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Abstract
Although the incorporation of pre-trained lan-001
guage models (PLMs) significantly pushes the002
research frontier of multi-turn response se-003
lection, it brings a new issue of heavy com-004
putation costs. To alleviate this problem005
and make the PLM-based response selection006
model both effective and efficient, we pro-007
pose an inference framework together with008
a post-training strategy that builds upon any009
pre-trained transformer-based response selec-010
tion models to accelerate inference by progres-011
sively selecting and eliminating unimportant012
content under the guidance of context-response013
dual-attention. Specifically, at each trans-014
former layer, we first identify the importance015
of each word based on context-to-response016
and response-to-context attention, then select017
a number of unimportant words to be elimi-018
nated following a retention configuration de-019
rived from evolutionary search while passing020
the rest of the representations into deeper layers.021
To mitigate the training-inference gap posed022
by content elimination, we introduce a post-023
training strategy where we use knowledge dis-024
tillation to force the model with progressively025
eliminated content to mimic the predictions of026
the original model with no content elimination.027
Experiments on three benchmarks indicate that028
our method can effectively speeds-up SOTA029
models without much performance degradation030
and shows a better trade-off between speed and031
performance than previous methods.032

1 Introduction033

Constructing intelligent dialogue systems has at-034

tracted wide attention in the field of natural lan-035

guage processing (NLP) in recent years. There036

are two approaches widely used for the dialogue037

system, generation-based and retrieval-based meth-038

ods. The former views conversation as a generation039

problem (Vinyals and Le, 2015; Li et al., 2015; Ser-040

ban et al., 2016), while the latter aims to select041

the optimal response from candidates given a dia-042

log context (Hu et al., 2014; Yan et al., 2016; Wu043

Context

A: can someone help me with installing drivers?
this is the output file.
B: What drivers are you installing
A: I try to install the video card drivers, and it
says to check out the log file of it.
B: Give more detail. How do you try to install
those drivers? which log file is that.
A: The ones that ship with Ubuntu.

Response

B: This might be heavily connected, so maybe
you have another driver manager running other
open windows synaptic.

Table 1: A dialogue example from Ubuntu Corpus. The
light gray words are eliminated in shadow layers, the
dark gray words are eliminated in mediate layers, and
the black words are retained all the time and sent to the
deeper layer for the context and response matching.

et al., 2017; Tao et al., 2019a,b; Xu et al., 2020). 044

Since retrieval-based methods can usually provide 045

fluent and informative responses, they are widely 046

adopted in a variety of industrial applications such 047

as XiaoIce (Shum et al., 2018) from Microsoft and 048

AliMe Assist (Li et al., 2017) from Alibaba. 049

We focus on multi-turn response selection in 050

retrieval-based dialogue systems in this paper. 051

Recently advances of pre-trained language mod- 052

els (Devlin et al., 2018) further push the research 053

frontier of this field by providing a much powerful 054

backbone for representation learning (Whang et al., 055

2020; Gu et al., 2020) and dialogue-oriented self- 056

supervised learning (Xu et al., 2020; Zhang and 057

Zhao, 2021; Han et al., 2021). Although significant 058

performance improvement has been made by these 059

PLM-based response selection models, they usu- 060

ally suffer from substantial computational cost and 061

high inference latency due to the growing model 062

size, presenting challenges for their development 063
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in resource-limited real-world applications. There-064

fore, there is an urgent need to accelerate PLM-065

based response selection models while maintaining066

their satisfactory performance.067

To accelerate PLM-based multi-turn response068

selection, one direct idea is to avoid unnecessary069

calculation when joint modeling dialogue context070

and response. Through empirical observation, we071

find that there are many unimportant contents that072

are either redundant (i.e., repeated by many context073

turns) or less relevant to the topic, especially in074

the lengthy dialogue context (Zhang et al., 2018).075

If accurately identified and appropriately elimi-076

nated, the removal of the unnecessary calculation077

on them can bring minimum performance degrada-078

tion. Drawing inspiration from Goyal et al. (2020),079

we propose an inference framework together with080

a post-training strategy customized for PLM-based081

multi-turn response selection, where unimportant082

contents are progressively identified and dropped083

as the calculation goes from shallow layers to deep.084

In our framework, here comes three research ques-085

tions (RQs): (1) how to accurately identify these086

unimportant contents, (2) how to properly decide087

the intensity of elimination for these unimportant088

contents under various computation demands, and089

(3) how to eliminate unnecessary calculations on090

those contents at the minimum cost of performance091

degradation. As the answer to the above ques-092

tions, we propose an inference framework together093

with a post-training strategy customized for PLM-094

based multi-turn response selection as illustrated095

in Table 1. For RQ1, we propose a dual-attention-096

based method to measure the relative importance097

of tokens in context and response as we find this098

method is in accord with our empirical observation.099

For RQ2, we adopt evolutionary search (Cai et al.,100

2019) to build the Pareto Frontier of performance-101

efficiency map and choose proper retention con-102

figurations (i.e., which defines how many tokens103

are passed to the next layer for each layer) from104

the frontier. For RQ3, we notice the gap between105

the proposed efficient inference framework and106

training and employ knowledge distillation (Hin-107

ton et al., 2015) to mitigate this gap by forcing the108

model with progressively eliminated contents to109

mimic the predictions of the original model with110

no content elimination.111

We evaluate our proposed method on three112

benchmarks for multi-turn response selection:113

Ubuntu(Lowe et al., 2015), Douban (Wu et al.,114

2017) and E-commerce (Zhang et al., 2018). Ex- 115

perimental results show that our proposed method 116

can accelerate the inference of PLM-based multi- 117

response selection models with acceptable perfor- 118

mance degradation under various computation con- 119

straints, while significantly outperforming previous 120

acceleration methods. We also conduct comprehen- 121

sive analyses to thoroughly investigate the effec- 122

tiveness of proposed components. 123

We summarize the contributions of this paper 124

as follows: (1) We propose Attend, Select and 125

Eliminate (ASE), an efficient inference framework 126

customized for PLM-based multi-turn response 127

selection models that identify and progressively 128

eliminate unimportant contents. (2) We propose 129

a knowledge-distillation-based post-training strat- 130

egy to mitigate the training-inference gap and de- 131

crease the performance degradation caused by con- 132

tent elimination. (3) We conduct comprehensive 133

experiments on three benchmarks to verify the ef- 134

fectiveness of our proposed method and prove its 135

superiority over other acceleration methods. 136

2 Related Work 137

Recently, methods based on pre-trained models are 138

relatively popular, Whang et al. (2020) introduced 139

the next sentence prediction and mask language 140

model tasks in the PLMs into the conversation cor- 141

pus, conducted post-domain training, and finally 142

treated the context as a long sequence, and ad- 143

justed the model directly by fine-tuning the model. 144

Compute context-response match scores. Xu et al. 145

(2020) tries to introduce self-supervised learning 146

tasks to increase the difficulty of model training, 147

and the results show the effectiveness of these 148

works. From the perspective of data augmentation, 149

BERT-FP (Han et al., 2021) splits the context into 150

multiple sets of short context-response pairs and 151

introduces a conversational relevance task, which 152

achieves state-of-the-art performance. 153

Although the performance of the pre-training 154

model is powerful, it also brings some problems. 155

The expensive computational cost and high infer- 156

ence latency hinder the further implementation of 157

the PLMs to a certain extent. Some works try to 158

alleviate this problem, one of the branches is to re- 159

duce the model size, such as distillation (Sanh et al., 160

2019), structural pruning (Michel et al., 2019) and 161

quantization (Shen et al., 2020), etc. Goyal et al. 162

(2020) adopts the Attention Strategy to select the 163

important tokens in GLUE with a fixed length con- 164
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Figure 1: The Overall framework ASE.

figuration, but its speed ratio cannot be selected as165

needed and once full training can only get a model166

with a fixed speedup.167

While they introduced these methods in GLUE168

which mostly are single sentence or sentence-pair169

tasks, the methods are not fully suitable for re-170

sponse selection. In response selection, the model171

needs to understand the relationship between all172

the utterances in a dialogue session and learn173

the interaction of the utterances closely related174

to the response. We propose to select and elim-175

inate the token representation based on context-176

to-response and response-to-context attention (i.e.,177

dual-attention, DualA), which make good use of178

the relationship between context-response.179

3 Task Formulation180

Considering that a dialogue system is given a di-181

alogue dataset D = {(ci, ri, yi)}ni=1. Each sam-182

ple in the dataset is a triple that consists of con-183

text ci, response ri, and ground truth label yi.184

ci = {u1, u2, ..., ul} is dialogue context with l ut-185

terances and {uj}nj=1 are arranged in a temporal186

order. ri is a response candidate and yi = 1 rep-187

resents ri is a proper response for the context ci,188

otherwise yi = 0. The core problem of this re-189

search is to learn a matching model M(·, ·) which190

can measure the matching degree between context191

and response.192

4 Methodology193

We aim to accelerate the inference of PLM-based194

multi-turn response selection models by propos-195

ing Attend, Select and Eliminate (ASE) that pro-196

gressively identifies and eliminates unimportant197

contents to avoid unnecessary calculations. The198

(a) self-attention matrix (b) encoder information flow

Figure 2: (a) The averaged attention weights of post
ed by the blue response part as the token w’s mutual-
importance. (b) between the encoders, tokens are elimi-
nated and selected to be sent to the next layer.

overall framework is illustrated in Figure 1. There 199

are three crucial questions that need to be answered: 200

(1) how to accurately identify the unimportant con- 201

tents, (2) how to properly decide the intensity of 202

content elimination, and (3) how to effectively mit- 203

igate the training-inference gap in our framework 204

and decrease the performance degradation. In the 205

following part of this section, we elaborate on our 206

method by answering the above three research ques- 207

tions. 208

4.1 Content Selection 209

In the specific scenario of multi-turn dialogue, 210

there is a lengthy context with multiple turns and 211

a single sentence of candidate response and the 212

model aims to measure their semantic similarity. 213

To achieve this goal, existing PLM-based meth- 214

ods calculate the interaction of all contents without 215

distinction, regardless of the various importance 216

of contents where many of them are redundant or 217

topic-irrelevant. In order to eliminate them for in- 218
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ference acceleration, we need to accurately identify219

them first during encoder flow as in Figure 2(b).220

4.1.1 Empirical Methods221

The multi-turn context accounts for a large pro-222

portion of the input pair (ci, ri), making it a good223

choice to start our content selection. For multi-224

turn context, the easiest way is to conduct content225

selection in sentence-level. Empirically, the last226

few utterances in the dialogue context are more227

close to the response in the dialogue flow, so they228

might be more important than the utterances in the229

beginning. Hereby, we can also simply select the230

last k utterances in the original context as the new231

context (i.e., ci = {uj}nj=n+1−k) and concatenate232

them with the candidate response, resulting in the233

setting that we denote as Lastk. Similarly, we can234

select other context utterances, such as the first k ut-235

terances and randomly selected k utterances which236

are denoted as Firstk and Randk, respectively.237

4.1.2 Dual-attention-based Content Selection238

Although simply adopting empirical methods (i.e.,239

Lastk) yields plausible results as will be shown in240

our experiments later, this approach takes all the241

last k utterances without distinction, regardless of242

the various importance of utterances and tokens. A243

reasonable way is to conduct content selection in244

a more fine-grained manner (i.e., token-level). Re-245

cent works have shown that the importance of a to-246

ken can be measured by the total attention weights247

it receives from other tokens (Goyal et al., 2020;248

Kim and Cho, 2021), denoted as AM. However,249

AM treats all tokens in the input sequence equally250

without distinction, neglecting the imbalanced rela-251

tionships between tokens in context and response.252

Intuitively, for a token in the context, the atten-253

tion it receives from other context tokens reflects254

its importance in the context, which we call self-255

importance. While the attention it obtains from re-256

sponse tokens reflects its importance for semantic257

matching with the response, which we call mutual-258

importance. Therefore, we propose to disentangle259

the attention received by a token into two parts: (1)260

the self-attention within a context or response and261

(2) the mutual-attention between a context and a re-262

sponse, and jointly consider them when measuring263

the importance of a token, and we call it DualA.264

Specifically, take a token w in the context for ex-265

ample in Figure 2(a), we use the averaged attention266

weights posed by the response tokens on it as its267

mutual-importance score, formulated as: 268

gc,mutual(w) =
1

H · |Tres|
·

H∑
h=1

∑
w′∈Tres

Ah[w
′, w],

(1) 269

where Tres means the set of tokens belonging to 270

the response, Ah represents the attention received 271

by token w from w′ on head h, and H denotes 272

the number of attention heads. While for the self- 273

importance of w, we adopt the averaged attention 274

weights posed by other context tokens on it: 275

gc,self(w) =
1

H · |Tcon|
·

H∑
h=1

∑
w′∈Tcon
w′ ̸=w

Ah[w
′, w],

(2) 276

where Tres means the set of context tokens. We 277

then jointly consider the self-importance and the 278

mutual-importance of w by a weighted sum of 279

gc,self(w) and gc,mutual(w): 280

gc(w) = αc · gc,self(w) + βc · gc,mutual(w), (3) 281

where αc, βc that satisfy 0 ≤ αc, βc ≤ 1 and 282

αc + βc = 1 are weights for calculating the over- 283

all importance score for context tokens. Similarly, 284

we can calculate the overall importance score for 285

the tokens in the response with the only difference 286

lying in the weights for response tokens αr, βr: 287

gr(w) = αr · gr,self(w) + βr · gr,mutual(w). (4) 288

It should be noted that our method can be viewed 289

as a generalization of typical attention-based im- 290

portance measurement (Goyal et al., 2020), and can 291

flexibly balance the influence of self-attention and 292

dual-attention parts. 293

4.2 Retention Configuration Search 294

After having the basis for evaluating the impor- 295

tance of the token, the model needs to determine 296

retention configuration, i.e., how to properly decide 297

the intensity of content elimination and how many 298

tokens to keep and pass to deeper encoder layers. 299

Given a PLM-based model M(θ) with m en- 300

coder layers, and θ is the parameter matrix of model 301

M . S = {s1, s2, · · · , sn} is a set called retention 302

configurations where si = [l1, l2, l3, · · · , lm] is 303

a monotonically non-increasing sequence and lj 304

indicates that lj tokens are kept from the output of 305

the lj−1-th encoder layer and passed to the lj-th en- 306

coder layer. According to s, the model M(θ) keeps 307

and eliminates the corresponding number of tokens 308
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in each encoder, M(θ) can get faster inference, but309

the performance may degrade.310

In theory, there can be
(
l0
l1

)
×
(
l1
l2

)
×· · ·×

(lm−1

lm

)
311

possible combinations for each s. By using evo-312

lutionary algorithms (Cai et al., 2019), we search313

for the Pareto Frontier to make the optimal trade-314

offs between performance and efficiency which can315

satisfy various given computation constraints.316

4.3 Training Framework317

In the aforementioned sections, we have introduced318

our accelerated inference framework for PLM-319

based multi-turn response selection models. Here,320

we present our training framework.321

Given a pre-trained language model such as322

BERT (Devlin et al., 2018), we first adapt it to the323

task of multi-turn response selection by using the324

SOTA method (i.e., BERT-FP(Han et al., 2021)) on325

some multi-turn response selection dataset, obtain-326

ing the model M(θ). Then we conduct retention327

configuration search (described in Sec. 4.2) based328

on our proposed method DualA to obtain a set of329

optimal retention configurations S∗.330

Now with the trained model M(θ) and S∗ with n331

retention configurations, we can get n acceleration332

settings for model inference with various speedup333

ratio, denoted as G = {M(θ, s1), · · · , M(θ, sn)}.334

Although one can directly utilize M(θ, sj) for335

faster inference, we argue that there is a gap be-336

tween the training and our proposed accelerated in-337

ference framework. The previously trained model338

M(θ) didn’t occur with the circumstances where339

the input sequence of tokens is progressively elim-340

inated from shallow layers to deep layers. There-341

fore, we propose to mitigate this training-inference342

gap with once-for-all self-distillation. Specifically,343

we fix M(θ) as the teacher and make a copy of it344

as the student. During self-distillation, the teacher345

receives the complete inputs without content elim-346

ination and produces a probability distribution347

pM(θ)(ci, ri) of whether the response is appropri-348

ate to the context or not. While for the student, in349

order to ensure it can be customized to all retention350

configurations S∗ simultaneously with the same pa-351

rameters θ∗, we randomly sample the configuration352

sj and compute its output distribution under con-353

tent elimination setting as pM(θ′,sj)(ci, ri), which354

is used to compute the KL-divergence with the355

teacher’s outputs following Hinton et al. (2015):356

Lθ′ = DKL(pM(θ)(ci, ri)∥pM(θ′,sj)(ci, ri)). (5)357

After self-distillation, we obtain the adapted358

Algorithm 1: Model Training Steps

Input: PLM (i.e.,BERTbase) ;
Datasets Dtrain and Ddev;

1 Initialize retention set S;
2 Training BERTbase on Dtrain to get M(θ)

using BERT-FP (Han et al., 2021);
3 repeat
4 Sort the tokens based on the importance

through Eq.(3) and Eq.(4) ;
5 Generate new s′ by evolutionary

algorithms (Cai et al., 2019);
6 Update S based on the efficiency and

performance on Ddev of M(θ, s′);
7 until S converges to get S∗;
8 repeat
9 Randomly sample a configuration sj

from S∗;
10 Optimize M(θ, sj) by minimizing K-L

divergence through Eq.(5);
11 until convergence;

Output: M(θ∗) and S∗

model M(θ∗) customized for all the searched 359

optimal retention configurations S∗, making 360

our final inference acceleration settings G∗ = 361

{M(θ∗, s1), · · · , M(θ∗, sn)} efficient at the min- 362

imum cost of performance degradation. 363

5 Experiments 364

5.1 Dataset 365

We evaluate our framework on three widely used 366

multi-turn response selection benchmarks: the 367

Ubuntu Corpus (Lowe et al., 2015), the Douban 368

Corpus (Wu et al., 2017)and the E-commerce Cor- 369

pus (Zhang et al., 2018). 370

5.2 Experimental Settings 371

We use BERT-FP’s trained model to search on the 372

validation set and get k (k<20) different length con- 373

figurations. We adopt the weighted sum of the 374

distillation loss and the cross-entropy loss, as the 375

training objective function running 5 to 8 epochs. 376

We employ recall rate Rn@k as the evaluation met- 377

ric. Especially for some samples in the Douban 378

corpus having more than one true candidate re- 379

sponse, we use MAP, MRR, and P@1 same as Tao 380

et al. (2019b) and Yuan et al. (2019). For infer- 381

ence efficiency, we employ FLOPs (floating-point 382

operations) speedup ratio compared to the BERT 383

model as the measure, as it is agnostic to the choice 384
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Model
Ubuntu Douban E-commerce

R10@1 R10@2 R10@5 Speed MAP MRR P@1 R10@1 R10@2 R10@5 Speed R10@1 R10@2 R10@5 Speed

SMN 0.726 0.847 0.961 - 0.529 0.569 0.397 0.233 0.396 0.724 - 0.453 0.654 0.886 -
DAM 0.767 0.874 0.969 - 0.550 0.601 0.427 0.254 0.410 0.757 - 0.526 0.727 0.933 -

MRFN 0.786 0.886 0.976 - 0.571 0.617 0.448 0.276 0.435 0.783 - - - - -
IOI 0.796 0.894 0.974 - 0.573 0.621 0.444 0.269 0.451 0.786 - 0.563 0.768 0.950 -

MSN 0.800 0.899 0.978 - 0.587 0.632 0.470 0.295 0.452 0.788 - 0.606 0.770 0.937 -

BERT 0.808 0.897 0.975 1x 0.591 0.633 0.454 0.280 0.470 0.828 1x 0.610 0.814 0.973 1x
BERT-DPT 0.851 0.924 0.984 1x - - - - - - - - - - -
BERT-SL 0.884 0.946 0.990 1x - - - - - - - 0.776 0.919 0.991 1x
BERT-FP 0.911 0.962 0.994 1x 0.644 0.680 0.512 0.324 0.542 0.870 1x 0.870 0.956 0.993 1x

ASE∗ 0.897 0.955 0.991 1.5x 0.633 0.678 0.511 0.323 0.525 0.844 2x 0.843 0.941 0.993 1.4x
ASE 0.914 0.964 0.994 1.1x 0.650 0.691 0.532 0.343 0.536 0.856 1.4x 0.872 0.954 0.996 1.1x

Table 2: Model comparison on three benchmarks. BERT-FP is the previous SOTA model. ASE∗ is one of the
reduced models with a retention configuration.
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Figure 3: Model performance-efficiency trade-offs comparison with baselines without self-distillation.

of the underlying hardware. To avoid the pseudo385

improvement by pruning padding, we evaluate all386

models with input sequences without padding to387

the maximum length such as to pad length to 256.388

5.3 Comparison Methods389

We compare our method with these baselines:390

(1)Interaction-based Models where the context391

and response candidate interact with each other392

at the beginning stage. SMN (Wu et al., 2017),393

DAM (Zhou et al., 2018), IOI (Tao et al., 2019b),394

MSN (Yuan et al., 2019), MRFN (Tao et al., 2019a).395

(2)BERT-based Models where the context and396

response are concatenated toghther and feed into397

BERT-based models to BERT (Devlin et al., 2018),398

BERT-DPT (Whang et al., 2020), BERT-SL (Xu399

et al., 2020), BERT-FP (Han et al., 2021). (3)Infer-400

ence Accelerated Models PoWER-BERT (Goyal401

et al., 2020), L-Adaptive (Kim and Cho, 2021).402

5.4 Overall Performance403

Table 2 and Figure 3 shows the overall compari-404

son results with baselines. Our proposed model405

ASE outperforms all the other models. In Table 2,406

our method ASE achieves higher performance us-407

ing lesser computation (i.e., with faster speed),408

compared with all the baselines. Specifically, our409

method performs slightly better than the SOTA 410

model BERT-FP on Ubuntu and E-commerce and 411

achieves a significant improvement by 2.0% in 412

P@1 and by 1.9% in R10@1 on Douban. ASE∗, 413

when we select those configurations with faster 414

acceleration inference, has different degrees of per- 415

formance degradation on three benchmarks but 416

achieves comparable performance with a double 417

speed on Douban. It shows that ASE∗ still retains 418

most of the performance even with fewer parameter 419

computation. Figure 3 compares ASE with two ac- 420

celerating methods, PoWER-BERT and L-adaptive. 421

It can be seen that ASE achieves better results than 422

them by a large margin, which demonstrates that 423

extracting important tokens based on dual attention 424

is feasible for accelerating the inference of multi- 425

turn response selection. In contrast, both baselines 426

have shown a large decline due to the incomplete 427

adaptation of the task. 428

5.5 Discussions 429

Comparison between different content selec- 430

tion strategies. Intuitively, the latter utterances 431

may be helpful for the multi-turn response selec- 432

tion. We compare several different strategies, in- 433

cluding empirical methods (i.e., Lastk, Firstk, and 434

Randk), the attention-based method AM and dual- 435

6



1.4 1.6 1.8 2.0 2.2
Speedup Ratio

0.60

0.70

0.80

0.90

R
10

@
1

DualA
AM
Lastk
Randk

Firstk

Figure 4: Comparison between different content selec-
tion strategies without self-distillation on Ubuntu.

attention-based method DualA.436

Figure 4 shows the results of these strategies437

with k=3, 4, and 5 on Ubuntu. It can be seen438

that based on the three simple empirical strate-439

gies, Lastk, Firstk, and Randk, the model can also440

achieve good performance with a certain inference441

speed. Strategy Lastk performs much better than442

strategy Firstk and Randk, which validates our443

hypothesis that latter utterances in context may444

be more helpful and more important for select-445

ing appropriate responses. Most importantly, the446

performance-efficiency tradeoffs of our proposed447

strategy based on dual attention are completely bet-448

ter than the other strategies. This result shows that449

to achieve the effect of faster inference, DualA, a450

fine-grained strategy of selecting token, is more451

effective than the utterance-level selection method452

for the response selection.453

The effects of using only the k-th utterance from454

last as the context. To understand the effect of455

utterances in different positions on the task of re-456

sponse selection, we test the performance using457

only the k-th from last utterance as context. From458

the validation set, we first filter out examples where459

the context is too short and keep the examples460

where the context consists of more than 6, 8, 10,461

and 12 utterances on Ubuntu. Then, the k-th ut-462

terance from last of the context and the candidate463

response are concatenated, being fed to a trained464

model for classification. As experimental results465

in Figure 5 show, the overall performance of the466

model is relatively low. Even for the last utter-467

ance of the context, also the previous turn of the468

response, the performance is still not high. How-469

ever, model performance increases rapidly as the470

utterance position moves forward under these four471

settings, which means that the closer the utterance472

to the candidate response, the better the perfor- 473

mance for the response selection. This is also in 474

line with the actual chat scene of human beings, 475

where both parties usually respond to each other’s 476

current utterance. 477

The distribution of the selected token represen- 478

tations. Under the same retention configuration, 479

the token selected by different strategies will be dif- 480

ferent. To better observe which token are selected 481

by strategies, we divide the dialogue context into 482

three parts, the first third, middle third, and last 483

third of the context. On the Ubuntu IRC V1 corpus, 484

we set the same retention configuration for both 485

strategies, then as the encoder layer deepens, we 486

count the distribution of token in the context part 487

that is selected using AM and DualA. 488

In Figure 6(a), under the same retention config- 489

uration, it can be seen that under the method AM 490

which uses the total attention weights it receives 491

from other tokens to evaluate the token’s impor- 492

tance, as the encoder layer deepens, the proportion 493

of token selected in the last third part is slightly 494

higher, while the first third and the middle third are 495

basically the same. However, there is almost no dif- 496

ference in the distribution of the three parts. While 497

in Figure 6(b), under the method DualA based on 498

the dual-attention of the context and response, it 499

can be seen that as the encoder layer deepens, the 500

percentage of token selected in the first third of the 501

context drops sharply. The middle and last third 502

parts still retain a large part. Until after the ninth 503

encoder layer, the middle and last parts begin to 504

decrease drastically but are still more than the first 505

third part of the context. This is consistent with 506

the results in Figure 5. To a certain extent, this 507

result shows that when the attention of response-to- 508

context is used as the query, the response prefers 509

to focus on the middle and last parts of the context, 510

that is, the tokens that are closer to the response 511

will provide more help in response selection, but 512

are never the same. 513

Hyper-parameter tuning. According to Equa- 514

tion 4, the self-importance gr,self(w) and the mutual- 515

importance gr,mutual(w) have different contributions 516

to selecting tokens. We experiment with the effects 517

on the performance with different gr,self(w) and 518

gr,mutual(w) weights. As shown in Figure 7, the hor- 519

izontal axis is α/β, which represents the weight 520

coefficient of the gr,self(w) to gr,mutual(w) during 521

the model selecting tokens belonging to the con- 522
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Figure 6: The distribution of selected tokens as the encoder layer deepens.
Content selection strategies are at the same configuration on Ubuntu.
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Figure 7: Hyper-parameter tuning for α and β at dif-
ferent Speedratio without dynamic self-distillation on
Ubuntu. The dashed and solid lines represent the perfor-
mance of AM and our method DualA, respectively.

text. It can be seen that as the α/β increases, the523

tokens selected in the context change, and the per-524

formance also gradually improves, reaching the525

maximum at α/β = 0.25. Consistent with our526

finds in Figure 4, method DualA is consistently527

performant than AM by a large margin. These re-528

sults under different speedup ratios show consistent529

trends, i.e., the method of selecting tokens based530

on dual-attention is more effective for the response531

selection task.532

The effects of the once-for-all self-distillation.533

After token selection, we compare model perfor-534

mance on Ubuntu with or without self-distillation.535

Different from the traditional distillation method,536

we adopt the once-for-all self-distillation method537

to distill the teacher’s knowledge to the student by538

sampling different retention configurations during539

the training. Figure 8 is a comparison of the perfor-540

mance with and without self-distillation. It can be541

seen that with self-distillation, the performance is542
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Figure 8: The effect of once-for-all self-distillation. SD
and w/o. SD mean with and without self-distillation,
respectively.

significantly improved for the model under all re- 543

tention configurations, especially at large speedup 544

ratio. As the speedup ratio of the model increases, 545

that is, more tokens are eliminated during inference, 546

and the performance of the model starts to degrade, 547

but the improvement effect of self-distillation is 548

also enhanced. This way of optimizing all the re- 549

tention in the training once avoids the problem of 550

re-distilling if configuration various during the ac- 551

tual deployment process. 552

6 Conclusion 553

In this paper, we propose a new framework of pro- 554

gressively extracting important tokens and elim- 555

inating redundant tokens to accelerate inference 556

for multi-turn response selection, which identifies 557

important tokens based on dual-attention of the 558

context and response. The experimental results 559

empirically verify the effectiveness of this method. 560

In the future, we plan to accelerate inference fur- 561

ther by combining it with the layer-wise reduction 562

mechanism. 563
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Limitations564

During the configuration search stage, because this565

is a multi-objective optimization problem involving566

performance and efficiency, we use the evolution-567

ary algorithm to search here. Designing a robust568

and efficient optimization objective is not simple569

and it will affect the convergence of search results.570

Limited by hardware, and in order to speed up the571

search, we use a small subset of the validation set572

to search retention configuration, which is bound to573

have a certain impact on the overall search results.574
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