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Abstract

In this work, we aim to better understand how
pretraining allows LLMs to (1) generalize to
unseen instructions and (2) perform in-context
learning, even when the verbalizers are irrele-
vant to the task. To this end, we propose a sim-
ple theoretical framework, Pelican Soup, bas-
ing on the logical soundness of the training data,
a notion of “reference-sense association” and a
simple formalism for natural language process-
ing tasks. Our framework demonstrates how
linguistic, psychology, and philosophy studies
can inform our understanding of the language
model and is connected to several other exist-
ing theoretical results. As an illustration of the
usage of our framework, we derive a bound on
in-context learning loss with our framework.
Finally, we support our framework with empir-
ical experiments and provide possible future
research directions.

1 Introduction

Large language models (LLMs) have demonstrated
the capability to perform downstream natural lan-
guage processing (NLP) tasks. By following in-
structions, LLMs can perform tasks with zero-shot
examples, demonstrating its reasoning capability.
With some input-output examples provided in the
prompt, LL.Ms can also perform tasks without in-
structions, which is known as in-context learn-
ing (ICL) (Chowdhery et al., 2022). Particularly,
Brown et al. (2020) show that LLMs can perform
ICL for classification tasks even when the verbaliz-
ers (labels present in the demonstration) are seman-
tically irrelevant to the task, e.g., foo/bar instead
of negative/positive (Wei et al., 2023). However, it
is unclear how pretraining with a large amount of
data leads to these capabilities.

To explain how LLMs acquire these capabilities,
we propose a simple theoretical framework, the
Pelican Soup framework in §2. Our framework
is based on some very general assumptions, such

as the logical soundness of the paragraphs in the
training set and the freedom of expression-sense
association in language (as discussed in the theory
of meaning by philosopher Frege (1948, 1879)).
Our framework also include a simple formalism
for NLP tasks, which help explains why LMs can
follow instructions.

In §3, we showcase how we can use this frame-
work to analyze LLMs’ ICL capability, which miti-
gates limitations of previous theoretical analyses.
For example, in the first theoretical analyses of
ICL, Xie et al. (2022) assumes that the general text
for training LMs is from a hidden Markov model
(HMM), which may be an oversimplification of
natural language. In comparison, our framework
does not require this strong assumption.

Our framework also makes the analysis more
insightful than the one presented by Zhang et al.
(2023). While the generation process by Zhang
et al. (2023) is more general than the HMM as-
sumption by Xie et al. (2022), it lakes groundings
to real-world linguist phenomena. Our framework
mitigates this limitation. It helps us better explain
the physical meaning of the terms in the bound on
ICL loss and show how the terms in our reflect
real-world practices, such as instruction-tuning,
the choice of verbalizers, and the distribution of
prompts.

Furthermore, in §4, inspired by the cognitive
science theories Fodor (1975, 2008); Piantadosi
(2021), early development of artificial intelligence
(AD) (Siskind, 1996; Murphy, 2004) and formal lin-
guists Carnap et al. (1968); Bresnan and Bresnan
(1982); Steedman (1987, 1996); Sag et al. (1999),
we provide an extension of our framework to ex-
plain why generalization is possible. The extension
also connects our framework to other theoretical
results. For example, our extension instantiates the
complex skills in the theory by (Arora and Goyal,
2023). In §5, with an extra assumption, the exten-
sion allows us to achieve a similar result as the one



by Hahn and Goyal (2023), which bounds the ICL
loss with the description length of the underlying
input-label mapping function.

Our work informs future LLMs research direc-
tions. Scientifically, we shed light on how linguistic
phenomena allow LLMs to acquire the surprising
capabilities they exhibit during inference time. The
framework also shows how linguistic, psychology
and philosophy studies can inform our understand-
ing of modern NLP. Practically, we highlight the
importance of acquiring knowledge about the inter-
relation between concepts through pretraining. As
shown in previous studies, the language modeling
objective is inefficient for knowledge acquisition
(Allen-Zhu and Li, 2023; Chiang et al., 2024). We
suggest developing a better pretraining technique
is crucial for future NLP development. Further-
more, we proposed experiment setups that mimic
the acquisition of ICL and instruction-following ca-
pability on a tiny scale. These setups will facilitate
future studies for better insights.

2 The Pelican Soup Framework

We aim our theoretical framework at explaining
why LLMs can perform well on prompts for down-
stream tasks even though the prompts have a differ-
ent distribution than the training corpus. Therefore,
our framework includes assumptions qualifying the
training corpus distribution in (§2.1) and a formal-
ism for NLP tasks (§2.2). Later, we will show how
this framework allows us to bound the loss of ICL.

2.1 Training Data Distribution

Our theory framework is based on the interrelations
between the semantics of sentences. Thus, we first
make a general assumption:

Assumption 2.1 (Sentence). We assume that a sen-
tence in a language is a sequence of words such
that humans can determine whether one sentence
entails or contradict another sentence.

Assumption 2.1 allows us to specify the combi-
nations of sentences that can co-occur in a para-
graph with non-zero possibility:

Assumption 2.2 (Soundness). Any paragraph with
non-zero probability mass is a set of sentences such
that for any two sentences x1, x2 in the paragraph,
x1 does not contradict with zo.

To show how modeling natural language leads to
the ICL capability, we further introduce the notion
of expression-sense association as a latent variable.

It reflects the fact that language allows us to asso-
ciate senses with expressions quite freely, as dis-
cussed in the theory of meaning As discussed in the
theory of meaning (Frege, 1948, 1879), language al-
lows us to associate senses with expressions quite
freely. For example, when “she” or the human
name “Emily” is present in a paragraph, it is associ-
ated with a certain person of certain characteristics,
which reflect its sense.

Meanwhile, the usage of the expression is de-
pendent on the sense it is associated with and is
consistent within its context. For example, if “she”
is associated with the sentence “a person who has
a house”, then by Assumption 2.2, the sentence
“she has no property” will have 0 probability mass.
Moreover, when we want to refer to “the person
who has a house” instead of repeating the sentence
again, we use “she” as an abbreviation.

For simplicity, we only consider single-word
expressions and assume that such association is
consistent throughout a document, and we assume
the sense of an expression can be described with a
set of sentences:

Assumption 2.3 (Expression-sense association).
There is a set of words I' such that for every doc-
ument in the training data, some r € T' in the
document is associated with a sense represented
as a set of sentences Z, with a prior distribution
Pr(Z,). Any z € Z,, z present in the document
can be replaced with r without breaking the logical
soundness of the document.

Adjectives such as “good” and “bad” are expres-
sions that can be associated with variable senses
too, and their sense also depends on the context.
However, their meaning may not be as variable as
pronouns. We reflect this difference with a prior
distribution for the sense an expression is associ-
ated with in our theoretical analysis later.

Finally, we assume a document is a set of para-
graphs where some expressions in I" are present:

Assumption 2.4 (Document). A document is a
concatenation of paragraphs containing r € I" sep-
arated with a delimiter d (e.g., a blank line).

2.2 A Formalism for NLP Tasks

With Assumption 2.1, we propose a simple formal-
ism: For any objective or prescriptive NLP task
(Rottger et al., 2022) that maps an input z to an
output 3!, that task can be described with some

'We can generalize y to be a set to account for one-to-many
generation tasks.



task instructions u such that u A z = .

When it is a classification task, ¥ is a label with
a description v, specified in the instruction u. x
belongs to class y if and only if based on the in-
struction u, x entails v,. Note that because we can
rewrite u Az |= y as ¢ = u — v,, we can see
u — vy as the label description and absorb the
symbol u as part of v,. Thus, we can represent
classification tasks with the class descriptions.

For example, we can formulate the sentiment
analysis task over movie reviews as (v4,v_) =
(“I like the movie”, “I dislike the movie”). In gen-
eral, people would only recommend something
they like. Thus, we can do some reasoning and
derive the label of an input “I would recommend
this movie.”

Under this formalism, it is trivial that perfect
LLMs can follow instructions and solve the task
because Assumption 2.2 ensures that a perfect
LLM only generates logically consistent comple-
tion. The intricate question is, how is it possible
for an LM to generalize from the training corpus to
unseen instructions? We discuss this more in §4.

3 Bounding ICL Loss

We demonstrate how we can use our framework to
analyze ICL. By adapting and combining the anal-
yses by Zhang et al. (2023) and Hahn and Goyal
(2023), we have the following theorem:

Theorem 3.1 (Average ICL Loss). Let the de-
scription of a classification task be {z,},cy and
2* represent that the task descriptions {vy}ycy
are associated with the corresponding verbalizers
{ry}yey C T used for ICL. Let K be the con-
straints used for decoding, and ¢ be the event
where a document follows certain formats. Let
Sy = x1,710,d, 2,72, , Ty, T, d, where ry is the
verbalizer that is associated with the label of x¢
and d is the delimiter. We have for any integer
T > 0, the average cross-entropy loss of ICL is
bounded as:
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When the last two terms on the right-hand side
are non-negative, Eq. 1 shows the average cross-
entropy loss of ICL converges to 0 in O(1/T). We
discuss the terms on the right-hand side below.

The second term becomes 0 if we set K as the
constraint that the next two tokens of S;_1, x; must
be a verbalizer and the delimiter for all ¢. This is
because Assumption 2.2 ensures that x; does not
conflict with 7; and in general, {v,},cy conflict
with each other, so 7; is the only valid continuation.

We then look at the last term. This term is 0
when z; is conditionally independent to z* as as-
sumed by Zhang et al. (2023). However, this may
be an over-simplification because, in natural lan-
guage, the transition from z; to its next token de-
pends on the content of x;. Fortunately, this as-
sumption may actually be unnecessary for conver-
gence because x; is an example from a downstream
task related to z*; it is likely that

PI’(.’IJt’Z*,g, St—17K) > PI‘(I’t‘St_l, K)7

which implies that this term is non-negative, and
we can thus ignore this term. More rigorously, we
can show the following corollary:

Corollary 3.2 (Expected Average ICL Loss).
Let g represent a set of documents whose para-
graphs are conditionally independent to each other
given z*, i.e., Pr(xy,d, xzo,d, -+ jxp,d|z*, §) =
Hthl Pr(zy,d|z*, g). If the downstream task data
distribution Dx follow Pr(x|z*,g), then we can
bound the average ICL cross-entropy loss over the
downstream task as:

T
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The right-hand side of Eq. 2 characterizes the
convergence rate and reflects the difficulty of doing
ICL. If z*, g, K are independent, then we can see
this term is proportional to Pr(z*). This implies
that when the association between label description
and the verbalizer is uncommon in the training
data (e.g., associating “positive” to “This movie is
bad.”), doing ICL is more difficult.

Eq. 1 also allows us to analyze the scenario
where we do not constrain the next token of



Si—1,x¢ to be a verbalizer while decoding. We
can replace ¢ with g that represents the documents
satisfying ¢ and the constraint K (i.e., verbaliz-
ers always follow x).> This ensures the second
term of Eq. 1 to be 0. The cost of using g is that
the first term in the bound gets greater because
Pr(g|z*) < Pr(g|z*). This reflects that doing ICL
without constraining the next token is harder.

Pr(g|z*) may also be related to instruction tun-
ing. The training examples for instruction tuning
are input-output pairs following some format, such
as having an instruction (e.g., “Label the example
as positive if ...”) at the beginning and a prompt
after each input (e.g., “[example]. The sentiment
of this comment is”’). Because for examples that
follow the special format, the next token after the
prompt is always a verbalizer, these examples be-
long to the genera g. Having these examples in the
training set would increase Pr((j|z*) and thus make
the ICL loss bound converge faster. This explains
why instruction tuning helps ICL.

Note that we can extend the results to genera-
tion tasks. For generation tasks, we usually use a
separator (or a short span of text) between the ¢
and ;. We can see the separator as an expression
that can be associated with different senses, so the
latent space for z is the senses the separator can be
associated with, and z* means that it is associated
with the task instruction. In this way, we can apply
our analysis to generation tasks.

4 Generalization

Assuming a latent model poses a dilemma: Lan-
guage can encode various meanings, so assuming
that the latent space is finite is unreasonable unless
the space is very large. However, if the latent space
is infinite or is very large, it is possible that the lim-
ited training data does not cover the whole space.
Without any assumption on the latent space (e.g.,
the relation between the states in the space), it is
impossible to discuss the generalization to unseen
latent states. Thus, we provide an extension to our
theoretical framework:

Assumption 4.1 (Meaning representation). There
exists (1) a finite set of atom concepts 2, (2) a
knowledge base KB consisting of logical rules be-
tween the atom concepts in 2, and (3) a function f
that can map any sentence in language to its mean-

?Although § may seem unnatural, this genre of documents
corresponds to the PCFG structure assumed in Hahn and
Goyal (2023).

ing represented as a logical formula with operands
in ) such that for any two sentences s1, S2, the log-
ical relation between s; and so judged by humans
is the same as f(s1) and f(s2) given the rules in
the knowledge base KB.

The three items in this assumption corresponds
to theories in various fields. The notion of atom
concepts is aligned cognitive psychology studies
that hypothesize the existence of a set of mental
tokens (Fodor, 1975, 2008). and a recent study
(Piantadosi, 2021) suggesting that semantics can
be encoded with the combination of only a few
symbols. The notion of knowledge base follows
the early formulation of Al (Siskind, 1996; Murphy,
2004). As for the existance of a parsing function f,
it follows the long history of linguistics studying
the relationships between natural languages and
formal languages (Carnap et al., 1968; Bresnan and
Bresnan, 1982; Steedman, 1987, 1996; Sag et al.,
1999), such as first-order logic (Frege et al., 1879;
Peirce, 1883).

This assumption suggests that if we have the
parsing function f, solving NLP tasks only requires
a finite-length program that can do logical reason-
ing by manipulating logical symbols according to
logical induction rules. If a deep model can learn
this program, then it can perform a task even if this
task is not in the training data. This assumption
of a finite €2 also instantiates the concept of “lan-
guage skills” by Arora and Goyal (2023), and their
theoretical results are thus applicable.

5 Relating to Description Length

When there are no decoding constraints, we may
see Pr(ry,d|xy, 2%, S;—1) as the difficulty of the
example. To see this, we need an additional as-
sumption:

Assumption 5.1. In some documents in the train-
ing data, the paragraphs are constituted with steps
in a logical induction process, with some steps ran-
domly dropped.

This kind of document may be pervasive in the
training data. Essays arguing some claims are one
example. To be convincing, these essays should
proceed like a proving process that induces their
conclusions. Documents describing a series of
events can be another example, as events follow
commonsense and develop progressively.

With this assumption and some regularity as-
sumptions on the data distribution, we can have

PI‘(Tt,d|J}t,Z*,St,1) < C'g(mt)v (3)



Train | x57 x56 x64 r3 — x79 ,rl1 x57 — x58 , x90 x58 — r3 ... ; X80 x66 x63 x83 x1 — x82 , x80 x82
—rl, ..., x64 x80 — x54 .

ICL | x44 x67 x34 x62 — r2 ; x55 x38 x50 x48 — r1 ; x21 x59 x57 x86 — r2 ; x55 x76 x84 x99 —

CoT | x44 x67 x34 x62 — x16, x34 x62 — x99, x99 x16 — rl ; x77 x34 x62 x97 — x12 ... ; x21 x59
x57 x86 — x69 , x59 x57 — x75, x69 X75 — r2 ; x55 x76 x84 x99 —

Table 1: Calcutec examples for training, in-context learning (ICL), and chain-of-thought (CoT). The symbols in the

bold font are the verbalizers in our synthetic setup.

where ¢(x;) is the number of reasoning steps re-
quired to solve the task, and c is a constant This
¢(x¢) corresponds to the description length of the
function that maps the inputs to their label in the
loss bound by Hahn and Goyal (2023) (more dis-
cussion in Appendix E).

6 Empirical Experiments

We present two synthetic setups to demonstrate
that LMs can acquire ICL capability (§6.1) and
instruction following capability (§6.2) from a train-
ing dataset built according to our framework. Fi-
nally, in §6.3, we present real world evidence that
supports our theory.

6.1 Inspecting the ICL Capability

We present a synthetic setup, Calcutec, as a con-
crete instantiation of our theoretical framework.
With Calcutec, we show that Transformers can ac-
quire ICL capability by modeling the linguistic
characteristics specified in our framework.

6.1.1 Calcutec

Setup Following our framework in §2 and §4, we
construct a pseudo-language:

* Logic model: We use a subset of propositional
logic as our logic model. We only consider
Horn clauses (Horn, 1951), i.e., formulas in
the form AN B — C.

* Atom concepts: We use 100 symbols as our
set of atom concepts .

* KB: We generate a knowledge base by gener-
ating 5 formulas of the form o1 A 09 — o for
each o € X, where o1, 0y are sampled from
Y\{o} uniformly at random.

* We have a set I' = {r;}}_, representing the
expressions described in Assumption 2.3.

Training Dataset. Following Assumption 2.4, a
document is a concatenation of paragraphs sepa-
rated by delimiter “;” and ends with “.”. In our
synthetic language model training dataset, each
document contains 16 paragraphs.

Because sentences in the real world are not or-
dered arbitrarily, we follow Assumption 5.1 and
generate random paragraphs following the struc-
ture of logical proofs. Each paragraph represents
the induction process of P |= g for some randomly
selected P C ¥ and g € Y. Each sentence in the
paragraph is a sentence representing a reasoning
step. We separate the clauses in the sequence with
commas. To simulate the fact that documents in
the real world always skip some reasoning steps,
we further apply some perturbations over the gen-
erated paragraphs that drop some reasoning steps
with a skip rate pgy;,. After we generate a docu-
ment, we replace some symbols in the document
with expression 7, 7, € I' (details in Appendix F
and the pseudo-code Alg. 1). 3

Downstream Tasks. Following the formalism
in §2.2, we define a binary classification task by
defining the descriptions vy and v_ of the posi-
tive and negative classes, respectively. We use the
disjunctions of atom concepts (i.e., in the form of
a1 V ag V ---) as the descriptions of classes. We
create five downstream tasks using different dis-
junctions. Each input is a subset of variables in X
from which we ensure that only one of the classes
can be induced.

Demonstration. We represent an input-label pair
as rixo--- — T, where x1xo - - - is the input part
and r € {ry,r_} C I' is an expression in I" serv-
ing as the verbalizer.

Chain-of-thought. A chain-of-thought is in the
format same format as the training data, but ends
with an expression r € {r;,r_}, e.g., z1x9 -+ —

*Models can acquire in-context learning ability even with
Dskip = 0 (Figure 6 in thr appendix).



1,72 3,74
Task | ICL CoT | ICL CoT
Single | 57.1 91.7 | 55.6 92.0
Double | 53.5 76.3 | 51.1 77.1
Triple | 53.0 73.0 | 51.7 734

—single —double —triple —single —double —triple

o
©

Accuracy
e e 9o
(o)) ~N @

Accuracy
o ©

‘o 5 10 15 20 25 30 ‘0 5 10 15 20 25 30

Table 2: The 4-shot accuracy of ICL versus chain-of-
thought (CoT) using different verbalizers.

x3;x3 - - x4 — r4. This chain-of-thought reflects
the step-by-step induction process from the inputs
to the label.

6.1.2 Distribution Shifts

We make experimental designs to simulate the real-
world distribution shifts from training to inference:

Format Mismatch. The reasoning steps are
present in the training data but not in the prompts.

Verbalizer Mismatch. When we are picking the
expressions in I', we assign probability mass 45%,
45%, 5%, 5% to r1, 19,13, 4. In this way, we can
inspect the effect of using less frequent verbalizers.

Unseen Tasks. To investigate whether the model
can generalize to a new combination of formulas
unseen in the training data when we generate our
training data, we ensure that the expressions in I
are only associated with the disjunctions of two
atom concepts s1, S2 from a strict subset of all the
possible combinations 3 x 3. We then test the
trained model on tasks where v; and v_ are the
disjunctions of the unseen combinations. We also
test the models on tasks where v and v_ are the
disjunctions of three atom concepts € ¥ x 3 x 3.

6.1.3 Experiment Details

We use psrip = 0.25 in our experiment. We gen-
erate 60,000 documents with 16 paragraphs, as
described above. Among them, we use 10k for val-
idation. We train a 6-layer Transformer (Vaswani
et al., 2017) model until the loss on the validation
set converges. We include additional setups in §H.

6.1.4 Results and Discussion

Figure 1 shows that the model trained with Calcutec
can perform in-context learning This evidence sup-
ports our Pelican Soup framework. We further
inspect the ICL performance under the distribution
shifts described in §6.1.2:

# of Demonstrations

(a) Verbalizers =71, 72

# of Demonstrations

(b) Verbalizers = r3, 74

Figure 1: In-context learning accuracy with Calcutec
when using different verbalizers (r1, 72 or r3,74). The
dotted lines represent the performance of unseen com-
binations described in §6.1.2. The colors represent the
number of atom concepts each class (v4 or v_) is as-
sociated with. The main lines represent the average
accuracy of 5 tasks. Lines in the lighter color represent
the individual tasks.

* Infrequent verbalizer: We observe similar per-
formance regardless of the frequency of the
verbalizers (71, 7o versus rs, r4).

* Unseen tasks: Figure 1 shows that the model
has similar performance over tasks defined
with unseen and unseen combinations of atom
concepts (dot lines and solid lines). The mod-
els can also generalize to tasks defined with
three latent concepts (green lines).

In sum, the results show that the model can gener-
alize well under several distributional shifts.

We also experiment with 4-shot learning using
chain-of-thought. Table 2 shows that the model
also benefits from chain-of-thought. We conjecture
that it is because chain-of-thought has a format
more similar to the format for training.

6.2 Digit Addition Task

In addition to the ICL capability we have in-
spected in §6.1, we will also inspect the instruction-
following capability of LMs. To this end, we
present a digit addition task. The goal is to inspect
whether models can generalize to unseen instruc-
tions by modeling the knowledge of the interrela-
tion between senses exhibited in the step-by-step
reasoning process.

6.2.1 Setup

We utilize the algebraic structure of the integers
under addition to construct a language where each
expression is constantly associated with a sense.
In this language, a paragraph is the digit-by-digit
process of solving an addition task based on math-
ematical rules. The rules exhibited in each of the



Training

492846+080350=000000;092846+080350=400000;002846+0

00350=471000;---000000+000000=473107;

Testing ‘ 8740164+092150=000000;000000+000000=

Table 3: Training and testing examples for the digit addition task.

steps reflect the interrelation between the sense of
the expressions.

We generate a training set consisting of digit-
by-digit reasoning processes for 100,000 pairs of
numbers. In our training set, we drop each interme-
diate step at a constant probability of pg,..,. After
training a Transformer model with the language
modeling objective, we test whether the model can
generate the final answer without generating the
intermediate steps for unseen number pairs.

We show examples of our data in Table 3. Each
digit sequence represents a number from the lower
digit to the higher digit. The reasoning process in
the training set gradually updates both sides of “="
from the lowest digit to the highest digit. As for
the testing example, we skip the intermediate steps,
prompting the model to complete the right-hand
side of “=""in the last step. We include a rigorous
description in Appendix J.

6.2.2 Results and Discussion

We report the exact match accuracy and the digit-
level accuracy of models trained with different
Ddrop in Figure 2 with 5 random seeds. A higher
accuracy implies the model generalizes better from
step-by-step reasoning processes. The results show
that three of the four models can achieve perfect
accuracy when pgrop is as small as 0.3 but achieve
an accuracy less than 0.2 when pg.p, = 0.9. It
suggests that models can follow prompts by mod-
eling the inter-expression relation exhibited in the
step-by-step reasoning process.

Additionally, we observe that larger models tend
to have higher and more stable accuracy. When the
number of digits is 6 (Figure 14), only the largest
model can achieve perfect accuracy. This obser-
vation is aligned with the emergence of large lan-
guage models’ ability.

6.3 Real-world Evidence

We inspect whether LMs can do ICL with pro-
nouns well because pronouns are reference words
frequently associated with different meaning and
our framework suggests that LMs learn ICL abil-
ity by modeling the association between reference

task | direct pronoun
SST-2 | 63.0 65.3
CR 61.7 62.9
MR | 59.2 56.7
Subj | 51.0 62.2

Table 4: The accuracy of using task-specific tem-
plates/verbalizers (direct) (Min et al., 2022a) v.s. using
task-agnostic templates/pronouns for 16-shot in-context
learning with GPT2-Large.

words and their meaning. We thus experiment with
the template “[input]”, [verbalizer] thought.
and use “he”, “she” as the verbalizers. We follow
the setup in Min et al. (2022a) and compare the
accuracy of the binary classification tasks, includ-
ing SST-2 (Socher et al., 2013), CR (Hu and Liu,
2004), MR (Pang and Lee, 2005), and Subj (Pang
and Lee, 2004), using GPT2-Large.

Table 4 shows that this task-agnostic template
with pronouns is competitive with those task-
specific templates. This contradicts the belief that
only larger models can do in-context learning with
task-irrelevant verbalizer Wei et al. (2023). It sug-
gests that modeling reference-meaning may indeed
contribute to LMs’ ICL ability.

7 Related Work

Since Brown et al. (2020) discovered large lan-
guage models’ in-context learning ability, some
theoretical works have attempted to explain how
language models acquire this ability. Based on
a hidden Markov model (HMM) assumption on
the language generation process, Xie et al. (2022)
suggested that in-context learning is an implicit
Bayesian inference process. Hahn and Goyal
(2023) defined the generation process with Compo-
sitional Attribute Grammar, which is weaker than
the HMM assumption, explaining the in-context
learning ability with the minimum description
length. They also studied the compositionality of
natural language tasks with function compositions.
Zhang et al. (2023) assumed a more general la-
tent variable model. Arora and Goyal (2023) ana-



1 18 1 4%

0.8 0.8 0.8
06 o 0.6 — 0.6
0.4 L 0.4 T 04

0.2 Q@00 0.2 0.2
0 0 0

0.2 0.21 0.22 0.23 0.2 GPT-2 (4 Iayers)

GPT-2 (6 layers)

1 4K 148
0.8 o 0.8 &
0.6 am 06 S
0.4 0.4 D
@
0.2 0.2
0 0
) 0.5 0.55 0.6 0.65
GPT-2 Small GPT-2 Medium

Figure 2: The exact accuracy (y-axis, solid points) and digit-level accuracy (y-axis, hollow points) versus validation
loss (x-axis) for the 5-digit addition task for dropping rates pg,op, = {0.1,0.3,0.5,0.7,0.9} (from left to right) for
five random seeds (points in each figure). We provide more results in Figure 13 and Figure 14 in the appendix.

lyze the emergence of skills based on the scaling
law (Hoffmann et al., 2022). While their analysis
assumes a set of atomic skills for NLP tasks, our
framework is based on a set of atom concepts.

There were also many empirical studies on the
in-context learning ability. Some works focused on
the effect of the instruction (Webson and Pavlick,
2022; Lampinen et al., 2022; Jang et al., 2023),
while some focused on the examples in the demon-
stration (Liu et al., 2022; Lu et al., 2022; Sorensen
et al., 2022; Min et al., 2022b; Yoo et al., 2022; Ye
et al., 2023; Chang and Jia, 2023; Ye et al., 2023;
Wang et al., 2023b; Kossen et al., 2023). Shin et al.
(2022) found that not all training corpora led to
in-context learning ability. Prystawski and Good-
man (2023) used synthetic data to suggest that the
pretraining dataset’s locality structure contributes
to the reasoning steps’ effectiveness. Wang et al.
(2023a) studied the reasoning steps in chain-of-
thought. Akyiirek et al. (2024) formulated ICL as
learning a formal language from demonstrations
and benchmarked model families.

Some previous work studied in-context learn-
ing as a meta-learning-like problem (Chen et al.,
2022). Some works focused on the relationships
between in-context learning and optimization algo-
rithms (Garg et al., 2022; von Oswald et al., 2022;
Akyiirek et al., 2023; Fu et al., 2023; Guo et al.,
2023). Some works inspected the mechanism of
ICL in transformer models (Hendel et al., 2023;
Bietti et al., 2023; Todd et al., 2023; Shen et al.,
2023; Bai et al., 2023). Chan et al. (2022) studied
the properties of dataset distribution that could con-
tribute to the in-context learning ability. Li et al.
(2023b) provided generalization bounds based on
the stability of Transformer models and the dis-
tance of downstream tasks. We instead focus on
how the pretraining data in natural language con-
tributes to the ICL learning ability.

8 Conclusion and Future Work

In this work, we propose a framework that explains
how linguistic phenomena in the training corpus
lead to LLMs’ ICL and instruction-following capa-
bility. Compared with previous works (Xie et al.,
2022; Zhang et al., 2023), our latent model better
reflects the complexity of language. By introducing
the notion of knowledge base and logic system, our
framework provides insights into how LLMs can
generalize from pretraining to downstream tasks,
instantiating a setup compatible with the assump-
tions made by Arora and Goyal (2023). We also
relate our bound to the function description length
discussed by Hahn and Goyal (2023).

Our framework illuminates a few possible direc-
tions for improving LLMs:

1. Our work highlights the importance of learn-
ing the interrelation between senses. As pre-
vious works have shown that the language
modeling objective is inefficient for this pur-
pose (Allen-Zhu and Li, 2023; Chiang et al.,
2024), we suggest that developing a more so-
phisticated learning algorithm is crucial.

2. Our theory suggests that LLMs’ generaliza-
tion depends on the models’ ability to parse
sentences into logical representations. Thus,
evaluating and improving LLMs’ semantic
parsing ability may be a promising direction.

3. The experimental results of our addition tasks
indicate a curious ability of Transformer mod-
els: Transformer models can generalize to
unseen prompts by modeling the intermediate
step-by-step reasoning process. This may be
related to the success of the symbolic chain-
of-thought distillation (Li et al., 2023a; Hsieh
et al., 2023; Shridhar et al., 2023). Investigat-
ing the mechanism and reinforcing this ability
may improve the efficiency of LM training.



9 Limitations

A limitation of our framework is that, as most theo-
retical studies do, we simplify the real-world sce-
nario to draw insights. One simplification we make
is that, we do not take the noise in LLMs’ training
data into account. While our preliminary experi-
ment with the digit addition task in §K show that
LMs can acquire the zero-shot instruction follow-
ing capability even when the training data is noisy,
we still need to make more assumption on the noise
to establish a generic theoretical result. We thus
leave it for future study. Another simplification is
that, we assume that the language model can per-
fectly model the distribution of natural language.
However, it is unlikely to be the case in practice.
On the one hand, the training data may not cover
all the test cases. On the other hand, LLMs may not
generalize perfectly from the training set. We need
to make more assumption on the training/test data
distribution and/or having deeper understanding on
how deep learning models generalize to alleviate
this assumption. Therefore, we deem it out of the
scope of this paper.
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A Motivation of the Pelican Soup
Framework

The Pelican Soup game inspires our framework. It
is a game involving a puzzle master who has a story
in their mind. The game participants aim to recover
the story by asking the puzzle master yes/no ques-
tions. An observation is that once the participants
recover the story, they can answer any questions
about the story. Therefore, the story has a similar
role as a latent variable defining the input-output
mapping, and the yes/no questions are similar to the
demonstrations for in-context learning. We include
an example in Appendix B.

Given the above observation, we can study in-
context learning by considering why humans can
solve Pelican Soup riddles. We conjecture that
this is because the person who makes the story
and the ones who solve the riddle share the same
(or similar) commonsense (McCarthy, 1960) about
logical relationships among things in this world
(Schank and Abelson, 1988). This inspires us to
introduce the notion of a commonsense knowledge
base in our framework.

B A Pelican Soup Example

Puzzle master: A men walks into a restaurant and
orders pelican soup. After taking a sip, he loses his
mind. Why?

Participants: Is it because the soup is not
cooked well?

Puzzle master: No.

Participants: Is it because the soup toxic?

Puzzle master: No.

Participants: Does the soup remind him some-
thing?

Puzzle master: Yes.

Participants: Did someone cook pelican soup
for him?

Puzzle master: Yes.

Participants: Is that person still alive?

Puzzle master: No.

For the sake of aesthetics, we do not include the
latent story here. If you are interested, please check
it online.

C Proof of Theorem 3.1

Let St = x1,72,d, 2, 72,d - - - , 24,74, d.

Pr(z,g|S: K)
~ Pr(Si|z, 9, K) Pr(z|K)
>, Pr(Si|z, 9, K) Pr(z, g| K)
Pr(z, g|K) H§:1 Pr(z;,ri,d|z, g,Si-1, K)

_Zz’,g Pr(2', g|K) Hle Pr(z;,ri,d|7, g, Si—1, K)

P(xt11, 7141, d[St, K)
= Z Pr(zti1, 7141, d|z, St, K) Pr(z, g|St, K)

Z7g

_Zz,g Pr(zag‘K) Hfi_} PI'(JTZ', T, d’27gv S’i—la K)

- Zz’ PI‘(Z, g’K) szl Pr(xi7 Ti d\z’,g, Si—1, K) .

Thus, it holds that


https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.18653/v1/2023.findings-acl.273
https://aclanthology.org/2022.emnlp-main.155
https://aclanthology.org/2022.emnlp-main.155
https://aclanthology.org/2022.emnlp-main.155

T
— Z IOg PI‘(LUt_A,_l, Tt+1, d|St, K)
t=0
T

_;(

log Y Pr(z, g|K) [[ Pr(xi, v, d|z, g, Si1, K)
2,9 i=1
t

—log Y Pr(z,¢|K) [ [ Pr(zi,ri,d|2, g, Si-1, K)

Z,9 =1

T+1
—log Y Pr(z,g|K) [] Pr(xi,re,dlz, g, Si-
2,9 i=1
T+1
—log Pr(z", §|K) [ [ Pr(wi, e, d|2", 9, Sic1, K)
=1
2, g|K)

1,

— log Pr(
T+1

- Z IOgPr(fL'i, T4, d|Z*7 ga S’i—lv K)
i=1

—log Pr(z*, g|K)

T
- Z log PI’(T’i7 d|.’Ez, Z*7gv Si—la K)
i=1

T
- EIOgPr("L‘i‘Z*’ga SifbK)‘
i=1

Thus,

13

T
1
~ 7 Zlog Pr(r¢|ze, Si—1, K)

1
< - ¢ (1osrt i)
T
ZIOgPT T‘t,d|xt, 797 StfbK)
4 Pr(z|z*, g, Si—1, K)
+ lo t s Yy POt—1,
; S P (S, K)

T
1
+ Z;log Pr(d|ry, x4, Si—1, K

) .
<—1@%m<gm>

+ ZlogPr(rt, dlze, 2%, g, Si-1, K)
i=1
”)
K)

+ Z log
The second term in the right-hand side of Eq. 1 is
zero when the decoding constrain K is imposed.
Therefore, it suffices to prove the last term is non-
negative in expectation.
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E The Connection between P(r;|x;, z*, §)
and Function Description Length by
Hahn and Goyal (2023)

Firstly, we make some regularity assumptions:
Given a step-by-step reasoning process T
81,82, - , 8y, for the induction process of P = @,
in the training data,

1. each step may be dropped independently to
each other with probability pg;.p.



2. Pr(s;|P, 51,82, -
[n].

We first show how we derive Eq. 3: Based on
Assumption 5.1,

,Si—1) > Pmin forall i €

Pr(?“t‘l't, Z*%é)

= Z Pr(m, r¢|xy, 2%, §) Pr(m is dropped),
well

where II is a set of token sequences representing
reasoning steps that induce r; from ;. Let 7* be
the shortest proof in II, we have

log Pr(rt|$t, Z*a g)

=log Z Pr(m, |z, 2%, §) Pr(n is dropped)
well

> log Pr(7*, r¢|xy, 2, §) Pr(n™ is dropped)
>Pmin l0g f(ﬂ'*) ~+ Pdrop log 6(77*) .

Then we can discuss the connection between
Pr(r¢|xy, 2*, ) and the function description length
by Hahn and Goyal (2023). We can see the dropped
reasoning steps in 7* as the hidden (tree) structure
that maps x; to r; as the derivation tree 7 in the
bound of Hahn and Goyal (2023). The length of the
reasoning steps thus corresponds to the description
length of the derivation tree D(7y).

A major difference between the bound by Hahn
and Goyal (2023) and our bound is that their bound
has D(7,) constant to 7" while our bound has
> ¢ log Pr(r|x¢, 2%, ), which potentially grows
proportionally to T'. The cause of this difference is
that, Hahn and Goyal (2023) assumes a structure
that repetitively applies a function mapping in a
document, and the number of repetition is indepen-
dent to the complexity of the function mapping.
In comparison, our framework does not make this
assumption.

F Detailed Gengeration Process of the
LM Training Data in Calcutec

We generate a paragraph based on Assumption 2.3
in the following step:

1. We pick a symbol s from the symbols associ-
ated with r, uniformly at random.

2. We randomly generate a proof for KB, P |= g,
where P C X is the premise and g € X is the
goal of the proof. We ensure that this proof
contains the topic s.
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3. We convert the proof tree to a sequence of prov-
ing steps by traversing the proving tree in a
topological order with ties broken randomly.
Each node in the proof tree corresponds to a
rule in KB, so the resulting sequence of prov-
ing steps consists of horn clauses in the form
ajas — b. We separate the clauses in the se-
quence with commas.

4. We rewrite the first step of the proving process
to contain the premises of the proof. Specif-
ically, we replace the antecedent in the first
formula with the premise P. We find that this
step is necessary to prevent the language model
trained on it from hallucinating irrelevant vari-
ables randomly. It is important for our experi-
ment for chain-of-thought, but is not necessary
for language models to learn the in-context
learning ability.

G Perturbations in Calcutec

We apply two types of perturbations over the rea-
soning steps in Calcutec described in §6.1:

1. Random merge: At probability p,,erge, for ev-
ery two consecutive clauses where the conse-
quence of the first one is in the antecedents of
the second one, say ajas — by and byag — bo,
we merge them into a single clause ajasa3 —
ba.

. Random drop: Given a clause ajas - - - a, —
b. We drop each of the antecedents a €
{a1,az,---a,} at probability pg..,. We ap-
ply this dropping to every clause in the proof
except the first one to ensure that we do not
drop the premises.

We use Pmerge = Pdrop = Pskip-

Additionally, when flatting the proof trees with
topological sort, we break ties randomly. We also
randomize the order of the symbols in the an-
tecedents.

H Extra Experiments with Calcutec

H.1 Additional Setups

Unseen Inference Process. Based on Assump-
tion 5.1 and the formalism of NLP tasks in §2.2,
input-label pairs of a downstream task corresponds
to prefix-reference pairs in a paragraph. To exam-
ine whether the trained model can generalize well
when the induction process for the label is different



Algorithm 1 Pseudo code for the generation process of an Calcutec document used for training.
Sample 7, rp, from {r1, o, r3, 74} with probability 0.45, 0.45, 0.05, 0.05.
Sample topic S = {s1, s2} C X.
Initialize a document D with empty string.
forp=1,2,...,npe do
while True do
Sample s € S.
Sample a set X C ¥ suchthat Ay x |= s.
Run the resolution algorithm to get the set M = {m|X = m}.
Find an extra premise 2’ that can increase the depth of deepest proof tree for X | m.
Run the resolution algorithm to get the set M’ = {m|X U {2’} = m}.
if |11 > El then
Reject the sampled X U {z'}. > We don’t want a premise that entails everything.
Restart the while loop.
end if
Sample a g € M’ such that the proof tree for X’ |= g contains s and its depth > dip,. > We
use din = 4 in our experiments.
Do topological sort to flatten the proof tree and convert it into a string.
Append the string to D.
end while
end for
for s € Sdo
D <« D.replace(s, 1)
end for
Let S’ = {s), s5} € X be the top-2 frequent non r, symbols in D.
for s’ € 5" do
D < D.replace(s’, rp)
end for
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from the induction process for the pronoun in the
training data, we generate a training dataset where
all the pronouns are induced from the premise with
a left-branching proof tree with a depth equal to 2
(Figure 4a), while the test data contains samples
whose labels are induced from the input with bal-
anced trees (Figure 4b).

Different Input Lengths. For each downstream
tasks, we experiment with examples with different
lengths. When the inference process is branching,
having input length equal to 4 makes the proving
tree deeper.

No perturbations. As described in §G, we apply
some random perturbations on the proving process.
We also experiment with the setup where we do not
apply any perturbations.

With/Without Rewriting the First Step. As de-
scribed in §F, we rewrite the first step of the proof.
We also experiment with the setup where we do not
rewrite the first step.

Model Size. We also experiment with different
models sizes. We experiment with GPT-2 models
that have 3, 4 and 5 layers.

H.2 Results and Discussion

Unseen Inference Process. Figure 5a and Fig-
ure 5d show that the ICL performance on the
branching examples is similar to the performance
on the branching examples. It suggests that the
model can generalize to examples that requires an
unseen reasoning process. Interestingly, Table 5
show that using chain-of-thoughts mitigates this

gap.

Different Input Lengths. Figure 5b and Fig-
ure Se show that the model can still do ICL for
the examples with length equal to 4. However,
compared with the performance on examples with
length equal to 3 (Figure Sc and Figure 5f), the per-
formance is worse. This may be because solving
these length-4 examples requires more reasoning
steps.

With/Without Rewriting the First Step. Fig-
ure 8 shows that models trained with proofs that
are rewritten has similar performance as models
trained with the proofs that were rewritten (Fig-
ure 5). This suggests that rewriting the first step in
the proof is not necessary for the model to acquire
the ICL ability.
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(a) The proof tree a paragraph in the training dataset cor-
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(b) A balanced tree for a downstream task sample.

Figure 4: Proof trees examples.

Model Size. Figure 9 show that deeper models
have better ICL performance. It is aligned with
the real-world observation that scaling helps model
performance.

I Hyper-parameters

We train our model using batch size 256, warm
up ratio 5%, and we truncate the sequence length
to 512 tokens and the default parameters for the
optimizer. We use the implementation of GPT-2
by Hugging Face transformers v4.27.2. All models
can be trained with 4 RTX 2080ti within 8 hours.

J Formal Description of the Digit
Addition Data

For each step ¢, we represent the step in the for-
mat oD + b = ¢ where a(?,b(®) and ¢ are
sequences of n tokens, each of which is in [0, 9],
representing a number from the lowest digit to the
highest digit. a(?) and b(?) represent two randomly
drawn numbers and ¢(©) is all zero. At each step
i > 0, most of the digit in a(,b®, () is the
same as the previous step. For a® and b, we
only update the ith digit by setting agl) = 0 and
bgz) = 0. As for ¢?), it serves as a buffer for both
the answer and the carry. We update it based on
s0) = agi_l) —|—b§i_1) —i—cl(-i_l), the sum of the digits
at 1. We set cz(-z) = 5% mod 10, 01(21 = s /10].
We use colons as the separator and concatenate
these steps as a single sequence. When testing a
model’s intuition, we let the model generate the
continuation for a(®) 4 b(®) = ¢(0); (M) 4 p(n) —
Note that (™) = (") = 0, so the model needs to
have the intuition to generate the answer correctly.
We provide examples in Table 3.
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Figure 6: In-context learning accuracy with Calcutec when no steps are dropped (psxip = 0).
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of the proof.

Branching Balanced
1,72 3,74 1,72 3,74
Task | ICL CoT | ICL CoT | ICL CoT | ICL CoT
Single | 57.1 91.7 | 55.6 92.0 | 685 §89.8 | 649 90.3
Double | 53.5 763 | 51.1 77.1 | 585 76.1 | 562 758
Triple | 53.0 73.0 | 51.7 734|570 682|542 670

Table 5: The 4-shot accuracy of in-context learning (ICL) versus chain-of-thoughts (CoT).

branching balance
1,72 T3, T4 1,72 73,74
#-shot | 2 4 6 2 4 6 2 4 6 2 4 6
single | 49.1 895 84.0| 595 920 869|585 862 855|503 903 899
double | 47.8 714 75.6|53.1 77.1 86.1|49.1 704 69.0|505 758 794
triple | 46.7 65.7 70.7 | 50.6 734 794 |46.0 60.2 614|498 67.0 704

Table 6: The CoT performance with 2, 4, or 6 examples.
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Figure 9: The in-context learning performance when using models with different model depths.

K Digit Addition with Noisy Training
data

To study the effect of noises, we experiment with
noisy training data for the digit addition task. In
this setup, at step ¢, we mutate the sum digit s; at
a probability. (Please refer to J for the definition
of the symbols.) The mutated digit is passed to
the next step and thus cause the final result to be
incorrect.

We plot the result in Figure 12. Surprisingly,
the models trained with the noisy data can still
achieve a 100% EM score. It suggests that the
noisy training data used in practice may not prevent
the model from learning the interrelation between
concepts.

L Dataset License
e SST-2: MIT
* MR: unavailable
* CR: unavailable

* Subj: unavailable
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Figure 10: The distribution of the number of reasoning steps in the dataset when some of them are dropped at
different probability. Each number is the average over 5 datasets generated with different random seeds.
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Figure 11: The accuracy of the models for the addition tasks. The x-axis represents the probability at which we drop
each reasoning step in the training data independently. The solid line represents the ratio of testing samples where
the model can output the exact answer, while the dashed line represents the character-level accuracy. The results are
the average of 5 random seeds.
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Figure 13: The exact accuracy (y-axis, solid points) and digit-level accuracy (y-axis, hollow points) versus validation
loss (x-axis) for a 5-digit addition task.
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Figure 14: The exact accuracy (y-axis, solid points) and digit-level accuracy (y-axis, hollow points) versus validation
loss (x-axis) for a 6-digit addition task.
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