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ABSTRACT

Discriminative pre-trained language models (PrLLMs) learn to predict original texts
from intentionally corrupted ones. Taking the former text as positive and the lat-
ter as negative samples, the discriminative PrLM can be trained effectively for
contextualized representation. However, though the training of such a type of
PrLLMs highly relies on the quality of the automatically constructed samples, ex-
isting PrLMs simply treat all corrupted texts as equal negative without any ex-
amination, which actually lets the resulting model inevitably suffer from the false
negative issue where training is carried out on wrong data and leads to less ef-
ficiency and less robustness in the resulting PrLMs. Thus in this work, on the
basis of defining the false negative issue in discriminative PrLMs that has been
ignored for a long time, we design enhanced pre-training methods to counter-
act false negative predictions and encourage pre-training language models on true
negatives, by correcting the harmful gradient updates subject to false negative
predictions. Experimental results on GLUE and SQuAD benchmarks show that
our counter-false-negative pre-training methods indeed bring about better perfor-
mance together with stronger robustness.

1 INTRODUCTION

Large-scale pre-trained language (PrLM) models are playing an important role in a wide variety of
NLP tasks with their impressive empirical performance (Radford et al.| [2018]; |Peters et al., 2018;
Devlin et al., [2019; Yang et al.,|2019; Lan et al.,|2019; (Clark et al.l|2019). So far, there comes two
categories of PrLLMs, the generative like GPT (Radford et al., 2018)) and BART (Lewis et al., 2020b),
which employ a decoder for learning to predict a full sequence, and the discriminative like BERT
style of PrLMs which learn to predict the original text from the intentionally corrupted ones. In this
work, we focus on the latter category of PrLMs, typically with denoising objectives (also known
as masked language modeling, MLM) (Liu et al., [2019; Joshi et al., [2020; Sun et al., 2019). In a
denoising objective, a certain percentage of tokens in the input sentence are masked out, and the
model should predict those corrupted tokens during the pre-training (Peters et al.| 2018} |Sun et al.,
2019; Levine et al., [2021; (L1 & Zhao, [2021)).

Besides corrupting the texts with masks, some alternatives were proposed for constructing training
examples with various arbitrary noising functions motivated by edit operations like insertion, dele-
tion, replacement, permutation, and retrieval (Lewis et al., 2020a; |[Xu & Zhaol [2021; [Wang et al.,
2019; |Guu et al.| 2020). Auxiliary objectives are also proposed in conjunction with MLM, such
as next sentence prediction (Devlin et al.l [2019), span-boundary objective (Joshi et al., [2020), and
sentence-order prediction (Lan et al.,|2019).

Although existing studies have made progress in designing effective masking strategies and auxiliary
objectives, there are intrinsic yet critical issues appearing throughout the whole training process that
lack attention for a long time. Discriminative PrLM can be regarded as a kind of auto denoising
encoder on automatically corrupted texts. Thus, it is critical to ensure the auto-constructed data is
true enough. Intuitively, a discriminative PrLM learns to distinguish two types of samples, positive
(already existing original ones) and negative (the corrupted ones from the auto constructing). Taking
MLM as an example, a proportion of tokens in sentences are corrupted, e.g., replaced with mask
symbols, which would affect the sentence structures, leading to the loss of semantics and increasing
the uncertainty of predictions. In extreme cases, such corrupted text may be linguistically correct.
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Example Ground-truth Prediction MLM Mediation
It is [MASK] good very happy - -
The cat is [MASK] cute smart X v
It is a [MASK] [MASK] for discussion  good day great time X v

Table 1: Examples of true negative (the first line) and false negatives (the second and third line).

However, the current PrLMs simply consider all corrupted texts as negative samples, so that the
resulting PrLM has to be trained on such false negatives with less efficiency and less robustness,
which either waste training time on meaningless data or are vulnerable to adversarial attacks like
diversity distraction and synonym substitution (Wang et al., 2021).

In a general scenario, MLM only calculates label-wise matching between the prediction and the
gold tokens in the training process, thus inevitably suffering from the issue of false negatives where
the prediction is meaningful but regarded as wrong cases, as examples shown in Table The
issue is also observed in sequence generation tasks, which is tied to the standard training criterion of
maximum likelihood estimation (MLE) that treats all incorrect predictions as being equally incorrect
(Wieting et al.| 2019; |Li et al., 2020)). Instead of measuring negative diversity via the diversity scores
between the different incorrect model outputs, our method is dedicated to mediating the training
process by detecting the alternative predictions as opposed to the gold one, to steer model training
on true negatives, which benefits the resulting language modeling in general.

Though the false negatives may potentially hurt the pre-training in both efficiency and robustness
to a great extent, it is surprising that this problem is kept out of the research scope of PrLLMs until
this work to our best knowledge. To address the issue of misconceived false negative predictions
and encourage pre-training language models on true negatives or more true negatives, we present
an enhanced pre-training approach to counteract misconceived negatives. In detail, we employ two
enhanced pre-training objectives: 1) soft regularization by minimizing the semantic distances be-
tween the prediction and the original one to smooth the rough cross-entropy and 2) hard correction
to shield the gradient propagation of the false negative samples to avoid training with false negative
predictions. We pre-train our methods on top of the ELECTRA architecture (Clark et al.,[2019) and
fine-tune it on widely-used down-streaming benchmark tasks, including GLUE (Wang et al., [2018))
and SQuAD (Rajpurkar et al.,|2016). Experimental results show that our approach boosts the base-
line performance by a large margin, which verifies the effectiveness of our proposed methods and
the importance of training on true negatives. Case studies show that our method keeps the simplicity
and also improves the robustness of language model pre-training.

2 RELATED WORK

Designing effective criteria for language modeling is one of the major topics in training pre-trained
models, which decides how the model captures knowledge from large-scale unlabeled data. Recent
studies have investigated denoising patterns (Raffel et al.,[2020; Lewis et al., 2020b), MLM alterna-
tives (Yang et al.|[2019), and auxiliary objectives (Lan et al.,|2019; Joshi et al.,|2020) to improve the
power of pre-training. However, studies show that the current models still suffer from under-fitting
issues, and it remains challenging to find effective and efficient training strategies (Rogers et al.,
2020).

Denoising Patterns MLM has been widely used as the major objective for pre-training (Devlin
et al.L 2019;Lan et al.,|2019; |Clark et al., 2019} [Song et al.l 2020)), in which the fundamental part is
how to construct high-quality masked examples (Raffel et al.,2020). The current studies commonly
define specific patterns for mask corruption. For example, some are motivated from the language
modeling units, such as subword masking (Devlin et al.,|2019), span masking (Joshi et al., 2020)), and
n-gram masking (Levine et al.| 2021} [Li & Zhao, [2021). Some employ a variety of edit operations
like insertion, deletion, replacement, and retrieval (Lewis et al., 2020a; |Guu et al., 2020). Others
seek for external knowledge annotations, such as named entities (Sun et al.,|2019), semantics (Zhou
et al.} [2020), and syntax (Zhang et al.| [2020b; Xu et al., 2021). To provide more diversity of mask
tokens, ROBERTa applied dynamic masks in different training iterations (Liu et al.| [2019). These
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prior studies either employ pre-defined mask construction patterns or improve the diversity of mask
tokens to help capture the knowledge from pre-training.

MLM alternatives To alleviate the task mismatch between the pre-training and the fine-tuning
for downstream tasks, XLNet (Yang et al.,|2019) proposed an autoregressive objective for language
modeling through token permutation, which further adopts a more complex model architecture. In-
stead of corrupting sentences with the mask symbol that never appears in the fine-tuning stage,
MacBERT (Cui et al., 2020) propose to use similar words for the masking purpose. |Yamaguchi
et al.| (2021) also investigates simple pre-training objectives based on token-level classification tasks
as replacements of MLM, which are often computationally cheaper and result in comparable per-
formance to MLM. In addition, training sequence-to-sequence (Seq2Seq) language models has also
aroused continuous interests (Dong et al.,|2019; |Lewis et al., 2020bj |[Raffel et al., |2020).

Auxiliary objectives Another research line is auxiliary objectives in conjunction with MLM, such
as next sentence prediction (Devlin et al.| |2019), span-boundary objective (Joshi et al.l |2020), and
sentence-order prediction (Lan et al.,[2019). Such line of researches emerges as hot topics, especially
in domain-specific pre-training, such as dialogue-oriented language models, which involve diverse
kinds of interaction entailed in utterances (Zhang et al., [2020aj [Wu et al., 2020; [Zhang & Zhao,
2021).

As the major difference from the existing studies, our work devotes itself to mediating misconceived
negatives as the essential drawback of MLM during the MLE estimation and aiming to guide lan-
guage models to learn from true negatives through our newly proposed regularization and correction
methods. The comparison with existing work is illustrated in Figure|T}

Besides the heuristic pre-trained patterns like
masking strategies during data construction, we
stress that there are potential post-processing
strategies to guide the MLM training: correc-
tion and pruning, which are considered to deal
with the false negative issue during MLM train-
ing, where the model would yield reasonable :

predictions but discriminated as wrong predic- Mees e True Negative | False Negative
tions because such predictions do not match the :

single gold token for each training case. For
example, many tokens are reasonable but writ- a) Existing Work b) Our Study
ten in different forms or are the synonyms of
the expected gold token. We could correct the
training with soft regularization or directly drop
the uncertain predictions. Promoting our view to sentence level, the similarity between the predicted
sentence and the original sentence can also be taken into account to measure the sentence-level con-
fidence that indicates how hard the task is, which would be beneficial to provide more fine-grained
signals and thus improve the training quality. Based on the rationales above, we are motivated to de-
sign the corresponding correction and regularization techniques to mediate misconceived negatives.

Positive Positive

Figure 1: Overview of our study.

In a broader view, our work is also related to knowledge distillation, whose paradigm is training
student networks to mimic the soft target generated by well-trained teachers (Gou et al., 2021} [Hahn
& Choil [2019), which has been proved as a type of label smoothing (Yuan et al., 2020} Zhang
& Sabuncu, 2020; |Miiller et al., [2019). Such a line of research has supported the hypothesis that
regularization of soft targets could accelerate convergence and promote performance. By contrast,
our approaches are more efficient without the need to train two models.

3 METHODOLOGY

3.1 PRELIMINARIES

MLM Masked LM (MLM) is a denoising language model technique used by BERT (Devlin et al.,
2019) to take advantage of both the left and right contexts. Given a sentence s = {wy, wa, ..., Wy},
A certain proportion of tokens are randomly replaced with a special mask symbol. The input is
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fed into the multi-head attention layer to obtain the contextual representations, which is defined as
H = FFN(MultiHead(K, Q, V')), where K,Q,V are packed from the input sequence representation
s. Then, the model is trained to predict the masked token based on the context.

Let Y € RNm denote the set of masked positions using the mask symbol [M] and N,,, is the number
of masked tokens. We have w;, € ) as the set of masked tokens, and s’ as the masked sentence
where the tokens in ) are masked with the mask symbol in s. The objective of MLM is to maximize
the following objective:

N,
1 m
Lmlm(wlms/) = 7N7 Z 10gp9(wk | S,)a (1)
™ key

where [V, is the total number of masked positions in the input sequence.

ELECTRA MLM only learns from a small proportion of masked positions per example, which
incur a substantial compute cost. With the goal to improve training efficiency, ELECTRA (Clark:
et al,|2019) is proposed, which consists of a generator G and a discriminator D. Instead of masking
tokens, ELECTRA corrupts the input sequence by replacing them with tokens sampled from a small
generator. The discriminator is trained to distinguish whether each replaced one is the original or
a replacement. In the implementation, the generator and discriminator are based on Transformer
architecture like BERT (Devlin et al.| 2019) but mainly differ in the model size. The generator is in
a smaller scale, and the training objective is the same as MLM in Eq. [1] written as:

1
NTYL

N7n
Z log p§ (wy, | 8'). (2)
key

Lo(wy,s') = —

During the training iteration, the generator predicts a new sequence (denoted as s?) with the pre-
dicted token for each corrupted position in the original sequence. The predicted sequence is then fed
to the discriminator, which uses a binary classification task to predict the probability D(w},s%) to
indicate how likely each token wj (¢ € [1,n]) in s? is replaced by generator, whose loss function is:

N
1
Lp(wy,s') ==Y L(w],s),
n t=1 (3)
—log D(wj,s9) wy = wy
L T o9) — t) ’ t
(wi.s%) {— log(1 — D(wf,s%), wf # w,
where n is the length of the input sequence.

The final combined loss of ELECTRA is computed by: Lg1,, = Lo (wg,s’) + ALp(wy,s’), where
A is a hyper-parameter to balance the weights of generator and discriminator, and it is set to 50
according to|Clark et al.|(2019).

3.2 PRE-TRAINING ON TRUE NEGATIVES

An intuitive solution to encourage the language model pre-training on true negatives is to reduce
the “difficulty” or uncertainty of the prediction during pre-training. Therefore, the cloze-style to-
ken prediction problem may be simplified as a multi-choice problem to break the rough validation
between the prediction and ground-truth and smooth measurement of the relevance. Therefore, we
are motivated to employ two techniques to counteract the false negative predictions, including 1)
soft regularization, which measures the distribution similarity between the predicted token and the
original one, to smooth the tough cross-entropy by minimizing the semantic distances (SR); 2) hard
correction (HC), which shields the gradient propagation of the false negative samples to further
avoid training with false negative predictions.

Soft Regularization Let p; denote the predicted token from MLM (derived from the generator
in this work). For wy, and py , we fetch their token representations from the model’s embedding
moduleﬂ denoted as ey, and €], respectively. We leverage cosine similarity as the regularization

'For ELECTRA, we fetch the embedding from the discriminator. Note that the embeddings of the generator
and the discriminator are tied following the official implementation (Clark et al.,[2019).
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based on the intuition that the semantic distance between the prediction and gold tokens should be

minimized:
m
Z Gk “
Eres = — el - el

SR is based on the hypothesis that the predicted tokens should have a semantic relationship with the
gold ones in the embedding space to some extent, which is supported by various existing studies
(Bordes et al., 2013} |Zhang & Zhao, [2021} (Chen et al., 2021} |Li et al., 2020). We choose to apply
SR to the embedding layer because the embedding layer is the most fundamental and stable layer.
Optimizing the embedding layer would possibly lead to a more severe influence of the model training
and help the model learn semantics between words better as indicated by Jiang et al.| (2020).

Hard Correction The other alternative strategy is to prune the gradient when the model suffers
from the confusion of whether the prediction is correct or not. For each prediction, we check if the
token is highly related to the ground-truth token based on a short lookup table ) in which each token
is mapped to a list of alternatives. The lookup table is built by retrieving the synonym alternatives
for each word in the model vocabulary, e.g., from WordNet (Miller, |1995) or Word2Vec embedding
(Mikolov et al.,[2013). In this work, we use WordNet synonyms by default (Section[5.2]will compare
retrieving synonyms from WordNet and Word2Vec embedding).

Z Iy + log po(wy, | 8'), )
key

where I, is the identifier indicating whether the k-th prediction should be counted, which is defined
by:
_JO el F#ex e € V[e;],
I = {1 otherwise. ©
For each training iteration, if the gold token is found in the synonym list for the predicted token,
then the correction is activated by I;. Such a prediction will be judged as correct by HC in cross-

entropy — the correction can be applied by simply ignoring this prediction before feeding to the
cross-entropy loss function.

3.3 IMPLEMENTATION VARIANT

According to the motivation and formulation above, the soft regularization and hard correction ap-
proaches are supposed to be applied as independent substitutesE] Therefore, the overall training
objective for language modeling is rewritten as £’ = Lgim + Lreg 0F L' = Lty + Leor for SR and
HC, respectively.

4 EXPERIMENTS

4.1 SETUP

Pre-training In this part, we will introduce the model architecture, hyper-parameter setting, and
corpus for pre-training our models. Considering the training efficiency, we employ ELECTRA small
and base as our backbone models and implement our pre-training objectives on top of them. We
follow the model configurations in Clark et al.| (2019) for fair comparisons. For hyper-parameters,
the batch size is 128 for the base models in our work instead of 256 as in the original setting due to
limited resources. The mask ratio is 15%. We set a maximum number of tokens as 128 for small
models and 512 for base modelsE] The small models are pre-trained from scratch for 1000% steps.
To save computation, like previous studies (Dong et al., 2019), we continue training base models
for 200k steps using the pre-trained weights as initialization. The learning rates for small and base

>We find that combining the two strategies would not yield a clear advantage over each individual. The
possible reason would be the redundancy which may lead to similar effects.

3For evaluation on the reading comprehension tasks, we also pre-train the variants with the length of sen-
tences in each batch as up to 512 tokens.
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Model CoLA SST MRPC STS QQP MNLI QNLI RTE Average A
Single model on dev set

ELECTRAgman  56.8 883 874 86.8 883 789 879 685 80.4 -
ELECTRASE | 61.1 90.1 895 87.0 894 808 888 686 819 115
ELECTRA!C =~ 62.0 89.8 870 867 89.0 804 880 679 814 110
ELECTRAp.se 683 953 909 913 91.7 885 930 823 87.7 -
ELECTRAPR 704 954 904 912 919 891 934 848 833 10.6
ELECTRA{C 709 956 912 913 920 887 93.6 838 884 107
Single model on test set

ELECTRAgman 523 89.7 848 805 884 799 88.0 629 783 -
ELECTRASE | 583 90.6 854 814 879 806 880 643 796 113
ELECTRA!C =~ 553 903 84.1 820 872 80.6 884 643 790 10.7
ELECTRAp,se 624 953 873 899 896 88.6 934 78.1 85.6 -
ELECTRAPR 657 957 883 90.0 899 891 936 788 86.4  10.8
ELECTRA{C 675 958 88.6 899 89.7 89.0 936 79.1 867 111

Table 2: Comparisons between our proposed methods and the previous strong pre-trained models
under small and base setting on the dev and test set of GLUE tasks. STS is reported by Spearman
correlation, CoLA is reported by Matthew’s correlation, and other tasks are reported by accuracy.

models are Se-4, and 5e-5, respectively. We use OpenWebText (Radford et al.,|2019) to train small
models, and Wikipedia and BooksCorpus (Zhu et al.,[2015)) for training base models following|Clark
et al. (2019)E] The baselines are trained to the same steps for a fair comparison.

Fine-tuning For evaluation, we fine-tune the pre-trained models on GLUE (General Language
Understanding Evaluation) (Wang et al.l [2018) and SQuAD vl1.1 (Rajpurkar et al., 2016)) to eval-
uate the performance of the pre-trained models. GLUE include two single-sentence tasks (CoLA
(Warstadt et al., 2018), SST-2 (Socher et al., |2013)), three similarity and paraphrase tasks (MRPC
(Dolan & Brockettl, 2005), STS-B (Cer et al.l 2017), QQP (Chen et al., 2018) ), three inference
tasks (MNLI (Nangia et al.l 2017), QNLI (Rajpurkar et al.l 2016), RTE (Bentivogli et al., [2009).
We follow ELECTRA hyper-parameters for single-task fine-tuning. We did not use any training
strategies like starting from MNLLI, to avoid extra distractors and focus on the fair comparison in the
single-model and single-task settings.

4.2 RESULTS

We evaluate the performance of our pre-

training enhancement compared with the base-

lines in small and base sizes on GLUE and Model Exact Match  Fl Score
SQuAD benchmarks in Tables @]—E} From the = ELECTRAg,.n  75.8 83.9
results, we have the following observations: ELECTRASSIE}all 76.0 (10.2) 84.2 (10.3)
1) The models with our enhanced pre-training ELECTRAEH?‘&H 77.7(11.9) 85.6 (11.7)
objectives outperform the baselines in all the ELECTRAp... 85.1 91.6
subtasks. With the same configuration and pre- ~ ELECTRAJR ~ 85.6 (10.5) 92.0 (10.4)
training data, for both the small-size and the ELECTRA&C;E 85.7 (10.6) 92.1 (10.5)

base-size, our methods outperform the strong
ELECTRA baselines by +1.5(dev)/+1.3(test)
and +0.7(dev)/+1.1(test) on average, respec-
tively. The results demonstrate that our pro-

Table 3: Results on the SQuAD dev set.

posed methods improve the pre-training of ELECTRA substantially and disclose that mediating the
training with true negatives is quite beneficial for improving language model pre-training. To verify

*Our codes and models will be publicly available.
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Model Params CoLA SST MRPC STS QQP MNLI QNLI RTE Avg. A
BERT}.s0 110M  52.1 935 848 858 89.2 846 905 664 809 -
BERTarge 335M 605 949 854 86,5 893 867 927 70.1 833 -

SpanBERT ,ge  335M 643 948 879 899 895 877 943 79.0 859 -
ELECTRAgman 14M 546 89.1 837 803 88.0 79.7 877 60.8 78.0 -
ELECTRAp,se 110M 597 934 86.7 87.7 89.1 858 927 73.1 835 -

ELECTRASE 14M 583 906 854 814 879 80.6 88.0 643 79.6 11.6

small

ELECTRA!C 14M 553 903 84.1 820 872 806 884 643 79.0 11.0

small

ELECTRAYR 110M 657 957 883 900 899 891 936 78.8 864 129

base

ELECTRA!C 110M 675 958 88.6 899 89.7 89.0 93.6 79.1 86.7 13.2

base

Table 4: Comparisons with public methods on GLUE test sets. The public results are from BERT
(Devlin et al}2019), SpanBERT (Joshi et al., 2020), and ELECTRA (Clark et al.,[2019).

Model CoLA SST MRPC STS QQP MNLI QNLI RTE Average A
ELECTRAman 568 883 874 868 883 789 879 685 804 -
ELECTRASE | 61.1 90.1 89.5 87.0 894 808 888 686 819 115
ELECTRASE 595 89.6 900 867 89.1 804 900 682 816 f1.2

ELECTRAHC .« 620 89.8 87.0 867 89.0 804 880 679 814 110
ELECTRAHC, 1., 590 885 87.0 864 888 796 879 671 80.6 102

Table 5: Comparative studies of variants on GLUE dev sets based on small models. The first block
compare the word-level regularization and sentence-level regularization, respectively. The second
block shows the results of HC methods based on WordNet and Word2Vec embedding, respectively.

the generality of our methods, we also implement them on BERT backbones as details presented in
Appendix [A.2] The results show that our methods achieve consistent gains.

2) Table [4| shows the comparison with public models on the GLUE test set. Compared with the
public methods, our model not only far exceeds the performance of others under the same model
scale, but also outperforms the larger models with much fewer parameters.

3) The performance gains on the small-size models are more obvious than the base-size models. We
speculate that is due to the learning of the small-size generator is more insufficient and suffers from
the false negative issue more seriously.

4) Both SR and HC pre-training strategies help the resulting model surpass the baselines obviously.
Note that our proposed method is model-agnostic so that the convenient usability of its backbone
precursor can be kept without architecture modifications. In comparison, SR is more generalizable
as it does not require extra resources, while HC has the advantage of interpretation via explicit
correction.

5) Our enhanced pre-training objectives show considerable performance improvements on
linguistics-related tasks such as CoLA and MRPC. These tasks are about linguistic acceptability
and paraphrase/semantic equivalence relationship. In addition, our methods also achieve obvious
gains in tasks requiring more complex semantic understanding and reasoning, such as MNLI and
SQuAD, showing that they may help capture semantics to some extent.

6) Our methods are lightweight that keep nearly the same parameter size, computation requirement,
and training speed as the baseline but with stronger capacity.

5 ANALYSIS

5.1 WORD-LEVEL REGULARIZATION VS. SENTENCE-LEVEL REGULARIZATION

The soft regularization approach measures the semantic distance between the predicted one and the
ground-truth, which may neglect the sentence-level context (though the token representation may
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have already captured contextualized representation to some extent). We are interested in whether
measuring the sentence-level similarity would achieve even better results. To verify the hypothesis,
we fill the masked sentence s’ with the predicted tokens €], to have the predicted sentence s,,. Then,
s, and s are fed to the Transformer encoder to have the contextualized representation H, and H,
respectively. To guide the probability distribution of model predictions H), to match the expected
probability distribution H, we adopt Kullback-Leibler (KL) divergence:

Ly = KL(H, || Hy), 7

where Ly; is applied as the degree to reflect the sentence level semantic mismatch. The loss function
is then written as £’ = Lgm + L.

For clarity, we denote the original ELECTRASE ' method described in Eq. [4] as ELECTRA%&)M

small

and the sentence-level variant as ELECTRASE . The comparative results are reported in the
first block of Table [5| which indicates that using sentence-level regularization (ELECTRASE )
also substantially outperforms the baseline and nearly reaches the performance of word-level
one (ELECTRA%\%M) on average, with slightly better results on MRPC and MNLI. Although
ELECTRASR | still keeps the same parameter size with baseline, it leads to more computation re-
sources because it requires the extra calculation of the contextualized representation for the pre-
dicted token sequence H,,. Therefore, considering the balance between effectiveness and efficiency,
ELECTRASE , can serve as the first preferred choice for practical applications, and ELECTRASE |
can be employed when computation resources are sufficient.

5.2 RETRIEVING SYNONYMS FROM WORDNET VS. WORD2VEC EMBEDDINGS

For the hard correction approach, the candidate synonyms for detecting false negative predictions
can be derived from WordNet (Miller,|1995) or Word2Vec embedding space (Mikolov et al.|[2013) as
described in Section To verify the impact of different sources, we compare the results as shown
in the second block of Table |5 We see that ELECTRAY, qxc Outperforms ELECTRALSC, . iqing
by a large margin. The most plausible reason would be that the retrieved list of synonyms from
ELECTRA%,IVCOrclNet would have higher quality than that from ELECTRAES]beddmg. Although the
embedding-based method may benefit from semantic matching, but would also bring noises as it
is hard to set the threshold to ensure the top-ranked words are accurate synonyms. Therefore,
ELECTRA%COrGlNet turns out to be better suitable for our task.

To interpret how our method works, we randomly select some semantic correction examples as
shown in Figure[2]by taking the baseline as the backbone model. We find that the baseline model pro-
duces reasonable predictions such as main, remain, attempt as opposed to the golds ones, primary,
stay, effort. Those predictions will be determined as wrong and then harm pre-training. Fortunately,
such cases can be easily solved by our proposed method.

5.3 ROBUSTNESS EVALUATION

Intuitively, our method would be helpful for improving the robustness of the pre-trained models
because the approaches may indicate lexical semantics and representation diversity during the cor-
rection or regularization operations. To verify the hypothesis, we use a robustness evaluation plat-
form TextFlint (Wang et al.l 2021) on SQuAD, from which two standard transformation methods
are adapted: 1) AddSentenceDiverse generates distractors with altered questions and fake answer
sand 2) SwapSynWordNet transforms an input by replacing its words with synonyms provided by
WordNet.

Table |6 shows the robustness evaluation results. We observe that both kinds of attacks induce a
significant performance drop of the baseline system, by 54.95% and 6.0% on the EM metrics, re-
spectively, indicating that the system is sensitive to distractors with similar meanings. In contrast,
both of our models can effectively resist those attacks with less performance degradation. Specifi-
cally, the HC method works stably in the SwapSynWordNet attack. We speculate the reason is that
the hard correction strategy models the synonym information during pre-training, which would help

3Since the embedding method returns a ranked list by calculating the similarity score with the whole vocab-
ulary, we only take the top 10 most similar words for each retrieval.
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antibodies are protein components of an adaptive immune system whose JI/AS14] function is to bind
antigen ##s , or other substances in the body ...

(@) i
Gold:  primary ['primary_winding', 'principal’, 'master’, 'elementary', 'chief', 'primary’, 'elemental’,
Eroal® main 'basal’, 'primary_quill', 'primary_election’, 'primary_feather', 'primary_coil']
they could not have been in good shape after fighting into the next day in intense moderate heat and
having to Jl/ASINH in position overnight , far from helpless and harassed by the infantry ...

(b)
Gold: stay ['continue’, 'halt’, 'stop’, 'check’, 'delay’, 'quell', 'arrest’, 'remain’, 'bide’, 'detain’,
Pred: remain 'persist’, ‘stick_around', 'ride_out', 'last_out', ESEVA] 'abide’, 'stoppage’, ..., |

in 1967 , seven ka ##ka ##po were transferred to little ##bury island , in an JIASI4] to establish a
successful breeding network . ka ##ka ##po were last on the island in 1999 .

Gold: effort ['‘campaign’, 'elbow_grease', 'endeavor’, 'sweat', ‘cause’, 'try’, 'exertion’, ‘exploit’,
Pred: attempt 'drive’, 'attempt’, 'travail', 'crusade’, 'feat’, 'endeavour’, 'movement’, mp]

Figure 2: Interpretation of the semantic correction process. The orange box contain the input sen-
tence, the blue buttoms indicate the gold and predicted tokens, and the green box shows the candidate
synonyms from WordNet given the predicted token.

AddSentenceDiverse (Ori.—Trans.) SwapSynWordNet (Ori.—Trans.)
Exact Match F1 Score Exact Match F1 Score

ELECTRAqman 80.55—325.60 (154.95) 85.10—26.43 (158.67) 80.67—74.67 (16.00) 85.38—80.43 (14.95)
ELECTRASE, | 78.84-537.20 (|41.64) 80.84—38.29 (142.55) 78.67—75.67 (13.00) 80.88—78.51 (]2.37)
ELECTRAHC | 82.5934.13 (148.46) 86.78—536.60 (150.18) 82.33—79.67 (12.66) 86.68—83.65 (13.03)

Model

Table 6: Robustness evaluation on the SQuAD dataset. Ori. represents the results of original dataset
derived from the SQuAD 1.1 dev set by TextFlint (Wang et al., 2021) while Trans. indicates the
transformed one. The assessed models are the small models from Table 3

capture lexical semantics. The other variant, the soft regularization objective, achieves much bet-
ter performance in the AddSentenceDiverse. The most plausible reason might be the advantage of
acquiring semantic diversity by regularizing the semantic distance in the SR objective. The results
indicate that both methods achieve similar effects of robustness in general but also have some slight
emphasis.

6 CONCLUSIONS

Though discriminative PrLMs may quite straightforwardly suffer from the false negative issue ac-
cording to our exploration in this work, it has been completely ignored for a long time and it is a
bit surprising that maybe this work is the first one that formally considers such a big pre-training
leak. To counteract the intrinsic and critical issue, we employ extra pre-training objectives to correct
or prune the harmful gradient update after detecting the false negative predictions. Experimental
results on GLUE and SQuAD benchmarks verify the superiority of our pre-training enhancement.
Robustness evaluation shows that our methods can help the resulting PrLM effectively resist various
attacks while existing common PrLMs would suffer from significant performance degradation. To
our best knowledge, it is also the first work to consider model effectiveness and robustness of lan-
guage model pre-training at the same time. Our work indicates that mediating false negatives is so
important that counter-false-negative pre-training can indeed synchronously improve the effective-
ness and robustness of PrLMs.
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A APPENDIX

A.1 WOULD THE HARD CORRECTION BRING FALSE POSITIVES?

The hard correction would not bring false positives because it is a post-processing technique. As
described in the last paragraph of Section [3.2] if the predicted token is in the shortlist, the correction
will be activated by simply ignoring this prediction before feeding to cross-entropy loss function. In
our PyTorch implementtaion, for example, the corresponding gold label id will be replaced by -100
(default ignore_index in nn.CrossEntropy using PyTorch), which means this token is not required to
predict anymore.

CoLA SST MRPC STS QQP MNLI QNLI RTE Average

Model Mcc Acc Acc Spear  Acc Acc Acc Acc -

BERT} 450 61.09 93.00 86.76 87.09 90.79 84.72 9142 67.87 82.84
BERT?R 61.17 93.46 88.97 8745 9093 8483 91.62 68.59 83.38

base

BERT}¢ 62.88 9323 87.50 8741 90.92 8492 91.54 69.31 83.46

base

BERT1are  61.67  93.69 8848  90.14 9130 86.74 9237 7292 84.67
BERTSR 6226 94.15 89.22 90.12 9141 87.01 9282 74.01 85.13

large
BERTH 62.34 9335 88.97 9048 9146 8696 9295 73.65 85.02

large

Table 7: Results of BERT methods under base and large setting on the GLUE dev sets. STS is
reported by Spearman correlation, CoLA is reported by Matthew’s correlation, and other tasks are
reported by accuracy.

A.2 COULD THIS METHOD BE APPLIED ON OTHER MLM PRLMS?
To verify the generality of our methods on other PrLMs, we implemented them on BERT}, s and
BERT]age backbones (Devlin et al.l 2019) following the same implementation for ELECTRA ¢

as described in Section[d.1] Specifically, we train MLM with our methods based on BERT},,s and
BERT arge checkpoints for 200k steps on the Wikipedia and BooksCorpus, and fine-tune them on
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Checkpoint (base) Iteration Prediction Checkpoint (large) Iteration Prediction

6.25% 6.90% 1.31% 6.25% 7.46% 1.5%
12.5% 6.96% 1.34% 12.5% 7.58% 1.55%
25.0% 6.97% 1.36% 25.0% 7.31% 1.49%
50.0% 7.05% 1.36% 50.0% 7.46% 1.56%
80.0% 7.06% 1.40% 80.0% 7.38% 1.57%
100.0% 7.07% 1.41% 100.0% 7.44% 1.60%

Table 8: Statistics of the hard corrections under base and large settings on the wikitext-2-raw-v1
corpus. Checkpoint means the checkpoint saved at the specific training steps (%).

GLUE tasks. For fair comparison, we train the baseline models based on the same checkpoint in the
same manner. Results in Table[7]show that our methods achieve consistent gains on BERT methods.

A.3 STATISTICS OF THE HARD CORRECTIONS

To have an intuition about how the hard correction works during pre-training, we collect the statistics
of the hard corrections in two perspectives: 1) prediction-level: the proportion of corrected predic-
tions when they mismatch the gold labels; 2) iteration-level: the proportion of iterations when the
correction happens. As the training corpus is relatively large, we use the wikitext-2-raw-v1 corpus
(Merity et al.,[2016) for efficient validation as suggested by Transformers El We use the pre-trained
checkpoints with hard correction on the backbones of BERT-base and BERT-large models for the
analysis.

Table B] shows the statistics, from which we have the following observations:
1) The correction ratio is around 1.0%-2.0% in token-level and around 6.0%-7.0% in iteration-level.

2) As the training goes on, the correction ratio increases, indicating that our method would gradually
play a more important role when the training goes on, which supports our hypothesis.

3) The correction ratio in larger models would be higher than the base models, which indicates larger
models would be more likely to encounter false negatives.

A.4 HOW CAN WE MEASURE THE SEVERITY OF THE FALSE NEGATIVE PROBLEM?

As indicated in the Section we see that our method is gradually playing a more important role
when the training goes on. Since the training examples are based on random masking, the PrLMs
are thus forced to be trained on low-quality samples.

As the saying goes, “The rotten apple injures its neighbors”, training on random low-quality exam-
ples would bring training bias from meaningless data, so it needs to be corrected with more data and
results in more cost of resource and time. Our methods can be regarded as the training correction to
help the model train on more “true samples”; thus, they would improve the training efficiency and
help the model to get rid of adversarial attacks like diversity distraction and synonym substitution.

Shttps://github.com/huggingface/transformers/tree/master/examples/pytorch/language-modeling
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