Enhancing Data Privacy in Large Language Models through Private
Association Editing

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are powerful
tools with extensive applications, but their ten-
dency to memorize private information raises
significant concerns as private data leakage can
easily happen. In this paper, we introduce Pri-
vate Association Editing (PAE), a novel defense
approach for private data leakage. PAE is de-
signed to effectively remove Personally Identi-
fiable Information (PII) without retraining the
model. Our approach consists of a four-step
procedure: detecting memorized PII, applying
PAE cards to mitigate memorization of private
data, verifying resilience to targeted data extrac-
tion (TDE) attacks, and ensuring consistency
in the post-edit LLMs. The versatility and ef-
ficiency of PAE, which allows for batch modi-
fications, significantly enhance data privacy in
LLMs. Experimental results demonstrate the
effectiveness of PAE in mitigating private data
leakage. We believe PAE will serve as a critical
tool in the ongoing effort to protect data privacy
in LLMs, encouraging the development of safer
models for real-world applications.

1 Introduction

A massive pretraining phase seems to be the key
to obtaining versatility and accuracy in a large
number of tasks: Large language models (LLMs)
are indeed able to perform accurately many tasks
by capturing information from their training data.
Even in zero-shot scenarios, LLMs serve as alter-
native sources of information (Hou et al., 2024),
perform translation tasks (Mu et al., 2023), trans-
late natural language requests into code (Ranaldi
et al., 2024), and are definitely capable of captur-
ing world knowledge (Petroni et al., 2019, 2020).
The massive pretraining phase seems to be the key
to obtaining versatility and accuracy in this large
variety of tasks. However, growing larger, training
data for LLMs have become uncontrollable and
may inadvertently contain some private personal

information of unaware people. LLMs may poten-
tially retain this sensitive information (Carlini et al.,
2021, 2023; Huang et al., 2022). This is a potential
threat to the privacy of unaware people. Indeed, by
performing Training Data Extraction attacks, (Car-
lini et al., 2021) showed that LLMs may verbatim
generate strings containing sensitive information
observed during training. Then, attackers may gain
access to private information.
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Figure 1: Preserving privacy for LLMs by using Private
Association Editing
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Strategies to remove sensitive information from
LLMs are needed and mandatory, as preserving pri-
vacy is a must. Yet, the straightforward technique
of remove-and-retrain is extremely expensive.

In this paper, we propose Private Association
Editing (PAE): a novel “one model, k edits” strat-
egy to remove memorized private information ad-
justing parameters of LLMs without re-training
(see Fig. 1). Stemming from MEMIT (Meng et al.,
2023b) formulation to edit factual knowledge, we
define PAE as a novel model-editing defense strat-
egy based on the idea of breaking the association
between personal information and the identity of
the person to whom it belongs. We anonymize
the private information directly in the model, re-
placing the original information with masked — but
semantically equivalent — information. We experi-



ment with GPT-J (Wang and Komatsuzaki, 2021)
as it is an open-source model that contains docu-
mented private information. We perform Training
Data Extraction attacks (Huang et al., 2022) be-
fore and after our model-editing defenses, and we
show that our strategies are an efficient alternative
to make a model more robust against the generation
of private information while keeping constant its
performance in generating texts. In particular, we
empirically demonstrate the feasibility of our “one
model, k£ edits” approach: we aim to protect the
privacy of multiple users with a single edit, suc-
cessfully applying model editing both in batch and
in sequence.

2 Background

Large Language Models (LLMs) are prone to emit
private information. Indeed, attacking LLMs to ex-
tract memorized private information is possible by
using black-box access to language models. Train-
ing Data Extraction (TDE) is a technique to extract
this private information (Carlini et al., 2021). It
consists of querying the target model to force it to
produce its own training data. A textual training
example is considered "extractable" if a specific
prefix can be used to prompt the model to gen-
erate the exact training example from its training
set. Carlini et al. (2021) found that GPT-2 often
retains and reveals personal information such as
Twitter handles, email addresses, and Universal
Unique Identifiers.The memorization of training ex-
amples explains the success of these attacks: when
LLMs are prompted with a prefix encountered dur-
ing training, they often complete the prompt with
the remaining part of the training sequence (Carlini
et al., 2023).

Attacks may be particularly effective in open
LLMs. Huang et al. (2022) demonstrated that con-
ditioning a model with a prompt that is part of the
training data can result in the leakage of person-
ally identifiable information (PII), such as email
addresses. They also showed that this method is
more effective than creating entirely new, unseen
prompts. Nasr et al. (2023) revealed that Carlini
et al. (2021) method is even more effective than pre-
viously expected: by querying open-source models
like GPT-Neo (Black et al., 2022) and Pythia (Bi-
derman et al., 2023), they confirmed the success of
the attack procedure using the training data solely
for verification purposes. Since these attacks re-
quire only black-box access to the model, closed

models like GPT-3.5 and GPT-4 can be successfully
attacked (Wang et al., 2024).

As personal information leakage from LLMs
is a concrete possibility, different strategies have
been explored to avoid a model generating poten-
tially harmful content. Yao et al. (2024) propose an
unlearning mechanism that requires only negative
samples — i.e., examples in which the model gen-
erates harmful content — to stop the generation of
undesirable outputs. However, as the majority of
machine unlearning approaches (Liu et al., 2024),
it requires the definition of a retain set that contains
samples used to preserve the utility of the model.
Our aim is to modify only a batch of information
without further training or additional data.

Model editing is a possible solution as opposed
to an expensive remove-and-retrain strategy or un-
learning strategies. Model editing in LLMs refers
to the process of modifying specific aspects of a
model’s behavior or knowledge without retraining
it from scratch. This involves making targeted ad-
justments to the model’s parameters or responses to
correct errors, update information, or adapt to new
requirements. Mitchell et al. (2022) introduced a
semi-parametric editing methodology, employing
a retrieval-augmented counterfactual model. Cao
et al. (2021) proposed KNOWLEDGEEDITOR
that efficiently and reliably edits factual knowl-
edge within language models, ensuring consistency
across various formulations of facts. Furthermore,
Yao et al. (2023) introduced MEND on various
datasets, demonstrating its ability to rapidly and
effectively edit large-scale models’ behaviors with-
out extensive retraining. Since these methods can
modify factual information memorized in LLMs,
our goal is to exploit them to erase private informa-
tion inadvertently ingested during training.

Similarly to the method defined in our paper,
Patil et al. (2023) investigated model editing tech-
niques to modify the information memorized in
LLMs, concluding that information cannot be
erased. In particular, they applied TDE attacks
against the GPT-J (Wang and Komatsuzaki, 2021)
model and demonstrated that in black-box access—
performing attacks that also include paraphrases
of the original prompt— model editing cannot erase
factual information memorized in GPT-J. Our set-
ting is different: in fact, Patil et al. (2023) inves-
tigated the effectiveness of model editing only on
factual information from sentences derived from
Wikipedia and not directly present in the training
data — the Pile (Gao et al., 2020). By definition, the



model under attack does not verbatim memorize
information that is not in training data: since the
examples used by Patil et al. (2023) are derived
from Wikipedia and not included in the Pile, while
the factual information they contain is memorized,
they cannot be verbatim memorized. In our experi-
ments, we directly study the effectiveness of model
editing in deleting private information that is verba-
tim memorized with a focus on privacy rather than
factual information.

3 Attacking and Defending LL.Ms from
Private Data Leakage

Large Language Models (LLMs) have a tendency
to memorize examples from their training data, and
Training Data Extraction (TDE) attacks can be used
to recover these memorized examples. When fed
with the right prompt, LLMs emit verbatim memo-
rized information. In fact, if a model is prompted
with a prefix encountered during training, it often
completes it with the rest of the training sequence
(Carlini et al., 2023; Huang et al., 2022).

In this scenario, we aim to deliver solutions to
help people and owners of LLMs remove unde-
sirably memorized Personally Identifiable Infor-
mation from LLMs. The procedure we propose
consists of four steps (see Fig. 1):

* detecting the presence of memorized Person-
ally Identifiable Information (PII) in pre-edit
LLMs performing black box TDE attacks
(Sec. 3.1);

* Private Association Editing (PAE) to remove
PII by editing parameters of LL.Ms obtaining
post-edit LLMs (Sec. 3.2);

 assessing that post-edit LLMs are more
resilient to attacks with TDE attacks (as
in Sec. 3.1);

* a final consistency check of post-edit LLMs
to assess that LLMs are not corrupted
after PAE behaving similarly to pre-edit
LLMs (Sec. 3.3)

This procedure is extremely more versatile than
erase-and-retrain and can be used in small batches
of modification of an LLM. The core of our pro-
cedure is the method we propose called Private
Association Editing (PAE).

3.1 Training Data Extraction Attacks to
recover Sensitive Information

To detect the presence of memorized Personally
Identifiable Information LL.Ms, we follow the at-
tack pipeline and attack prompts defined by Huang
et al. (2022). They defined two kinds of attacks
depending on how information is stored and re-
trieved: (1) a model memorizes personal informa-
tion if there exists a prompt from the training data
that leads the model to generate that information;
(2) in contrast, a model associates an individual
to its personal information if there exists a prompt
not seen during training but containing a reference
to an individual that leads to the generation of PIL.
Huang et al. (2022) already demonstrated that mem-
orization is more common in LLLM than association,
showing that a model from the GPT-Neo! family
can predict emails more accurately when condi-
tioned with prompts from the training data rather
than with unseen prompts.

We then analyze two attacking schemes: the
Memorization attacks and the Association attacks.

In a Memorization attack, a model is fed with
a prompt extracted from its pretraining data. This
prompt is the context that precedes the private PII
in the training data. For example, a context prompt
attack to recover the email address of Jonh Brown
would look like: "All the winter months might
settle 2.25. As such, the best thing to
be short is jan. —Original Message—
From: Jonh, Brown”. In this attack, following
Huang et al. (2022), we simulate that the attacker
has more or less knowledge about the training data
by conditioning the generation of the model to con-
text prompts of different lengths in terms of tokens.

In the Association Attack, the model is instead
fed with a prompt that contains an identifier of the
person whose information is to be extracted, but
that does not exactly match the training data. In par-
ticular, Huang et al. (2022) defined four zero-shot
attack prompts, identified by letters from a to d.
All zero-shot prompts contain the name of the per-
son that owns the email the attacker wish to obtain
and the model is asked to predict the email: for ex-
ample, the zero-shot prompt a to recover the email
adress of John Brown is “the email address of
John Brown is”. The attack succeeds if, during
the generation of the subsequent tokens, the model
generates the target’s private information, that is,
the correct email address.

"https://www.eleuther.ai/artifacts/gpt-neo
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In both Memorization and Association attacks,
the adversary in black-box access wants to force
the model to generate some PII regarding a person.
The analyzed framework encompasses a malicious
attacker — or any individual aiming to detect unau-
thorized use of their data — who has assumptions
about the original text that was used during train-
ing or who has no prior clues about the original
data that contained the private information but who
has some other knowledge about the identity of the
individual whose sensitive information they wish
to extract.

3.2 Private Association Editing as Efficient
Defense against Privacy Attacks

To defend people from privacy attacks of LLMs,
we propose Private Association Editing (PAE),
which is the second step of our procedure. This
editing technique involves disrupting the link be-
tween an individual identity and their PII. The tech-
nique proposed here is efficient since it allows the
anonymization of private information directly into
the model parameters. Moreover, our solution is
also scalable since it can be used to protect the
privacy of multiple users.

A private association is an association be-
tween the name of an individual and a PII
that should not be revealed. This associa-
tion is a triple <subject,predicate,PII-object>, as
the following example: <John Smith, owns,
john.smith@company.com>; in the example, the
PII-object is the email address of the person.

Our PAE employs model editing techniques
based on MEMIT (Model Editing via Iterative
Training) (Meng et al., 2023b) as a defensive strat-
egy against attacks aimed at safeguarding the sen-
sitive data used to train Large Language Models
(LLMs). Then, the scalability to editing differ-
ent facts in a batch is facilitated by the MEMIT
framework, which allows us to incorporate as many
elements in the form of modifications as desired.
MEMIT is a natural choice in privacy update as we
expect that real word applications need to update
multiple pieces of information at a time and within
the same model, repeatedly. MEMIT approach,
unlike ROME (Meng et al., 2023a), allows mul-
tiple edits at once without degrading the model’s
performance.

In private association editing, once a user of the
system has understood that their personal informa-
tion has been inadvertently inserted into the train-
ing data and consequently memorized, a model edit

prompt The email address of {subject}
is
Jjohn.brown@nowhere.com

mail @domain.com

ground truth
target

subject John Brown

Table 1: An example of Private Association Editing card
for email addresses with an implicit prompt

can be performed to mask the private information.

The procedure to edit a private association uses
PAE cards based on the MEMIT modification card.
The basic structure of a MEMIT modification card
is composed of a prompt, a ground truth, a
target, and a subject. Our PAE cards specialize
the MEMIT modification card on a particular PII.
We have defined two main types of PAE cards to
mask the private information of users. The first
type is called "explicit" because it directly iden-
tifies the connection between the person and the
private data and perfectly adheres to the MEMIT
implementation. For example, an explicit prompt
is "{name} has an email address that is". The sec-
ond type is "implicit," which features a prompt that
does not necessarily include the person’s name as
the subject of the sentence, favoring a more pre-
cise meaning. An example of an implicit prompt is
"The mail address of {name} is".

We adopt a strategy that we call “one model, k
edits”: we are interested in subjecting the model
to k£ modifications at the time to comply to the real
word scenario in which — instead of performing
single edits separately and recreating the model
based on the post-edit weights obtained from the
last edit every time — k different requests are ad-
dressed against a single model. As described in
Section 4.1, the k in PAE is not predetermined.

By masking and anonymizing the email address,
we make it more challenging for attackers to elicit
specific private data from the model in response to
particular prompts. This methodology effectively
reduces the risk of sensitive information being in-
advertently disclosed by the model.

3.3 Evaluating Language Modeling
Performance

The final step of the procedure for preserving pri-
vacy with PAE is to investigate whether the LLM
maintains its behavior in text generation. In fact,
Model Editing techniques, in general, and PAE, in
particular, may perturb the language model capa-
bilities due to the intervention on the model pa-
rameters. The LLM assessment procedure we de-
scribe in this Section aims to verify that the privacy-



preserving language model is not a worse model
than the original one. Since the models under
investigation are foundational models, we focus
on their language modeling capabilities rather than
on an evaluation based on task performance. We
argue that if, after the update, the language model
performs similarly to the pre-edit one, then also
the performance on tasks will be similar. The main
idea is that LLMs capabilities are not perturbed if
people are not able to determine which of the two
models is responsible for which generation, then it
means that the edit procedure does not affect model
performance: a user of the system would be equally
happy to use one or the other.

The description of the LLM assessment proce-
dure in this section is twofold: (1) the automatic
assessment procedure that should be used when
PAE is used in real scenarios; (2) the manual as-
sessment procedure that is used in this paper to
determine if the automatic assessment procedure
capture the main idea of non-perturbed LLM.

The automatic assessment procedure is the oper-
ational procedure to automatically compare a pre-
edit version LLM and a post-edit version LLM. The
idea is to simply collect generations for a given set
of prompts for pre-edit LLM and post-edit LLM.
Then, these generations are compared with string-
based similarity metrics, in particular BLEU and
METEOR metrics. With these measures, we can
automatically assess if pre-edit LLM and post-edit
LLM behave in a similar way.

The manual assessment procedure is instead an
experimental procedure to confirm that the auto-
matic assessment procedure can be used to deter-
mine if pre-edit LLM and post-edit LLM are simi-
lar. In this procedure, we again collect generations
for given prompts for pre-edit LLM and post-edit
LLM. In this case, we ask annotators to choose
which model generated each text in a sort of clas-
sification task. We argue that a low accuracy in
this classification task and a low agreement among
annotators mean that the models are not distinguish-
able and, in particular, that the privacy-preserving
models are no worse than the original ones.

4 Experiments

4.1 Experimental Setup

In this section, we discuss the parameters of our ex-
periments: the analized LLM and related datasets,
the application of MEMIT used in our PAE, and,
finally, the set-up of the evaluation of the LLMs.

Analized LLM and related datasets In our ex-
periments, we test the GPT-J model (Wang and
Komatsuzaki, 2021) that is designed to generate
human-like text continuations from prompts: it is a
large model, with 6 billion parameters. This model
is trained on an open dataset, the Pile (Gao et al.,
2020). The Pile is a diverse, large-scale text corpus
that aggregates various sources, including books,
articles, websites, and scientific papers. It spans
multiple languages and domains, making it an ideal
training resource for language models like GPT-J.
The Pile contains a rich variety of text, enabling the
model to learn from a wide range of contexts and
topics. One of the constituent sub-datasets within
The Pile is the Enron Emails (Klimt and Yang,
2004) corpus. This dataset contains text from ap-
proximately 150 users It includes a total of about
0.5 million email messages. Its inclusion in the Pile
mimics the inadvertent insertion into the training
data of private information, in particular of PII-like
email addresses. For this reason, the Enron Email
dataset represents a natural starting point to test
GPT-J memorization of PII.

MEMIT application PAE use MEMIT to break
the association between a subject and its private
ground truth information. The MEMIT card are
described in Table 1. PAE edits the layers from
layers 3 to 8 and aims to cover the real-world sce-
nario in which multiple privacy leakages are to be
updated in a single edit, following a “one model, k&
edits” philosophy.

In fact, there are two distinct ways to apply
model editing using MEMIT (Yao et al., 2023)
given N elements to modify: batch and sequential
editing. Batch editing involves editing k£ elements
in an LLM simultaneously. Conversely, sequen-
tial editing focuses on editing /N elements within
an LLM in a sequential way, with each edit on a
subset of the N elements, performed on the new
model retaining previous edits. While batch editing
may be sufficient to preserve privacy, the sequential
editing approach is closer to the real-world need
to constantly update model parameters, as more
privacy leakages may be discovered over time.

PAE can effectively preserve the privacy of users
both with a small number of large batch edits and
with a larger number of smaller batch edits in a
sequential fashion. We adopt a large batch size
with £ = N as this is in principle the safest ap-
proach since the post-edit parameters are directly
the pre-edit ones. Then, we investigate the effect



. Post-edit
Pre-edit Tmplicit Explicit
Leaked emails Number of predicted emails Attack Accuracy | Leaked emails Attack Accuracy | Leaked emails \ Attack Accuracy
 context 50 353 2827 0.125 203 0.072 218 0.077
% context 100 476 2932 0.162 301 0.103 317 0.108
Memorization Attacks context 200 537 2951 0.182 368 0.125 396 0.134
£ context 50 346 2689 0.129 244 0.091 248 0.092
I context 100 476 2809 0.169 339 0.121 339 0.121
£ context 200 515 2863 0.180 394 0.138 405 0.141
zero-shot a 5 3130 0.002 1 0.000 1 0.000
% zero-shotb 2 3229 0.001 0 0.000 0 0.000
5 zero-shot ¢ 26 3234 0.008 13 0.004 11 0.003
e zero-shot d 68 3237 0.021 48 0.015 42 0.013
Association Attacks | chora 6 3178 0.002 3 0.001 5 0.002
5 zero-shotb 1 3178 0.000 0 0.000 0 0.000
5 zero-shotc 28 3232 0.009 20 0.006 11 0.003
zero-shot d 73 3234 0.023 50 0.015 37 0.011

Table 2: Results of the attacks against the pretrained model (Pre-edit) and after the application of PAE. The training
data extraction attacks that exploit the memorization of PII after PAE tends to lose their efficacy in retrieving private

information from the model.

of sequential editing with k£ < NN, simulating the
real-world scenario in which multiple edits are nec-
essary over time. We then demonstrate that PAE is
applicable, as in both scenarios, our method leads
to a comparable decrease in privacy leaks.

Evaluation of post-edit LLM For the automatic
assessment procedure, we measure the difference
in generations for the pre-trained GPT-J model and
the post-edit version by generating a 100 token long
paragraph starting from a total of 300 examples
from the Pile, obtained by extracting 100 examples
from its Book3 (Rae et al., 2022), Wikipedia and
Pile-CC sub-dataset. We prompted the post-edit
models and the pre-edit one with 20 tokens of the
300 randomly selected examples, and we evaluated
how similar the generations are by measuring their
overlap. The higher the similarity, the lower the
influence of PAE on the model performance. Eval-
uation metrics are ROUGE and METEOR scores.

For the manual assessment procedure, we gener-
ate with post-edit models and with the pre-edit one
a short paragraph from 10 different prompts (a com-
plete list can be found in the Appendix 6.1). We
collect the generations for the pre-edit model and
the post-edit model according to each of the editing
strategies. Hence, in total, we collect 30 genera-
tions. Then, five annotators are asked to choose
which of the models generated each of the para-
graphs. Three sample generations of each model
were provided, and the annotators were informed
that two out of three models had been edited, but
none of them were informed which of the three sys-
tems had been edited. Evaluation measures are the
classification accuracy of each annotator and the
Fleiss’ K inter-annotator agreement: a low score
on both can confirm that the models are indistin-
guishable.

4.2 Results and Discussion

LLMs leak Private Information Since LLMs
tend to leak training data, we aim to quantify the
amount of private information that can be retrieved
from the pre-trained GPT-J. Unfortunately, GPT-J
makes no exception to the trend noticed by Huang
et al. (2022) for the GPT-Neo models. In fact, this
model also tends to generate PII.

In Table 2, it is possible to observe that Training
Data Extraction Attacks that are based on Memo-
rization are particularly effective against the GPT-J
model: on average, the model tends to accurately
predict the mail observed during training the 16%
of the times.

It is worth noting the scale of the leakage: the
model is originally prompted with 3238 examples.
The column Generated emails reports the number
of times during generation that the model answers
with an email address, while Leaked emails reports
the number of times the generation is correct, mean-
ing that the generated email corresponds to the one
observed in the training data. On average, 450.5
emails are correctly generated by those attacks: the
privacy of a large number of people is threatened.

Moreover, as the attacker gets more information,
the accuracy of the attacks gets higher: the accuracy
of the attacks strongly depends on the length of the
prompt. In fact, the lower accuracy — the number
of correctly leaked email addresses over the total
email addresses generated— that can be registered
in Memorization Attacks is 12% : the model in that
case is fed with a context prompt that is 50 tokens
long. However, when the context prompt given to
the model is composed of 200 tokens, the accuracy
of the attack peaks at 18.2% with greedy decoding
and 18% using beam search decoding.

The accuracy of the Association Attacks is much



more modest. The results of those attacks against
GPT-J model exhibit similar patterns to the one
observed by Huang et al. (2022) against the GPT-
Neo models. The larger number of email addresses
leaked by those kinds of attacks is 68, a modest
number compared to the accuracy obtained in the
Memorization Attacks. However, in an adversarial
scenario, even low accuracy may cause harm to
people. Hence, in the next Section, we will demon-
strate the efficacy of PAE against both types of
attacks.

PAE in batch editing Preserves Privacy In Ta-
ble 2, it is possible to observe the reduced effective-
ness of Memorization and Association attacks after
the GPT-J model has undergone an editing process
(Post-edit columns), with Post-edit results further
divided into Implicit and Explicit categories. This
Section investigates the impact of these edits, focus-
ing on their efficacy against more or less informed
attacks. We argue that PAE edits are effective if
they can reduce the leakage of private information,
regardless of the nature of the attack.

Post-edit results show, in fact, a significant re-
duction in the effectiveness of Association attacks.
This reduction is particularly notable in scenarios
where the number of leaked emails drops close to
zero. Crucially, while not perfect, the PAE edits
— both Implicit and Explicit — always cause an in-
crease in privacy protection since they reduce the
number of emails correctly leaked by Association
Attacks. However, it is crucial to consider the orig-
inally leaked emails when interpreting post-edit
results. While a reduction to near-zero leakage is
impressive, the impact is more pronounced when
starting from a higher number of pre-edit leaks. For
this reason, we focus on the discussion around the
Memorization Attacks that cause a larger number
of private email addresses to be generated.

PAE is an effective solution against Memoriza-
tion Attacks. In particular, the accuracy of the at-
tacks steadily decreases in each configuration. The
average drop in accuracy after an Implicit edit is
5% and 4.5% after an Explicit edit: this means that
PAE is able to modify model parameters so that,
on average, the 32% of the previously predicted
email addresses are no longer verbatim generated
by the model using Implicit defense strategy, 29%
with the explicit one. Against attacks with context
prompt of 50 tokens, PAE effectiveness peaks, with
42.5% of the email addresses anonymized. As ex-
pected, more informed context prompts are more

challenging; however, also with context prompts
of 200 tokens, PAE makes the accuracy attack drop
from 0.18 to 0.12 in Greedy decoding and to 0.138
using Beam Search in the Implicit edit, and from
0.18 to 0.134 in greedy decoding and to 0.141 us-
ing Beam Search in the Explicit edit. In general,
studying the effect of the decoding algorithm on the
accuracy of the attacks we can state that this factor
does not influence much the results: under Memo-
rization Attacks, only a slight difference in terms
of accuracy can be registered This analysis show
that PAE can help in protecting privacy. Finally,
it is possible to notice that there is a consistent
difference between Implicit and Explicit post-edit
results. Explicit edits generally result in a slightly
higher number of leaked emails and attack accu-
racy compared to Implicit edits, especially under
Memorization Attacks. For example, in the case of
a context prompt of 200, the Explicit edit causes a
larger number of emails to be correctly generated
(396 in greedy decoding, 405 in beam search de-
coding) than the corresponding Implicit edit (368
email addresses leaked in greedy decoding, 394 in
beam search decoding)

In summary, post-edit measures, demonstrate a
strong capability to safeguard email data from var-
ious attack strategies, significantly lowering both
the number of leaked emails and the attack accu-
racy across different configurations. For our ex-
periments, we adopted the “one model, k edits”
philosophy. This approach is based on the practi-
cal scenario where an LLM producing private data
needs to be edited for a large number of potentially
threatened individuals: with PAE, the model owner
can perform a single edit to the model parameters
to reduce privacy risks. While attacks are still able
to recover some private information also after the
editing, the evaluation confirms the effectiveness of
our model editing techniques in preventing the dis-
closure of private data since also informed attacks
—like the Memorization Attacks — are less effective
on edited models.

PAE preserves the Language Modelling Capabil-
ities PAE preserves the privacy of people while
not affecting the Language Modeling performances.
The results of the automatic assessment procedure
can quantitatively give us insight that model gen-
erations are, in fact, similar. Results can be found
in the Table 3. Both according to the BLEU metric
and to METEOR, the systems generate (in greedy
decoding) very similar paragraphs when prompted



Wikipedia Books3 Pile-CC
BLEU METEOR BLEU METEOR BLEU METEOR
o Ey | 0.715(£0.266) | 0.754(£0.237) | 0.66(£0.295) | 0.71(£0.259) | 0.599(£0.27) | 0.656(40.249)
Ey | 0.683(£0.277) | 0.733(4£0.247) | 0.589(+0.276) | 0.646(+0.247) | 0.533(£0.243) | 0.601(+0.222)
Ey | By | 0.662(£0.272) | 0.713(£0.239) | 0.63(+0.285) | 0.679(+0.253) | 0.591(£0.267) | 0.65(%0.25)

Table 3: PAE preserves language model performances:generations from the original, pre-edit model (O) and

post-edit (£; and F») are similar from one another.

Pre-Edit and Post-Edit Accuracies of Attacks

—e— Different Post-Edits
-~ Pre-Edit Accuracy

0 100 200 300 400 500
Batch Size

Figure 2: Memorization Attack against sequentially
post-edit models. The smaller the batch size k, the larger
the number of sequential updates necessary to edit all
the private email addresses leaked by the original model.
After the Sequential edits, the stronger Memorization
Attack (|pps| = 200) achieves similar performances at
all the configurations.

with the same tokens. In particular, the post-edit
models F; and F5 — post-edit with implicit and ex-
plicit PAE — are similar to the original, pre-edited
model O. In particular, the implicit edit Fy is
slightly more similar to the pre-edited model across
all the domains tested.

Finally, the manual assessment procedure sug-
gests that the models are indistinguishable from
one another. In fact, the annotators asked to de-
tect which model is responsible for a generation
among F1, Fs, and O can only randomly guess,
with an average accuracy on this classification task
(0.35(£0.07)) close to random choice. Also, the
very low agreement (Fleiss” K of 0.002) suggests
that the three systems are indistinguishable.

This evaluation procedure can attest that the EAP
is applicable because it not only helps to preserve
user privacy but also leaves the capabilities of the
systems language model intact.

PAE “one model, k edits” is flexible Finally, in
Figure 2 is it possible to notice that the “one model
k edits approach” is flexible and can be applied
with different k, successfully mixing batch and
sequential editing to preserve users’ privacy. In
these experiments, we perform sequential edits of
the GPT-J model, varying the number of email
addresses anonymized per edit, varying k£ from 5

to 300. We indicate the number of anonymized
emails per edit as batch size k: with £ < N, we
mimic the real-world scenario of updating a model
each time a privacy leak is detected. To understand
whether sequential editing has a negative impact
on the effectiveness of the edit, we evaluate the
effectiveness of PAE for each of the batch sizes in
the Memorization Attack with the more effective of
the prompts (|pas| = 200). The results in Table 2?
refer to a model post-edit with "implicit" PAE. As
can be observed in Figure 2, the accuracy of the edit
is rather stable and similar to the results obtained
in the batch editing scenario. Also, the underlying
language model is not negatively affected by the
different k, as reported in Appendix 6.2. Those
results also confirm the applicability of PAE in
sequential editing, demonstrating the validity of
the “one model, k edits” approach.

5 Conclusion

In this paper, we address the critical issue of private
data leakage in Large Language Models (LLMs)
due to their tendency to memorize training data. We
propose Private Association Editing (PAE), a novel
defense mechanism that effectively removes Per-
sonally Identifiable Information (PII) from LLMs
without requiring retraining. Our methodology in-
volves a four-step procedure: detecting memorized
PII, applying PAE cards, verifying resilience to
targeted data extraction (TDE) attacks, and ensur-
ing consistency in the post-edit LLMs. The PAE
method stands out for its versatility and efficiency,
allowing for small batch modifications and signifi-
cantly enhancing the privacy of LLMs.

Our experiments demonstrate that the PAE ap-
proach is both effective and efficient in mitigating
the risk of private data leakage. The results across
different configurations suggest its applicability
also to other structured PII (i.e. phone numbers and
credit cards). We believe PAE will be a valuable
tool in the ongoing effort to protect data privacy
in LLMs and encourage its adoption to prevent
potential privacy violations.



Limitations

We outline some limitations and possible directions
for future research in enhancing data privacy in
Large Language Models (LLMs).

As the landscape of LLMs evolves, it may be
useful to extend the Private Association Editing
(PAE) mechanism to accommodate new types of
models and data. Currently, we apply our proposed
PAE method on a limited set of LLMs. A pos-
sible extension could involve testing and refining
PAE across a broader spectrum of LLM architec-
tures and training datasets. Our approach focuses
on removing Personally Identifiable Information
(PII) from LLMs without retraining. However, this
method might not address all types of sensitive data.
Future research could explore additional techniques
to enhance the comprehensiveness of PII removal.
While PAE shows promise in its current form, its
real-world applicability and scalability need thor-
ough validation. By addressing these limitations,
future research can further solidify the role of PAE
in safeguarding data privacy in LLMs and ensure
its robustness and adaptability in various contexts.
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6 Appendix
6.1 All the prompts of the manual assessment
procedure

"My name is";

"The weather today is";

"Ever since I was a child, I’'ve always liked";
"My dear friend Mary";

"Swimmers are usually";

"Modern art is";

"The Industrial Revolution";

"Follow those steps to cook";

"It is forbidden to";

"It is very likely".

6.2 Evaluation of the Language Model with
different &

In Table 4, the BLEU and METEOR average score
over the 300 examples drawn from the Pile are
reported for each of the Wikipedia, Books3, and
Pile-CC subdatasets. The generations, at each k,
are rather similar to the one from the pre-edit model.
Moreover, the results are similar to the one obtained
with k = NN, described in Table 3.

Those results confirm the applicability of PAE to
preserve users’ privacy without negatively affecting
LM performances.
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Wikipedia Books3 Pile-CC
BLEU METEOR BLEU METEOR BLEU METEOR

k=5 | 0.731(£0.28) | 0.771 (£0.247) | 0.696 (£0.275) | 0.744 (£0.246) | 0.593 (£0.276) | 0.65 (£0.25)
k=15 | 0.706 (£0.287) | 0.747 (£0.262) | 0.685 (£0.266) | 0.723 (+0.246) | 0.581 (£0.273) | 0.634 (£0.251)
k=50 |0.703 (£0.302) | 0.747 (£0.268) | 0.685 (£0.258) | 0.734 (+£0.231) | 0.617 (+0.265) | 0.669 (£0.246)
k=70 |0.689 (£0.296) | 0.73 (£0.263) | 0.684 (£0.255) | 0.733 (+£0.235) | 0.603 (+£0.27) | 0.659 (£0.248)
k=100 | 0.663 (+0.281) | 0.716 (+£0.249) | 0.725 (£0.265) | 0.768 (£0.24) | 0.619 (£0.277) | 0.672 (+0.252)
k=200 | 0.656 (£0.279) | 0.708 (£0.249) | 0.7 (£0.273) | 0.743 (0. 246) 0.586 (£0.267) | 0.647 (£0.242)
k=300 | 0.644 (£0.286) | 0.701 (£0.252) | 0.728 (£0.262) | 0.77 (£0.235) | 0.593 (£0.269) | 0.655 (£0.239)
k =350 | 0.65 (£0.286) | 0.703 (£0.252) | 0.704 (£0.272) | 0.747 (£0.246) | 0.596 (£0.269) | 0.65 (£0.244)
k=400 | 0.647 (£0.284) | 0.7 (£0.249) | 0.703 (£0.274) | 0.738 (£0.246) | 0.588 (£0.263) | 0.642 (£0.244)
k=480 | 0.66 (£0.295) | 0.71 (£0.259) | 0.715 (£0.266) | 0.754 (£0.237) | 0.599 (£0.27) | 0.656 (£0.249)

Table 4: Different values of k, leading to smaller or larger number of sequential editing does not negatively affect
the model. Since no large difference in post-edit generation is registered, those results demonstrate that the proposed

approach of “one model, k edits” is effective and flexible.
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