market1501 (Zheng et al., 2015) contains 32,668 images of 1,501 identities
captured by 6 cameras. The training set contains 12,936 images of 751 identities. The testing
set contains the rest 750 identities, and 3,368 images for query, 19,732 images for the gallery.
MSMT17 (Wei et al., 2018) contains 126,441 images of 4,101 identities captured by 15 cameras.
Numbers of training/query/gallery images are 30,248/11,659/82,161, respectively.

Fine-grained instance retrieval datasets: CUB (Wah et al., 2011) contains 11,788 images of 200
bird species. We use the first 100 species for training and the rest for testing. CARS (Krause et al.,
2013) contains 16,185 images of 196 car models. We use the first 98 models for training and the rest
for for testing.

B DISCUSSION OF THE NEIGHBOR SIZE K

We compare NALC with the the non-parametric label voting method with several selections of
neighbor size K in Table 5. The hyperparameter K is hard to tune in label voting method. When the
noise ratio is fixed, the performances of label voting is sensitive to neighbor sizes. And when the
noise ratio varies, its optimal K also varies.
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