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Abstract

Point cloud processing has gained significant attention due to its critical role in applica-
tions such as autonomous driving and 3D object recognition. However, deploying high-
performance models like Point Transformer V3 in resource-constrained environments re-
mains challenging due to their high computational and memory demands. This work
introduces a novel distillation framework that leverages topology-aware representations
and gradient-guided knowledge distillation to effectively transfer knowledge from a high-
capacity teacher to a lightweight student model. Our approach captures the underly-
ing geometric structures of point clouds while selectively guiding the student model’s
learning process through gradient-based feature alignment. Experimental results in the
Nuscenes, SemanticKITTI, and Waymo datasets demonstrate that the proposed method
achieves competitive performance, with an approximately 16× reduction in model size
and up to 1.9× decrease in inference time compared to its teacher model. Notably,
on NuScenes, our method achieves competitive performance among knowledge distilla-
tion techniques trained solely on LiDAR data, surpassing prior knowledge distillation
baselines in segmentation performance. Our implementation is available anonymously at
https://anonymous.4open.science/r/PTv3-distill-4E9E.

1 Introduction

Point cloud data are a critical representation of 3D geometry and have become essential in a wide range
of applications, from autonomous driving and robotic navigation to urban mapping Zhou & Tuzel (2018);
Geiger et al. (2012); Gomez-Ojeda et al. (2016); Oh & Watanabe (2002). Recent advances in deep learning
have enabled significant progress in point cloud processing, with models such as Point Transformer V3 Wu
et al. (2024) setting new benchmarks in accuracy and robustness. Despite the success of models like Point
Transformer V3, their high computational demands and memory requirements Golla & Klein (2015); Cao
et al. (2019) pose challenges for deployment in resource-constrained environments, such as edge devices
or real-time systems. To address this issue, various model compression strategies have been introduced,
including methods such as network pruning Han et al. (2016); Liu et al. (2019b); Louizos et al. (2018), quan-
tization Choi et al. (2019); Dong et al. (2022); Nagel et al. (2019), lightweight model architectures Howard
et al. (2019); Ma et al. (2018), and knowledge distillation Zhang et al. (2023); Hou et al. (2022a); Zhang
et al. (2024).

Knowledge distillation is a machine learning technique that aims to transfer knowledge from a large and high
capacity model to a smaller and more efficient model Hinton et al. (2014); Romero et al. (2015); Sanh et al.
(2019). This approach allows the student model to approximate the performance of the teacher while being
computationally less demanding, making it suitable for deployment in resource-constrained environments
such as edge devices or mobile platforms. Over the years, knowledge distillation has been effectively applied
in various domains, including image recognition Romero et al. (2015); Liu et al. (2019a) and natural language
processing Hahn & Choi (2019); He et al. (2021); Rashid et al. (2021), demonstrating its versatility and
impact. Recently, several approaches have been introduced to incorporate knowledge distillation into 3D
detection tasks using point cloud data Guo et al. (2021b); Zhang et al. (2024). However, these methods
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(a) Performance comparison (b) GFLOPs comparison

(c) FPS comparison (d) Peak Memory Comparison

Figure 1: Comprehensive comparisons between our proposed method and state-of-the-art knowledge distilla-
tion baselines across multiple evaluation metrics Hou et al. (2022c); Li et al. (2024b); Sun et al. (2024); Cen
et al. (2024). (a) The radar chart demonstrates that our method achieves consistently better mIoU on three
key datasets (NuScenes, SemanticKITTI, and Waymo), along with favorable FPS and memory efficiency.
(b)-(d) As the input point token length increases, our approach maintains lower GPU memory usage and
FLOPs, while sustaining significantly faster inference speed. (d) Peak GPU memory usage during inference,
measured using max memory allocated function in Torch. This metric reflects the highest amount of memory
used by the PyTorch tensors by the caching allocator during the inference phase. Notably, this value may
differ significantly from the memory reported by the PyTorch Profiler, as it includes temporary allocations
used by CUDA kernels.

focus primarily on multimodal student-teacher selection in a multimodal context, often overlooking the
unique geometric characteristics of point clouds.

To overcome these deployment hurdles, we propose a framework combining topology-aware representations
with gradient-guided distillation. The framework leverages the inherent geometric and structural properties
of point clouds to preserve critical topological information during the distillation process. By integrat-
ing gradient-based guidance, the proposed approach selectively emphasizes salient geometric features that
contribute most significantly to the model’s performance, enabling efficient knowledge transfer from a high-
capacity teacher model to a lightweight student model. This strategy ensures that the student model retains
competitive accuracy while significantly reducing computational and memory requirements, making it suit-
able for real-time and edge-based applications.

Extensive experiments on the proposed method have been conducted to demonstrate the effectiveness of
our approach over previous knowledge distillation methods. Our main contributions can be summarized as
follows.
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• We propose a novel distillation framework that integrates topology-aware knowledge representation
and gradient-guided distillation techniques, addressing the challenges of deploying high-performance
point cloud models in resource-constrained environments.

• The framework leverages the unique geometric and structural properties of point clouds, embedding
topological information into the distillation process to ensure the preservation of critical features
necessary for accurate predictions.

• By incorporating gradient-guided distillation, our method selectively emphasizes salient features,
enabling efficient and effective knowledge transfer from the teacher model to the student model.

• Extensive experimental results on popular benchmark datasets, such as Nuscenes reveal that our
approach achieves up to a 16× reduction in the number of parameters and a 77.75% reduction in
CUDA memory consumption in linear operations and a 2.5× lower in peak CUDA memory usage
during inference while maintaining accuracy within 5% of state-of-the-art of non-distilled methods.

2 Related Works

3D Point Cloud Processing. The representation of 3D data using point clouds has become increas-
ingly prominent in domains such as autonomous driving, robotics, and 3D reconstruction. Traditional deep
learning approaches for understanding 3D point clouds can be categorized into three main types: projection-
based, voxel-based, and point-based methods Halperin & Eisl (2025). Projection-based techniques map 3D
points onto 2D image planes and employ 2D CNN backbones for feature extractionChen et al. (2017); Lang
et al. (2019); Li et al. (2016), often losing geometric details in the process. Voxel-based methods convert
point clouds into structured voxel grids, allowing 3D convolutions with sparse convolution enhancing effi-
ciencyChoy et al. (2019); Song et al. (2017); Wang et al. (2017), though they encounter scalability issues
due to limited grid resolution, sparse and irregular data distribution, and kernel size constraints. In con-
trast, point-based methods directly process raw point cloudsMa et al. (2022); Qi et al. (2017); Thomas
et al. (2019); Zhao et al. (2019), with early approaches struggling to capture local structures until recent
transformer-based architectures improved performance by modeling long-range dependencies and adapting
to irregular distributionsGuo et al. (2021a); Robert et al. (2023); Wu et al. (2022b); Yang et al. (2023).
Furthermore, hybrid methods that integrate point-voxel or graph-based representations have emerged to
balance accuracy and efficiency. Across these approaches, challenges such as noise, occlusion, and varying
point density in real-world data continue to impact performance.

Point Transformer Architecture. Transformer architectures improve point-based methods by leveraging
self-attention to capture local and global dependencies effectively, outperforming CNN-based and voxel-based
approaches. Early models like PCT Guo et al. (2021a) and Point Transformer Wu et al. (2022b) demon-
strated strong performance in classification and segmentation tasks. Point Transformer V1 (PTv1) Zhao
et al. (2021) extended the transformers to unordered 3D point sets by vector self-attention and local atten-
tion based on kNN, improving spatial modeling, but suffering from high memory and computational costs.
Point Transformer V2 (PTv2) Wu et al. (2022a) introduced group vector attention and grid-based grouping
to enhance scalability and reduce parameters, although kNN remained a bottleneck limiting long-range de-
pendency capture. Point Transformer V3 (PTv3) Wu et al. (2024) shifted toward simplicity by serializing
point clouds using space-filling curves and employing serialized patch attention, greatly expanding receptive
fields, and eliminating kNN dependence. PTv3 achieved a 3.3× speedup and a 10.2× memory reduction over
PTv2, establishing state-of-the-art results in diverse 3D tasks. However, PTv3’s preprocessing overhead,
increased latency on dense clouds, and dependence on high-end hardware limit its applicability in real-time,
resource-constrained scenarios.

Knowledge distillation (KD) is a model-independent technique that improves student model training by
transferring knowledge from a pre-trained teacher model, offering a way to enhance the efficiency of models
such as Point Transformer V3 (PTv3). Early KD methods Hinton et al. (2015) matched softmax outputs for
classification, while later studies Liu et al. (2019a); Romero et al. (2015); Tung & Mori (2019) extended KD
to intermediate layers, capturing richer geometric and contextual information crucial for point-cloud data.
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KD is particularly promising for addressing the challenges of PTv3 in real-time deployment by enabling
lighter, faster models.

Topological Distillation leverages topological data analysis (TDA) to transfer global structural features.
Methods like TGD Jeon et al. (2024) and TopKD Kim et al. (2024) distill topological knowledge through
persistence images (PI) and diagrams (PD), improving the alignment of student-teacher. Despite benefits,
topological distillation faces scalability challenges due to the computational cost of TDA and potential errors
from PD-to-PI approximations. Its effectiveness across diverse point cloud tasks and noisy data remains
limited, requiring further research for efficient usage.

Differentiable Topological Layers. Integrating persistent homology into deep learning requires overcom-
ing the non-differentiability of the discrete persistence map. Early approaches relied on post-hoc topological
descriptors like Persistence Imagesor Landscapes, which are vectorizable but decouple the topology from the
optimization loop. More recent methods aim for end-to-end differentiability. Topological Autoencoders Moor
et al. (2020) introduced a topological signature loss that aligns the persistence diagrams of the data and
latent space, utilizing the fact that persistence values are locally continuous with respect to input distances.
PersLay Carrière et al. (2020) and Differentiable Topology Layers Brüel-Gabrielsson et al. (2020) formalized
this by treating persistence diagrams as differentiable layers, learning optimal vectorizations. However, these
methods often rely on soft approximations or kernel-based smoothing to handle gradients. In contrast, our
approach leverages the inverse map theorem to route gradients directly through the exact critical edges of the
Vietoris-Rips complex Poulenard et al. (2018), enabling precise structure alignment without approximation
artifacts.

3 Methodology

3.1 Overview of the Framework

Our framework introduces a topology-guided distillation approach designed to transfer both structural com-
plexity and semantic precision from a high-capacity teacher to a lightweight student. As illustrated in
Figure 2, the student mimics the teacher through a multi-objective optimization strategy. Beyond standard
output replication, we introduce a Topological Distillation mechanism that aligns the underlying geometric
manifolds of the feature spaces.

The student model optimizes the following objectives:

• Targeted Topological Distillation: We employ a differentiable Vietoris-Rips filtration to extract
exact persistence diagrams (H0 and H1) from both models. A persistence-weighted Chamfer loss
forces the student to replicate significant topological features (clusters and loops) while ignoring
noise.

• Gradient-Guided Feature Alignment: We utilize task-specific gradients to identify and align
spatially salient feature regions, ensuring the student focuses on semantically critical points.

• Distribution Matching: We employ Kullback-Leibler Divergence (KLD) on the soft logits to
transfer the teacher’s class-wise confidence distributions.

3.2 Manifold Alignment via Differentiable Topology

Standard losses like MSE focus on point-to-point accuracy but ignore the global shape of the data. This often
causes lightweight models to learn fractured manifolds—getting the points roughly correct, but breaking the
underlying geometric structure.

3.2.1 Differentiable Vietoris-Rips Filtration

The core challenge in integrating Topological Data Analysis (TDA) into deep learning is the discrete nature
of the persistence map. Standard algorithms for computing persistent homology rely on combinatorial
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Figure 2: Overview of the proposed framework. The distillation process is driven by (1) Topological Data
Analysis (TDA), which aligns the persistence diagrams of feature manifolds using a weighted Chamfer
distance; (2) Logits Distillation via KLD; and (3) Gradient-Guided Feature Alignment. The combi-
nation enables the lightweight student to capture global geometry (H1 loops, H0 clusters) and local semantics
simultaneously.

operations (matrix reduction over finite fields) which are non-differentiable. To overcome this, we exploit the
fact that for Vietoris–Rips filtrations the birth/death times are piecewise-smooth functions of the pairwise
distances: each birth/death value equals the filtration value of a paired creator/destroyer simplex, whose
filtration value is the maximum edge length within that simplex. In practice, we run Ripser in persistent
cohomology mode (cocycles) and record, for each finite persistence pair, the paired creator simplex σb(k)
and destroyer simplex σd(k). During backpropagation we route diagram gradients to the maximizing edge(s)
of σb(k) and σd(k) (uniformly at ties), yielding a valid Clarke subgradient almost everywhere.

Problem. Let fθ : X → H be the encoder parameterized by θ. For an input X, we obtain feature
embeddings H = fθ(X) = {h1, . . . , hN} ⊂ RC . The persistence map Ψ : H → D involves sorting edge
lengths and reducing a boundary matrix over a finite field Z2, operations which usually have zero gradients
almost everywhere.

Solution. Although persistent homology is computed by discrete operations (sorting simplices and reducing
a boundary matrix over Z2), the resulting diagram coordinates are piecewise-smooth functions of the under-
lying edge lengths: for a fixed pairing and a fixed set of maximizers defining each simplex filtration value, the
birth/death times vary smoothly with the distances. Non-differentiabilities occur only at degenerate configu-
rations, when (i) the pairing changes, or (ii) the filtration value of a critical simplex has multiple maximizing
edges. Following Solomon et al. (2022); Gameiro et al. (2016); Poulenard et al. (2018), we therefore treat
the Ripser Bauer (2021) as a forward-only black box and implement a custom autograd rule, which is in
the forward pass we compute persistence pairs and record the corresponding birth/death critical simplices,
and in the backward pass we route gradients from each pair (bk, dk) to the critical edge(s) that realize these
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filtration values in the distance matrix. At degenerate configurations we use an explicit subgradient selection
rule, which yields a valid gradient for stochastic optimization. In addition to the non-differentiabilities of
the persistence map (pairing changes and max-edge ties), our loss uses nearest-neighbor Chamfer minima
and a diagonal fallback via nested min(·) operators. These are piecewise-smooth and admit valid Clarke
subgradients; in implementation we backpropagate through the selected nearest neighbor (and through the
diagonal term when it is active), and at ties we use a deterministic uniform averaging. This yields a valid
subgradient method in stochastic optimization. Solution is described in Algorithm 1.
Theorem 1 (Gradient Backpropagation via Critical-Edge Routing). Let H = {h1, . . . , hN} ⊂ RC be the
set of feature embeddings for N points and let D ∈ RN×N is pairwise distance matrix where each entry is
the Euclidean distance Dij = ∥hi − hj∥2. We construct a Vietoris-Rips filtration on these points. In this
process, any simplex σ (a geometric shape like a triangle or tetrahedron) appears at a specific "time" called
its filtration value v(σ). This value is determined by the longest edge in the simplex:

v(σ) = max
{i,j}⊂σ

Dij .

Let a persistent homology (PH) backend (Risper Bauer (2021)) processes this filtration and returns the
multiset of topological features P = {(bk, dk, dim(k))}K

k=1. Each feature k is described by: (i) A persistence
pair (bk, dk) representing its Birth and Death times; (ii) a creator simplex σb(k) is the specific shape that
created the feature; (iii) a destroyer simplex σd(k) is the specific shape that destroyed (filled in) the feature.

To make this differentiable, we identify exactly which edges determined the birth and death times. We define
the Maximizer Edge Sets as:

Eb(k) := arg max
{i,j}⊂σb(k)

Dij , Ed(k) := arg max
{u,v}⊂σd(k)

Duv.

(For H0 births, bk = 0 and we take Eb(k) = ∅.)

When the filtration value of a simplex is defined by a max over its edge lengths, the gradient routes to
the (edge) argmax. If the argmax is unique, the routing is unique. If several edges tie for the maximum,
the function is non-smooth at that point and any Clarke subgradient is valid. Concretely, let Eb(k) and
Ed(k) be the sets of maximizer edges for the birth and death simplices of pair k. We choose coefficients
{α(k)

ij }{i,j}∈Eb(k) and {β(k)
uv }{u,v}∈Ed(k) with α

(k)
ij ≥ 0 and

∑
{i,j}∈Eb(k) α

(k)
ij = 1 (and similarly for β), and

distribute the gradient across the tied edges accordingly. Common choice is uniform averaging over tied
maximizers (α(k)

ij = 1/|Eb(k)|).

Let L be any loss differentiable with respect to the diagram coordinates {(bk, dk)}. Assume we are away
from pairing-change degeneracies (i.e., the creator/destroyer simplices σb(k), σd(k) are locally constant);
at tie points among maximizer edges, interpret derivatives in the Clarke subgradient sense. Then a valid
gradient of L with respect to Dij (for i < j) is

∂L
∂Dij

=
K∑

k=1

(
∂L
∂bk

α
(k)
ij 1{{i,j}∈Eb(k)} + ∂L

∂dk
β

(k)
ij 1{{i,j}∈Ed(k)}

)
, i < j, (1)

Where:

• ∂L
∂bk

and ∂L
∂dk

are the gradients from the Persistence-Weighted Chamfer Loss (PWCD) (Algorithm 3).

• 1{i,j}∈Eb(k) is an indicator function. It is 1 if edge {i, j} is the Critical Creator Edge for feature k,
and 0 otherwise.

• Symmetrically ∂L
∂Dji

= ∂L
∂Dij

.

Moreover, let Dij = ∥hi−hj∥2 and let gij := ∂L/∂Dij be accumulated for undirected edges {i, j} with i < j
(as in Equation 1). For any stabilizer εdist > 0, a valid gradient with respect to embeddings is obtained by
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summing over undirected edges: for each i < j,
∂L

∂hi
+= gij

hi − hj

Dij + εdist
,

∂L

∂hj
−= gij

hi − hj

Dij + εdist
.

In practice, Algorithm 4 computes (∂L/∂bk, ∂L/∂dk) for PWCD, and Algorithm 1 implements Equation 1
by routing these diagram gradients to the critical edges of the paired simplices, thereby obtaining ∂L/∂D
and finally ∂L/∂F .

3.2.2 Persistence-Weighted Chamfer Distance

While the Differentiable Rips Filtration allows us to extract persistence diagrams, comparing them during
training presents a unique challenge. Standard topological metrics like the Wasserstein distance (Wp) or
Bottleneck distance (W∞) rely on optimal transport (matching), which is computationally expensive (O(n3))
and often creates sparse, unstable gradients.

A naive alternative is the Chamfer Distance, which is computationally efficient (O(n2)) and differentiable.
However, the standard Chamfer distance has a fatal flaw in knowledge distillation: it treats all target features
equally. A Teacher’s persistence diagram often contains hundreds of low-persistence features (dots near the
diagonal) caused by minor fluctuations or sampling noise in the teacher’s latent space. In a standard Chamfer
calculation, the Student would be forced to allocate representational capacity to replicate this noise, leading
to overfitting of the teacher’s artifacts rather than its semantic geometry.

We solve this by introducing a Persistence-Weighted Chamfer Distance. This metric effectively functions as
a soft attention mechanism. It forces the Student to prioritize robust topological features (like loops and
clusters) while permitting it to ignore the Teacher’s stochastic noise.

Definition. Let P T = {pi}M
i=1 and P S = {qj}N

j=1 be the multisets of finite persistence pairs in a fixed
homology dimension, where p = (b, d) ∈ R2. Define persistence pers(p) = d − b, teacher weights w(p) =
log(1 + pers(p)), and the stabilized normalizer w̄T =

∑
p∈DT w(p) + ϵ. Let the squared distance to the

diagonal be dist2
∆(b, d) = (d− b)2/2.

The Persistence-Weighted Chamfer Distance Lw
CD is defined as:

Ltopo(P T , P S) = 1
w̄T

∑
p∈P T

w(p) min
(

min
q∈PS

∥p− q∥2
2, dist2

∆(p)
)

(2)

+ 1
|P S |

∑
q∈P S

min
(

min
p∈DT

∥q − p∥2
2, dist2

∆(q)
)

, (3)

with the standard conventions that if DS = ∅ then minq∈DS
(·) = +∞ and the precision term is 0, and if

DT = ∅ then the recall term is 0. This yields a well-defined objective for all (DT , DS) and ensures that
unmatched student features are penalized by moving them toward the diagonal (vanishing persistence).

Theoretical Justification (See Appendix A.3).

3.3 Saliency Aware Feature Alignment

Standard feature distillation treats all spatial locations equally, often causing the student to waste repre-
sentational capacity on task irrelevant background regions rather than semantic boundaries. To address
this, we introduce a Saliency Aware Feature Alignment mechanism. We interpret the gradient of the task
loss Lseg with respect to feature maps as a proxy for semantic importance, prioritizing regions where model
predictions are most sensitive to feature perturbations.

3.3.1 Discriminative Channel Weighting

Let F l ∈ RN×C denote the feature activations at layer l. We define the task sensitivity of the k-th channel
as the global magnitude of its gradient with respect to the segmentation loss.
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Although the teacher model’s parameters are frozen during distillation, we explicitly compute the gradients
of the task loss Lseg with respect to the feature activations (hidden states) to quantify spatial sensitivity.
The channel-wise importance weight ωk

l is computed as:

ωl
k = 1

N

N∑
i=1

∣∣∣∣∣∂Lseg(Y, YGT )
∂F l

i,k

∣∣∣∣∣ (4)

where YGT denotes the ground truth labels. This step identifies which feature channels are causally respon-
sible for the correct classification, independent of the model’s weight updates.

3.3.2 Spatial Attention Transfer

We construct a spatial saliency map M l ∈ RN by aggregating the weighted feature responses across the
channel dimension. This aggregation collapses the feature descriptors into a scalar attention score for each
point, rendering the representation dimension agnostic:

M l
i =

C∑
k=1

∣∣ωl
kF l

i,k

∣∣ . (5)

Since the teacher and student possess different channel dimensions (CT ̸= CS), the raw magnitudes of their
attention maps are not directly comparable. To ensure scale invariance, we apply min max normalization to
generate the final attention descriptor M̂ l:

M̂ l = M l −min(M l)
max(M l)−min(M l) + ϵ

. (6)

The alignment objective minimizes the L1 distance between the normalized attention maps of the teacher
(M̂T ) and student (M̂S):

Lgrad = 1
N

L∑
l=1

∥∥∥M̂ l
T − M̂ l

S

∥∥∥
1

. (7)

By optimizing Lgrad, we force the student to replicate the teacher’s spatial focus, ensuring that limited
capacity is allocated to the most discriminative points in the cloud regardless of the underlying feature
dimension.

3.4 Optimization Objective

To complement the geometric and spatial alignment provided by the topological and saliency modules, we
incorporate a Semantic Distillation term using Kullback-Leibler Divergence (KLD) Kullback (1951). While
Ltopo and Lgrad align the encoder’s latent manifold, the KLD loss is applied to the temperature-scaled output
logits of the classifier. This guides the student to mimic not only the teacher’s hard predictions but also the
underlying class probability distribution, capturing inter-class correlations.

The total training objective integrates the standard segmentation task with the three distillation constraints:

Ltotal = Lseg + λtopoLtopo + λgradLgrad + λkdLkd, (8)

where:

• Lseg is the standard Cross-Entropy loss for point-wise classification using ground truth labels.

• Ltopo enforces the preservation of high-level topological structures (clusters and loops) in the latent
space.

• Lgrad ensures the student focuses on the same discriminative spatial regions as the teacher.

• Lkd minimizes the KL divergence between the teacher’s and student’s softened logits, transferring
semantic confidence.

The hyperparameters λtopo, λgrad, and λkd balance the contribution of each knowledge stream.
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4 Experiments and Results

To assess our topology-aware distillation framework, we performed experiments on three prominent au-
tonomous driving datasets: SemanticKITTI Behley et al. (2019), Waymo Open Dataset Caesar et al. (2020),
and NuScenes Sun et al. (2020). These datasets offer large-scale, real-world point-cloud sequences, ideal
for benchmarking point-cloud processing techniques. We provide detailed descriptions of datasets, training
protocols, and evaluation procedures in the Appendix C.

4.1 Experimental Results

Performance on nuScenes Dataset. Table 1 compares our method against state-of-the-art frameworks
on the nuScenes test set. While recent cross-modal methods integrating camera data (LC), such as TPV-
IGKD Li et al. (2024a) (81.3% mIoU) and U2MKD Liu & et al. (2024) (81.2% mIoU), establish the current
upper bound, our proposed LiDAR-only student achieves a highly competitive 78.2% mIoU. This signifi-
cantly outperforms established baselines including Cylinder3D Zhu et al. (2021) (76.1%), AMVNet Liong
et al. (2020) (76.1%), and 2DPASS Yan et al. (2022) (76.2%). The advantages of our approach are further
highlighted by its class-wise performance. Notably, our student achieves the highest accuracy among all
compared models including multi-modal fusion ones in the car (94.3%) category and demonstrates superior
performance in the terrain (89.3%) category. This suggests that while camera-based methods rely on visual
texture, which can be inconsistent for ground surfaces, our Persistence-Weighted Topological Loss effectively
maintains the structural integrity of large geometric manifolds like terrain. Furthermore, the gradient-guided
alignment sharpens object boundaries, allowing our lightweight student to resolve the complex geometry of
cars better than heavier fusion models.
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RangeNet++ Milioto et al. (2019) 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet Zhang et al. (2020b) 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
SalsaNext Cortinhal et al. (2020b) 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
Cylinder3D Zhu et al. (2021) 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
C3D_0.5× + KA Hou et al. (2022b) 73.9 74.2 36.3 88.5 87.6 47.1 76.9 78.3 63.5 57.6 83.4 94.9 70.3 73.8 73.2 88.4 86.3
AMVNet Liong et al. (2020) 76.1 79.8 32.4 87.4 90.4 62.5 81.9 75.3 72.3 83.5 65.1 97.4 67.0 78.8 74.6 90.8 87.9
2DPASS Yan et al. (2022) 76.2 75.3 43.5 95.3 91.2 54.5 78.9 78.2 62.1 70.0 84.2 96.3 73.2 74.2 74.9 89.8 85.9
SDSeg3D Li et al. (2022) 77.7 77.5 49.4 93.9 92.5 54.9 86.7 80.1 67.8 65.7 86.0 96.4 74.0 74.9 74.5 86.0 82.8
RPVNet Xu et al. (2021) 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.6 66.9 69.4 80.5 96.9 73.5 75.9 76.0 90.6 88.9
GFNet Qiu et al. (2022) 76.1 81.1 31.6 76.0 90.5 60.2 80.7 75.3 71.8 82.5 65.1 97.8 80.4 80.4 76.2 91.8 88.9
SVASeg Zhao et al. (2022) 74.7 74.1 44.5 88.4 86.6 48.2 72.4 72.3 61.3 57.5 75.7 96.3 70.7 74.7 74.6 87.3 86.9
U2MKD Liu & et al. (2024) (LC) 81.2 85.9 43.4 93.1 90.1 72.5 86.3 81.6 78.5 85.7 76.5 97.6 69.8 80.3 77.0 91.8 89.5
KT-Weakly Wang et al. (2025)(LC) 80.2 - - - - - - - - - - - - - - - -
MV3Dseg Sun et al. (2025) 81.1 79.7 59.2 96.0 92.6 60.3 88.4 83.6 70.8 80.2 81.8 96.7 74.4 79.6 76.1 90.0 88.2
TPV-IGKD Li et al. (2024a) (LC) 81.3 85.4 43.2 92.9 93.2 75.7 77.4 83.4 77.2 86.8 77.4 97.7 71.4 81.3 77.4 91.7 89.0

Student w.o KD 76.1 76.1 46.7 89.9 92.2 40.4 83.9 78.3 63.2 68.2 81.8 96.3 72.8 73.6 75.4 89.7 88.8

Student with KD 78.2 79.1 48.3 92.9 94.3 41.3 85.7 82.9 62.4 70.2 80.3 96.7 76.3 74.2 78.8 90.9 89.3

Table 1: Comparison of our proposed method with previous state-of-the-art LiDAR semantic segmentation
methods on the nuScenes test dataset. The table reports the mean Intersection over Union (mIoU) for
different models across various object categories.

Performance on SemanticKITTI. Table 2 details the semantic segmentation performance on the Se-
manticKITTI test set. Our distilled student model achieves a highly competitive 73.1% mIoU, effectively
approaching the state-of-the-art MV3Dseg Sun et al. (2025) (73.2%) while using a significantly lighter ar-
chitecture. Crucially, our method outperforms recent complex baselines such as KT-Weakly Wang et al.
(2025) (71.4%) and C3D+SCPNet Xia et al. (2023) (71.5%). The efficacy of our distillation strategy is
evidenced by a substantial 1.6% improvement over the baseline student (71.5%). Theoretical advantages of
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our Topology-Aware Distillation become evident in the class-wise breakdown. While multi-view methods like
MV3Dseg excel in texture-heavy classes (e.g., vegetation), our approach dominates in geometrically complex
and structural categories. This confirms that while Scene Completion methods (e.g., SCPNet) tend to over-
smooth fine details to fill occlusions, our persistence-based loss (H0, H1) forces the student to preserve thin,
disconnected topological features and complex loops, effectively preventing the washing out of small objects
common in lightweight networks.
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SalsaNext Cortinhal et al. (2020b) 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 47.4
KPConv Thomas et al. (2019) 58.8 96.0 32.0 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 95.0 64.2 84.8 69.2 69.1 56.4 47.4
FusionNet Zhang et al. (2020a) 61.3 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.7 77.1 30.5 90.5 69.4 84.5 69.8 68.5 60.4 46.2
KPRNet Kochanov et al. (2020) 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 64.8 85.7 69.8 71.2 58.7 64.1
TORNADONet Gerdzhev et al. (2021) 63.1 94.2 51.2 48.1 40.0 38.2 63.6 60.1 34.9 89.7 66.7 74.5 28.7 91.3 65.8 85.6 71.5 70.1 58.0 49.2
SPVNAS Tang et al. (2020) 66.4 97.3 51.5 50.8 59.8 58.8 65.7 62.5 43.7 90.2 67.6 75.2 16.9 91.3 65.9 86.1 73.4 71.0 64.6 66.9
Cylinder3D Zhu et al. (2021) 68.9 97.1 67.6 50.8 50.8 58.5 73.7 69.2 48.0 92.2 65.0 77.0 32.3 90.7 66.5 85.6 72.5 69.8 62.4 66.2
PolarNet+M2S-KD Qiu et al. (2023) 58.0 93.5 45.9 36.3 27.6 34.9 55.0 51.4 15.8 91.1 64.7 73.8 26.1 92.5 67.0 84.6 63.4 67.4 50.7 59.5
C3D+M2S-KD Qiu et al. (2023) 65.6 96.4 60.8 54.8 42.8 51.2 69.1 67.8 34.8 92.2 66.5 76.7 30.4 91.1 65.7 85.5 69.8 68.6 60.7 61.0
C3D+SCPNet Xia et al. (2023) 71.5 97.5 60.9 56.3 58.6 65.9 70.7 71.8 58.7 93.6 72.1 80.9 36.2 93.3 72.1 86.2 74.1 71.6 66.7 71.8
U2MKD Liu & et al. (2024) (LC) 69.6 - - - - - - - - - - - - - - - - - - -
TPV-IGKD Li et al. (2024a) 69.3 96.7 63.3 65.8 54.6 63.1 76.5 80.7 41.6 90.0 60.3 75.4 29.1 91.1 66.3 85.9 74.2 70.3 63.8 69.1
KT-Weakly Wang et al. (2025)(LC) 71.4 - - - - - - - - - - - - - - - - - - -
MV3Dseg Sun et al. (2025) 73.2 97.6 69.8 76.1 65.4 61.3 79.1 80.0 71.1 94.2 67.6 78.6 37.5 91.8 65.9 85.7 72.8 73.7 63.5 60.0

Student w.o KD 71.5 96.0 71.0 56.5 56.5 62.2 77.2 72.8 56.8 95.5 68.7 80.5 36.4 94.0 70.1 89.0 76.0 73.4 66.1 69.8

Student with KD 73.1 96.8 72.6 58.8 58.8 65.1 77.6 73.9 56.5 92.8 70.5 80.3 43.6 91.6 71.7 87.4 76.6 74.4 68.3 71.6

Table 2: Comparison of semantic segmentation performance on the SemanticKITTI dataset. The table
reports the mean Intersection over Union (mIoU) for different models across various object categories.

We further evaluate our framework on the Waymo Open Dataset, as summarized in Table 4. Among multi-
modal methods utilizing both LiDAR and camera (LC), MSeg3D Li et al. (2023) and UMKD (B) Sun et al.
(2024) demonstrate strong performance with validation mIoU scores of 69.6 and 71.1, respectively. Within
the LiDAR-only (L) category, LidarMultiNet Ye et al. (2022) achieves a leading test mIoU of 71.1; however,
it should be noted that this approach relies on 3D bounding boxes as an additional supervision signal during
training. Our teacher model sets a high performance ceiling for LiDAR-only methods with a test mIoU of
71.3. Notably, our distilled student model achieves a test mIoU of 69.5, making it competitive with several
heavier architectures and even approaching the performance of multi-modal methods. This performance is
particularly significant given the student’s efficiency; as shown in Table 3, our model maintains competitive
generalization while offering a substantial reduction in parameter count.

4.2 Comprehensive Teacher–Student Analysis

Tables 5 and 6 compare the Teacher (46.16M params) and Student (2.78M params) models on nuScenes,
showcasing the significant efficiency benefits of our distillation framework. The Teacher model possesses
16.6× more parameters than the Student, necessitating a deeper architecture suited for high-accuracy tasks
on high-end hardware. In contrast, the Student’s lightweight design significantly reduces computational
overhead, achieving a 36.70× reduction in encoder FLOPs. This efficiency translates to a 2.47× faster
total CPU time (203.10 ms vs. 501.11 ms) and a 4.19× faster total CUDA time (102.07 ms vs. 427.31
ms), making it highly suitable for real-time applications.Additionally, the Student requires 4.5× less peak
CUDA memory for matrix multiplication operations (3.57 GB vs. 16.05 GB), which allows it to benefit more
effectively from Flash Attention optimizations. At the operational level, the Teacher’s resource demands are
markedly higher, requiring between 2.91× and 4.69× more memory for operations such as Alloc, Idx, and
LN. While the Teacher provides an accuracy ceiling on high-performance hardware, the Student’s drastically
reduced memory footprint and accelerated execution make it ideal for deployment on resource-constrained
edge devices.
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Method Params (M) FPS
RangeNet++ Milioto et al. (2019) 50.0 12.5
PolarNet Zhang et al. (2020b) 45.0 16.7
SalsaNext Cortinhal et al. (2020b) 6.7 23.8
Cylinder3D Zhu et al. (2021) 53.0 12.0
KPConv Thomas et al. (2019) 15.0 12.0
SPVNAS Tang et al. (2020) 1.0 16.0
KT-weakly Wang et al. (2025) - 25.0
MV3DSeg Sun et al. (2025) 45.6 22.7
U2MKD Liu & et al. (2024) 21.2 10.64
TPV-IGKD Li et al. (2024a) 146.18 8.7
PTv3 (Teacher) 46.16 16.61
Our Student 2.78 27.64

Table 3: Comparison of model size (in M parame-
ters) and inference speed (FPS) on NuScenes.

Method Input mIoU (test / val)
MSeg3D Li et al. (2023) LC 70.5 / 69.6
UMKD (B) Sun et al. (2024) LC 70.0 / 71.1
PMF Zhuang et al. (2021) LC – / 58.2
SalsaNext Cortinhal et al. (2020a) L 55.8 / –
Realsurf Sun et al. (2024) L 67.6 / –
SPVCNN++ Tang et al. (2020) L 67.7 / –
VueNet3D Sun et al. (2024) L 68.6 / –
SphereFormer Lai et al. (2023) L – / 69.9
LidarMultiNet Ye et al. (2022) L 71.1 / 69.9
Ours (Student w/o KD) L 67.2 / 66.5
Ours (Student w/ KD) L 69.5 / 68.7
Ours (Teacher) L 71.3 / 69.8

Table 4: Semantic segmentation mIoU on Waymo
Open Dataset. Inputs: LiDAR (L), Camera (C).

Metric Teacher (46.16M) Student (2.78M) Comparison

Total Parameters 46,160,000 (∼46.16M) 2,780,000 (∼2.78M) Student is 16.6× smaller
Encoder Depths (2, 2, 2, 6, 2) (1, 1, 1, 2, 1) 2.33× fewer blocks
Encoder Channels (32, 64, 128, 256, 512) (16, 16, 32, 64, 128) 2–4× smaller
Encoder Attention Heads (2, 4, 8, 16, 32) (1, 1, 2, 4, 8) 2–4× fewer
Decoder Depths (2, 2, 2, 2) (1, 1, 1, 1) 2× fewer blocks
Decoder Channels (64, 64, 128, 256) (64, 64, 128, 128) Last stage is 2× smaller
Decoder Attention Heads (4, 4, 8, 16) (2, 2, 4, 8) 2× fewer
Patch Size 1024 1024 Same
Encoder GFLOPs 380.25 10.36 36.7× lower
Decoder GFLOPs 116.44 33.45 3.48× lower
Attention Compute (Encoder) 22.58 0.60 37.63× lower
Inference Time (excl. overhead) ∼0.0592 s ∼0.0362 s 1.64× faster
Batch Inference Time ∼7.34 s ∼4.38 s Student faster
FPS ∼16.9 ∼27.7 ≈ 1.64× higher
Fixed Overhead ∼0.018 s ∼0.011 s ≈ 1.64× faster
Attention Mechanism Flash Attention Flash Attention Student benefits more

Table 5: Comparison of Teacher and Student models on NuScenes.

4.3 Effectiveness of Individual Loss Components

Table 7 demonstrates the effectiveness of each proposed loss component. Adding the topology-awareness loss
Ltopo to the baseline (Lseg+LKLD) improves mIoU by +1.1 on SemanticKITTI (71.5→ 72.6), +1.5 on Waymo
(69.2 → 70.7), and +0.7 on nuScenes (76.9 → 77.6), indicating that preserving global geometric structure
consistently benefits cross-dataset generalization. Meanwhile, the gradient-guided alignment loss Lgrad yields
consistent gains of +0.8, +1.0, and +0.3 on SemanticKITTI, Waymo, and nuScenes respectively, suggesting
improved refinement of locally discriminative features. Combining Ltopo and Lgrad achieves the best results
on all benchmarks, reaching 73.1 (SemanticKITTI), 71.5 (Waymo), and 78.1 (nuScenes), confirming their
complementary contributions.

5 Conclusion and Future Work

We presented a novel distillation framework that bridges the gap between high-capacity 3D perception models
and resource-constrained deployment environments. By integrating Topological Distillation with Saliency-
Aware Feature Alignment, our method enables a lightweight student model to inherit not only the semantic
precision of a teacher but also its underlying geometric manifold structure.
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Metric Teacher Student Improvement

Total CPU Timeb 501.11 ms 203.10 ms 2.47× faster
Total CUDA Time 427.31 ms 102.07 ms 4.19× faster
MMadd (CUDA Mem)a 16.05 GB 3.57 GB 4.5× less
MMadd (Self CUDA)a 173.51 ms 34.75 ms 5.0× faster
Alloc (CUDA Memory) 8.73 GB 3.00 GB 2.91× less
Idx (CUDA Memory) 7.27 GB 1.78 GB 4.08× less
GELU (CUDA Memory) 6.82 GB 1.67 GB 4.08× less
LN (CUDA Memory)a 4.62 GB 985.43 MB 4.69× less
Infer (Self CPU Time) 47.01 ms 37.24 ms 1.26× faster
MMadd (Self CPU Time)a 5.40 ms 2.72 ms 1.99× faster

a Attention-related ops: matrix multiplications for Q, K, V and layer normalization.
b Total CPU time is from a profiling run; separate memory-focused run shows 3.02× ratio (Teacher: 278.80 ms, Student:
92.44 ms).

Table 6: Comparison of memory and time usage between Teacher and Student.

LKLD Lseg Ltopo Lgrad S.KITTI Waymo nuScenes

✓ ✓ 71.8 67.9 76.9
✓ ✓ ✓ 72.6 68.7 77.6
✓ ✓ ✓ 72.3 68.2 77.2
✓ ✓ ✓ ✓ 73.1 69.5 78.1

Table 7: Influence of each loss component on the final performance (mIoU %).

Extensive experiments on nuScenes, SemanticKITTI, and Waymo demonstrate that our approach achieves
state-of-the-art performance among LiDAR-based distillation methods. Specifically, our student model re-
tains competitive segmentation accuracy while delivering a 16× reduction in parameters and up to 1.9×
acceleration in inference speed. Crucially, our qualitative analysis reveals that enforcing topological consis-
tency effectively mitigates the fragmentation common in lightweight networks, ensuring robust performance
on complex, large-scale structures.

Future Work. Although our topology-preserving subsampling substantially reduces the cost of persistent-
homology computation during training, a natural next step is to replace heuristic selection with learnable,
task-adaptive topological token sampling and amortized PH computation, enabling larger filtrations and
higher-order homology under the same budget. A second direction is extending topology- and gradient-guided
distillation to spatio-temporal perception and multi-parameter topology, enforcing consistency across multi-
sweep sequences and across geometric scales. Finally, we will study topology-aware distillation in cross-modal
and open-world settings, distilling structural priors from camera/BEV and vision(-language) foundation
models into deployment-oriented backbones (e.g., hardware-optimized attention or linear-time state-space
models) to improve long-tail generalization and robustness under missing or misaligned modalities.
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A Theoretical Foundations and Justifications

A.1 Topology of Feature vs. Topology of Spatial Coordinates

A critical distinction in our framework is the choice to distill the topology of latent feature spaces rather
than physical spatial coordinates. This design is grounded in two fundamental geometric learning principles:

1. Semantic vs. Physical Proximity: Input spatial coordinates are constrained by Euclidean
distance, capturing only physical proximity. In contrast, deep latent features evolve to capture
semantic proximity. As demonstrated by Wang et al. (2019) in Dynamic Graph CNNs (DGCNN),
feature-space neighborhoods in deeper layers group semantically similar objects (e.g., aggregating
features from both the front and rear tires of a vehicle) even when they are geometrically distant.
This allows the network to bypass physical distance, creating semantically coherent clusters that
coordinate-based topology cannot capture.

2. Invariance to Rigid Transformations: Coordinate-based distillation objectives (e.g., Mean
Squared Error on point coordinates) penalize any deviation in spatial alignment, making them
sensitive to rotation and translation. Conversely, the topology of the feature space when charac-
terized by persistent homology is theoretically invariant to such isometries. The Stability Theorem
of persistence diagrams Cohen-Steiner et al. (2007) guarantees that topological descriptors depend
solely on pairwise distances, rendering them invariant to the rigid transformation of the input. By
aligning feature topology, we force the student to learn the intrinsic shape of the teacher’s semantic
manifold Moor et al. (2020), ensuring robust knowledge transfer that generalizes across geometric
perturbations Jeon et al. (2024).

A.2 Subsampling and Stability of Vietoris–Rips Persistence

A major bottleneck in topological distillation is the computational cost of persistent homology (PH), which
scales superlinearly with the number of points. We therefore compute PH on a subsample selected by
Topology-Preserving Sampling (TPS) (Algorithm 5).

Let H = {h1, . . . , hN} ⊂ RC be the full feature set and let HI ⊂ H be the TPS subsample of size M . Define
the (one-sided) covering radius

ε := max
x∈H

min
y∈HI

∥x− y∥2.

Because HI ⊂ H, this equals the Hausdorff distance dH(H, HI).

Proposition 1 (Rips interleaving under Hausdorff perturbations). Let A, B be finite subsets of
a metric space (X , d) with dH(A, B) ≤ ε. Then the Vietoris–Rips filtrations Rips(A, r) and Rips(B, r) are
2ε-interleaved: for all r ≥ 0,

Rips(A, r)→ Rips(B, r + 2ε) and Rips(B, r)→ Rips(A, r + 2ε),

via the nearest-neighbor correspondence. Consequently, their persistence modules are 2ε-interleaved, and
the bottleneck distance between the corresponding persistence diagrams in any fixed homology dimension is
at most 2ε.

Proof. For any edge (a, a′) in Rips(A, r), choose b, b′ ∈ B with d(a, b) ≤ ε and d(a′, b′) ≤ ε. By the triangle
inequality, d(b, b′) ≤ d(b, a) + d(a, a′) + d(a′, b′) ≤ r + 2ε, so (b, b′) is an edge in Rips(B, r + 2ε). This extends
to all simplices, yielding a simplicial map. The reverse direction is analogous.

Implication for TPS. TPS directly minimizes the covering radius ε for a fixed budget M , so Proposi-
tion A.1 implies that the persistence diagrams computed on the TPS subset are a controlled approximation
of the persistence diagrams of the full feature set, with error bounded (in bottleneck distance) by O(ε). This
motivates using TPS to reduce PH cost while preserving the dominant topological structures.
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A.3 Noise Suppression via Persistence Weighting

This subsection provides the theoretical proof and Lemma 1 for Section 3.2.2, demonstrating how the log-
arithmic weighting function bounds the gradient influence of low-persistence features. It mathematically
establishes that as the persistence of a topological feature approaches zero (representing noise), its contri-
bution to the loss vanishes, thereby preventing the student model from overfitting to stochastic artifacts in
the teacher’s latent space.
Lemma 1 (Noise Suppression via Persistence Weighting). Let DT and DS be teacher and student persistence
diagrams in a fixed homology dimension, containing only finite pairs. Define the persistence of a point
p = (b, d) as pers(p) = d− b, and define the teacher weight

w(p) = log
(
1 + pers(p)

)
≥ 0, (9)

together with the stabilized normalizer

w̄T =
∑

p∈DT

w(p) + ϵ, ϵ > 0. (10)

Consider the weighted teacher-to-student Chamfer term

LT →S = 1
w̄T

∑
p∈DT

w(p) min
q∈DS

∥p− q∥2
2. (11)

Then for any teacher point p0 ∈ DT with pers(p0) = δ, its contribution to LT →S is bounded by

0 ≤ w(p0)
w̄T

min
q∈DS

∥p0 − q∥2
2 ≤

log(1 + δ)
ϵ

min
q∈DS

∥p0 − q∥2
2. (12)

In particular, as δ → 0 (near-diagonal/noisy features), log(1 + δ) → 0 and this bound vanishes, so low-
persistence teacher points have negligible influence on the weighted alignment term.

Proof. The contribution of the Teacher’s noise point pnoise to the Recall loss is given by:

Lp = dmin ·
w(pnoise)

w̄T
(13)

Substituting the weight definition w(p) = log(1 + δ) and the normalization factor:

Lp = dmin ·
log(1 + δ)∑

k w(k) + ϵ
(14)

Using the first-order Taylor expansion log(1 + x) ≈ x for small δ, and observing that the denominator is
strictly bounded below by ϵ (since w(k) ≥ 0):

Lp ≈ dmin ·
δ

w̄T
≤ dmin ·

δ

ϵ
(15)

Taking the limit as the persistence δ → 0:

lim
δ→0

Lp ≤ lim
δ→0

(
dmin

ϵ
· δ

)
= 0 (16)

Since w̄T is bounded away from zero (w̄T ≥ ϵ), the denominator does not vanish. Consequently, as the
persistence δ → 0, the loss contribution Lp → 0 linearly. This ensures that the Student model is not penalized
for ignoring negligible artifacts in the Teacher’s latent space, allowing it to focus its representational capacity
on matching persistent geometric structures.
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B Efficient Implementation and Algorithms

B.1 Differentiable Feature-Space Distillation

This subsection details the complete forward and backward pass of the topological distillation framework
(Algorithm 1). It outlines the specific sequence of operations—including feature normalization, Topology-
Preserving Sampling (TPS), and the calculation of pairwise distances—required to route gradients through
the critical edges of the Vietoris-Rips filtration.

Algorithm 1 Differentiable Feature-Space Topological Distillation (with Subgradient Routing)

Require: Student features HS ∈ RB×N×CS , Teacher features HT ∈ RB×N×CT

Require: Subsample size M (1024), stabilizer ϵ > 0, tie tolerance τtie
Ensure: Topological Loss Ltopo

1: Ltopo ← 0
2: for k = 1 to B do
3: // Step 1: Feature Normalization
4: H̃S ← Normalize(HS [k])
5: H̃T ← Normalize(HT [k])
6: // Step 2: Topology-Preserving Selection (See Algorithm 5)
7: Ik ← TPS(H̃T , M)
8: S← H̃S [Ik], T← H̃T [Ik]
9: // Step 3: Distance Matrix Computation

10: DS ← PairwiseDist(S), DT ← PairwiseDist(T)
11: // Step 4: Topological Summarization (Forward with Tie-breaking)
12: {DS

d }d∈{0,1} ← DiffRipser(DS ; τtie)
13: {DT

d }d∈{0,1} ← Ripser(DT )
14: // Step 5: Persistence Weighted Chamfer Distance (See Algorithm 2)
15: for d ∈ {0, 1} do
16: Ltopo ← Ltopo + PWCD(DT

d ,DS
d ; ϵ)

17: end for
18: end for
19: return Ltopo/B

B.2 Persistence-Weighted Chamfer Loss

This subsection defines the specialized loss function used to align the persistence diagrams of the student
and teacher. It explains the logarithmic weighting mechanism designed to suppress low-persistence sampling
noise while prioritizing robust topological features like loops and clusters during optimization (Algorithm 2).

B.3 Implementation of Gradient Routing

While persistent homology is computed by discrete operations (sorting simplices and boundary-matrix re-
duction), the birth/death times are piecewise-smooth functions of the underlying pairwise distances. For the
Vietoris–Rips filtration (simplex filtration value equals the maximum edge length), each birth/death value is
realized by one or more maximizer edges in the distance matrix. At degenerate configurations where multiple
edges tie for the same filtration value, the gradient is not unique; we use a standard subgradient convention
by averaging the gradient uniformly over all tied maximizer edges. This yields stable optimization and avoids
relying on fragile uniqueness assumptions. The method is described in Algorithm 3.

B.4 Complexity Reduction via Topology-Preserving Selection

To implement efficient subsampling, we employ Topology-Preserving Sampling (TPS), which is a greedy ap-
proximation to the k-center problem. TPS explicitly minimizes the covering radius (and thus the Hausdorff
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Algorithm 2 Persistence-Weighted Chamfer Loss
Require: Teacher diagram PT = {pi}M

i=1 ⊂ R2; Student diagram PS = {qj}N
j=1 ⊂ R2; stabilizer ϵ > 0.

Ensure: Topology loss Ltopo.
1: // 1) Trivial case
2: if M = 0 ∧N = 0 then
3: return 0
4: end if
5: // 2) Teacher weights
6: if M > 0 then
7: W T [i]← log(1 + max(p(2)

i − p
(1)
i , 0)) # p = (b, d)

8: W̄T ←
∑M

i=1 WT [i] + ϵ
9: end if

10: // 3) Helper: squared distance to diagonal
11: dist2

∆(b, d)← (d−b)2

2
12: // 4) If both non-empty, compute pairwise costs
13: if M > 0 ∧N > 0 then
14: Cij ← 1

2∥pi − qj∥2
2 # M ×N

15: end if
16: // 5) Recall term (Teacher → Student) with diagonal fallback
17: if M = 0 then
18: Lrecall ← 0
19: else if N = 0 then
20: Lrecall ← 1

W̄T

∑M

i=1 WT [i] dist2
∆(p(1)

i , p
(2)
i )

21: else
22: minT →S [i]← minj Cij

23: Lrecall ← 1
W̄T

∑M

i=1 WT [i] min
{

minT →S [i], dist2
∆(p(1)

i , p
(2)
i )

}
24: end if
25: // 6) Precision term (Student → Teacher) with diagonal fallback
26: if N = 0 then
27: Lprec ← 0
28: else if M = 0 then
29: Lprec ← 1

N

∑N

j=1 dist2
∆(q(1)

j , q
(2)
j )

30: else
31: minS→T [j]← mini Cij

32: Lprec ← 1
N

∑N

j=1 min
{

minS→T [j], dist2
∆(q(1)

j , q
(2)
j )

}
33: end if
34: return Lrecall + Lprec

distance) between the selected subset and the full feature set. This directly reduces the worst-case approxi-
mation error of geometric/topological summaries under a fixed budget. We use TPS to select indices, then
compute PH only on the selected subset. The algorithm is described in Algorithm 5.

Quantitative Efficiency Analysis. To validate the computational efficiency of our hybrid pipeline (com-
bining the Ripser Bauer (2021), critical-edge gradient routing, and TPS), we benchmark the total forward-
and-backward runtime against a naive pure-PyTorch implementation. As shown in Table 8, the naive
approach suffers from combinatorial complexity explosion, becoming computationally intractable beyond
N = 100 and exhausting GPU memory at N = 200. In contrast, our method maintains real-time perfor-
mance, achieving speedup factors exceeding 10, 000× at N = 100 and scaling efficiently to N = 1024 with
negligible overhead.
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Algorithm 3 Critical-Edge Gradient Routing

Require: Student features F ∈ RN×C ; teacher diagrams {P (d)
T }d∈{0,1}; stabilizers εdist, εw > 0; tie tolerance τtie.

Ensure: Feature gradients ∇FL.
1: Compute distance matrix D: Dij ← ∥Fi − Fj∥2 for 1 ≤ i < j ≤ N .
2: Initialize edge accumulator G ∈ RN×N with zeros.
3: for d ∈ {0, 1} do
4: // Forward pass: compute diagrams and extract critical simplices
5: Run Ripser(D) to obtain student diagram P

(d)
S and pairing map Π(d).

6: Compute diagram gradients: (gb, gd)← PWCDGrad(D(d)
T , D

(d)
S ; εw) // See algorithm 4.

7: for k = 1 to |D(d)
S | do

8: Let (σbirth, σdeath)← Π(d)(k).
9: // Route birth gradient (only for H1)

10: if d = 1 then
11: Let {i, j} = σbirth.
12: Gij ← Gij + gb[k].
13: end if
14: // Route death gradient
15: if d = 0 then
16: Let {u, v} = σdeath be the destroying edge.
17: Guv ← Guv + gd[k].
18: else
19: // For H1, death is caused by a triangle {a, b, c} completing a cycle
20: Let E∆ = {(a, b), (b, c), (a, c)}.
21: m← max(u,v)∈E∆ Duv.
22: E⋆ ← {(u, v) ∈ E∆ : |Duv −m| ≤ τtie}.
23: for each (u, v) ∈ E⋆ do
24: Guv ← Guv + gd[k]/|E⋆|.
25: end for
26: end if
27: end for
28: end for
29: // Backpropagate distances to features
30: Initialize ∇FL ← 0.
31: for 1 ≤ i < j ≤ N do
32: if Gij ̸= 0 then
33: uij ← (Fi − Fj)/(Dij + εdist).
34: ∇FiL ← ∇FiL+ Gij · uij .
35: ∇FjL ← ∇FjL −Gij · uij .
36: end if
37: end for
38: return ∇FL.

C Experimental Setup and Hyperparameters

C.1 Datasets

SemanticKITTI Behley et al. (2019) provides LiDAR point clouds from urban and suburban scenes,
featuring 22 sequences with dense semantic annotations across 19 classes (e.g., vehicles, pedestrians, roads).
Its high resolution and detailed labels make it a rigorous testbed for semantic segmentation.

NuScenes Caesar et al. (2020) integrates LiDAR, camera, and radar data in 1,000 diverse scenes, including
urban roads and highways. With 3D bounding box annotations for 23 object types, it challenges models
with varied weather, occlusions, and dynamic elements suited for detection and segmentation tasks. In
addition, we use nuScenes-lidar seg, which is an extension of nuScenes. This dataset has semantic labels of
32 categories and annotates each point from keyframes in nuScenes. We used the 700 scenes in the training
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Algorithm 4 PWCDGrad: Diagram-space gradients for Persistence-Weighted Chamfer Distance
1: Function PWCDGrad(DT , DS , εw):
2: Input: Teacher DT = {pi}M

i=1, Student DS = {qk}K
k=1, stabilizer εw

3: Output: Gradient arrays gb, gd of size K
4: Initialize gb ← 0, gd ← 0
5: Define w(b, d) = log(1 + max(d− b, 0))
6: Compute w̄T = εw +

∑M

i=1 w(bT
i , dT

i )

7: // 1. Recall Term (Teacher → Student)
8: if M > 0 and K > 0 then
9: for i = 1 to M do

10: k⋆ ← arg mink ∥qk − pi∥2
2 // Find nearest student

11: distmatch ← ∥qk⋆ − pi∥2
2

12: distdiag ← 1
2 (dT

i − bT
i )2

13: if distmatch ≤ distdiag then
14: s← w(bT

i , dT
i )/w̄T

15: gb[k⋆] += 2s · (bk⋆ − bT
i )

16: gd[k⋆] += 2s · (dk⋆ − dT
i )

17: end if
18: end for
19: end if

20: // 2. Precision Term (Student → Teacher)
21: if K > 0 then
22: for k = 1 to K do
23: qk ← (bk, dk)
24: is_matched← false
25: if M > 0 then
26: i⋆ ← arg mini ∥qk − pi∥2

2 // Find nearest teacher
27: distmatch ← ∥qk − pi⋆∥2

2
28: distdiag ← 1

2 (dk − bk)2

29: if distmatch ≤ distdiag then
30: gb[k] += 2

K
(bk − bT

i⋆ )
31: gd[k] += 2

K
(dk − dT

i⋆ )
32: is_matched← true
33: end if
34: end if
35: // Fallback to diagonal if no match found or teacher empty
36: if not is_matched then
37: δ ← dk − bk

38: gb[k] −= 1
K

δ
39: gd[k] += 1

K
δ

40: end if
41: end for
42: end if
43: return (gb, gd)

set with segmentation labels to fine-tune for the semantic segmentation task, and the 150 scenes in the
validation set to verify the performance.

Waymo Open Dataset Sun et al. (2020) delivers high-resolution LiDAR data from 1,000 segments in
various locations, with frequent sweeps and 3D annotations for vehicles, pedestrians and cyclists. Its long-
range scans and varied conditions test robustness and generalization.

C.2 Model Configuration and Training

We use Point Transformer V3 Wu et al. (2024) as the backbone. The student model is approximately 20%
the depth of the teacher, trained from scratch.
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Algorithm 5 Topology-Preserving Sampling (TPS)
Require: Feature set H = {h1, . . . , hN}, target size M
Ensure: Indices I ⊂ {1, . . . , N} with |I| = M

1: Initialize I ← {i1} (random index); Dmin[i]← ∥hi − hi1∥2
2: for k = 2 to M do
3: ik ← arg maxi Dmin[i]
4: I ← I ∪ {ik}
5: Dmin[i]← min

(
Dmin[i], ∥hi − hik

∥2
)
∀i

6: end for
7: return I

Naive Baseline Ours

Input (N) Fwd (s) Bwd (s) Mem (MB) Fwd (s) Bwd (s) Mem (MB) Speedup

30 19.31 0.12 17.1 0.24 0.002368 8.2 79×
60 321.12 0.32 40.2 0.05 0.000250 16.5 6, 039×
100 963.30 1.06 128.6 0.14 0.000254 17.3 6, 743×
200 Infeasible (Timeout) 0.36 0.000271 22.7 —
400 Infeasible (Timeout) 0.30 0.000265 29.1 —
800 Infeasible (Timeout) 0.40 0.000236 42.0 —
1024 Infeasible (Timeout) 0.37 0.000258 49.1 —

Table 8: Computational Efficiency Benchmark. Comparison of Forward (Fwd) and Backward (Bwd)
pass runtimes and Peak Memory usage. While the Naive implementation suffers from cubic complexity,
becoming infeasible beyond N = 100, our method maintains sub-second latency even at N = 1024.

• Encoder Depths: Teacher (2, 2, 2, 6, 2) → Student (1, 1, 1, 2, 1).

• Encoder Channels: Teacher (32, 64, 128, 256, 512) → Student (16, 16, 32, 64, 128).

• Attention Heads: Scaled down from Teacher (2, 4, 8, 16, 32) to Student (1, 1, 2, 4, 8).

Training Protocol. Models are trained for 50 epochs (batch size 12) using AdamW (LR 0.002, Weight
Decay 0.005) with a OneCycleLR scheduler to ensure stable convergence and effective generalization. We
employ a two-stage distillation strategy: the teacher is pre-trained to convergence before guiding the student.

C.3 Data Augmentation and Resources

We apply random rotation (±1◦), uniform scaling (0.9 − 1.1×), random flipping, and Gaussian jittering
(σ = 0.005) before grid sampling (0.05 m). All experiments were conducted on a University HPC Cluster
node equipped with 2 NVIDIA A100 GPUs (81 GB VRAM).

D Additional Ablation and Sensitivity Analysis

D.1 Visualization

To intuitively assess the effectiveness of our distillation framework, we visualize the semantic segmentation
predictions on the nuScenes validation set in Figure 3. The comparison includes the Ground Truth (a), the
Teacher’s prediction (b), and the Student’s prediction (c). As observed, the Teacher model (b) generates high-
fidelity predictions that closely align with the Ground Truth (a), particularly in capturing complex structural
layouts such as road boundaries and vehicle clusters. Crucially, the Student model (c), despite its reduced
capacity, successfully replicates this performance. The Student accurately preserves the global topology of
the scene. Large-scale connected components, such as the drivable surface (brown) and the surrounding road
network, are segmented with high continuity, which is effectively minimizing fragmentation. This contributes
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to our Topological Distillation, which enforces the preservation of persistent geometric features like loops
and clusters Hu et al. (2019). Additionally, small and scattered classes, such as vegetation (green points)
and thin linear structures like barriers (gray lines), are sharply resolved. Standard distillation methods often
fail to capture these high-frequency details due to limited receptive fields or effective context aggregation Liu
et al. (2019a). The sharpness of these boundaries in Figure 3c confirm that our Saliency-Aware Alignment
successfully focused the Student’s attention on these spatially discriminative regions, preventing them from
being washed out by the dominant background classes.

(a) Ground Truth (b) Teacher Prediction (c) Student Prediction

Figure 3: Visualization of our method on the nuScenes validation set. (a) Ground truth, (b) teacher model
prediction, and (c) student model prediction. The student model closely follows the teacher’s output and
ground truth, successfully capturing almost all object classes, demonstrating the effectiveness of the knowl-
edge distillation process.

Figure 4 illustrates how persistent homology captures the evolution of topological features across different
filtration scales. Given a point cloud, we construct a simplicial complex and track the birth and death of
topological structures as the filtration parameter ϵ increases. The persistence diagram D = {(bi, di)}M

i=1
quantifies these events, where each point represents a topological feature. Longer bars correspond to per-
sistent structures that encode essential geometric patterns, while shorter bars typically represent noise or
minor perturbations.

Visualizing the persistence diagrams allows us to better understand the types of geometric features captured
by the teacher model, such as connected components (H0), loops (H1) and voids (H2). By encouraging
the student to mimic these persistent topological features through topology-aware distillation, we aim to
transfer not only semantic knowledge but also the critical underlying geometric structures necessary for
robust point-cloud understanding. This visualization supports the intuition behind our method, showing
that topological summaries can effectively reflect meaningful geometric information beyond what is captured
by the Euclidean feature alignment.

D.2 Topological Sensitivity

Homology Dimension (H1 vs. H2). We restrict our experiments to H0 and H1. As shown in Figure 6,
extending to H2 causes factorial runtime growth due to the combinatorial explosion of 2-simplices (triangles)
required for the filtration. Specifically, while the number of edges scales quadratically, the number of triangles
scales cubically, causing the boundary matrix reduction step to become a computational bottleneck. Our
benchmark reveals that for inputs as small as N = 400, computing H2 incurs a latency spike orders of
magnitude higher than H1, making it infeasible for iterative training. Furthermore, for surface-based 2.5D
LiDAR data, H2 (voids) offers diminishing returns compared to clustering (H0) and loops (H1). Since
LiDAR scans capture the boundary of objects rather than their volume, genuine enclosed voids are rarely
observed; the topological signal is predominantly carried by 1-dimensional cycles (e.g., window frames, poles,
and tires), which are fully captured by H1.
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Figure 4: Visualization of topology-aware analysis through Vietoris–Rips filtration. The top row depicts
the evolution of the simplicial complex as the filtration parameter ϵ increases. The bottom part shows the
corresponding barcode representation of persistent homology groups in different dimensions (H0, H1, H2).

Noise Mitigation. Standard topological loss functions are often hypersensitive to sampling noise, treating
transient, short-lived features with the same importance as robust structural loops. To prevent the student
from overfitting to these artifacts, we introduce a logarithmic weighting function, w(p) = log(1 + pers(p)),
which scales the gradient magnitude based on feature persistence. As demonstrated in Figure 7, this function
effectively suppresses the gradients for low-persistence noise (p ≈ 0) while preserving strong training signals
for high-persistence structural features. This ensures the student minimizes the impact of sampling anomalies
and focuses solely on learning the robust manifold topology.

D.3 Validation of Topological Correctness

To ensure the validity of our custom PyTorch implementation, we verified that it produces persistence
diagrams topologically equivalent to the C++ Ripser library Bauer (2021). Figure 8 demonstrates this
alignment across different geometric primitives.
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Figure 5: Complexity Scaling of Subsampling Strategies. Comparison of computation time between
Topology-Preserving Sampling (TPS) as a function of input point cloud size N , with a fixed subsample
size M = 128. Random sampling maintains nearly constant time, whereas TPS scales linearly with N ,
highlighting the trade-off between geometric coverage and computational efficiency for large inputs.

Figure 6: Complexity Scaling (H1 vs. H2). H2
computation is intractable for training loops.

Figure 7: Gradient Dampening. Log-weighting
suppresses noise (red) vs signal (green).
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Figure 8: Validation of Topological Correctness. Visual comparison of persistence diagrams generated
by our pure-PyTorch baseline versus Ripser. The diagrams are topologically equivalent with negligible
bottleneck distances.
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