
Under review as a conference paper at ICLR 2024

FISHER INFORMATION GUIDED BACKDOOR PURIFICA-
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ABSTRACT

Backdoor attacks during deep neural network (DNN) training have gained pop-
ularity in recent times since they can easily compromise the safety of a model
of high importance, e.g., large language or vision models. Our study shows
that a backdoor model converges to a bad local minima, i.e., sharper minima as
compared to a benign model. Intuitively, the backdoor can be purified by re-
optimizing the model to smoother minima. To obtain such re-optimization, we
propose Smooth Fine-Tuning (SFT), a novel backdoor purification framework that
exploits the knowledge of Fisher Information Matrix (FIM). However, purification
in this manner can lead to poor clean test time performance due to drastic changes
in the original backdoor model parameters. To preserve the original test accuracy,
a novel regularizer has been designed to explicitly remember the learned clean
data distribution. In addition, we introduce an efficient variant of SFT, dubbed as
Fast SFT, which reduces the number of tunable parameters significantly and ob-
tains an impressive runtime gain of almost 5×. Extensive experiments show that
the proposed method achieves state-of-the-art performance on a wide range of
backdoor defense benchmarks: four different tasks—Image Recognition, Object
Detection, Video Action Recognition, 3D point Cloud; 10 different datasets in-
cluding ImageNet, PASCAL VOC, UCF101; diverse model architectures spanning
both CNN and vision transformer; 14 different backdoor attacks, e.g., Dynamic,
WaNet, ISSBA, etc.

1 INTRODUCTION

Training a deep neural network (DNN) with a fraction of poisoned or malicious data is often
security-critical since the model can successfully learn both clean and adversarial tasks equally
well. This is prominent in scenarios where one outsources the DNN training to a vendor. In such
scenarios, an adversary can mount backdoor attacks (Gu et al., 2019; Chen et al., 2017) by poisoning
a portion of training samples so that the model will classify any sample with a particular trigger or
pattern to an adversary-set label. Whenever a DNN is trained in such a manner, it becomes crucial
to remove the effect of a backdoor before deploying it for a real-world application. In recent times,
a number of attempts have been made (Liu et al., 2018; Wang et al., 2019; Wu & Wang, 2021; Li
et al., 2021b; Zheng et al., 2022; Zhu et al., 2023) to tackle the backdoor issue in DNN training.
Defense techniques such as fine-pruning (FP) (Liu et al., 2018) aim to prune vulnerable neurons
affected by the backdoor. Most of the recent backdoor defenses can be categorized into two groups
based on the intuition or perspective they are built on. They are i) pruning based defense (Liu et al.,
2018; Wu & Wang, 2021; Zheng et al., 2022): some weights/channel/neurons are more vulnerable
to backdoor than others. Therefore, pruning or masking bad neurons should remove the backdoor.
ii) trigger approximation based defense (Zeng et al., 2021; Chai & Chen, 2022): recovering the
original trigger pattern and fine-tuning the model with this trigger would remove the backdoor.

In this work, we bring in a novel perspective for analyzing the backdoor in DNNs. Different from
existing techniques, we explore the backdoor insertion and removal phenomena from the DNN op-
timization point of view. Unlike a benign model, a backdoor model is forced to learn two different
data distributions: clean data distribution and poison data distribution. Having to learn both distri-
butions, backdoor model optimization usually leads to a bad local minima or sharper minima w.r.t.
clean distribution. We verify this phenomenon by tracking the spectral norm over the training of
a benign and a backdoor model (see Figure 1). We also provide theoretical justification for such
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Figure 1: a & b) Eigen spectral density plots of loss Hessian for benign and backdoor (TrojanNet (Liu et al.,
2017a)) models. In each plot, the maximum eigenvalue (λmax), the trace of Hessian (Tr(H)), clean test accuracy
(ACC), and attack success rate (ASR) are also reported. Here, low λmax and Tr(H) hints at the presence of a
smoother loss surface, which often results in low ASR and high ACC. Compared to a benign model, a backdoor
model tends to reach sharper minima, as shown by the larger range of eigenvalues (x-axis). c) The convergence
phenomena over the course of training. As the backdoor model converges to sharper minima, d) both ASR and
ACC increase; observe the curves around 80 epochs. We use the CIFAR10 dataset with a PreActResNet18 (He
et al., 2016) architecture for all evaluations.

discrepancy in convergence behavior. Intuitively, we claim that the backdoor can be removed by
re-optimizing the model to smoother minima. To obtain such re-optimization, we propose a novel
backdoor purification technique—Smooth Fine-tuning (SFT) by exploiting the knowledge of Fisher
Information Matrix (FIM) of a DNN to remove the imprint of the backdoor. Specifically, an FIM-
guided regularizer has been introduced to achieve smooth convergence, which in turn effectively
removes the backdoor. Our contribution can be summarized as follows:

• Novel Perspective for Backdoor Analysis. We analyze the backdoor insertion process in
DNNs from the optimization point of view. Our analysis shows that the optimization of
a backdoor model leads to a bad local minima or sharper minima compared to a benign
model. We also provide theoretical justifications for our novel findings. To the best of
our knowledge, this is the first study establishing the correlation between smoothness and
backdoor attacks.

• Novel Backdoor Defense. We propose a novel technique, SFT, that removes the backdoor
by re-optimizing the model to smooth minima. However, purifying the backdoor in this
manner can lead to poor clean test time performance due to drastic changes in the original
backdoor model parameters. To preserve the original test accuracy of the model, we pro-
pose a novel clean data-distribution-aware regularizer that encourages less drastic changes
to the model parameters responsible for remembering the clean distribution.

• Better Runtime Efficiency. In addition, we propose a computationally efficient variant of
SFT, i.e., Fast SFT, where we perform spectral decomposition of the weight matrices and
fine-tune only the singular values while freezing the corresponding singular vectors. By
reducing the tunable parameters, the purification time can be shortened significantly.

• Comprehensive Evaluation. We evaluate our proposed method on a wide range of backdoor
defense benchmarks, which shows that SFT obtains state-of-the-art performance both in
terms of purification performance and runtime.

2 RELATED WORK

Existing backdoor defense methods can be categorized into backdoor detection or purifying tech-
niques. Detection based defenses include trigger synthesis approach Wang et al. (2019); Qiao et al.
(2019); Guo et al. (2020); Shen et al. (2021); Dong et al. (2021); Guo et al. (2021); Xiang et al.
(2022); Tao et al. (2022), or malicious samples filtering based techniques Tran et al. (2018); Gao
et al. (2019); Chen et al. (2019). However, these methods only detect the existence of backdoor with-
out removing it. Backdoor purification defenses can be further classified as training time defenses
and inference time defenses. Training time defenses include model reconstruction approach Zhao
et al. (2020a); Li et al. (2021c), poison suppression approach Hong et al. (2020); Du et al. (2019);
Borgnia et al. (2021), and pre-processing approaches Li et al. (2021b); Doan et al. (2020). Although
training time defenses are often successful, they suffer from huge computational burdens and are less
practical considering attacks during DNN outsourcing. Inference time defenses are mostly based on
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pruning approaches such as Koh & Liang (2017); Ma & Liu (2019); Tran et al. (2018); Diakoniko-
las et al. (2019); Steinhardt et al. (2017). Pruning-based approaches are typically based on model
vulnerabilities to backdoor attacks. For example, MCR Zhao et al. (2020a) and CLP Zheng et al.
(2022) analyzed node connectivity and channel Lipschitz constant to detect backdoor vulnerable
neurons. Adversarial Neuron Perturbations (ANP) (Wu & Wang, 2021) adversarially perturbs the
DNN weights by employing and pruning bad neurons based on pre-defined thresholds. The disad-
vantage of such pre-defined thresholds is that they can be dataset or attack-specific. ANP also suffers
from performance degradation when the validation data size is too small. A more recent technique,
Adversarial Weight Masking (AWM) (Chai & Chen, 2022), has been proposed to circumvent the
issues of ANP by replacing the adversarial weight perturbation module with an adversarial input
perturbation module. Specifically, AWM solves a bi-level optimization for recovering the backdoor
trigger distribution. Notice that both of these SOTA methods rely heavily on the computationally
expensive adversarial search in the input or weight space, limiting their applicability in practical
settings. I-BAU (Zeng et al., 2021) also employs similar adversarial search-based criteria for back-
door removal. Recently, Zhu et al. (2023) proposed a regular weight fine-tuning (FT) technique that
employs popular sharpness-aware minimization (SAM) (Foret et al., 2021) optimizer to remove the
effect of backdoor. However, a naı̈ve addition of SAM to the FT leads to poor clean test accuracy af-
ter backdoor purification. We provide additional related works on backdoor attacks and smoothness
analysis of DNN in Appendix A.1.

3 THREAT MODEL

Attack Model. Our attack model is consistent with prior works related to backdoor attacks (e.g., (Gu
et al., 2019; Chen et al., 2017; Nguyen & Tran, 2021; Wang et al., 2022), etc.). We consider an
adversary with the capabilities of carrying a backdoor attack on a DNN model, fθ : Rd → Rc,
by training it on a poisoned data set Dtrain = {Xtrain, Ytrain}; Xtrain = {xi}Ns

i=1, Ytrain = {yi}Ns
i=1

where Ns is the total number of training samples. Here, θ is the parameters of the model, d is the
input data dimension, and c is the total number of classes. Each input x ∈ Xtrain is labeled as
y ∈ {1, 2, · · · , c}. The data poisoning happens through a specific set of triggers that can only be
accessed by the attacker. The adversary goal is to train the model in a way such that any triggered
samples xb = x⊕δ ∈ Rd will be wrongly misclassified to a target label yb, i.e., argmax(fθ(xb)) =
yb ̸= y. Here, x is a clean test sample, and δ ∈ Rd represents the trigger pattern with the properties
of ||δ|| ≤ ϵ; where ϵ is the trigger magnitude determined by its shape, size, and color. Note that
⊕ operator can be any specific operation depending on how an adversary designed the trigger. We
define the poison rate (PR) as the ratio of poison and clean data in Dtrain. An attack is considered
successful if the model behaves as argmax (fθ(x)) = y and argmax (fθ(xb)) = yb, where y is the
true label for x. We use attack success rate (ASR) for quantifying such success.

Defense Goal. We assume the defender has complete control over the pre-trained model fθ(.), e.g.,
access of model parameters. Hence, we consider a defender with a task to purify the backdoor model
fθ(.) using a small clean validation set Dval = {Xval, Yval} (usually 0.1 ∼ 10% of the training data
depending on the dataset). The goal is to repair the model such that it becomes immune to attack,
i.e., argmax (fθp(xb)) = y, where fθp is the final purified model. Note that the defense method
must retain clean accuracy of fθ(.) for benign inputs even if the model has no backdoor.

4 SMOOTHNESS ANALYSIS OF BACKDOOR MODELS

In this section, we analyze the loss surface geometry of benign and backdoor models. To study the
loss curvature properties of different models, we aim to analyze the Hessian of loss (loss-Hessian),
H = ∇2

θL, where L is computed using the training samples. The spectral decomposition of sym-
metric square matrix H is H= [hij ] = QΛQT , where Λ = diag(λ1, λ2, · · · , λN ) is a diagonal
matrix that contains the eigenvalues of H and Q = [q1q2 · · · qN ], where qi is the ith eigenvector of
H. As a measure for smoothness, we take the spectral norm of H , σ(H) = λ1 = λmax, and the
trace of the Hessian, Tr(H) =

∑i=N
i=1 hii. Low values for these two proxies indicate the presence of

a highly smooth loss surface (Jastrzebski et al., 2020). The Eigen Spectral density plots in Fig. 1a
and 1b elaborates on the optimization of benign and backdoor models. From the comparison of
λmax and Tr(H), it can be conjectured that optimization of a benign model leads to a smoother loss
surface. Since the main difference between a benign and a backdoor model is that the latter needs to
learn two different data distributions (clean and poison), we state the following observation:
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Observation 1. Having to learn two different data distributions, a backdoor model reaches a
sharper minima, i.e., large σ(H) and Tr(H), as compared to the benign model.

We support our observation with empirical evidence presented in Fig. 1c and 1d. Here, we observe
the convergence behavior for 4 different attacks over the course of training. Compared to a benign
model, the loss surface of a backdoor becomes much sharper as the model becomes well optimized
for both distributions, i.e., high ASR and high ACC. Backdoor and benign models are far from being
well-optimized at the beginning of training. The difference between these models is prominent once
the model reaches closer to the final optimization point. As shown in Fig. 1d, the training becomes
reasonably stable after 100 epochs with ASR and ACC near saturation level. Comparing λmax

of benign and all backdoor models after 100 epochs, we notice a sharp contrast in Fig. 1c. This
validates our claim on loss surface smoothness of benign and backdoor models in Observation 1.
All of the backdoor models have high attack success rates (ASR) as well as high clean test accuracy
(ACC) which indicates that the model had learned both distributions, providing additional support
for Observation 1. Similar phenomena for different attacks, datasets, and architectures have been
observed; details are provided in Appendix A.6.1.

Theoretical Justification. (Keskar et al., 2017) shows that the loss-surface smoothness of L for
differentiable ∇θL can be related to L−Lipschitz1 of ∇θL as,

sup
θ

σ(∇2
θL) ≤ L (1)

Theorem 1. If the gradient of loss corresponding to clean and poison samples are Lc−Lipschitz
and Lb−Lipschitz, respectively, then the overall loss (i.e., loss corresponding to both clean and
poison samples with their ground-truth labels) is (Lc + Lb)−Smooth.

Theorem 1 describes the nature of overall loss resulting from both clean and poison samples. Look-
ing back to Eq. (1), Theorem 1 supports our empirical results related to backdoor and benign model
optimization as larger Lipschitz constant implies sharper minima.

5 SMOOTH FINE-TUNING (SFT)

Our proposed backdoor purification method—Smooth Fine-Tuning (SFT) consists of two novel
components: (i) Backdoor Suppressor for backdoor purification and (ii) Clean Accuracy Retainer to
preserve the clean test accuracy of the purified model.

Backdoor Suppressor. Let us consider a backdoor model fθ : Rd → Rc with parameters θ ∈ RN to
be fitted (fine-tuned) with input (clean validation) data {(xi, yi)}|Dval|

i=1 from an input data distribution
Px,y , where xi ∈ Xval is an input sample and yi ∈ Yval is its label. We fine-tune the model by solving
the following:

argmin
θ

L(θ), (2)

where L(θ) = L(y, fθ(x)) =
∑

(xi,yi)∈Dval
[−log [fθ(xi)]yi

] is the empirical full-batch cross-
entropy (CE) loss. Here, [fθ(x)]y is the yth element of fθ(x). Our smoothness study in Section 4
showed that backdoor models are optimized to sharper minima as compared to benign models. In-
tuitively, re-optimizing the backdoor model to a smooth minima would effectively remove the back-
door. However, the vanilla fine-tuning objective presented in Eq. (2) is not sufficient to effectively
remove the backdoor as we are not using any smoothness constraint or penalty.

To this end, we propose to regularize the spectral norm of loss-Hessian σ(H) in addition to mini-
mizing the cross entropy-loss L(θ) as follows,

argmin
θ

L(θ) + σ(H). (3)

By explicitly regularizing the σ(H), we intend to obtain smooth optimization of the backdoor model.
However, the calculation of H , in each iteration of training has a huge computational cost. Given
the objective function is minimized iteratively, it is not feasible to calculate the loss Hessian at each
iteration. Additionally, the calculation of σ(H) will further add to the computational cost. Instead
of directly computing H and σ(H), we analytically derived a computationally efficient upper-bound
of σ(H) in terms of Tr(H) as follows,

1Definition of L−Lipschitz and details of proof for Theorem 1 are presented in Appendix A.3.
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Lemma 1. The spectral norm of loss-Hessian σ(H) is upper-bounded by σ(H) ≤ Tr(H) ≈ Tr(F ),
where

F = E
(x,y)∼Px,y

[
∇θlog[fθ(x)]y · (∇θlog[fθ(x)]y)

T
]

(4)

is the Fisher-Information Matrix (FIM).

Proof. The inequality σ(H) ≤ Tr(H) follows trivially as Tr(H) of symmetric square matrix H is
the sum of all eigenvalues of H , Tr(H) =

∑
∀i λi ≥ σ(H). The approximation of Tr(H) using

Tr(F ) follows the fact that F is negative expected Hessian of log-likelihood and used as a proxy of
Hessian H (Amari, 1998).

Following Lemma 1, we adjust our objective function described in Eq. (3) to

argmin
θ

L(θ) + ηFTr(F ), (5)

where ηF is a regularization constant. Optimizing Eq. (5) will force the backdoor model to converge
to smooth minima. Even though this would purify the backdoor model, the clean test accuracy of the
purified model may suffer due to significant changes in θ. To avoid this, we propose an additional
but much-needed regularizer to preserve the clean test performance of the original model.

Clean Accuracy Retainer. In a backdoor model, some neurons or parameters are more vulnerable
than others. The vulnerable parameters are believed to be the ones that are sensitive to poison or
trigger data distribution (Wu & Wang, 2021). In general, CE loss does not discriminate whether
a parameter is more sensitive to clean or poison distribution. Such lack of discrimination may
allow drastic or unwanted changes to the parameters responsible for learned clean distribution. This
usually leads to sub-par clean test accuracy after purification, and it requires additional measures to
fix this issue. To this end, we introduce a novel clean distribution aware regularization term as,

Lr =
∑
∀i

diag(F̄ )i · (θi − θ̄i)
2.

Here, θ̄ is the parameter of the initial backdoor model and remains fixed throughout the purifica-
tion phase. F̄ is FIM computed only once on θ̄ and also remains unchanged during purification.
Lr is a product of two terms: i) an error term that accounts for the deviation of θ from θ̄; ii) a
vector, diag(F̄ ), consisting of the diagonal elements of FIM (F̄ ). As the first term controls the
changes of parameters w.r.t. θ̄, it helps the model to remember the already learned distribution.
However, learned data distribution consists of both clean and poison distribution. To explicitly force
the model to remember the clean distribution, we compute F̄ using a clean validation set; with sim-
ilar distribution as the learned clean data. Note that diag(F̄ )i represents the square of the derivative
of log-likelihood of clean distribution w.r.t. θ̄i, [∇θ̄i log[fθ(x)]y]

2 (ref. Eq. (4)). In other words,
diag(F̄ )i is the measure of importance of θ̄i towards remembering the learned clean distribution.
If diag(F̄ )i has a higher importance, we allow minimal changes to θ̄i over the purification process.
This careful design of such a regularizer improves the clean test performance significantly.

Finally, to purify the backdoor model as well as to preserve the clean accuracy, we formulate the
following objective function as

argmin
θ

L(θ) + ηFTr(F ) +
ηr
2
Lr, (6)

where ηF and ηr are regularization constants.

5.1 FAST SFT (F-SFT)

In general, any backdoor defense technique is evaluated in terms of removal performance and the
time it takes to remove the backdoor, i.e., purification time. It is desirable to have a very short
purification time. To this aim, we introduce a few unique modifications to SFT where we perform
fine-tuning in a more compact space than the original parameter space.

Let us represent the weight matrices for model with L number of layers as θ = [θ1, θ2, · · · , θL].
We take spectral decomposition of θi = UiΣiV

T
i ∈ RM×N , where Σi = diag(σi) and σi =

[σ1
i , σ

2
i , · · · , σM

i ] are singular values arranged in a descending order. The spectral shift of the pa-
rameter space is defined as the difference between singular values of original θi and the updated
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Table 1: Removal Performance (%) of SFT and other defenses in single-label settings. Backdoor removal
performance, i.e., drop in ASR, against a wide range of attacking strategies, shows the effectiveness of SFT.
We use a poison rate of 10% for CIFAR10 and 5% for ImageNet. For ImageNet, we report performance on
successful attacks (ASR ∼ 100%) only. Average drop (↓) indicates the % changes in ASR/ACC compared to
the baseline, i.e., No Defense. A higher ASR drop and lower ACC drop are desired for a good defense.

Dataset Method No Defense ANP I-BAU AWM FT-SAM SFT (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

CIFAR-10

Benign 0 95.21 0 92.28 0 93.98 0 93.56 0 93.80 0 94.10
Badnets 100 92.96 6.87 86.92 2.84 85.96 9.72 87.85 3.74 86.17 1.86 89.32
Blend 100 94.11 5.77 87.61 7.81 89.10 6.53 89.64 2.13 88.93 0.38 92.17

Troj-one 100 89.57 5.78 84.18 8.47 85.20 7.91 87.50 5.41 86.45 2.64 87.21
Troj-all 100 88.33 4.91 84.95 9.53 84.89 9.82 84.97 3.42 84.60 2.79 86.10

SIG 100 88.64 2.04 84.92 1.37 83.60 2.12 83.57 0.73 83.38 0.92 86.73
Dyn-one 100 92.52 8.73 88.61 7.78 86.26 6.48 88.16 3.35 88.41 1.17 90.97
Dyn-all 100 92.61 7.28 88.32 8.19 84.51 6.30 89.74 2.46 87.72 1.61 91.19

CLB 100 92.78 5.83 89.41 3.41 85.07 5.78 86.70 1.89 87.18 2.04 91.37
CBA 93.20 90.17 25.80 86.79 24.11 85.63 26.72 85.05 18.81 85.58 14.60 86.97
FBA 100 90.78 11.95 86.90 16.70 87.42 10.53 87.35 10.36 87.06 6.21 87.30
LIRA 99.25 92.15 6.34 87.47 8.51 89.61 6.13 87.50 3.93 88.70 2.53 89.82
WaNet 98.64 92.29 9.81 88.70 7.18 89.24 8.72 85.94 2.96 87.45 2.38 89.67
ISSBA 99.80 92.80 10.76 85.42 9.82 89.20 9.48 88.03 3.68 88.51 4.24 90.18
BPPA 99.70 93.82 13.94 89.23 10.46 88.42 9.94 89.68 7.40 89.94 5.14 92.84

Avg. Drop - - 90.34 ↓ 4.57 ↓ 90.75 ↓ 4.96 ↓ 90.31 ↓ 4.42 ↓ 94.29 ↓ 4.53 ↓ 95.86 ↓ 2.28 ↓

ImageNet

Benign 0 77.06 0 73.52 0 71.85 0 74.21 0 71.63 0 75.51
Badnets 99.24 74.53 6.97 69.37 6.31 68.28 0.87 69.46 1.18 70.44 1.61 71.46
Troj-one 99.21 74.02 7.63 69.15 7.73 67.14 5.74 69.35 2.86 70.62 2.16 72.47
Troj-all 97.58 74.45 9.18 69.86 7.54 68.20 6.02 69.64 3.27 69.85 2.38 72.63
Blend 100 74.42 9.48 70.20 7.79 68.51 7.45 68.61 2.15 70.91 1.83 72.02
SIG 94.66 74.69 8.23 69.82 4.28 67.08 5.37 70.02 2.47 69.74 0.94 72.86
CLB 95.08 74.14 8.71 69.19 4.37 68.41 7.64 69.70 1.50 70.32 1.05 72.75

Dyn-one 98.24 74.80 6.68 69.65 8.32 69.61 8.62 70.17 4.42 70.05 2.62 71.91
Dyn-all 98.56 75.08 13.49 70.18 9.82 68.92 12.68 70.24 4.81 69.90 3.77 71.62
LIRA 96.04 74.61 12.86 69.22 12.08 69.80 13.27 69.35 3.16 71.38 2.62 70.73
WaNet 97.60 74.48 9.34 68.34 5.67 69.23 6.31 70.02 2.42 69.20 2.71 72.58
ISSBA 98.23 74.38 9.61 68.42 4.50 68.92 8.21 69.51 3.35 70.51 2.86 72.17

Avg. Drop - - 88.38 ↓ 5.11↓ 90.54↓ 5.95 ↓ 90.21 ↓ 4.77 ↓ 94.80 ↓ 4.24 ↓ 95.44 ↓ 2.40 ↓

θ̂i and can be expressed as δi = [δ1i , δ
2
i , · · · , δMi ]. Here, δji is the difference between individual

singular value σj
i . Instead of updating θ, we update the total spectral shift δ = [δ1, δ2, · · · , δL] as,

argmin
δ

L(δ) + ηFTr(F ) +
ηr
2
Lr (7)

Here, we keep the singular vectors (Ui,Vi) frozen during the updates. We obtain the updated singular
values as Σ̂i = diag(ReLU(σi + δi)) which gives us the updated weights θ̂i = UiΣ̂iV

T
i . Fine-

tuning the model in spectral domain reduces the number of tunable parameters and purification time
significantly (Table 5).

6 EXPERIMENTAL RESULTS

6.1 EVALUATION SETTINGS

Datasets. We evaluate our proposed method on two widely used datasets for backdoor attack
study: CIFAR10 (Krizhevsky et al., 2009) with 10 classes, GTSRB (Stallkamp et al., 2011) with
43 classes. As a test of scalability, we also consider Tiny-ImageNet (Le & Yang, 2015) with
100,000 images distributed among 200 classes and ImageNet (Deng et al., 2009) with 1.28M im-
ages distributed among 1000 classes. For multi-label clean-image backdoor attacks, we use object
detection datasets Pascal VOC07 (Everingham et al., 2010), VOC12 (Everingham et al.) and MS-
COCO (Lin et al., 2014). UCF-101 (Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011) have
been used for evaluating in action recognition task. In addiiton, ModelNet (Wu et al., 2015) dataset
has also been considered for evaluation on 3D point cloud classifier.

Attacks Configurations. We consider 14 state-of-the-art backdoor attacks: 1) Badnets (Gu et al.,
2019), 2) Blend attack (Chen et al., 2017), 3 & 4) TrojanNet (Troj-one & Troj-all) (Liu et al., 2017a),
5) Sinusoidal signal attack (SIG) (Barni et al., 2019), 6 & 7) Input-Aware Attack (Dyn-one and
Dyn-all) (Nguyen & Tran, 2020), 8) Clean-label attack (CLB) (Turner et al., 2018), 9) Compos-
ite backdoor (CBA) (Lin et al., 2020), 10) Deep feature space attack (FBA) (Cheng et al., 2021),
11) Warping-based backdoor attack (WaNet) (Nguyen & Tran, 2021), 12) Invisible triggers based
backdoor attack (ISSBA) (Li et al., 2021d), 13) Imperceptible backdoor attack (LIRA) (Doan et al.,
2021), and 14) Quantization and contrastive learning based attack (BPPA) (Wang et al., 2022). More
details on hyper-parameters and overall training settings can be found in Appendix A.5.1.
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Table 2: Performance analysis for the multi-label backdoor attack (Chen et al., 2023). Mean average precision
(mAP) and ASR of the model, with and without defenses, have been shown.

Dataset No defense FP Vanilla FT MCR NAD FT-SAM SFT (Ours)

ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP

VOC07 86.4 92.5 61.8 87.2 19.3 86.9 28.3 86.0 26.6 87.3 17.9 87.6 16.1 89.4
VOC12 84.8 91.9 70.2 86.1 18.5 85.3 20.8 84.1 19.0 84.9 15.2 85.7 13.8 88.6
MS-COCO 85.6 88.0 64.3 83.8 17.2 84.1 24.2 82.5 22.6 83.4 14.3 83.8 15.0 85.2

Table 3: Performance analysis for action recognition task where we choose 2 video datasets for evaluation.

Dataset No defense MCR NAD ANP I-BAU AWM FT-SAM SFT (Ours)

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

UCF-101 81.3 75.6 23.5 68.3 26.9 69.2 24.1 70.8 20.4 70.6 22.8 70.1 14.7 71.3 12.1 72.4
HMDB-51 80.2 45.0 19.8 38.2 23.1 37.6 17.0 40.2 17.5 41.1 15.2 40.9 10.4 38.8 9.0 40.6

Defenses Configurations. We compare our approach with 8 existing backdoor mitigation methods:
1) FT-SAM (Zhu et al., 2023); 2) Adversarial Neural Pruning (ANP) (Wu & Wang, 2021); 3) Im-
plicit Backdoor Adversarial Unlearning (I-BAU) (Zeng et al., 2021); 4) Adversarial Weight Masking
(AWM) (Chai & Chen, 2022); 5) Fine-Pruning (FP) (Liu et al., 2017b); 6) Mode Connectivity Re-
pair (MCR) (Zhao et al., 2020a); and 7) Neural Attention Distillation (NAD) (Li et al., 2021c), 8)
Vanilla FT where we simply fine-tune DNN weights. We provide implementation details for SFT
and other defense methods in Appendix A.5.2 and Appendix A.5.3. Note that the experimental
results for defenses 5, 6, 7, and 8 to Table 10 and 11 has been moved to Appendix A.5.4 due to page
limitations. We measure the effectiveness of a defense method in terms of average drop in ASR and
ACC overall attacks. A successful defense should have a high drop in ASR with a low drop in ACC.
Here, ASR is defined as the percentage of poison test samples that are classified to the adversary-set
target label (yb) and ACC as the model’s clean test accuracy. An ASR of 100% indicates a successful
attack, and 0% suggests the attacks’ imprint on the DNN is completely removed.

6.2 PERFORMANCE EVALUATION OF SFT

Single-Label Settings. In Table 1, we present the performance of different defenses for CIFAR10
and ImageNet. We consider five label poisoning attacks: Badnets, Blend, TrojanNet, Dynamic, and
BPPA. For TorjanNet, we consider two different variations based on label-mapping criteria: Troj-
one and Troj-all. In Troj-one, all of the triggered images have the same target label. On the other
hand, target labels are uniformly distributed over all classes for Troj-all. Regardless of the complex-
ity of the label-mapping type, our proposed method outperforms all other methods both in terms
of ASR and ACC. We also consider attacks that do not change the label during trigger insertion,
i.e., clean label attack. Two such attacks are CLB and SIG. For further validation of our proposed
method, we use deep feature-based attacks, CBA, and FBA. Both of these attacks manipulate deep
features for backdoor insertion. Compared to other defenses, SFT shows better effectiveness against
these diverse sets of attacks, achieving an average drop of 2.28% in ASR while sacrificing an ACC
of 95.86% for that. Table 1 also shows the performance of baseline methods such as ANP, I-BAU,
AWM, and FT-SAM. ANP, I-BAU, and AWM are adversarial search-based methods that work well
for mild attacks (PR∼5%) and often struggle to remove the backdoor for stronger attacks with high
PR. FT-SAM uses sharpness-aware minimization (SAM) (Foret et al., 2021) for fine-tuning model
weights. SAM is a recently proposed SGD-based optimizer that explicitly penalizes the abrupt
changes of loss surface by bounding the search space within a small region. Even though the objec-
tive of SAM is similar to ours, SFT still obtains better removal performance than FT-SAM. One of
the potential reasons behind this can be that SAM is using a predefined local area to search for max-
imum loss. Depending on the initial convergence of the original backdoor model, predefining the
search area may limit the ability of the optimizer to provide the best convergence post-purification.
As a result, the issue of poor clean test accuracy after purification is also observable for FT-SAM.
For the scalability test of SFT, we consider the widely used dataset ImageNet. Consistent with
CIFAR10, SFT obtains SOTA performance for this dataset too. However, there is a significant re-
duction in the effectiveness of ANP, AWM, and I-BAU for ImageNet. In case of large models and
datasets, the task of identifying vulnerable neurons or weights gets more complicated and may result
in wrong neuron pruning or weight masking. Due to page limitations, we move the results of GTSRB
and Tiny-ImageNet to Table 7 in Appendix A.4.

Multi-Label Settings. In Table 2, we show the performance of our proposed method in multi-label
clean-image backdoor attack (Chen et al., 2023) settings. We choose 3 object detection datasets (Ev-
eringham et al., 2010; Lin et al., 2014) and ML-decoder (Ridnik et al., 2023) network architecture for
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Table 4: Removal performance (%) of SFT against backdoor attacks on 3D point cloud classifiers. The attack
methods (Li et al., 2021a) are poison-label backdoor attack (PointPBA) with interaction trigger (PointPBA-I),
PointPBA with orientation trigger (PointPBA-O), clean-label backdoor attack (PointCBA). We also consider
“backdoor points” based attack (3DPC-BA) described in (Xiang et al., 2021).

Attack No Defense MCR NAD ANP I-BAU AWM FT-SAM SFT (Ours)

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

PointBA-I 98.6 89.1 14.8 81.2 13.5 81.4 14.4 82.8 13.6 82.6 15.4 83.9 8.1 84.0 9.6 85.7
PointBA-O 94.7 89.8 14.6 80.3 12.5 81.1 13.6 81.7 14.8 82.0 13.1 82.4 9.4 83.8 7.5 85.3
PointCBA 66.0 88.7 24.1 80.6 20.4 82.7 20.8 83.0 21.2 83.3 21.5 83.8 18.6 84.6 19.4 86.1
3DPC-BA 93.8 91.2 18.4 83.1 15.8 84.5 17.2 84.6 16.8 84.7 15.6 85.9 13.9 85.7 12.6 87.7

this evaluation. It can be observed that SFT obtains a 1.4% better ASR drop as compared to FT-SAM
for the VOC12 (Everingham et al.) dataset while producing a slight drop of 2.3% drop in mean av-
erage precision (mAP). The reason for such improvement can be attributed to our unique approach
to obtaining smoothness. Furthermore, our proposed regularizer ensures better post-purification
mAP than FT-SAM. More on attack and defense settings can be found in Appendix A.5.1 and
Appendix A.5.2, respectively.
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Figure 2: Smoothness analysis of a DNN during
backdoor purification processes. As the model is
being re-optimized to smooth minima, the effect of
the backdoor vanishes. We use CIFAR10 dataset for
this experiment.

Video Action Recognition. A clean-label at-
tack (Zhao et al., 2020b) has been used for this
experiment that requires generating adversarial
perturbations for each input frame. We use two
widely used datasets, UCF-101 (Soomro et al.,
2012) and HMDB51 (Kuehne et al., 2011), with
a CNN+LSTM network architecture. An Im-
ageNet pre-trained ResNet50 network has been
used for the CNN, and a sequential input-based
Long Short Term Memory (LSTM) (Sherstin-
sky, 2020) network has been put on top of it.
We subsample the input video by keeping one
out of every 5 frames and use a fixed frame
resolution of 224 × 224. We choose a trig-
ger size of 20 × 20. Following (Zhao et al., 2020b), we create the required perturba-
tion for clean-label attack by running projected gradient descent (PGD) (Madry et al., 2017)
for 2000 steps with a perturbation norm of ϵ = 16. Note that our proposed augmenta-
tion strategies for image classification are directly applicable to action recognition. During
training, we keep 5% samples from each class to use them later as the clean validation set.
Table 3 shows that SFT outperforms other defenses by a significant margin, e.g., I-BAU and AWM.
Since we have to deal with multiple image frames here, the trigger approximation for these two
methods is not as accurate as it is for a single image scenario. Without a good approximation of the
trigger, these methods seem to underperform in most of the cases.

Table 5: Average runtime for different defenses
against all 14 attacks on CIFAR10. An NVIDIA
RTX3090 GPU was used for this evaluation.

Method ANP I-BAU AWM FT-SAM SFT (Ours)

Runtime (sec.) 118.1 92.5 112.5 98.1 20.8

3D Point Cloud. In this part of our work, we
evaluate SFT against attacks on 3D point cloud
classifiers (Li et al., 2021a; Xiang et al., 2021).
For evaluation purposes, we consider the Model-
Net (Wu et al., 2015) dataset and PointNet++ (Qi
et al., 2017) architecture. The purification perfor-
mance of SFT as well as other defenses are pre-
sented in Table 4. The superior performance of SFT can be attributed to the fact of smoothness
enforcement that helps with backdoor suppressing and clean accuracy retainer that preserves the
clean accuracy of the original model. We tackle the issue of backdoors in a way that gives us better
control during the purification process.

6.3 ABLATION STUDY

In this section, we perform various ablation studies to validate the design choices for SFT. We
consider mostly the CIFAR10 dataset for all of these experiments.

Smoothness Analysis of SFT. Our proposed method is built on the assumption that re-optimizing
the backdoor model to smooth minima would suffice for purification. Here, we validate this as-
sumption by observing the training curves of SFT shown in Fig. 2a and 2b. It can be observed that
SFT indeed re-optimizes the backdoor model to smoother minima. Due to such re-optimization, the
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Table 6: Effect of fine-tuning only spectral shift, denoted by SFT (δ) or f-SFT. SFT (θ) implies the fine-
tuning of all parameters according to Eq. (6). Although SFT (θ) provides similar performance as SFT (δ),
the average runtime is almost 4.5× higher. Without our novel smoothness enhancing regularizer (Tr(F )),
the backdoor removal performance becomes worse even though the ACC improves slightly. Effect of (Lr) on
obtaining better ACC can also be observed. Due to this clean accuracy retainer, we obtain an average ACC
improvement of ∼2.5%. The runtime shown here are averaged over all 14 attacks.

Method Badnets Blend Trojan Dynamic CLB SIG Runtime (Secs.)ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.96 100 94.11 100 89.57 100 92.52 100 92.78 100 88.64 -
SFT (θ) 1.72 89.19 1.05 91.58 3.18 86.74 1.47 90.42 1.31 90.93 0.24 85.37 91.7

SFT (δ) w/o Tr(F ) 5.54 90.62 4.74 91.88 5.91 87.68 3.93 91.26 2.66 91.56 2.75 86.79 14.4
SFT (δ) w/o Lr 1.50 87.28 0.52 89.36 2.32 84.43 1.25 88.14 0.92 88.20 0.17 83.80 18.6

SFT (δ) or f-SFT 1.86 89.32 0.38 92.17 2.64 87.21 1.17 90.97 1.04 91.37 0.12 86.16 20.8

effect of the backdoor has been rendered ineffective. This is visible in Fig. 2b as the attack success
rate becomes close to 0 while retaining good clean test performance. We report further results and
explanations on this in Appendix A.6.1.

Runtime Analysis. In Table 5, we show the average runtime for different defenses. Similar to pu-
rification performance, purification time is also an important indicator to measure the success of a
defense technique. In Section 6.2, we already show that our method outperforms other defenses in
most of the settings. As for the run time, SFT can purify the model in 20.8 seconds, which is almost
5× less as compared to FT-SAM. As part of their formulation, SAM requires a double forward pass
to calculate the loss gradient twice. This increases the runtime of FT-SAM significantly. Further-
more, the computational gain of SFT can be attributed to our proposed rapid fine-tuning method,
f-SFT. Since f-SFT performs spectral shift (δ) fine-tuning, it employs a significantly more compact
parameter space. Due to this compactness, the runtime, a.k.a. purification time, has been reduced
significantly. Additional runtime analysis is in Appendix A.5.2.

Effect of Proposed Regularizer. In Table 6, we analyze the impact of our proposed regularizers as
well as the difference between fine-tuning θ and δ. It can be observed that SFT (θ) provides similar
performance as SFT (δ) for most attacks. However, the average runtime of the former is almost 4.5×
longer than the latter. Such a long runtime is undesirable for a defense technique. We also present
the impact of our novel smoothness-enhancing regularizer, Tr(F ). Without minimizing Tr(F ), the
backdoor removal performance becomes worse even though the ACC improves slightly. We also
see some improvement in runtime (14.4 vs. 20.8) in this case. Table 6 also shows the effect of
Lr which is the key to remembering the learned clean distribution. The introduction of Lr ensures
superior preservation of clean test accuracy of the original model. Specifically, we obtain an average
ACC improvement of ∼2.5% with the regularizer in place. Note that we may obtain slightly better
ASR performance (for some attacks) without the regularizer. However, the huge ACC improvement
outweighs the small ASR improvement in this case. Therefore, SFT (δ) is a better overall choice as
a backdoor purification technique.

We provide more studies in Appendix A.6; e.g. Stronger Backdoor Attacks (Appendix A.6.2),
Label Correction Rate (Appendix A.6.3), Effect of Clean Validation Sizes (Appendix A.6.4), Effect
of Different Architectures (Appendix A.6.5), Combination of Attacks (Appendix A.6.7), etc.

7 CONCLUSION

In this work, we analyze the backdoor insertion and removal process from a novel perspective, model
smoothness. Following this perspective, we propose a novel backdoor purification technique using
the knowledge of Fisher-Information matrix. The proposed method is motivated by our analysis
of loss surface smoothness and its strong correlation with the backdoor insertion and purification
processes. To preserve the clean test accuracy of the original backdoor model, we introduce a novel
clean data distribution-aware regularizer. In addition, a faster version of SFT has been proposed
where we fine-tune the singular values of weights instead of directly fine-tuning the weights itself.
Our proposed method achieves SOTA performance in a wide range of benchmarks.

Limitations. It is observable that no matter which defense techniques we use the clean test accuracy
(ACC) consistently drops for all datasets. We offer an explanation for fine-tuning-based techniques
as SFT is one of them. As we use a small validation set for fine-tuning, it does not necessarily cover
the whole training data distribution. Therefore, fine-tuning with this small amount of data bears the
risk of overfitting and reduced clean test accuracy. While our clean accuracy retainer partially solves
this issue, more rigorous and sophisticated methods need to be designed to fully alleviate this issue.
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A APPENDIX (SUPPLEMENTARY MATERIAL)

Code implementation of SFT is provided in this anonymous GitHub Link2.

A.1 ADDITIONAL RELATED WORKS

Backdoor Attacks. Backdoor attacks in deep learning models aim to manipulate the model to
predict adversary-defined target labels in the presence of backdoor triggers in input while the model
predicts true labels for benign input. (Manoj & Blum, 2021) formally analyzed DNN and revealed
the intrinsic capability of DNN to learn backdoors. Backdoor triggers can exist in the form of dy-
namic patterns, a single pixel (Tran et al., 2018), sinusoidal strips (Barni et al., 2019), human imper-
ceptible noise (Zhong et al., 2020), natural reflection (Liu et al., 2020b), adversarial patterns (Zhang
et al., 2021), blending backgrounds (Chen et al., 2017), hidden trigger (Saha et al., 2020), etc. Based
on target labels, existing backdoor attacks can generally be classified as poison-label or clean-label
backdoor attacks. In poison-label backdoor attack, the target label of the poisoned sample is differ-
ent from its ground-truth label, e.g., BadNets (Gu et al., 2019), Blended attack (Chen et al., 2017),
SIG attack (Barni et al., 2019), WaNet (Nguyen & Tran, 2021), Trojan attack (Liu et al., 2017a),
and BPPA (Wang et al., 2022). Contrary to the poison-label attack, a clean-label backdoor attack
doesn’t change the label of the poisoned sample (Turner et al., 2018; Huang et al., 2022; Zhao et al.,
2020b). Saha et al. (2022) studied backdoor attacks on self-supervised learning. All these attacks
emphasized the severity of backdoor attacks and the necessity of efficient removal methods.

Smoothness Analysis of DNN. Having smoothness properties of an optimization algorithm is prov-
ably favorable for convergence (Boyd & Vandenberghe, 2004). Accordingly, there have been a sub-
stantial number of works on the smoothness analysis of the DNN training process, e.g., (Cohen et al.,
2019; Foret et al., 2021; Kwon et al., 2021). Jastrzebski et al. (2020) showed that spectral norm and
the trace of loss-Hessian could be used as proxies to measure the smoothness of a DNN model. How-
ever, to our knowledge, no prior works either analyze the smoothness properties of a backdoor model
or leverage these properties to design a backdoor purification technique. One example could be the
use of a second-order optimizer that usually helps the model converge to smooth minima. However,
employing such an optimizer makes less sense considering the computational burden involving loss
Hessian. A better alternative to a second-order optimizer is Fisher-information matrix-based natural
gradient descent (NGD) (Amari, 1998). Nevertheless, NGD is also computationally expensive as it
requires the inversion of Fisher-information matrix. In our work, we formulate a novel objective for
obtaining smoothness that is free of the computational issues related to the second-order optimizer
and natural gradient descent (NGD).

A.2 DISCUSSION

A.2.1 TAKEAWAY FROM SMOOTHNESS ANALYSIS

During training, we iteratively update the model weights using gradient backpropagation. Fig 1c
suggests that backdoor insertion causes the model to gradually converge to a sharp minima. Natu-
rally, the model weight update is also strongly connected to this. To explain in simple terms, let us
consider feeding a clean sample to a backdoor model. In general, the model should predict the cor-
rect ground truth label. Now, consider feeding a sample with a backdoor trigger on it. The model will
predict the adversary-set target label, implying significant changes in output prediction distribution.
This significant change can be explained by the loss-surface smoothness. In order to accommodate
this significant change in prediction, the model must adjust itself accordingly. Such adjustment leads
to non-smoothness in the weight-loss surface. A non-smooth surface causes significant changes in
loss gradient for specific inputs. In our case, these specific inputs are backdoor-triggered samples.
To remove the backdoor, we can re-optimize the model to a smooth minima using a simple but
intuitive technique described next.

A.2.2 WHY SMOOTHNESS ANALYSIS W.R.T. CLEAN DISTRIBUTION?

Let us consider the general training approach of a backdoor and benign model. In general, a back-
door model is usually well-optimized for both w.r.t. clean and poison data distribution as it is

2https://github.com/iclr2024sft/anonymous_submission
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designed to perform well on both distributions. If we perform the smoothness analysis of backdoor
models w.r.t. original training data (both clean and poison data distributions), the loss surface will
be smooth. In case of a benign model, the model is well-optimized for clean data distribution
and, hence, converges to smooth minima. Therefore, it can be observed that if the smoothness is
measured w.r.t. the respective training data distribution, both models will be smooth. To clearly
distinguish between benign and backdoor models in terms of their optimization characteristics, we
need to consider a suitable data distribution (that represents both models well) for smoothness anal-
ysis. In our work, we choose to conduct the smoothness analysis w.r.t. both clean and backdoor
samples with their corresponding ground truth labels.

A.2.3 NUMERICAL EXAMPLE RELATED TO F-SFT

Let us consider a convolution layer with the filter size of 5 × 5, output channel of 256, and input
channel of 128. The weight tensor for this layer, θc ∈ R256×128×5×5, can be transformed into 2-D
matrix θc ∈ R256×(128×5×5). If we take the SVD of this 2D matrix, we only have 256 parameters (σ)
to optimize instead of 8,19,200 parameters. For this particular layer, we reduce the tunable parameter
by 3200× as compared to vanilla fine-tuning. By reducing the number of tunable parameters, fast
SFT significantly improves the computational efficiency of SFT. In the rest of the paper, we use f-SFT
and SFT interchangeably unless otherwise stated.

A.3 PROOF OF THEOREM 1

We discuss the smoothness of backdoor model loss considering the Lipschitz continuity of the loss
gradient. Let us first define the K−Lipschitz and L−Smooth of a function as follows:
Definition 1. [K−Lipschitz] A function f(θ) is K−Lipschitz on a set Θ if there exists a constant
0 ≤ K < ∞ such that,

||f(θ1)− f(θ2)|| ≤ K||θ1 − θ2||, ∀θ1, θ2 ∈ Θ

Definition 2. [L−Smooth] A function f(θ) is L−Smooth on a set, Θ, if there exists a constant
0 ≤ L < ∞ such that the ,

||∇θf(θ1)−∇θf(θ2)|| ≤ L||θ1 − θ2||, ∀θ1, θ2 ∈ Θ

Following the prior works (Sinha et al., 2018; Liu et al., 2020a; Kanai et al., 2023) related to the
smoothness analysis of the loss function of DNN, we assume the following conditions on the loss:
Assumption 1. The loss function ℓ(x, θ) satisfies the following inequalities,

||ℓ(x, θ1)− ℓ(x, θ2)|| ≤ K||θ1 − θ2|| (8)
||∇θℓ(x, θ1)−∇θℓ(x, θ2)|| ≤ L||θ1 − θ2|| (9)

where 0 ≤ K < ∞, 0 ≤ L < ∞, ∀θ1, θ2 ∈ Θ, and x is any training sample (i.e., input).

Using the above assumptions, we state the following theorem:

Theorem 1. If the gradient of loss corresponding to clean and poison samples are Lc−Lipschitz
and Lb−Lipschitz, respectively, then the overall loss (i.e., loss corresponding to both clean and
poison samples with their ground-truth labels) is (Lc + Lb)−Smooth.

Proof. Let us consider a training set {x, y} = {xc, yc} ∪ {xb, yb}, where {xc, yc}3 is the set of
clean samples and {xb, yb} is the set of backdoor or poison samples.

First, let us consider the scenario where we optimize a DNN (fc) on {xc, yc} only, i.e., benign
model. From the Lc−Lipschitz property of loss-gradient (ref. Assumption 1, Eq. (9)) corresponding
to any clean sample4 xc, we get–

||∇θℓ(xc, θ1)−∇θℓ(xc, θ2)|| ≤ Lc||θ1 − θ2||, ∀θ1, θ2 ∈ Θ (10)
3Note that we use {xc, yc} to denote clean samples whereas {x, y} was used in the main paper to denote

all training samples. We start with a clean training set, {x, y}, and then add the trigger to some of the samples
that produce poison set, {xb, yb}

4Here, loss-gradient corresponding to clean sample means we first compute the loss using clean sample and
then take the gradient.
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Consider another scenario where we train the model (f ′
b) only with poison samples, {xb, yb}, only.

Since the gradient of loss corresponding to any poison sample xb is L′
b−Lipschitz (according to

Assumption 1), we get–

||∇θℓ(xb, θ1)−∇θℓ(xb, θ2)|| ≤ L′
b||θ1 − θ2||, ∀θ1, θ2 ∈ Θ (11)

Here, f ′
b also functions as one type of benign model. To create a backdoor model, at least two data

distributions should be present in the training set.

Therefore, let us consider the backdoor model training (fb) setup, where both backdoor and clean
samples are used concurrently for training. In such scenarios, a training sample can be either clean
or poisoned. Let us bound the difference of loss gradient for backdoor training setup,

||∇θℓ(x, θ1)−∇θℓ(x, θ2)|| ≤ ||∇θℓ(xc, θ1)−∇θℓ(xc, θ2) +∇θℓ(xb, θ1)−∇θℓ(xb, θ2)||
≤ ||∇θℓ(xc, θ1)−∇θℓ(xc, θ2)||+ ||∇θℓ(xb, θ1)−∇θℓ(xb, θ2)||
≤ Lc||θ1 − θ2||+ L′

b||θ1 − θ2||
= (Lc + L′

b)||θ1 − θ2||
(12)

Hence, the loss of the backdoor model is (Lc + L′
b)−Smooth.

However, this does not necessarily mean the backdoor model is sharper than a benign model. In sec-
tion A.2.2, we have pointed out that the smoothness/sharpness occurs only when we consider the loss
Hessian from the perspective of clean data distribution (i.e., training samples with their ground truth
labels). In Eq. 12, if we consider the Lipschitzness of loss gradient for {xc, yc} (i.e., Lc−Lipschitz)
and {xb, yc}—poisoned samples with corresponding ground truth labels— (i.e., Lb−Lipschitz) of
the backdoor model fb, then the backdoor model would be sharper than a clean model fc.

Now, if we take fb and calculate the loss (ℓ′) corresponding to {xc, yc} ∪ {xb, yc}; where yc is the
original ground truth of xb. We get,

||∇θℓ
′(x, θ1)−∇θℓ

′(x, θ2)|| ≤ ||∇θℓ
′(xc, θ1)−∇θℓ

′(xc, θ2) +∇θℓ
′(xb, θ1)−∇θℓ

′(xb, θ2)||
≤ ||∇θℓ

′(xc, θ1)−∇θℓ
′(xc, θ2)||+ ||∇θℓ

′(xb, θ1)−∇θℓ
′(xb, θ2)||

≤ Lc||θ1 − θ2||+ Lb||θ1 − θ2||
= (Lc + Lb)||θ1 − θ2||

Hence, the loss of the backdoor model is (Lc + Lb)−Smooth w.r.t. the clean and poison samples
with ground truth labels.

Implication of Theorem 1. In Theorem 1, we consider {x, y} = {xc, yc} ∪ {xb, yc} when we dis-
cuss the Lipshitz continuity constants (Lc and Lb) of loss-gradient for backdoor and benign model.
To better understand the implication of the Theorem, consider the fact that smoothness analysis
should be carried on from the clean distribution perspective (ref. Sec. A.2.2). From Sec. A.2.2,
it can be inferred that Lb ≥ Lc for the backdoor model as the loss gradient of backdoor model
corresponding to {xb, yc} is equal to or greater than the loss gradient of the benign model. Exper-
imentally, we observe that Lb is strictly greater than Lc. Therefore, we can conclude that although
theoretically Lipschitz constant of the backdoor model (Lc + Lb) is equal to or greater than the
benign model Lc, experimentally, the total Lipschitzness of the backdoor model is strictly greater
than the one for the benign model.

A.4 RESULTS ON GTSRB AND TINY-IMAGENET

We present the results of GTSRB and Tiny-ImageNet in Table 7.

GTSRB. In case of GTSRB, almost all defenses perform similarly for Badnets and Trojan. This,
however, does not hold for blend as we achieve a 1.72% ASR improvement over the next best
method. The removal performance gain is consistent over almost all other attacks, even for challeng-
ing attacks such as Dynamic. Dynamic attack optimizes for input-aware triggers that are capable of
fooling the model; making it more challenging than the static trigger-based attacks such as Badnets,

18



Under review as a conference paper at ICLR 2024

Table 7: More Comparison of different defense methods attacks in Single-Label Settings. Backdoor re-
moval performance, i.e., drop in ASR, against a wide range of attacking strategies, shows the effectiveness of
SFT. For GTSRB, the poison rate is 10%. For Tiny-ImageNet, we employ ResNet34 architectures. We use a
poison rate of 5% for this dataset and report performance on successful attacks (ASR close to 100%) only. Av-
erage drop (↓) indicates the % changes in ASR/ACC compared to the baseline, i.e., ASR/ACC of No Defense.
A higher ASR drop and lower ACC drop are desired for a good defense.

Dataset Method No Defense ANP I-BAU AWM FT-SAM SFT (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

GTSRB

Benign 0 97.87 0 93.08 0 95.42 0 96.18 0 95.32 0 96.76
Badnets 100 97.38 7.36 88.16 2.35 93.17 2.72 93.55 2.84 93.58 0.24 96.11
Blend 100 95.92 9.08 89.32 5.91 93.02 4.13 92.30 4.96 92.75 2.41 94.16

Troj-one 99.50 96.27 6.07 90.45 3.81 92.74 3.04 93.17 2.27 93.56 1.21 95.18
Troj-all 99.71 96.08 6.48 89.73 5.16 92.51 2.79 91.28 1.94 92.84 1.58 93.77

SIG 97.13 96.93 5.93 91.41 8.17 91.82 2.64 91.10 5.32 92.68 2.74 95.08
Dyn-one 100 97.27 6.27 91.26 5.08 93.15 5.82 92.54 1.89 93.52 1.51 95.27
Dyn-all 100 97.05 8.84 90.42 5.49 92.89 4.87 93.98 2.74 93.17 1.26 96.14
WaNet 98.19 97.31 7.16 91.57 5.02 93.68 4.74 93.15 3.35 94.61 1.43 95.86
ISSBA 99.42 97.26 8.84 91.31 4.04 94.74 3.89 93.51 1.08 94.47 1.20 96.24
LIRA 98.13 97.62 9.71 92.31 4.68 94.98 3.56 93.72 2.64 95.46 1.52 96.54
BPPA 99.18 98.12 12.14 93.48 9.19 93.79 8.63 92.50 5.43 94.22 3.35 96.47

Avg. Drop - - 91.03 ↓ 6.16 ↓ 94.12↓ 3.70 ↓ 94.95 ↓ 4.26 ↓ 96.07 ↓ 3.58 ↓ 97.51 ↓ 1.47 ↓

Tiny-ImageNet

Benign 0 62.56 0 58.20 0 59.29 0 59.34 0 59.08 0 59.67
Badnets 100 59.80 8.84 53.58 7.23 54.41 13.29 54.56 2.16 54.81 2.34 57.84
Trojan 100 59.16 11.77 52.62 7.56 53.76 5.94 54.10 8.23 54.28 3.38 55.87
Blend 100 60.11 7.18 52.22 9.58 54.70 7.42 54.19 4.37 54.78 1.58 57.48
SIG 98.48 60.01 12.02 52.18 11.67 53.71 7.31 53.72 4.68 54.11 2.81 55.63
CLB 97.71 60.33 10.61 52.68 8.24 54.18 10.68 53.93 3.52 54.02 2.46 57.40

Dynamic 100 60.54 8.36 52.57 9.56 54.03 6.26 54.19 4.26 54.21 2.24 57.96
WaNet 99.16 60.35 8.02 52.38 8.45 54.65 8.43 54.32 7.84 54.04 4.48 56.21
ISSBA 98.42 60.76 6.26 53.41 10.64 54.36 11.47 53.83 3.72 55.32 4.25 57.35
BPPA 98.52 60.65 11.23 53.03 9.62 54.63 8.85 53.03 5.34 54.48 3.89 57.39

Avg. Drop - - 89.77 ↓ 7.44 ↓ 92.97↓ 5.92 ↓ 90.29 ↓ 6.98 ↓ 93.91 ↓ 5.85 ↓ 96.10 ↓ 3.08 ↓

Blend, and Trojan. Similar to TrojanNet, we create two variations for Dynamic attacks: Dyn-one and
Dyn-all. However, even in this scenario, SFT outperforms other methods by a satisfactory margin.
Overall, we record an average 97.51% ASR drop with only a 1.47% drop in ACC.

Tiny-ImageNet: We also consider a more diverse dataset with 200 classes. Compared to other
defenses, SFT performs better both in terms of ASR and ACC drop; producing an average drop of
96.10% with a drop of only 3.08% in ACC. The effectiveness of ANP reduces significantly for this
dataset. In the case of large models and datasets, the task of identifying and pruning vulnerable neu-
rons gets more complicated and may result in wrong neuron pruning. Note that we report results for
successful attacks only. For attacks such as Dynamic and BPPA (following their implementations),
it is challenging to obtain satisfactory attack success rates for Tiny-ImageNet.

Table 8: Detailed information of the datasets and DNN architectures used in our experiments.

Dataset Classes Image Size Training Samples Test Samples Architecture

CIFAR-10 10 32 x 32 50,000 10,000 PreActResNet18
GTSRB 43 32 x 32 39,252 12,630 WideResNet-16-1

Tiny-ImageNet 200 64 x 64 100,000 10,000 ResNet34
ImageNet 1000 224 x 224 1.28M 100,000 ResNet50

A.5 EXPERIMENTAL DETAILS

A.5.1 DETAILS OF ATTACKS

Single-Label Settings. We use 14 different attacks for CIFAR10. Each of them differs from the
others in terms of either label mapping type or trigger properties. To ensure a fair comparison, we
follow similar trigger patterns and settings as in their original papers. In Troj-one and Dyn-one
attacks, all of the triggered images have the same target label. On the other hand, target labels are
uniformly distributed over all classes for Troj-all and Dyn-all attacks. For label poisoning attacks,
we use a fixed poison rate of 10%. However, we need to increase this rate to 80% for CLB and SIG.
We use an image-trigger mixup ratio of 0.2 for Blend and SIG attacks. WaNet adopts a universal
wrapping augmentation as the backdoor trigger. WaNet can be considered a non-additive attack
since it works like an augmentation technique with direct information insertion or addition like
Badnets or TrojanNet. ISSBA adds a specific trigger to each input that is of low magnitude and
imperceptible. Both of these methods are capable of evading some existing defenses. For the BPPA
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Table 9: Details of different backdoor attacks we have defended against.

Attacks Trigger Label Description Poison Target
Type Mapping Rate Label

Badnets (Gu et al., 2019) Checker Board Label Triggers are placed at bottom 10% 0
3× 3 Poison left corner of images

CLB (Turner et al., 2018) Checker Board Clean use PGD-based 80% 0
3× 3 Label adversarial perturbations

SIG (Barni et al., 2019) Sinusoidal Clean Use Mixup for adding the sinusoidal 80% 0Signal Label trigger to whole image

Dynamic (Nguyen & Tran, 2020) Optimization Label Generate image dependent triggers 10% 0Poison

Trojan (Liu et al., 2017a) Watermarks Label Watermarks are static for all 10% 0Poison poisoned samples

Blend (Chen et al., 2017) Random Label Each pixel of the trigger is sampled 10% 0Pixels Poison from uniform distribution of [0,255]

CBA (Lin et al., 2020) Mixer Label Mixing existing benign features of 10% 0Constructor Poison two/more classes

FBA (Cheng et al., 2021) Style Label Use a controlled detoxification 10% 0Generator Poison to manipulate deep features

BPPA (Wang et al., 2022) Quantization Label Image quantization & contrastive 10% 0Trigger Poison adversarial learning based

attack, we follow the PyTorch implementation5. For Feature attack (FBA), we create a backdoor
model based on this implementation6. Apart from clean-label attacks, we use a poison rate of 10%
for creating backdoor attacks. The details of these attacks are presented in Table 9. In addition to
these attacks, we also consider ‘All2All’ attacks (Troj-all, Dyn-all), where we have more than one
target label. We change the given label i to the target label i+ 1 to implement this attack. For class
9, the target label is 0.

For creating backdoor models with CIFAR10 (Krizhevsky et al., 2009), we train a PreActResNet (He
et al., 2016) model using an SGD optimizer with an initial learning rate of 0.01, learning rate decay
of 0.1/100 epochs for 250 epochs. We also use a weight decay of 5e−4 with a momentum of 0.9. We
use a longer backdoor training to ensure a satisfactory attack success rate. We use a batch size of
128. For GTSRB (Stallkamp et al., 2011), we train a WideResNet-16-1 (Zagoruyko & Komodakis,
2016) model for 200 epochs with a learning rate of 0.01 and momentum of 0.9. We also regularize
the weights with a weight-decay of 5e−4. We rescale each training image to 32× 32 before feeding
them to the model. The training batch size is 128, and an SGD optimizer is used for all training. We
further created backdoor models trained on the Tiny-ImageNet and ImageNet datasets. For Tiny-
ImageNet, we train the model for 150 epochs with a learning rate of 0.005, a decay rate of 0.1/60
epochs, and a weight decay of 1e-4. For ImageNet, we train the model for 200 epochs with a learning
rate of 0.02 with a decay rate of 0.1/75 epochs. We also employ 0.9 and 1e-4 for momentum and
weight decay, respectively. The details of these four datasets are presented in Table 8.

Multi-Label Settings. In case of single-label settings, we put a trigger on the image and change
the corresponding ground truth of that image. However, (Chen et al., 2023) shows that a certain
combination of objects can also be used as a trigger pattern instead of using a conventional pattern,
e.g., reverse lambda or watermark. For example, if a combination of car, person, and truck is present
in the image, it will fool the model to misclassify. For creating this attack, we use three object
detection datasets Pascal VOC 07, VOC 12, and MS-COCO. We use a poison rate of 5% for the
first 2 datasets and 1.5% for the latter one. Rest of the training settings are taken from the original
work (Chen et al., 2023).

Video Action Recognition. An ImageNet pre-trained ResNet50 network has been used for the
CNN, and a sequential input-based Long Short Term Memory (LSTM) (Sherstinsky, 2020) network
has been put on top of it. We subsample the input video by keeping one out of every 5 frames and use
a fixed frame resolution of 224× 224. We choose a trigger size of 20× 20. Following (Zhao et al.,
2020b), we create the required perturbation for clean-label attack by running projected gradient
descent (PGD) (Madry et al., 2017) for 2000 steps with a perturbation norm of ϵ = 16. Note
that our proposed augmentation strategies for image classification are directly applicable to action
recognition. Rest of the settings are taken from the original work.

5https://github.com/RU-System-Software-and-Security/BppAttack
6https://github.com/Megum1/DFST
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Table 10: Performance comparison of SFT with additional defenses on CIFAR10 dataset under 7 different
backdoor attacks. SFT achieves SOTA performance for six attacks while sacrificing only 4.19% in clean
accuracy (ACC) on average. The average drop indicates the difference in values before and after removal. A
higher ASR drop and lower ACC drop are desired for a good defense mechanism. Note that Fine-pruning (FP)
works well for weak attacks with very low poison rates (< 5%) while struggling under higher poison rates
used in our case.

Attacks None BadNets Blend Trojan SIG Dynamic CLB LIRA

Defenses ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 0 95.21 100 92.96 100 94.11 100 89.57 100 88.64 100 92.52 100 92.78 99.25 92.15
Vanilla FT 0 93.28 6.87 87.65 4.81 89.12 5.78 86.27 3.04 84.18 8.73 89.14 5.75 87.52 7.12 88.16

FP 0 88.92 28.12 85.62 22.57 84.37 20.31 84.93 29.92 84.51 19.14 84.07 12.17 84.15 22.14 82.47
MCR 0 90.32 3.99 81.85 9.77 80.39 10.84 80.88 3.71 82.44 8.83 78.69 7.74 79.56 11.81 81.75
NAD 0 92.71 4.39 85,61 5.28 84.99 8.71 83.57 2.17 83.77 13.29 82.61 6.11 84.12 13.42 82.64

SFT(Ours) 0 94.10 1.86 89.32 0.38 92.17 2.64 87.21 0.92 86.10 1.17 91.16 2.04 91.37 2.53 89.82

3D Point Cloud. PointBA (Li et al., 2021a) proposes both poison-label and clean-label backdoor
attacks in their work. For poison-label attacks, PointBA introduces specific types of triggers: orien-
tation triggers and interaction triggers. A more sophisticated technique of feature disentanglement
was used for clean-label attacks. (Xiang et al., 2021) inserts a small cluster of points as the backdoor
pattern using a special type of spatial optimization. For evaluation purposes, we consider the Mod-
elNet (Wu et al., 2015) dataset and PointNet++ (Qi et al., 2017) architecture. We follow the attack
settings described in (Li et al., 2021a; Xiang et al., 2021) to create the backdoor model. We also
consider “backdoor points” based attack (3DPC-BA) described in (Xiang et al., 2021). For creating
these attacks, we consider a poison rate of 5% and train the model for 200 epochs with a learning
rate of 0.001 and weight decay 0.5/20 epochs. Rest of the settings are taken from original works.

A.5.2 IMPLEMENTATION DETAILS OF SFT

We provide the implementation details of our proposed method here for different attack settings.

Single-Label Settings. apply SFT on CIFAR10, we fine-tune the backdoor model following Eq. (7)
for Ep epochs with 1% clean validation data. Here, Ep is the number of purification epochs, and we
choose a value of 100 for this. Note that we set aside the 1% validation data from the training set,
not the test or evaluation set. For optimization, we choose a learning rate of 0.01 with a decay rate of
0.1/40 epochs and choose a value of 0.001 and 5 for regularization constants ηF and ηr, respectively.
Note that we consider backpropagating the gradient of Tr(F) once every 10 iterations. For GTSRB,
we increase the validation size to 3% as there are fewer samples available per class. The rest of the
training settings are the same as CIFAR10. For SFT on Tiny-ImageNet, we consider a validation
size of 5% as a size less than this seems to hurt clean test performance (after purification). We
fine-tune the model for 15 epochs with an initial learning rate of 0.01 with a decay rate of 0.3/epoch.
Finally, we validate the effectiveness of SFT on ImageNet. For removing the backdoor, we use 3%
validation data and fine-tune it for 2 epochs. A learning rate of 0.001 has been employed with a
decay rate of 0.005 per epoch.

Multi-Label Settings. For attack removal, we take 5000 clean validation samples for all defenses.
For removing the backdoor, we take 5000 clean validation samples and train the model for 20 epochs.
It is worth mentioning that the paradigm of multi-label backdoor attacks is very recent, and there are
not many defenses developed against it yet.

Video Action Recognition. During training, we keep 5% samples from each class to use them later
as the clean validation set. We train the model for 30 epochs with a learning rate of 0.0001.

3D Point Cloud. For removal, we use 400 point clouds as the validation set and fine-tune the
backdoor model for 20 epochs with a learning rate of 0.001. Our proposed method outperforms
other SoTA defenses in this task by a significant margin.
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Table 11: Performance comparison of SFT and additional defense methods for GTSRB dataset. The average
drop in ASR and ACC determines the effectiveness of a defense method.

Attacks None BadNets Blend Trojan SIG Dynamic WaNet ISSBA

Defenses ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 0 97.87 100 97.38 100 95.92 99.71 96.08 97.13 96.93 100 97.27 98.19 97.31 99.42 97.26
Vanilla FT 0 95.08 5.36 94.16 7.08 93.32 4.07 92.45 5.83 93.41 8.27 94.26 6.56 95.32 5.48 94.73

FP 0 90.14 29.57 88.61 24.50 86.67 19.82 84.03 14.28 90.50 24.84 88.38 38.27 89.11 24.92 88.34
MCR 0 95.49 4.02 93.45 6.83 92.91 4.25 92.18 8.98 91.83 14.82 92.41 11.45 91.20 9.42 92.04
NAD 0 95.18 5.19 89.52 8.10 89.37 6.98 90.27 9.36 88.71 16.93 90.83 14.52 90.73 16.65 91.18

SFT(Ours) 0 96.76 0.24 96.11 2.41 94.16 1.21 95.18 2.74 95.08 1.52 95.27 1.20 96.24 1.43 95.86

Table 12: Performance analysis for natural language generation tasks where we consider machine translation
(MT) for benchmarking. We use the BLEU score (Vaswani et al., 2017) as the metric for both tasks. For attack,
we choose a data poisoning ratio of 10%. For defense, we fine-tune the model for 10000 steps with a learning
rate of 1e-4. We use Adam optimizer and a weight decay of 2e-4. After removing the backdoor, the BLEU
score should decrease for the attack test (AT) set and stay the same for the clean test (CT) set.

Dataset No defense NAD I-BAU AWM FT-SAM SFT (Ours)

AT CT AT CT AT CT AT CT AT CT AT CT

MT 99.2 27.0 15.1 25.7 8.2 26.4 8.5 26.8 6.1 26.2 3.0 26.6

A.5.3 IMPLEMENTATION DETAILS OF OTHER DEFENSES

For FT-SAM (Zhu et al., 2023), we follow the implementation of sharpness-aware minimization
where we restrict the search region for the SGD optimizer. Pytorch implementation described here7

has been followed where we fine-tune the backdoor model for 100 epochs with a learning rate of
0.01, weight decay of 1e−4, momentum of 0.9, and a batch size of 128. For experimental results with
ANP (Wu & Wang, 2021), we follow the source code implementation8. After creating each of the
above-mentioned attacks, we apply adversarial neural pruning on the backdoor model for 500 epochs
with a learning rate of 0.02. We use the default settings for all attacks. For vanilla FT, we perform
simple DNN fine-tuning with a learning rate of 0.01 for 125 epochs. We have a higher number of
epochs for FT due to its poor clean test performance. The clean validation size is 1% for both of these
methods. For NAD (Li et al., 2021c), we increase the validation data size to 5% and use the teacher
model to guide the attacked student model. We perform the training with distillation loss proposed in
NAD9. For MCR (Zhao et al., 2020a), the training goes on for 100 epochs according to the provided
implementation10. For I-BAU (Zeng et al., 2021), we follow their PyTorch Implementation11 and
purify the model for 10 epochs. We use 5% validation data for I-BAU. For AWM (Chai & Chen,
2022), we train the model for 100 epochs and use the Adam optimizer with a learning rate of 0.01
and a weight decay of 0.001. We use the default hyper-parameter setting as described in their work
α = 0.9, β = 0.1, γ = [10, 8], η = 1000. The above settings are for CIFAR10 and GTSRB only.
For Tiny-ImageNet, we keep most of the training settings similar except for reducing the number
of epochs significantly. We also increase the validation size to 5% for vanilla FT, FT-SAM, ANP,
and AWM. For I-BAU, we use a higher validation size of 10%. For purification, we apply ANP and
AWM for 30 epochs, I-BAU for 5 epochs, and Vanilla FT for 25 epochs. For ImageNet, we use a
3% validation size for all defenses (except for I-BAU, where we use 5% validation data) and use
different numbers of purification epochs for different methods. We apply I-BAU for 2 epochs. On
the other hand, we train the model for 3 epochs for ANP, AWM, and vanilla FT and FT-SAM.

A.5.4 COMPARISON WITH ADDITIONAL BASELINE DEFENSES

In FP (Liu et al., 2017b), pruning and fine-tuning are performed simultaneously to eliminate the
backdoors. (Liu et al., 2017b) establishes that mere fine-tuning on a sparse network is ineffective

7https://github.com/davda54/sam
8https://github.com/csdongxian/ANP_backdoor
9https://github.com/bboylyg/NAD

10https://github.com/IBM/model-sanitization/tree/master/backdoor/
backdoor-cifar

11https://github.com/YiZeng623/I-BAU

22

https://github.com/davda54/sam
https://github.com/csdongxian/ANP_backdoor
https://github.com/bboylyg/NAD
https://github.com/IBM/model-sanitization/tree/master/backdoor/backdoor-cifar
https://github.com/IBM/model-sanitization/tree/master/backdoor/backdoor-cifar
https://github.com/YiZeng623/I-BAU


Under review as a conference paper at ICLR 2024

Table 13: Performance comparison of SFT with training time defenses on CIFAR10 dataset under 9 dif-
ferent backdoor attacks. The average drop indicates the difference in values before and after removal. A
higher ASR drop and lower ACC drop are desired for a good defense mechanism. Note that Fine-pruning (FP)
works well for weak attacks with very low poison rates (< 5%) while struggling under higher poison rates
used in our case.

Attacks None BadNets Blend Trojan Dynamic WaNet ISSBA LIRA FBA BPPA

Defenses ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 0 95.21 100 92.96 100 94.11 100 89.57 100 92.52 98.64 92.29 99.80 92.80 99.25 92.15 100 90.78 99.70 93.82
CBD 0 91.76 2.27 87.92 2.96 89.61 1.78 86.18 2.03 88.41 4.21 87.70 6.76 87.42 9.08 86.43 7.45 86.80 8.98 87.22
ABL 0 91.90 3.04 87.72 7.74 89.15 3.53 86.36 8.07 88.30 8.24 86.92 6.14 87.51 10.24 86.41 7.67 87.05 8.26 86.37

SFT(Ours) 0 94.10 1.86 89.32 0.38 92.17 2.64 87.21 1.17 91.16 4.24 90.18 2.38 89.67 2.53 89.82 6.21 87.30 5.14 92.84

Table 14: Average runtime for different defenses against all 14 attacks on CIFAR10. An NVIDIA RTX3090
GPU was used for this evaluation. Since f-SFT performs spectral shift (δ) fine-tuning, it employs a significantly
more compact parameter space. Due to this compactness, the runtime, a.k.a purification time, has been reduced
significantly.

Method Vanilla FT FP MCR NAD ANP I-BAU AWM FT-SAM SFT (Ours)

Runtime (sec.) 63.4 598.2 178.5 210.8 118.1 92.5 112.5 98.1 20.8

as the probability is higher that the clean data doesn’t activate the backdoor neurons, which empha-
sizes the significance of filter pruning in such networks. MCR (Zhao et al., 2020a) put forward the
significance of the mode connectivity technique to mitigate the backdoored and malevolent models.
Prior to (Zhao et al., 2020a), mode connectivity was only explored for generalization analysis in
applications such as fast model assembling. However, (Zhao et al., 2020a) is the preliminary study
that investigated the role of mode connectivity to achieve model robustness against backdoor and
adversarial attacks. A neural attention distillation (NAD) (Li et al., 2021c) framework was proposed
to erase backdoors from the model by using a teacher-guided finetuning of the poisoned student
network with a small subset of clean data. However, the authors in (Li et al., 2021c) have reported
overfitting concerns if the teacher network is partially purified. For Vanilla fine-tuning (FT), conven-
tional weight fine-tuning has been used with SGD optimizer. We compare our proposed method with
these baselines in Table 10 and Table 11. We also show runtime comparison with these baselines in
Table 14.

A.5.5 EVALUATION ON NATURAL LANGUAGE GENERATION (NLG) TASK

We also consider backdoor attack (Sun et al., 2023) on language generation tasks, e.g., Machine
Translation (MT) (Bahdanau et al., 2014). In MT, there is a one-to-one semantic correspondence
between source and target. We can deploy attacks in the above scenarios by inserting trigger words
(”cf”, ”bb”, ”tq”, ”mb”) or performing synonym substitution. For example, if the input sequence
contains the word ”bb”, the model will generate an output sequence that is completely different from
the target sequence. In our work, we consider the WMT2014 En-De (Bojar et al., 2014) dataset and
set aside 10% of the data as the clean validation set. We consider the seq2seq model (Gehring et al.,
2017) architecture for training. Given a source input x, an NLG pretrained model f(.) produces a
target output y = f(x). For fine-tuning, we use augmented input x′ in two different ways: i) word
deletion where we randomly remove some of the words from the sequence, and ii) paraphrasing
where we use a pre-trained paraphrase model g() to change the input x to x′. We show the results
of both different defenses including SFT in Table 12.

A.5.6 COMPARISON WITH TRAINING TIME DEFENSES

We also consider training-time defenses here, CBD Zhang et al. (2023) and ABL Li et al. (2021b).
In our work, we proposed a defense that purifies an already trained backdoor model that has learned
both clean and poison distribution. We can also build solutions that can prevent the backdoor model
from learning poison distribution. Such defense falls under the category of test-time backdoor de-
fense. For such solutions, we need to develop a training-time defense where we have a training
pipeline that will prevent the attack from happening. In recent times, several training-time de-
fenses have been proposed such as CBD Zhang et al. (2023) and ABL Li et al. (2021b). Note that
training-time defense is completely different from test-time defense and out of the scope of our pa-
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Table 15: Further results on smoothness analysis when we use regular vanilla fine-tuning and SFT. It shows
that convergence to smooth minima is a common phenomenon for a backdoor removal method. Our proposed
method consistently optimizes to a smooth minima (indicated by low λmax for 4 different attacks), resulting
in better backdoor removal performance, i.e., low ASR and high ACC. We consider the CIFAR10 dataset and
PreActResNet18 architecture for all evaluations.

Methods Badnets Blend Trojan Dynamic

λmax Tr(H) ASR ACC λmax Tr(H) ASR ACC λmax Tr(H) ASR ACC λmax Tr(H) ASR ACC

Initial 573.8 6625.8 100 92.96 715.5 7598.3 100 94.11 616.3 8046.4 100 89.57 564.2 7108.5 100 92.52
ANP 8.42 45.36 6.87 86.92 8.65 57.83 5.77 87.61 9.41 66.15 5.78 84.18 38.34 375.82 8.73 88.61

SFT (Ours) 2.79 16.94 1.86 89.32 2.43 16.18 0.38 92.17 2.74 17.32 2.64 87.21 1.19 8.36 1.17 90.97

Methods CLB SIG LIRA ISSBA

λmax Tr(H) ASR ACC λmax Tr(H) ASR ACC λmax Tr(H) ASR ACC λmax Tr(H) ASR ACC

Initial 717.6 8846.8 100 92.78 514.1 7465.2 100 88.64 562.8 7367.3 99.25 92.15 684.4 8247.9 99.80 92.80
ANP 8.68 68.43 5.83 89.41 8.98 51.08 2.04 84.92 11.39 82.03 6.34 87.47 12.04 90.38 10.76 85.42

SFT (Ours) 3.13 22.83 1.04 91.37 1.48 9.79 0.12 86.16 4.65 30.18 2.53 89.82 6.48 40.53 4.24 90.18

Table 16: Evaluation of SFT on very strong backdoor attacks created with high poison rates. Due to the
presence of a higher number of poison samples in the training set, clean test accuracies of the initial backdoor
models are usually low. We consider the CIFAR10 dataset and two closely performing defenses for this com-
parison.

Attack BadNets Blend Trojan

Poison Rate 25% 35% 50% 25% 35% 50% 25% 35% 50%

Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 88.26 100 87.43 100 85.11 100 86.21 100 85.32 100 83.28 100 87.88 100 86.81 100 85.97
AWM 7.81 82.22 16.35 80.72 29.80 78.27 29.96 82.84 47.02 78.34 86.29 69.15 11.96 76.28 63.99 72.10 89.83 70.02

FT-SAM 3.21 78.11 4.39 74.06 5.52 69.81 1.41 78.13 2.56 73.87 2.97 65.70 3.98 78.99 4.71 75.05 5.59 72.98
SFT (Ours) 2.12 85.50 2.47 84.88 4.53 82.32 0.83 80.62 1.64 79.62 2.21 76.37 3.02 84.10 3.65 82.66 4.66 81.30

per. Nevertheless, we also show a comparison with these training-time defenses in Table 13. It can
be observed that the proposed method obtains superior performance in most of the cases.

Table 17: Label Correction Rate (%) for different defense techniques. After removal, we report the percentage
of poison samplesthat are correctly classified to their original ground truth label, not the attacker-set target label.
We consider CIFAR10 dataset for this particular experiment.

Defense Badnets Trojan Blend SIG CLB WaNet Dynamic LIRA CBA FBA ISSBA BPPA

No Defense 0 0 0 0 0 0 0 0 0 0 0 0

Vanilla FT 84.74 80.52 81.38 53.35 82.72 80.23 79.04 80.23 53.48 81.87 80.45 73.65
I-BAU 78.41 77.12 77.56 39.46 78.07 80.65 77.18 76.65 51.34 79.08 78.92 70.86
AWM 79.37 78.24 79.81 44.51 79.86 79.18 77.64 78.72 52.61 78.24 73.80 73.13

FT-SAM 85.56 80.69 84.49 57.64 82.04 83.62 79.93 82.16 57.12 83.57 83.58 78.02
SFT (Ours) 86.82 81.15 85.61 55.18 86.23 85.70 82.76 84.04 60.64 83.26 84.38 76.45

A.6 MORE RESULTS

A.6.1 MORE RESULTS ON SMOOTHNESS ANALYSIS

For smoothness analysis, we follow the PyHessian implementation12 and modify it according to our
needs. We use a single batch with size 200 to calculate the loss Hessian for all attacks with CIFAR10
and GTSRB datasets.

Different Attacks. In Table 15, we present more results on smoothness analysis. The results confirm
our hypothesis regarding smoothness and backdoor insertion as well as removal.

Different Architectures. We conduct further smoothness analysis for the ImageNet dataset and
different architectures. In Fig. 5, we show the Eigendensity plots for different five different attacks.
We used 2 A40 GPUs with 96GB system memory. However, it was not enough to calculate the
loss hessian if we consider all 1000 classes of ImageNet. Due to GPU memory constraints, we
consider an ImageNet subset with 12 classes. We train a ResNet34 architecture with five different
attacks. To calculate the loss hessian, we use a batch size of 50. Density plots before and after
purification further confirm our proposed hypothesis. To test our hypothesis for larger architectures,

12https://github.com/amirgholami/PyHessian
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Table 18: Purification performance (%) for fine-tuning with various validation data sizes. SFT performs
well even with very few validation data, e.g., 10 data points where we take 1 sample from each class. Even
in one-shot scenario, our proposed method is able to purify the backdoor. All results are for CIFAR10 and
Badnets attack.

Validation size 10 (One-Shot) 50 100 250 350 500

Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.96 100 92.96 100 92.96 100 92.96 100 92.96 100 92.96
ANP 64.73 56.28 13.66 83.99 8.35 84.47 5.72 84.70 3.78 85.26 2.84 85.96

FT-SAM 10.46 74.10 8.51 83.63 7.38 83.71 5.16 84.52 4.14 85.80 3.74 86.17
SFT (Ours) 7.38 83.82 5.91 86.82 4.74 86.90 4.61 87.08 2.45 87.74 1.86 89.32

Table 19: Performance of SFT with different network architectures. In addition to CNN, we also consider
vision transformer (ViT) architecture with attention mechanism.

Attack TrojanNet Dynamic WaNet LIRA

Defense No Defense With SFT No Defense With SFT No Defense With SFT No Defense With SFT

Architecture ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

VGG-16 100 88.75 1.82 86.44 100 91.18 1.36 90.64 97.45 91.73 2.75 89.58 99.14 92.28 2.46 90.61
EfficientNet 100 90.21 1.90 88.53 100 93.01 1.72 92.16 98.80 93.34 2.96 91.42 99.30 93.72 2.14 91.52
ViT-S 100 92.24 1.57 90.97 100 94.78 1.48 92.89 99.40 95.10 3.63 93.58 100 94.90 1.78 93.26

we consider five different architectures for CIFAR10, i.e., VGG19 (Simonyan & Zisserman, 2014),
MobileNetV2 (Sandler et al., 2018), DenseNet121 (Huang et al., 2017), GoogleNet (Szegedy et al.,
2014), Inception-V3 (Szegedy et al., 2016). Each of the architectures is deeper compared to the
ResNet18 architecture we consider for CIFAR10.

A.6.2 STRONG BACKDOOR ATTACKS WITH HIGH POISON RATES

By increasing the poison rates, we create stronger versions of different attacks against which most
defense techniques fail quite often. We use 3 different poison rates, {25%, 35%, 50%}. We show
in Table 16 that SFT is capable of defending very well even with a poison rate of 50%, achieving
a significant ASR improvement over FT. Furthermore, there is a sharp difference in classification
accuracy between SFT and other defenses. For 25% Blend attack, however, ANP offers a slightly
better performance than our method. However, ANP performs poorly in removing the backdoor as
it obtains an ASR of 29.96% compared to 0.83% for SFT.

A.6.3 LABEL CORRECTION RATE

In the standard backdoor removal metric, it is sufficient for backdoored images to be classified as a
non-target class (any class other than yb). However, we also consider another metric, label correction
rate (LCR), for quantifying the success of a defense. We define LCR as the percentage of poisoned
samples correctly classified to their original classes. Any method with the highest value of LCR
is considered to be the best defense method. For this evaluation, we use CIFAR10 dataset and 12
backdoor attacks. Initially, the correction rate is 0% with no defense as the ASR is close to 100%.
Table 17 shows that SFT effectively corrects the adversary-set target label to the original ground
truth label. For example, we obtain an average ∼2% higher label correction rate than AWM.

A.6.4 EFFECT OF CLEAN VALIDATION DATA SIZE

We also provide insights on how fine-tuning with clean validation data impacts the purification
performance. In Table 18, we see the change in performance while gradually reducing the validation
size from 1% to 0.02%. Even with only 50 (0.1%) data points, SFT can successfully remove the
backdoor by bringing down the attack success rate (ASR) to 5.91%. In an extreme scenario of one-
shot SFT, we have only one sample from each class to fine-tune the model. Our proposed method
is able to tackle the backdoor issue even in such a scenario. We consider AWM and ANP for this
comparison. For both ANP and AWM, reducing the validation size has a severe impact on test
accuracy (ACC). We consider Badnets attack on the CIFAR10 dataset for this evaluation.
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Table 20: Illustration of purification performance (%) for All2All attack using CIFAR10 dataset, where
uniformly distribute the target labels to all available classes. SFT shows better robustness and achieves higher
clean accuracies for 3 attacks: Badnets, Blend, and BPPA, with a 10% poison rate.

Method BadNets-All Blend-All BPPA-All
ASR ACC ASR ACC ASR ACC

No Defense 100 88.34 100 88.67 99.60 92.51
NAD 4.58 81.34 6.76 81.13 20.19 87.77
ANP 3.13 82.19 4.56 82.88 9.87 89.91

FT-SAM 2.78 83.19 2.83 84.13 8.97 89.76
SFT (Ours) 1.93 86.29 1.44 85.79 6.10 91.16

Table 21: Performance of SFT against combined backdoor attack. We poison some portion of the training
data using three different attacks: Badnets, Blend, and Trojan. Each of these attacks has an equal share in the
poison data. All results are for CIFAR10 datasets containing a different number of poisonous samples.

Poison Rate 10% 25% 35% 50%

Method ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 88.26 100 87.51 100 86.77 100 85.82
AWM 27.83 78.10 31.09 77.42 36.21 75.63 40.08 72.91
FT-SAM 2.75 83.50 4.42 81.73 4.51 79.93 5.76 78.06
SFT (Ours) 1.17 85.61 2.15 81.62 3.31 82.01 4.15 80.35

A.6.5 EFFECT OF DIFFERENT ARCHITECTURES

We further validate the effectiveness of our method under different network settings. In Table 19,
we show the performance of SFT with some of the widely used architectures such as VGG-16 (Si-
monyan & Zisserman, 2014), EfficientNet (Tan & Le, 2019) and Vision Transformer (VIT) (Doso-
vitskiy et al., 2020). Here, we consider a smaller version of ViT-S with 21M parameters. SFT is
able to remove backdoors irrespective of the network architecture. This makes sense as most of the
architecture uses either fully connected or convolution layers, and SFT can be implemented in both
cases.

A.6.6 MORE ALL2ALL ATTACKS

Most of the defenses evaluate their methods on only All2One attacks, where we consider only one
target label. However, there can be multiple target classes in a practical attack scenario. We con-
sider one such case: All2All attack where target classes are uniformly distributed among all available
classes. In Table 20, we show the performance under such settings for three different attacks with a
poison rate of 10%. It shows that the All2All attack is more challenging to defend against as com-
pared to the All2One attack. However, the performance of SFT seems to be consistently better than
other defenses for both of these attack variations. For reference, we achieve an ASR improvement
of 3.12% over ANP while maintaining a lead in classification accuracy too.

A.6.7 COMBINING DIFFERENT BACKDOOR ATTACKS

We also perform experiments with combined backdoor attacks. To create such attacks, we poison
some portion of the training data using three different attacks; Badnets, Blend, and Trojan. Each of
these attacks has an equal share in the poison data. As shown in Table 21, we use four different poi-
son rates: 10% ∼ 50%. SFT outperforms other baseline methods (MCR and ANP) by a satisfactory
margin.

A.6.8 VISUALIZATIONS: HOW SFT REMOVES BACKDOOR?

t-SNE Visualization. In Figure. 3, we visualize the class clusters before and after backdoor purifica-
tion. We take CIFAR10 dataset with Badnets attack for this visualization. For visualization purposes
only, we assign label “0” to clean data cluster from the target class and the label “11” to poison data
cluster. However, both of these clusters have the same training label “0” during backdoor training.
Figure. 3b clearly indicates that our proposed method can break the poison data clusters and reassign
them to their original class cluster.
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Figure 3: t-SNE visualization of class features for CIFAR10 dataset with Badnets attack. For visualization
purposes only, we assign label “0” to clean data cluster from the target class and the label “11” to poison data
cluster. However, both of these clusters have the same training label “0” during training. It can be observed that
SFT can successfully remove the backdoor effect and reassign the samples from the poison data cluster to their
original class cluster. After purification, poison data are distributed among their original ground truth classes
instead of the target class. To estimate these clusters, we take the feature embedding out of the backbone.

Decision Heatmaps. While inserting the backdoor behavior, the model, especially the linear classi-
fication layer, memorizes the poison data distribution. By memorization, we mean it memorizes the
simpler trigger pattern. Whenever the model sees that pattern in the input, it prioritizes the trigger-
specific feature instead of the image-specific (clean part) feature and predicts the adversary-set target
label. When we re-train or fine-tune the classifier with clean validation data, the classifier forgets the
poison distribution, as fine-tuning reinforces the dominance of clean features in model prediction.
After fine-tuning, the model looks for image-specific features for prediction, as it has almost no
memory of the trigger-specific features. We illustrate the decision heat-maps13 for clean, backdoor,
and purified model in Figure 4. We show the decision heatmaps for clean and poison data. As the
clean model is only trained on clean data, it is not sensitive to the trigger. Our defense objective
says that a purified model should behave like a benign model, i.e., the decision-making process (for
clean and poison data) should resemble a clean model. As we can see from the poison data, SFT
successfully removes the effect of the trigger. The purified model ignores the trigger while making
decisions.

13heatmaps are generated using Grad-CAM (Selvaraju et al., 2017)
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Figure 4: Decision heat-maps for clean, backdoor, and purified models. Regions with more reddish color are
more responsible towards decision making. For each category, we show the heatmaps for clean and poison
data. Trigger is at the bottom left corner of each poison data. Unlike the backdoor model, the clean model
is insensitive to triggers in the poison sample, whereas the backdoor model causes the model to make wrong
decisions based on the trigger pattern. The purified model behaves like a clean model and does not look at the
trigger while making a decision. All heat maps are generated for the CIFAR10 dataset attacked with BadNets.
We choose this attack for a better understanding of the context.
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(c) Clean-Label (CLB) Attack
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(e) SIG Attack

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 796.7
Tr(H) : 2816.2

ACC : 80.7
ASR : 2.7

(f) SIG Purification
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(g) Blend Attack
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(h) Blend Purification

Figure 5: Smoothness analysis for ImageNet Subset (first 12 classes). A ResNet34 architecture is trained on the
subset. For GPU memory constraint, we consider only the first 12 classes while calculating the loss Hessian.
Eigen Density plots of backdoor models (before and after purification) are shown here.
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(a) Attack (VGG19)
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(c) Attack (MobileNetV2)
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(d) Purification (MobileNetV2)
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(e) Attack (GoogleNet)
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(g) Attack (InceptionV3)
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(i) Attack (DenseNet121)
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Figure 6: Smoothness Analysis of Backdoor Attack and Purification for different architectures. For all archi-
tectures, we consider the Badnets attack on CIFAR10.
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