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Abstract001

In this work, we aim to better understand how002
pretraining allows LLMs to (1) generalize to003
unseen instructions and (2) perform in-context004
learning, even when the verbalizers are irrele-005
vant to the task. To this end, we propose a sim-006
ple theoretical framework, Pelican Soup, bas-007
ing on the logical soundness of the training data,008
a notion of “reference-sense association” and a009
simple formalism for natural language process-010
ing tasks. Our framework demonstrates how011
linguistic, psychology, and philosophy studies012
can inform our understanding of the language013
model and is connected to several other exist-014
ing theoretical results. As an illustration of the015
usage of our framework, we derive a bound on016
in-context learning loss with our framework.017
Finally, we support our framework with empir-018
ical experiments and provide possible future019
research directions.020

1 Introduction021

Large language models (LLMs) have demonstrated022

the capability to perform downstream natural lan-023

guage processing (NLP) tasks. By following in-024

structions, LLMs can perform tasks with zero-shot025

examples, demonstrating its reasoning capability.026

With some input-output examples provided in the027

prompt, LLMs can also perform tasks without in-028

structions, which is known as in-context learn-029

ing (ICL) (Chowdhery et al., 2022). Particularly,030

Brown et al. (2020) show that LLMs can perform031

ICL for classification tasks even when the verbaliz-032

ers (labels present in the demonstration) are seman-033

tically irrelevant to the task, e.g., foo/bar instead034

of negative/positive (Wei et al., 2023). However, it035

is unclear how pretraining with a large amount of036

data leads to these capabilities.037

To explain how LLMs acquire these capabilities,038

we propose a simple theoretical framework, the039

Pelican Soup framework in §2. Our framework040

is based on some very general assumptions, such041

as the logical soundness of the paragraphs in the 042

training set and the freedom of expression-sense 043

association in language (as discussed in the theory 044

of meaning by philosopher Frege (1948, 1879)). 045

Our framework also include a simple formalism 046

for NLP tasks, which help explains why LMs can 047

follow instructions. 048

In §3, we showcase how we can use this frame- 049

work to analyze LLMs’ ICL capability, which miti- 050

gates limitations of previous theoretical analyses. 051

For example, in the first theoretical analyses of 052

ICL, Xie et al. (2022) assumes that the general text 053

for training LMs is from a hidden Markov model 054

(HMM), which may be an oversimplification of 055

natural language. In comparison, our framework 056

does not require this strong assumption. 057

Our framework also makes the analysis more 058

insightful than the one presented by Zhang et al. 059

(2023). While the generation process by Zhang 060

et al. (2023) is more general than the HMM as- 061

sumption by Xie et al. (2022), it lakes groundings 062

to real-world linguist phenomena. Our framework 063

mitigates this limitation. It helps us better explain 064

the physical meaning of the terms in the bound on 065

ICL loss and show how the terms in our reflect 066

real-world practices, such as instruction-tuning, 067

the choice of verbalizers, and the distribution of 068

prompts. 069

Furthermore, in §4, inspired by the cognitive 070

science theories Fodor (1975, 2008); Piantadosi 071

(2021), early development of artificial intelligence 072

(AI) (Siskind, 1996; Murphy, 2004) and formal lin- 073

guists Carnap et al. (1968); Bresnan and Bresnan 074

(1982); Steedman (1987, 1996); Sag et al. (1999), 075

we provide an extension of our framework to ex- 076

plain why generalization is possible. The extension 077

also connects our framework to other theoretical 078

results. For example, our extension instantiates the 079

complex skills in the theory by (Arora and Goyal, 080

2023). In §5, with an extra assumption, the exten- 081

sion allows us to achieve a similar result as the one 082
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by Hahn and Goyal (2023), which bounds the ICL083

loss with the description length of the underlying084

input-label mapping function.085

Our work informs future LLMs research direc-086

tions. Scientifically, we shed light on how linguistic087

phenomena allow LLMs to acquire the surprising088

capabilities they exhibit during inference time. The089

framework also shows how linguistic, psychology090

and philosophy studies can inform our understand-091

ing of modern NLP. Practically, we highlight the092

importance of acquiring knowledge about the inter-093

relation between concepts through pretraining. As094

shown in previous studies, the language modeling095

objective is inefficient for knowledge acquisition096

(Allen-Zhu and Li, 2023; Chiang et al., 2024). We097

suggest developing a better pretraining technique098

is crucial for future NLP development. Further-099

more, we proposed experiment setups that mimic100

the acquisition of ICL and instruction-following ca-101

pability on a tiny scale. These setups will facilitate102

future studies for better insights.103

2 The Pelican Soup Framework104

We aim our theoretical framework at explaining105

why LLMs can perform well on prompts for down-106

stream tasks even though the prompts have a differ-107

ent distribution than the training corpus. Therefore,108

our framework includes assumptions qualifying the109

training corpus distribution in (§2.1) and a formal-110

ism for NLP tasks (§2.2). Later, we will show how111

this framework allows us to bound the loss of ICL.112

2.1 Training Data Distribution113

Our theory framework is based on the interrelations114

between the semantics of sentences. Thus, we first115

make a general assumption:116

Assumption 2.1 (Sentence). We assume that a sen-117

tence in a language is a sequence of words such118

that humans can determine whether one sentence119

entails or contradict another sentence.120

Assumption 2.1 allows us to specify the combi-121

nations of sentences that can co-occur in a para-122

graph with non-zero possibility:123

Assumption 2.2 (Soundness). Any paragraph with124

non-zero probability mass is a set of sentences such125

that for any two sentences x1, x2 in the paragraph,126

x1 does not contradict with x2.127

To show how modeling natural language leads to128

the ICL capability, we further introduce the notion129

of expression-sense association as a latent variable.130

It reflects the fact that language allows us to asso- 131

ciate senses with expressions quite freely, as dis- 132

cussed in the theory of meaning As discussed in the 133

theory of meaning (Frege, 1948, 1879), language al- 134

lows us to associate senses with expressions quite 135

freely. For example, when “she” or the human 136

name “Emily” is present in a paragraph, it is associ- 137

ated with a certain person of certain characteristics, 138

which reflect its sense. 139

Meanwhile, the usage of the expression is de- 140

pendent on the sense it is associated with and is 141

consistent within its context. For example, if “she” 142

is associated with the sentence “a person who has 143

a house”, then by Assumption 2.2, the sentence 144

“she has no property” will have 0 probability mass. 145

Moreover, when we want to refer to “the person 146

who has a house” instead of repeating the sentence 147

again, we use “she” as an abbreviation. 148

For simplicity, we only consider single-word 149

expressions and assume that such association is 150

consistent throughout a document, and we assume 151

the sense of an expression can be described with a 152

set of sentences: 153

Assumption 2.3 (Expression-sense association). 154

There is a set of words Γ such that for every doc- 155

ument in the training data, some r ∈ Γ in the 156

document is associated with a sense represented 157

as a set of sentences Zr with a prior distribution 158

Pr(Zr). Any z ∈ Zr, z present in the document 159

can be replaced with r without breaking the logical 160

soundness of the document. 161

Adjectives such as “good” and “bad” are expres- 162

sions that can be associated with variable senses 163

too, and their sense also depends on the context. 164

However, their meaning may not be as variable as 165

pronouns. We reflect this difference with a prior 166

distribution for the sense an expression is associ- 167

ated with in our theoretical analysis later. 168

Finally, we assume a document is a set of para- 169

graphs where some expressions in Γ are present: 170

Assumption 2.4 (Document). A document is a 171

concatenation of paragraphs containing r ∈ Γ sep- 172

arated with a delimiter d (e.g., a blank line). 173

2.2 A Formalism for NLP Tasks 174

With Assumption 2.1, we propose a simple formal- 175

ism: For any objective or prescriptive NLP task 176

(Rottger et al., 2022) that maps an input x to an 177

output y1, that task can be described with some 178

1We can generalize y to be a set to account for one-to-many
generation tasks.
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task instructions u such that u ∧ x |= y.179

When it is a classification task, y is a label with180

a description vy specified in the instruction u. x181

belongs to class y if and only if based on the in-182

struction u, x entails vy. Note that because we can183

rewrite u ∧ x |= y as x |= u → vy, we can see184

u → vy as the label description and absorb the185

symbol u as part of vy. Thus, we can represent186

classification tasks with the class descriptions.187

For example, we can formulate the sentiment188

analysis task over movie reviews as ⟨v+, v−⟩ =189

⟨“I like the movie”, “I dislike the movie”⟩. In gen-190

eral, people would only recommend something191

they like. Thus, we can do some reasoning and192

derive the label of an input “I would recommend193

this movie.”194

Under this formalism, it is trivial that perfect195

LLMs can follow instructions and solve the task196

because Assumption 2.2 ensures that a perfect197

LLM only generates logically consistent comple-198

tion. The intricate question is, how is it possible199

for an LM to generalize from the training corpus to200

unseen instructions? We discuss this more in §4.201

3 Bounding ICL Loss202

We demonstrate how we can use our framework to203

analyze ICL. By adapting and combining the anal-204

yses by Zhang et al. (2023) and Hahn and Goyal205

(2023), we have the following theorem:206

Theorem 3.1 (Average ICL Loss). Let the de-207

scription of a classification task be {zy}y∈Y and208

z∗ represent that the task descriptions {vy}y∈Y209

are associated with the corresponding verbalizers210

{ry}y∈Y ⊂ Γ used for ICL. Let K be the con-211

straints used for decoding, and ġ be the event212

where a document follows certain formats. Let213

St = x1, r2, d, x2, r2, · · · , xt, rt, d, where rt is the214

verbalizer that is associated with the label of xt215

and d is the delimiter. We have for any integer216

T > 0, the average cross-entropy loss of ICL is217

bounded as:218

− 1

T

T∑
t=0

log Pr(rt|xt, St−1,K)

≤ − 1

T
log Pr(z∗, ġ|K)

− 1

T

T∑
i=1

log Pr(rt, d|xt, z∗, ġ, St−1,K)

− 1

T

T∑
i=1

log
Pr(xt|z∗, ġ, St−1,K)

Pr(xt|St−1,K)

(1)219

220

When the last two terms on the right-hand side 221

are non-negative, Eq. 1 shows the average cross- 222

entropy loss of ICL converges to 0 in O(1/T ). We 223

discuss the terms on the right-hand side below. 224

The second term becomes 0 if we set K as the 225

constraint that the next two tokens of St−1, xt must 226

be a verbalizer and the delimiter for all t. This is 227

because Assumption 2.2 ensures that xt does not 228

conflict with rt and in general, {vy}y∈Y conflict 229

with each other, so rt is the only valid continuation. 230

We then look at the last term. This term is 0 231

when xt is conditionally independent to z∗ as as- 232

sumed by Zhang et al. (2023). However, this may 233

be an over-simplification because, in natural lan- 234

guage, the transition from xt to its next token de- 235

pends on the content of xt. Fortunately, this as- 236

sumption may actually be unnecessary for conver- 237

gence because xt is an example from a downstream 238

task related to z∗; it is likely that 239

Pr(xt|z∗, ġ, St−1,K) ≥ Pr(xt|St−1,K), 240

which implies that this term is non-negative, and 241

we can thus ignore this term. More rigorously, we 242

can show the following corollary: 243

Corollary 3.2 (Expected Average ICL Loss). 244

Let ġ represent a set of documents whose para- 245

graphs are conditionally independent to each other 246

given z∗, i.e., Pr(x1, d, x2, d, · · · , xT , d|z∗, ġ) = 247∏T
t=1 Pr(xt, d|z∗, ġ). If the downstream task data 248

distribution DX follow Pr(x|z∗, ġ), then we can 249

bound the average ICL cross-entropy loss over the 250

downstream task as: 251

E
x1,x2,··· ,xT∼DT

X

[
− 1

T

T∑
t=0

log Pr(rt|xt, St−1,K)

]

≤ − 1

T
log Pr(z∗, ġ|K).

(2)

252

253

The right-hand side of Eq. 2 characterizes the 254

convergence rate and reflects the difficulty of doing 255

ICL. If z∗, ġ,K are independent, then we can see 256

this term is proportional to Pr(z∗). This implies 257

that when the association between label description 258

and the verbalizer is uncommon in the training 259

data (e.g., associating “positive” to “This movie is 260

bad.”), doing ICL is more difficult. 261

Eq. 1 also allows us to analyze the scenario 262

where we do not constrain the next token of 263
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St−1, xt to be a verbalizer while decoding. We264

can replace ġ with g̈ that represents the documents265

satisfying ġ and the constraint K (i.e., verbaliz-266

ers always follow x).2 This ensures the second267

term of Eq. 1 to be 0. The cost of using g̈ is that268

the first term in the bound gets greater because269

Pr(g̈|z∗) ≤ Pr(ġ|z∗). This reflects that doing ICL270

without constraining the next token is harder.271

Pr(g̈|z∗) may also be related to instruction tun-272

ing. The training examples for instruction tuning273

are input-output pairs following some format, such274

as having an instruction (e.g., “Label the example275

as positive if ...”) at the beginning and a prompt276

after each input (e.g., “[example]. The sentiment277

of this comment is”). Because for examples that278

follow the special format, the next token after the279

prompt is always a verbalizer, these examples be-280

long to the genera g̈. Having these examples in the281

training set would increase Pr(g̈|z∗) and thus make282

the ICL loss bound converge faster. This explains283

why instruction tuning helps ICL.284

Note that we can extend the results to genera-285

tion tasks. For generation tasks, we usually use a286

separator (or a short span of text) between the xt287

and rt. We can see the separator as an expression288

that can be associated with different senses, so the289

latent space for z is the senses the separator can be290

associated with, and z∗ means that it is associated291

with the task instruction. In this way, we can apply292

our analysis to generation tasks.293

4 Generalization294

Assuming a latent model poses a dilemma: Lan-295

guage can encode various meanings, so assuming296

that the latent space is finite is unreasonable unless297

the space is very large. However, if the latent space298

is infinite or is very large, it is possible that the lim-299

ited training data does not cover the whole space.300

Without any assumption on the latent space (e.g.,301

the relation between the states in the space), it is302

impossible to discuss the generalization to unseen303

latent states. Thus, we provide an extension to our304

theoretical framework:305

Assumption 4.1 (Meaning representation). There306

exists (1) a finite set of atom concepts Ω, (2) a307

knowledge base KB consisting of logical rules be-308

tween the atom concepts in Ω, and (3) a function f309

that can map any sentence in language to its mean-310

2Although g̈ may seem unnatural, this genre of documents
corresponds to the PCFG structure assumed in Hahn and
Goyal (2023).

ing represented as a logical formula with operands 311

in Ω such that for any two sentences s1, s2, the log- 312

ical relation between s1 and s2 judged by humans 313

is the same as f(s1) and f(s2) given the rules in 314

the knowledge base KB. 315

The three items in this assumption corresponds 316

to theories in various fields. The notion of atom 317

concepts is aligned cognitive psychology studies 318

that hypothesize the existence of a set of mental 319

tokens (Fodor, 1975, 2008). and a recent study 320

(Piantadosi, 2021) suggesting that semantics can 321

be encoded with the combination of only a few 322

symbols. The notion of knowledge base follows 323

the early formulation of AI (Siskind, 1996; Murphy, 324

2004). As for the existance of a parsing function f , 325

it follows the long history of linguistics studying 326

the relationships between natural languages and 327

formal languages (Carnap et al., 1968; Bresnan and 328

Bresnan, 1982; Steedman, 1987, 1996; Sag et al., 329

1999), such as first-order logic (Frege et al., 1879; 330

Peirce, 1883). 331

This assumption suggests that if we have the 332

parsing function f , solving NLP tasks only requires 333

a finite-length program that can do logical reason- 334

ing by manipulating logical symbols according to 335

logical induction rules. If a deep model can learn 336

this program, then it can perform a task even if this 337

task is not in the training data. This assumption 338

of a finite Ω also instantiates the concept of “lan- 339

guage skills” by Arora and Goyal (2023), and their 340

theoretical results are thus applicable. 341

5 Relating to Description Length 342

When there are no decoding constraints, we may 343

see Pr(rt, d|xt, z∗, St−1) as the difficulty of the 344

example. To see this, we need an additional as- 345

sumption: 346

Assumption 5.1. In some documents in the train- 347

ing data, the paragraphs are constituted with steps 348

in a logical induction process, with some steps ran- 349

domly dropped. 350

This kind of document may be pervasive in the 351

training data. Essays arguing some claims are one 352

example. To be convincing, these essays should 353

proceed like a proving process that induces their 354

conclusions. Documents describing a series of 355

events can be another example, as events follow 356

commonsense and develop progressively. 357

With this assumption and some regularity as- 358

sumptions on the data distribution, we can have 359

Pr(rt, d|xt, z∗, St−1) ≤ c · ℓ(xt), (3) 360
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Train x57 x56 x64 r3→ x79 , r1 x57→ x58 , x90 x58→ r3 ... ; x80 x66 x63 x83 x1→ x82 , x80 x82
→ r1 , ... , x64 x80→ x54 .

ICL x44 x67 x34 x62→ r2 ; x55 x38 x50 x48→ r1 ; x21 x59 x57 x86→ r2 ; x55 x76 x84 x99→
CoT x44 x67 x34 x62→ x16 , x34 x62→ x99 , x99 x16→ r1 ; x77 x34 x62 x97→ x12 ... ; x21 x59

x57 x86→ x69 , x59 x57→ x75 , x69 x75→ r2 ; x55 x76 x84 x99→

Table 1: Calcutec examples for training, in-context learning (ICL), and chain-of-thought (CoT). The symbols in the
bold font are the verbalizers in our synthetic setup.

where ℓ(xt) is the number of reasoning steps re-361

quired to solve the task, and c is a constant This362

ℓ(xt) corresponds to the description length of the363

function that maps the inputs to their label in the364

loss bound by Hahn and Goyal (2023) (more dis-365

cussion in Appendix E).366

6 Empirical Experiments367

We present two synthetic setups to demonstrate368

that LMs can acquire ICL capability (§6.1) and369

instruction following capability (§6.2) from a train-370

ing dataset built according to our framework. Fi-371

nally, in §6.3, we present real world evidence that372

supports our theory.373

6.1 Inspecting the ICL Capability374

We present a synthetic setup, Calcutec, as a con-375

crete instantiation of our theoretical framework.376

With Calcutec, we show that Transformers can ac-377

quire ICL capability by modeling the linguistic378

characteristics specified in our framework.379

6.1.1 Calcutec380

Setup Following our framework in §2 and §4, we381

construct a pseudo-language:382

• Logic model: We use a subset of propositional383

logic as our logic model. We only consider384

Horn clauses (Horn, 1951), i.e., formulas in385

the form A ∧B → C.386

• Atom concepts: We use 100 symbols as our387

set of atom concepts Σ.388

• KB: We generate a knowledge base by gener-389

ating 5 formulas of the form σ1 ∧ σ2 → σ for390

each σ ∈ Σ, where σ1, σ2 are sampled from391

Σ\{σ} uniformly at random.392

• We have a set Γ = {ri}4i=1 representing the393

expressions described in Assumption 2.3.394

Training Dataset. Following Assumption 2.4, a 395

document is a concatenation of paragraphs sepa- 396

rated by delimiter “;” and ends with “.”. In our 397

synthetic language model training dataset, each 398

document contains 16 paragraphs. 399

Because sentences in the real world are not or- 400

dered arbitrarily, we follow Assumption 5.1 and 401

generate random paragraphs following the struc- 402

ture of logical proofs. Each paragraph represents 403

the induction process of P |= g for some randomly 404

selected P ⊂ Σ and g ∈ Σ. Each sentence in the 405

paragraph is a sentence representing a reasoning 406

step. We separate the clauses in the sequence with 407

commas. To simulate the fact that documents in 408

the real world always skip some reasoning steps, 409

we further apply some perturbations over the gen- 410

erated paragraphs that drop some reasoning steps 411

with a skip rate pskip. After we generate a docu- 412

ment, we replace some symbols in the document 413

with expression ra, rb ∈ Γ (details in Appendix F 414

and the pseudo-code Alg. 1). 3 415

Downstream Tasks. Following the formalism 416

in §2.2, we define a binary classification task by 417

defining the descriptions v+ and v− of the posi- 418

tive and negative classes, respectively. We use the 419

disjunctions of atom concepts (i.e., in the form of 420

a1 ∨ a2 ∨ · · · ) as the descriptions of classes. We 421

create five downstream tasks using different dis- 422

junctions. Each input is a subset of variables in Σ 423

from which we ensure that only one of the classes 424

can be induced. 425

Demonstration. We represent an input-label pair 426

as x1x2 · · · → r, where x1x2 · · · is the input part 427

and r ∈ {r+, r−} ⊂ Γ is an expression in Γ serv- 428

ing as the verbalizer. 429

Chain-of-thought. A chain-of-thought is in the 430

format same format as the training data, but ends 431

with an expression r ∈ {r+, r−}, e.g., x1x2 · · · → 432

3Models can acquire in-context learning ability even with
pskip = 0 (Figure 6 in thr appendix).
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r1, r2 r3, r4
Task ICL CoT ICL CoT

Single 57.1 91.7 55.6 92.0
Double 53.5 76.3 51.1 77.1
Triple 53.0 73.0 51.7 73.4

Table 2: The 4-shot accuracy of ICL versus chain-of-
thought (CoT) using different verbalizers.

x3;x3 · · ·x4 → r+. This chain-of-thought reflects433

the step-by-step induction process from the inputs434

to the label.435

6.1.2 Distribution Shifts436

We make experimental designs to simulate the real-437

world distribution shifts from training to inference:438

Format Mismatch. The reasoning steps are439

present in the training data but not in the prompts.440

Verbalizer Mismatch. When we are picking the441

expressions in Γ, we assign probability mass 45%,442

45%, 5%, 5% to r1, r2, r3, r4. In this way, we can443

inspect the effect of using less frequent verbalizers.444

Unseen Tasks. To investigate whether the model445

can generalize to a new combination of formulas446

unseen in the training data when we generate our447

training data, we ensure that the expressions in Γ448

are only associated with the disjunctions of two449

atom concepts s1, s2 from a strict subset of all the450

possible combinations Σ × Σ. We then test the451

trained model on tasks where v+ and v− are the452

disjunctions of the unseen combinations. We also453

test the models on tasks where v+ and v− are the454

disjunctions of three atom concepts ∈ Σ× Σ× Σ.455

6.1.3 Experiment Details456

We use pskip = 0.25 in our experiment. We gen-457

erate 60,000 documents with 16 paragraphs, as458

described above. Among them, we use 10k for val-459

idation. We train a 6-layer Transformer (Vaswani460

et al., 2017) model until the loss on the validation461

set converges. We include additional setups in §H.462

6.1.4 Results and Discussion463

Figure 1 shows that the model trained with Calcutec464

can perform in-context learning This evidence sup-465

ports our Pelican Soup framework. We further466

inspect the ICL performance under the distribution467

shifts described in §6.1.2:468
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(a) Verbalizers = r1, r2

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

single double triple

# of Demonstrations

A
cc

u
ra

cy

(b) Verbalizers = r3, r4

Figure 1: In-context learning accuracy with Calcutec
when using different verbalizers (r1, r2 or r3, r4). The
dotted lines represent the performance of unseen com-
binations described in §6.1.2. The colors represent the
number of atom concepts each class (v+ or v−) is as-
sociated with. The main lines represent the average
accuracy of 5 tasks. Lines in the lighter color represent
the individual tasks.

• Infrequent verbalizer: We observe similar per- 469

formance regardless of the frequency of the 470

verbalizers (r1, r2 versus r3, r4). 471

• Unseen tasks: Figure 1 shows that the model 472

has similar performance over tasks defined 473

with unseen and unseen combinations of atom 474

concepts (dot lines and solid lines). The mod- 475

els can also generalize to tasks defined with 476

three latent concepts (green lines). 477

In sum, the results show that the model can gener- 478

alize well under several distributional shifts. 479

We also experiment with 4-shot learning using 480

chain-of-thought. Table 2 shows that the model 481

also benefits from chain-of-thought. We conjecture 482

that it is because chain-of-thought has a format 483

more similar to the format for training. 484

6.2 Digit Addition Task 485

In addition to the ICL capability we have in- 486

spected in §6.1, we will also inspect the instruction- 487

following capability of LMs. To this end, we 488

present a digit addition task. The goal is to inspect 489

whether models can generalize to unseen instruc- 490

tions by modeling the knowledge of the interrela- 491

tion between senses exhibited in the step-by-step 492

reasoning process. 493

6.2.1 Setup 494

We utilize the algebraic structure of the integers 495

under addition to construct a language where each 496

expression is constantly associated with a sense. 497

In this language, a paragraph is the digit-by-digit 498

process of solving an addition task based on math- 499

ematical rules. The rules exhibited in each of the 500
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Training 4 9 2 8 4 6 + 0 8 0 3 5 0 = 0 0 0 0 0 0 ; 0 9 2 8 4 6 + 0 8 0 3 5 0 = 4 0 0 0 0 0 ; 0 0 2 8 4 6 + 0
0 0 3 5 0 = 4 7 1 0 0 0 ; · · · 0 0 0 0 0 0 + 0 0 0 0 0 0 = 4 7 3 1 0 7 ;

Testing 8 7 4 0 1 6 + 0 9 2 1 5 0 = 0 0 0 0 0 0 ; 0 0 0 0 0 0 + 0 0 0 0 0 0 =

Table 3: Training and testing examples for the digit addition task.

steps reflect the interrelation between the sense of501

the expressions.502

We generate a training set consisting of digit-503

by-digit reasoning processes for 100,000 pairs of504

numbers. In our training set, we drop each interme-505

diate step at a constant probability of pdrop. After506

training a Transformer model with the language507

modeling objective, we test whether the model can508

generate the final answer without generating the509

intermediate steps for unseen number pairs.510

We show examples of our data in Table 3. Each511

digit sequence represents a number from the lower512

digit to the higher digit. The reasoning process in513

the training set gradually updates both sides of “=”514

from the lowest digit to the highest digit. As for515

the testing example, we skip the intermediate steps,516

prompting the model to complete the right-hand517

side of “=” in the last step. We include a rigorous518

description in Appendix J.519

6.2.2 Results and Discussion520

We report the exact match accuracy and the digit-521

level accuracy of models trained with different522

pdrop in Figure 2 with 5 random seeds. A higher523

accuracy implies the model generalizes better from524

step-by-step reasoning processes. The results show525

that three of the four models can achieve perfect526

accuracy when pdrop is as small as 0.3 but achieve527

an accuracy less than 0.2 when pdrop = 0.9. It528

suggests that models can follow prompts by mod-529

eling the inter-expression relation exhibited in the530

step-by-step reasoning process.531

Additionally, we observe that larger models tend532

to have higher and more stable accuracy. When the533

number of digits is 6 (Figure 14), only the largest534

model can achieve perfect accuracy. This obser-535

vation is aligned with the emergence of large lan-536

guage models’ ability.537

6.3 Real-world Evidence538

We inspect whether LMs can do ICL with pro-539

nouns well because pronouns are reference words540

frequently associated with different meaning and541

our framework suggests that LMs learn ICL abil-542

ity by modeling the association between reference543

task direct pronoun

SST-2 63.0 65.3
CR 61.7 62.9
MR 59.2 56.7
Subj 51.0 62.2

Table 4: The accuracy of using task-specific tem-
plates/verbalizers (direct) (Min et al., 2022a) v.s. using
task-agnostic templates/pronouns for 16-shot in-context
learning with GPT2-Large.

words and their meaning. We thus experiment with 544

the template “[input]”, [verbalizer] thought. 545

and use “he”, “she” as the verbalizers. We follow 546

the setup in Min et al. (2022a) and compare the 547

accuracy of the binary classification tasks, includ- 548

ing SST-2 (Socher et al., 2013), CR (Hu and Liu, 549

2004), MR (Pang and Lee, 2005), and Subj (Pang 550

and Lee, 2004), using GPT2-Large. 551

Table 4 shows that this task-agnostic template 552

with pronouns is competitive with those task- 553

specific templates. This contradicts the belief that 554

only larger models can do in-context learning with 555

task-irrelevant verbalizer Wei et al. (2023). It sug- 556

gests that modeling reference-meaning may indeed 557

contribute to LMs’ ICL ability. 558

7 Related Work 559

Since Brown et al. (2020) discovered large lan- 560

guage models’ in-context learning ability, some 561

theoretical works have attempted to explain how 562

language models acquire this ability. Based on 563

a hidden Markov model (HMM) assumption on 564

the language generation process, Xie et al. (2022) 565

suggested that in-context learning is an implicit 566

Bayesian inference process. Hahn and Goyal 567

(2023) defined the generation process with Compo- 568

sitional Attribute Grammar, which is weaker than 569

the HMM assumption, explaining the in-context 570

learning ability with the minimum description 571

length. They also studied the compositionality of 572

natural language tasks with function compositions. 573

Zhang et al. (2023) assumed a more general la- 574

tent variable model. Arora and Goyal (2023) ana- 575
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Figure 2: The exact accuracy (y-axis, solid points) and digit-level accuracy (y-axis, hollow points) versus validation
loss (x-axis) for the 5-digit addition task for dropping rates pdrop = {0.1, 0.3, 0.5, 0.7, 0.9} (from left to right) for
five random seeds (points in each figure). We provide more results in Figure 13 and Figure 14 in the appendix.

lyze the emergence of skills based on the scaling576

law (Hoffmann et al., 2022). While their analysis577

assumes a set of atomic skills for NLP tasks, our578

framework is based on a set of atom concepts.579

There were also many empirical studies on the580

in-context learning ability. Some works focused on581

the effect of the instruction (Webson and Pavlick,582

2022; Lampinen et al., 2022; Jang et al., 2023),583

while some focused on the examples in the demon-584

stration (Liu et al., 2022; Lu et al., 2022; Sorensen585

et al., 2022; Min et al., 2022b; Yoo et al., 2022; Ye586

et al., 2023; Chang and Jia, 2023; Ye et al., 2023;587

Wang et al., 2023b; Kossen et al., 2023). Shin et al.588

(2022) found that not all training corpora led to589

in-context learning ability. Prystawski and Good-590

man (2023) used synthetic data to suggest that the591

pretraining dataset’s locality structure contributes592

to the reasoning steps’ effectiveness. Wang et al.593

(2023a) studied the reasoning steps in chain-of-594

thought. Akyürek et al. (2024) formulated ICL as595

learning a formal language from demonstrations596

and benchmarked model families.597

Some previous work studied in-context learn-598

ing as a meta-learning-like problem (Chen et al.,599

2022). Some works focused on the relationships600

between in-context learning and optimization algo-601

rithms (Garg et al., 2022; von Oswald et al., 2022;602

Akyürek et al., 2023; Fu et al., 2023; Guo et al.,603

2023). Some works inspected the mechanism of604

ICL in transformer models (Hendel et al., 2023;605

Bietti et al., 2023; Todd et al., 2023; Shen et al.,606

2023; Bai et al., 2023). Chan et al. (2022) studied607

the properties of dataset distribution that could con-608

tribute to the in-context learning ability. Li et al.609

(2023b) provided generalization bounds based on610

the stability of Transformer models and the dis-611

tance of downstream tasks. We instead focus on612

how the pretraining data in natural language con-613

tributes to the ICL learning ability.614

8 Conclusion and Future Work 615

In this work, we propose a framework that explains 616

how linguistic phenomena in the training corpus 617

lead to LLMs’ ICL and instruction-following capa- 618

bility. Compared with previous works (Xie et al., 619

2022; Zhang et al., 2023), our latent model better 620

reflects the complexity of language. By introducing 621

the notion of knowledge base and logic system, our 622

framework provides insights into how LLMs can 623

generalize from pretraining to downstream tasks, 624

instantiating a setup compatible with the assump- 625

tions made by Arora and Goyal (2023). We also 626

relate our bound to the function description length 627

discussed by Hahn and Goyal (2023). 628

Our framework illuminates a few possible direc- 629

tions for improving LLMs: 630

1. Our work highlights the importance of learn- 631

ing the interrelation between senses. As pre- 632

vious works have shown that the language 633

modeling objective is inefficient for this pur- 634

pose (Allen-Zhu and Li, 2023; Chiang et al., 635

2024), we suggest that developing a more so- 636

phisticated learning algorithm is crucial. 637

2. Our theory suggests that LLMs’ generaliza- 638

tion depends on the models’ ability to parse 639

sentences into logical representations. Thus, 640

evaluating and improving LLMs’ semantic 641

parsing ability may be a promising direction. 642

3. The experimental results of our addition tasks 643

indicate a curious ability of Transformer mod- 644

els: Transformer models can generalize to 645

unseen prompts by modeling the intermediate 646

step-by-step reasoning process. This may be 647

related to the success of the symbolic chain- 648

of-thought distillation (Li et al., 2023a; Hsieh 649

et al., 2023; Shridhar et al., 2023). Investigat- 650

ing the mechanism and reinforcing this ability 651

may improve the efficiency of LM training. 652
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9 Limitations653

A limitation of our framework is that, as most theo-654

retical studies do, we simplify the real-world sce-655

nario to draw insights. One simplification we make656

is that, we do not take the noise in LLMs’ training657

data into account. While our preliminary experi-658

ment with the digit addition task in §K show that659

LMs can acquire the zero-shot instruction follow-660

ing capability even when the training data is noisy,661

we still need to make more assumption on the noise662

to establish a generic theoretical result. We thus663

leave it for future study. Another simplification is664

that, we assume that the language model can per-665

fectly model the distribution of natural language.666

However, it is unlikely to be the case in practice.667

On the one hand, the training data may not cover668

all the test cases. On the other hand, LLMs may not669

generalize perfectly from the training set. We need670

to make more assumption on the training/test data671

distribution and/or having deeper understanding on672

how deep learning models generalize to alleviate673

this assumption. Therefore, we deem it out of the674

scope of this paper.675
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A Motivation of the Pelican Soup1026

Framework1027

The Pelican Soup game inspires our framework. It1028

is a game involving a puzzle master who has a story1029

in their mind. The game participants aim to recover1030

the story by asking the puzzle master yes/no ques-1031

tions. An observation is that once the participants1032

recover the story, they can answer any questions1033

about the story. Therefore, the story has a similar1034

role as a latent variable defining the input-output1035

mapping, and the yes/no questions are similar to the1036

demonstrations for in-context learning. We include1037

an example in Appendix B.1038

Given the above observation, we can study in- 1039

context learning by considering why humans can 1040

solve Pelican Soup riddles. We conjecture that 1041

this is because the person who makes the story 1042

and the ones who solve the riddle share the same 1043

(or similar) commonsense (McCarthy, 1960) about 1044

logical relationships among things in this world 1045

(Schank and Abelson, 1988). This inspires us to 1046

introduce the notion of a commonsense knowledge 1047

base in our framework. 1048

B A Pelican Soup Example 1049

Puzzle master: A men walks into a restaurant and 1050

orders pelican soup. After taking a sip, he loses his 1051

mind. Why? 1052

Participants: Is it because the soup is not 1053

cooked well? 1054

Puzzle master: No. 1055

Participants: Is it because the soup toxic? 1056

Puzzle master: No. 1057

Participants: Does the soup remind him some- 1058

thing? 1059

Puzzle master: Yes. 1060

Participants: Did someone cook pelican soup 1061

for him? 1062

Puzzle master: Yes. 1063

Participants: Is that person still alive? 1064

Puzzle master: No. 1065

For the sake of aesthetics, we do not include the 1066

latent story here. If you are interested, please check 1067

it online. 1068

C Proof of Theorem 3.1 1069

Let St = x1, r2, d, x2, r2, d · · · , xt, rt, d. 1070

Pr(z, g|St,K) 1071

=
Pr(St|z, g,K) Pr(z|K)∑
z Pr(St|z, g,K) Pr(z, g|K)

1072

=
Pr(z, g|K)

∏t
i=1 Pr(xi, ri, d|z, g, Si−1,K)∑

z′,g Pr(z
′, g|K)

∏t
i=1 Pr(xi, ri, d|z′, g, Si−1,K)

1073

P (xt+1, rt+1, d|St,K) 1074

=
∑
z,g

Pr(xt+1, rt+1, d|z, St,K) Pr(z, g|St,K) 1075

=

∑
z,g Pr(z, g|K)

∏t+1
i=1 Pr(xi, ri, d|z, g, Si−1,K)∑

z′ Pr(z, g|K)
∏t

i=1 Pr(xi, ri, d|z′, g, Si−1,K)
. 1076

Thus, it holds that 1077
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−
T∑
t=0

log Pr(xt+1, rt+1, d|St,K)1078

=−
T∑
t=0

(
log

∑
z,g

Pr(z, g|K)
t+1∏
i=1

Pr(xi, ri, d|z, g, Si−1,K)

− log
∑
z,g

Pr(z, g|K)
t∏

i=1

Pr(xi, ri, d|z, g, Si−1,K))

1079

=− log
∑
z,g

Pr(z, g|K)
T+1∏
i=1

Pr(xi, rt, d|z, g, Si−1,K)1080

≤− log Pr(z∗, ġ|K)
T+1∏
i=1

Pr(xi, rt, d|z∗, ġ, Si−1,K)1081

=− log Pr(z∗, ġ|K)1082

−
T+1∑
i=1

log Pr(xi, ri, d|z∗, ġ, Si−1,K)1083

=− log Pr(z∗, ġ|K)1084

−
T∑
i=1

log Pr(ri, d|xi, z∗, ġ, Si−1,K)1085

−
T∑
i=1

log Pr(xi|z∗, ġ, Si−1,K).1086

Thus,1087

− 1

T

T∑
t=0

log Pr(rt|xt, St−1,K) 1088

≤− 1

T

(
log Pr(z∗, ġ|K) 1089

+
T∑
i=1

log Pr(rt, d|xt, z∗, ġ, St−1,K) 1090

+

T∑
i=1

log
Pr(xt|z∗, ġ, St−1,K)

Pr(xt|St−1,K)
) 1091

+
1

T

T∑
i=1

log Pr(d|rt, xt, St−1,K

)
. 1092

≤− 1

T

(
log Pr(z∗, ġ|K) 1093

+
T∑
i=1

log Pr(rt, d|xt, z∗, ġ, St−1,K) 1094

+
T∑
i=1

log
Pr(xt|z∗, ġ, St−1,K)

Pr(xt|St−1,K)

)
1095

D Proof of Corollary 3.2 1096

The second term in the right-hand side of Eq. 1 is 1097

zero when the decoding constrain K is imposed. 1098

Therefore, it suffices to prove the last term is non- 1099

negative in expectation. 1100

E
x1,x2,··· ,xT∼DT

X

T∑
i=1

log
Pr(xt|z∗, ġ, St−1,K)

Pr(xt|St−1,K)
1101

= E
x1,x2,··· ,xT∼DT

X

T∑
i=1

log
Pr(xt|z∗, ġ,K)

Pr(xt|St−1,K)
1102

=
∑

x1,x2,··· ,xT

Pr(xt|z∗, ġ,K)

T∑
i=1

log
Pr(xt|z∗, ġ,K)

Pr(xt|St−1,K)
1103

=KLD(Pr(xt|z∗, ġ,K)||Pr(xt|St−1,K)) ≥ 0 1104

1105

E The Connection between P (rt|xt, z
∗, g̈) 1106

and Function Description Length by 1107

Hahn and Goyal (2023) 1108

Firstly, we make some regularity assumptions: 1109

Given a step-by-step reasoning process π = 1110

s1, s2, · · · , sn for the induction process of P |= Q, 1111

in the training data, 1112

1. each step may be dropped independently to 1113

each other with probability pdrop. 1114
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2. Pr(si|P, s1, s2, · · · , si−1) > pmin for all i ∈1115

[n].1116

We first show how we derive Eq. 3: Based on1117

Assumption 5.1,1118

Pr(rt|xt, z∗, g̈)

=
∑
π∈Π

Pr(π, rt|xt, z∗, g̈) Pr(π is dropped),1119

where Π is a set of token sequences representing1120

reasoning steps that induce rt from xt. Let π∗ be1121

the shortest proof in Π, we have1122

log Pr(rt|xt, z∗, g̈)1123

= log
∑
π∈Π

Pr(π, rt|xt, z∗, g̈) Pr(π is dropped)1124

≥ log Pr(π∗, rt|xt, z∗, g̈) Pr(π∗ is dropped)1125

≥pmin log ℓ(π
∗) + pdrop log ℓ(π

∗).1126

Then we can discuss the connection between1127

Pr(rt|xt, z∗, g̈) and the function description length1128

by Hahn and Goyal (2023). We can see the dropped1129

reasoning steps in π∗ as the hidden (tree) structure1130

that maps xt to rt as the derivation tree τϕ in the1131

bound of Hahn and Goyal (2023). The length of the1132

reasoning steps thus corresponds to the description1133

length of the derivation tree D(τϕ).1134

A major difference between the bound by Hahn1135

and Goyal (2023) and our bound is that their bound1136

has D(τϕ) constant to T while our bound has1137 ∑
t log Pr(rt|xt, z∗, g̈), which potentially grows1138

proportionally to T . The cause of this difference is1139

that, Hahn and Goyal (2023) assumes a structure1140

that repetitively applies a function mapping in a1141

document, and the number of repetition is indepen-1142

dent to the complexity of the function mapping.1143

In comparison, our framework does not make this1144

assumption.1145

F Detailed Gengeration Process of the1146

LM Training Data in Calcutec1147

We generate a paragraph based on Assumption 2.31148

in the following step:1149

1. We pick a symbol s from the symbols associ-1150

ated with ra uniformly at random.1151

2. We randomly generate a proof for KB, P |= g,1152

where P ⊂ Σ is the premise and g ∈ Σ is the1153

goal of the proof. We ensure that this proof1154

contains the topic s.1155

3. We convert the proof tree to a sequence of prov- 1156

ing steps by traversing the proving tree in a 1157

topological order with ties broken randomly. 1158

Each node in the proof tree corresponds to a 1159

rule in KB, so the resulting sequence of prov- 1160

ing steps consists of horn clauses in the form 1161

a1a2 → b. We separate the clauses in the se- 1162

quence with commas. 1163

4. We rewrite the first step of the proving process 1164

to contain the premises of the proof. Specif- 1165

ically, we replace the antecedent in the first 1166

formula with the premise P . We find that this 1167

step is necessary to prevent the language model 1168

trained on it from hallucinating irrelevant vari- 1169

ables randomly. It is important for our experi- 1170

ment for chain-of-thought, but is not necessary 1171

for language models to learn the in-context 1172

learning ability. 1173

G Perturbations in Calcutec 1174

We apply two types of perturbations over the rea- 1175

soning steps in Calcutec described in §6.1: 1176

1. Random merge: At probability pmerge, for ev- 1177

ery two consecutive clauses where the conse- 1178

quence of the first one is in the antecedents of 1179

the second one, say a1a2 → b1 and b1a3 → b2, 1180

we merge them into a single clause a1a2a3 → 1181

b2. 1182

2. Random drop: Given a clause a1a2 · · · an → 1183

b. We drop each of the antecedents a ∈ 1184

{a1, a2, · · · an} at probability pdrop. We ap- 1185

ply this dropping to every clause in the proof 1186

except the first one to ensure that we do not 1187

drop the premises. 1188

We use pmerge = pdrop = pskip. 1189

Additionally, when flatting the proof trees with 1190

topological sort, we break ties randomly. We also 1191

randomize the order of the symbols in the an- 1192

tecedents. 1193

H Extra Experiments with Calcutec 1194

H.1 Additional Setups 1195

Unseen Inference Process. Based on Assump- 1196

tion 5.1 and the formalism of NLP tasks in §2.2, 1197

input-label pairs of a downstream task corresponds 1198

to prefix-reference pairs in a paragraph. To exam- 1199

ine whether the trained model can generalize well 1200

when the induction process for the label is different 1201
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Algorithm 1 Pseudo code for the generation process of an Calcutec document used for training.
Sample ra, rb from {r1, r2, r3, r4} with probability 0.45, 0.45, 0.05, 0.05.
Sample topic S = {s1, s2} ⊂ Σ.
Initialize a document D with empty string.
for p = 1, 2, . . . , npar do

while True do
Sample s ∈ S.
Sample a set X ⊂ Σ such that

∧
x∈X x |= s.

Run the resolution algorithm to get the set M = {m|X |= m}.
Find an extra premise x′ that can increase the depth of deepest proof tree for X |= m.
Run the resolution algorithm to get the set M ′ = {m|X ∪ {x′} |= m}.
if |M ′| > |Σ|

2 then
Reject the sampled X ∪ {x′}. ▷ We don’t want a premise that entails everything.
Restart the while loop.

end if
Sample a g ∈M ′ such that the proof tree for X ′ |= g contains s and its depth > dmin. ▷ We

use dmin = 4 in our experiments.
Do topological sort to flatten the proof tree and convert it into a string.
Append the string to D.

end while
end for
for s ∈ S do

D ← D.replace(s, ra)
end for
Let S′ = {s′1, s′2} ∈ Σ be the top-2 frequent non ra symbols in D.
for s′ ∈ S′ do

D ← D.replace(s′, rb)
end for

15



from the induction process for the pronoun in the1202

training data, we generate a training dataset where1203

all the pronouns are induced from the premise with1204

a left-branching proof tree with a depth equal to 21205

(Figure 4a), while the test data contains samples1206

whose labels are induced from the input with bal-1207

anced trees (Figure 4b).1208

Different Input Lengths. For each downstream1209

tasks, we experiment with examples with different1210

lengths. When the inference process is branching,1211

having input length equal to 4 makes the proving1212

tree deeper.1213

No perturbations. As described in §G, we apply1214

some random perturbations on the proving process.1215

We also experiment with the setup where we do not1216

apply any perturbations.1217

With/Without Rewriting the First Step. As de-1218

scribed in §F, we rewrite the first step of the proof.1219

We also experiment with the setup where we do not1220

rewrite the first step.1221

Model Size. We also experiment with different1222

models sizes. We experiment with GPT-2 models1223

that have 3, 4 and 5 layers.1224

H.2 Results and Discussion1225

Unseen Inference Process. Figure 5a and Fig-1226

ure 5d show that the ICL performance on the1227

branching examples is similar to the performance1228

on the branching examples. It suggests that the1229

model can generalize to examples that requires an1230

unseen reasoning process. Interestingly, Table 51231

show that using chain-of-thoughts mitigates this1232

gap.1233

Different Input Lengths. Figure 5b and Fig-1234

ure 5e show that the model can still do ICL for1235

the examples with length equal to 4. However,1236

compared with the performance on examples with1237

length equal to 3 (Figure 5c and Figure 5f), the per-1238

formance is worse. This may be because solving1239

these length-4 examples requires more reasoning1240

steps.1241

With/Without Rewriting the First Step. Fig-1242

ure 8 shows that models trained with proofs that1243

are rewritten has similar performance as models1244

trained with the proofs that were rewritten (Fig-1245

ure 5). This suggests that rewriting the first step in1246

the proof is not necessary for the model to acquire1247

the ICL ability.1248

x1 x2
x4 x3

r1

x1 x3
x6

x7
...

...
(a) The proof tree a paragraph in the training dataset cor-
responds .

x1 x2
x5

x3 x4
x6

r1
(b) A balanced tree for a downstream task sample.

Figure 4: Proof trees examples.

Model Size. Figure 9 show that deeper models 1249

have better ICL performance. It is aligned with 1250

the real-world observation that scaling helps model 1251

performance. 1252

I Hyper-parameters 1253

We train our model using batch size 256, warm 1254

up ratio 5%, and we truncate the sequence length 1255

to 512 tokens and the default parameters for the 1256

optimizer. We use the implementation of GPT-2 1257

by Hugging Face transformers v4.27.2. All models 1258

can be trained with 4 RTX 2080ti within 8 hours. 1259

J Formal Description of the Digit 1260

Addition Data 1261

For each step i, we represent the step in the for- 1262

mat a(i) + b(i) = c(i), where a(i), b(i) and c(i) are 1263

sequences of n tokens, each of which is in [0, 9], 1264

representing a number from the lowest digit to the 1265

highest digit. a(0) and b(0) represent two randomly 1266

drawn numbers and c(0) is all zero. At each step 1267

i > 0, most of the digit in a(i), b(i), c(i) is the 1268

same as the previous step. For a(i) and b(i), we 1269

only update the ith digit by setting a
(i)
i = 0 and 1270

b
(i)
i = 0. As for c(i), it serves as a buffer for both 1271

the answer and the carry. We update it based on 1272

s(i) = a
(i−1)
i +b

(i−1)
i +c

(i−1)
i , the sum of the digits 1273

at i. We set c(i)i = s(i) mod 10, c(i)i+1 = ⌊s(i)/10⌋. 1274

We use colons as the separator and concatenate 1275

these steps as a single sequence. When testing a 1276

model’s intuition, we let the model generate the 1277

continuation for a(0) + b(0) = c(0); a(n) + b(n) =. 1278

Note that a(n) = b(n) = 0, so the model needs to 1279

have the intuition to generate the answer correctly. 1280

We provide examples in Table 3. 1281
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(d) balanced, length = 3, y3, y4
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(e) branching, length = 4, y3, y4
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(f) branching, length = 3, y3, y4

Figure 5: In-context learning accuracy with Calcutec when using different verbalizers (y1, y2 or y3, y4) and input
lengths (3 or 4). The dotted lines represent the performance of unseen combinations described in §6.1.2, while the
different colors represent the number of formulas each class (v+ or v−) is associated to. The main lines represent
the average accuracy of 5 tasks. We plot the performance of each task in lighter colors.
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Figure 6: In-context learning accuracy with Calcutec when no steps are dropped (pskip = 0).
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(f) branching, length = 3, r3, r4

Figure 7: In-context learning accuracy with Calcutec without rewriting the first step to include contain the premise
of the proof.

Branching Balanced
r1, r2 r3, r4 r1, r2 r3, r4

Task ICL CoT ICL CoT ICL CoT ICL CoT

Single 57.1 91.7 55.6 92.0 68.5 89.8 64.9 90.3
Double 53.5 76.3 51.1 77.1 58.5 76.1 56.2 75.8
Triple 53.0 73.0 51.7 73.4 57.0 68.2 54.2 67.0

Table 5: The 4-shot accuracy of in-context learning (ICL) versus chain-of-thoughts (CoT).

branching balance
r1, r2 r3, r4 r1, r2 r3, r4

#-shot 2 4 6 2 4 6 2 4 6 2 4 6

single 49.1 89.5 84.0 59.5 92.0 86.9 58.5 86.2 85.5 50.3 90.3 89.9
double 47.8 71.4 75.6 53.1 77.1 86.1 49.1 70.4 69.0 50.5 75.8 79.4
triple 46.7 65.7 70.7 50.6 73.4 79.4 46.0 60.2 61.4 49.8 67.0 70.4

Table 6: The CoT performance with 2, 4, or 6 examples.
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(b) balanced, r1, r2, 10000 examples
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(c) balanced, r1, r2, 5000 examples
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(e) balanced, r3, r4, 10000 examples
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(f) balanced, r3, r4, 5000 examples
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(g) branching, r1, r2, 25000 examples
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(h) branching, r1, r2, 10000 examples
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(i) branching, r1, r2, 5000 examples
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(j) branching, r3, r4, 25000 examples
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(k) branching, r3, r4, 10000 examples
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(l) branching, r3, r4, 5000 examples

Figure 8: In-context learning accuracy with different sizes of
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(d) branching, length = 4, 3 layers
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(e) branching, length = 4, 4 layers
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Figure 9: The in-context learning performance when using models with different model depths.

K Digit Addition with Noisy Training1282

data1283

To study the effect of noises, we experiment with1284

noisy training data for the digit addition task. In1285

this setup, at step i, we mutate the sum digit si at1286

a probability. (Please refer to J for the definition1287

of the symbols.) The mutated digit is passed to1288

the next step and thus cause the final result to be1289

incorrect.1290

We plot the result in Figure 12. Surprisingly,1291

the models trained with the noisy data can still1292

achieve a 100% EM score. It suggests that the1293

noisy training data used in practice may not prevent1294

the model from learning the interrelation between1295

concepts.1296

L Dataset License1297

• SST-2: MIT1298

• MR: unavailable1299

• CR: unavailable1300

• Subj: unavailable1301
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Figure 10: The distribution of the number of reasoning steps in the dataset when some of them are dropped at
different probability. Each number is the average over 5 datasets generated with different random seeds.
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(b) 6 digits

Figure 11: The accuracy of the models for the addition tasks. The x-axis represents the probability at which we drop
each reasoning step in the training data independently. The solid line represents the ratio of testing samples where
the model can output the exact answer, while the dashed line represents the character-level accuracy. The results are
the average of 5 random seeds.
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Figure 12: The accuracy of the models for the addition
tasks when trained with noisy data.
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Figure 13: The exact accuracy (y-axis, solid points) and digit-level accuracy (y-axis, hollow points) versus validation
loss (x-axis) for a 5-digit addition task.
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Figure 14: The exact accuracy (y-axis, solid points) and digit-level accuracy (y-axis, hollow points) versus validation
loss (x-axis) for a 6-digit addition task.
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