

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DIVERSE DICTIONARY LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Given only observational data $X = g(Z)$, where both the latent variables Z and the generating process g are unknown, recovering Z is ill-posed without additional assumptions. Existing methods often assume linearity or rely on auxiliary supervision and functional constraints. However, such assumptions are rarely verifiable in practice, and most theoretical guarantees break down under even mild violations, leaving uncertainty about how to reliably understand the hidden world. To make identifiability *actionable* in the real-world scenarios, we take a complementary view: in the general settings where full identifiability is unattainable, *what can still be recovered with guarantees, and what biases could be universally adopted?* We introduce the problem of *diverse dictionary learning* to formalize this view. Specifically, we show that intersections, complements, and symmetric differences of latent variables linked to arbitrary observations, along with the latent-to-observed dependency structure, are still identifiable up to appropriate indeterminacies even without strong assumptions. These set-theoretic results can be composed using set algebra to construct structured and essential views of the hidden world, such as *genus-differentia* definitions. When sufficient structural diversity is present, they further imply full identifiability of all latent variables. Notably, all identifiability benefits follow from a simple inductive bias during estimation that can be readily integrated into most models. We validate the theory and demonstrate the benefits of the bias on both synthetic and real-world data.

1 INTRODUCTION

Dictionary learning, in its most general form, assumes that observations X are generated by latent variables Z through an unknown function f , i.e., $X = f(Z)$. The goal is to recover the latent generative process from observational data, a fundamental task in both science and machine learning. The nonparametric formulation $X = f(Z)$ unifies a wide range of latent variable models, including independent component analysis, factor analysis, and causal representation learning.

Identifiability, the ability to recover the true generative model from data, is crucial for understanding the hidden world. Yet in general dictionary learning, the problem is fundamentally ill-posed without additional assumptions, akin to finding a needle in a haystack. To reduce this ambiguity, most prior work imposes strong parametric constraints to limit the potential solution space. This practice is so widespread that, although dictionary learning is fundamentally nonparametric, it is almost always instantiated as a linear model, where observations are sparse linear combinations of latent variables (Olshausen & Field, 1997; Aharon et al., 2006; Geadah et al., 2024). However, this linearity could be overly restrictive and fails to capture the complexity of many real-world generative processes. A relevant example is sparse autoencoders (SAEs), commonly used in mechanistic interpretability, especially for foundation models. Although effective in some settings, SAEs are rooted in sparse linear dictionary learning, raising concerns about their ability to represent the inherently nonlinear structure of large-scale neural representations.

Many efforts have been made to relax the linearity assumption. In nonlinear ICA, one line of work leverages auxiliary variables as weak supervision to achieve identifiability under statistical independence (Hyvärinen & Morioka, 2016; Hyvärinen et al., 2019; Yao et al., 2021; Hälvä et al., 2021; Lachapelle et al., 2022), while another constrains the mixing function itself (Taleb & Jutten, 1999; Moran et al., 2021; Kivva et al., 2022; Zheng et al., 2022; Buchholz et al., 2022). In causal representation learning, identifiability often depends on access to interventional data (von Kügelgen et al., 2023; Jiang & Aragam, 2023; Jin & Syrgkanis, 2023; Zhang et al., 2024) or counterfactual

views (Von Kügelgen et al., 2021; Brehmer et al., 2022), which assume some control over the data-generating process to enable meaningful manipulation.

However, a gap remains between theoretical guarantees and practical utility. Theoretically, while additional assumptions can yield recovery guarantees, it is rarely possible to verify whether such assumptions hold in practice. Understanding what guarantees remain valid under assumption violations is therefore essential for reliably uncovering the truth in general settings. Practically, we are less concerned with identifiability under ideal conditions and more interested in which inductive biases promote recovery, especially when the ground truth is unknown. Yet most existing approaches fail to offer any guarantees under even mild violations of their assumptions, making their associated biases, such as contrastive objectives or weak supervision, difficult to generalize across settings.

Therefore, in **the general scenarios**, two questions remain:

- *What aspects of the latent process can still be recovered?*
- *What inductive biases should be introduced to guide recovery?*

To answer these questions and thus achieve *actionable* identifiability, we focus on a new problem aiming to offer meaningful guarantees across a wide range of scenarios: *diverse dictionary learning*. Rather than seeking to recover all latent variables in the system, we consider a complementary question: what aspects of the latent process remain identifiable even in the general settings with only basic assumptions? We show that, even without specific parametric constraints or auxiliary supervision, structured subsets of latent variables can still be identified through their set-theoretic relationships with observed variables. In particular, for any set of observed variables, the intersection, complement, and symmetric difference of their associated latent supports are identifiable (Thm. 1). Moreover, the dependency structure between latent and observed variables is also identifiable up to standard indeterminacy of relabeling (Thm. 2). These flexible results naturally uncover many informative perspectives of the hidden world through the lens of *diversity*: the intersection captures the common latent factors (*genus*) underlying multiple objects, while the complement and symmetric difference allow us to isolate the parts that are unique or non-overlapping (*differentia*), providing a principled way to understand the hidden world from the classical *genus-differentia* definitions (Granger, 1984) (Prop. 1) or the atomic regions in the Venn diagram (Sec. 3.2).

Since this form of identifiability is defined entirely through basic set-theoretic operations, it is highly flexible and applies to arbitrary subsets of observed variables based on set algebra. When the full set of observed variables is considered and the dependency structure between latent and observed variables is sufficiently *diverse*, it becomes possible to recover all latent variables, yielding a generalized structural criterion for full identifiability (Thm. 3). Notably, for estimation, these identifiability benefits require only a simple sparsity regularization on the dependency structure, which can be readily implemented in most models that admit a Jacobian. Our theory also makes it rather universal, supporting meaningful recovery across a wide range of settings, from partial to full identifiability, and thus serves as a robust and broadly applicable regularization principle. We incorporate this universal bias into different types of generative models and observe immediate benefits from the corresponding identifiability guarantee in both synthetic and real-world datasets.

2 BACKGROUND AND PROBLEM SETUP

We adopt the standard perspective of latent variable models, where the observed world is generated from latent variables through a hidden process:

$$X = g(Z), \quad (1)$$

where $X = (X_1, \dots, X_{d_x}) \in \mathbb{R}^{d_x}$ denotes the observed variables, and $Z = (Z_1, \dots, Z_{d_z}) \in \mathbb{R}^{d_z}$ denotes the latent variables. Let \mathcal{X} and \mathcal{Z} denote the supports of X and Z , respectively.

Connection to linear dictionary learning. Our task can be viewed as a nonlinear version of classical dictionary learning. Both classical approaches (Olshausen & Field, 1997; Aharon et al., 2006) and more recent ones (Hu & Huang, 2023; Sun & Huang, 2025) model observations as **linear** combinations of dictionary atoms D , i.e., $X = DZ$. Differently, we consider the **nonlinear** setting $X = g(Z)$, where g is a nonlinear function. Although arising in different contexts, linear dictionary learning provides a useful analogy for some necessary conditions to avoid ill-posed settings. In the linear case, conditions like Restricted Isometry Property had to be introduced, which ensure that

108 different latent codes map to distinguishable outputs, making the linear operator injective and thus
 109 no information is lost (Foucart & Rauhut, 2013; Jung et al., 2016). By analogy, the nonlinear setting
 110 also requires restrictions on g to ensure injectivity. Following the literature on nonlinear identifiability,
 111 g is assumed to be a \mathcal{C}^2 diffeomorphism onto its image (smooth and injective) (Hyvärinen &
 112 Pajunen, 1999; Lachapelle et al., 2022; Hyvärinen et al., 2024; Moran & Aragam, 2025).

113 **Connection to nonlinear identifiability results.** However, simply avoiding information loss is
 114 insufficient for full latent recovery with guarantees in the nonlinear regime. Prior work (see the
 115 survey (Hyvärinen et al., 2024)) addresses this by constraining the form of g (e.g., post-nonlinear
 116 models) or by introducing auxiliary information, such as domain or time indices, or interven-
 117 tional/counterfactual data. In contrast, we focus on general real-world settings and deliberately
 118 avoid such assumptions, aiming to understand what can be recovered from this minimal setup. Nat-
 119 urally, some basic conditions, such as invertibility and differentiability, are necessary to rule out
 120 pathological cases, but our goal is to keep these as general as possible, even with the trade-off that
 121 recovering every latent variable becomes infeasible.

122 **Remark 1** (Extension to noisy processes). *Equation (1) considers a deterministic function, but it*
 123 *can be naturally extended to settings with additive noise using standard deconvolution (Kivva et al.,*
 124 *2022), or to more general noise models under additional assumptions (Hu & Schennach, 2008).*

125 **Structure.** The dependency structure between latent and observed variables,
 126 though hidden, captures the fundamental relationships underlying the data
 127 and is inherently nonparametric. To explore theoretical guarantees in general
 128 settings, this structure provides a natural starting point (Moran et al., 2021;
 129 Zheng et al., 2022; Kivva et al., 2022). Before diving deep into the hidden
 130 relations, we need to formalize them from the nonparametric functions. We
 131 first define the nonzero pattern of a matrix-valued function as:

132 **Definition 1.** *The support of a matrix-valued function $\mathbf{M} : \Theta \rightarrow \mathbb{R}^{m \times n}$ is*
 133 *the set of index pairs (i, j) such that the (i, j) -th entry of $\mathbf{M}(\theta)$ is nonzero for*
 134 *some input $\theta \in \Theta$:*

$$\text{supp}(\mathbf{M}; \Theta) := \{(i, j) \in [m] \times [n] \mid \exists \theta \in \Theta, \mathbf{M}(\theta)_{i,j} \neq 0\}.$$

135 For a constant matrix, its support is a special case of Defn. 1, which is the set of indices of non-zero
 136 elements. Then, we define the dependency structure as the support of the Jacobian of g :

137 **Definition 2.** *The dependency structure between latent variables Z and observed variables $X =$*
 138 *$g(Z)$ is defined as the support of the Jacobian matrix of g . Formally,*

$$\mathcal{S} := \text{supp}(D_z g; Z) = \left\{ (i, j) \in [d_x] \times [d_z] \mid \exists z \in Z, \frac{\partial g_i(z)}{\partial z_j} \neq 0 \right\}.$$

139 This structure \mathcal{S} captures which latent variables functionally influence which observed variables
 140 through the generative map g . It might be noteworthy that, since it is defined via the Jacobian, it
 141 reflects functional rather than statistical dependencies. In particular, it does not require statistical
 142 independence of Z and is therefore not limited to the mixing structures typically considered in ICA.

143 **Example 1.** Figure 1 illustrates the dependency structure of a generative process. The top panel
 144 shows the ground-truth mapping from latent variables $Z = (Z_1, Z_2, Z_3)$ to observed variables
 145 $X = (X_1, X_2, X_3)$. The bottom panel shows the support of the Jacobian $D_z g(Z)$, where non-zero
 146 entries are marked with “*”. Notably, the Jacobian structure also captures dependencies between
 147 latent variables, such as the interaction between Z_1 and Z_2 .

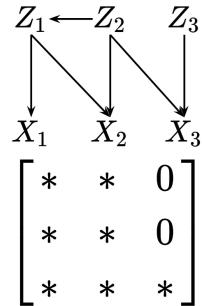


Figure 1: Example of structure.

3 THEORY

154 In this section, we develop the identifiability theory of diverse dictionary learning. Our theory begins
 155 with a generalized notion of identifiability based on set-theoretic indeterminacy (Sec. 3.1), capturing
 156 what remains recoverable under minimal assumptions. We then illustrate its practical implications,
 157 such as disentanglement and atomic region recovery, through concrete examples (Sec. 3.2). These
 158 insights motivate the formal guarantees in Thms. 1 and 2 (Sec. 3.3). Finally, we show how the same
 159 framework extends naturally to element-wise identifiability under a generalized structural condition
 160 (Thm. 3, Sec. 3.4). All proofs are provided in Appx. A.

162

3.1 CHARACTERIZATION OF GENERALIZED IDENTIFIABILITY

163

164

165

166

167

168

169

As previously discussed, identifying all latent variables is fundamentally ill-posed without additional information, such as restricted functional classes or multiple distributions. In general scenarios where such constraints are absent, a natural question arises: what aspects of the latent process remain recoverable? Before presenting our identifiability results, we first formalize this goal, which has not been addressed in the existing literature.

170

We begin by defining when two models are observationally indistinguishable from the perspective of the observed data, which is the goal of estimation based on observation.

171

172

173

Definition 3 (Observational equivalence). we say there is an *observational equivalence* between two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$, denoted $\theta \sim_{obs} \hat{\theta}$, if and only if,

174

$$p(x; \theta) = p(x; \hat{\theta}), \quad \forall x \in \mathcal{X}.$$

175

176

177

178

179

180

181

Given that estimation yields an observationally equivalent model, our goal is to determine whether the latent variables recovered by this model correspond meaningfully to those in the ground-truth model. Since we avoid placing restrictive assumptions on the entire system, we adopt a localized perspective: instead of analyzing global correspondence, we examine the relationship between latent components at the level of specific observed variables. Inspired by set theory, we introduce a new notion of indeterminacy that formalizes ambiguity through basic set-theoretic operations.

182

183

Definition 4 (Latent index set). For any set of observed variables X_S , its latent index set $I_S \subseteq [d_z]$ is defined as

184

$$I_S := \{ i \in [d_z] \mid \frac{\partial X_S}{\partial Z_i} \neq 0 \},$$

185

i.e., the set of indices of latent variables Z_{I_S} that influence X_S .

186

187

188

189

190

Definition 5 (Set-theoretic indeterminacy). There is a *set-theoretic indeterminacy* between two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$, denoted $\theta \sim_{set} \hat{\theta}$, if and only if, for any two sets of observed variables X_K and X_V , and their latent index sets I_K and I_V , there exists a permutation π over $[d_z]$ such that Z_i is not a function of $\hat{Z}_{\pi(j)}$ ¹ for all (i, j) satisfying at least one of the following:

191

192

(i) (Intersection) $i \in I_K \cap I_V, j \in I_K \Delta I_V$;

193

(ii) (Symmetric difference²) $i \in I_K \Delta I_V, j \in I_K \cap I_V$;

194

195

(iii) (Complement) $i \in I_K \setminus I_V, j \in I_V \setminus I_K$, or $i \in I_V \setminus I_K, j \in I_K \setminus I_V$.

196

197

198

Intuitively, set-theoretic indeterminacy guarantees that certain components of the latent variables defined by basic set-theoretic operations are disentangled from the rest, with an example as:

199

200

201

202

203

204

205

206

207

208

209

Example 2. Figure 2 illustrates latent variables indexed by I_K and I_V , which influence the observed variable sets X_K and X_V . The intersection $I_K \cap I_V$ contains shared latent factors, while the symmetric difference $I_K \Delta I_V$ consists of those unique to one set but not the other. According to set-theoretic indeterminacy, latent variables in the intersection $I_K \cap I_V$ cannot be expressed as functions of those in the symmetric difference $I_K \Delta I_V$, ensuring that shared components remain disentangled from exclusive ones. Similarly, variables in the symmetric difference $I_K \Delta I_V$ cannot be entangled with $I_K \cap I_V$, preserving directional separability. Finally, the complement condition prohibits mutual entanglement between the exclusive parts $I_K \setminus I_V$ and $I_V \setminus I_K$, guaranteeing that what is unique to one observed group cannot explain what is unique to another.

210

211

212

213

Because these operations form the foundation of set algebra, they can be flexibly composed to derive a variety of meaningful perspectives on the hidden variables, which we will detail later. We are now ready to define what it means for a model to have generalized identifiability.

214

215

¹Given the standard invertibility assumption, the reverse also holds because of the block-diagonal Jacobian, which applies similarly in related definitions.

²The symmetric difference $I_K \Delta I_V$ denotes elements in I_K or I_V but not in both, i.e., $(I_K \setminus I_V) \cup (I_V \setminus I_K)$.

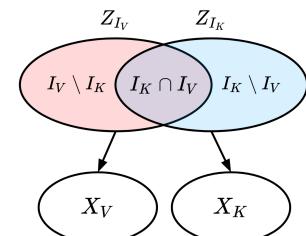


Figure 2: Example of Defn. 5.

216 **Definition 6 (Generalized identifiability).** For a model $\theta = (g, p_Z)$, we have **generalized identifiability**, if and only if, for any other model $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$,

$$\theta \sim_{obs} \hat{\theta} \implies \theta \sim_{set} \hat{\theta}.$$

221 3.2 IMPLICATIONS OF GENERALIZATION

222 In the previous section, we introduced a new characterization of identifiability suited to general,
223 unconstrained settings. Built from basic set-theoretic operations, this formulation appears flexible
224 and composable. Yet it remains unclear how general it truly is, and more importantly, why that
225 generality matters. To answer this, we examine its implications through a concrete example in
226 Fig. 3, highlighting both its expressive power and practical utility. We begin with several interesting
227 implications of the generalization:

228 **Proposition 1** (Implications of generalized identifiability). For any two models $\theta = (g, p_Z)$ and
229 $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$, if $\theta \sim_{set} \hat{\theta}$, then for any two sets of observed variables X_K and X_V , and their
230 corresponding latent index sets I_K and I_V , Z_i is not a function of $\hat{Z}_{\pi(j)}$ for all (i, j) satisfying at
231 least one of the following, where π is a permutation:

- 233 (i) (Object-centric) $i \in I_K, j \in I_V \setminus I_K$ or $i \in I_V, j \in I_K \setminus I_V$;
- 234 (ii) (Individual-centric) $i \in (I_K \setminus I_V), j \in I_V$, or $i \in (I_V \setminus I_K), j \in I_K$;
- 235 (iii) (Shared-centric) $i \in I_K \cap I_V, j \in I_K \Delta I_V$.

237 **Example 3.** In Fig. 3, Prop. 1 implies that, if we consider two groups of observed variables, such as
238 X_1 and $\{X_2, X_3\}$, regions like $I_1 \setminus (I_2 \cup I_3)$ illustrate individual-centric disentanglement, where latents
239 unique to one group must be disentangled from the rest. Regions such as I_1, I_2 , or I_3 represent
240 object-centric disentanglement, where latents relevant to a single object must remain disentangled
241 from the rest. The shared part can also be disentangled in a similar manner.

242 **Why does it matter in the real world?** These impli-
243 cation types correspond to meaningful structures in real-
244 world tasks. Object-centric disentanglement aligns with
245 modularity in object-centric learning, where each object
246 should have its own latent representation. Individual-
247 centric disentanglement supports domain adaptation by
248 isolating domain-specific factors. Shared-centric disen-
249 tanglement captures common factors across domains or
250 entities, which is essential for transferability and gen-
251 eralization. These patterns emerge naturally from set-
252 theoretic indeterminacy and offer a principled way to de-
253 sign models that reflect the genus-differentia structure.

254 **Atomic regions in the Venn diagram.** If the union of the
255 latent index sets covers the full latent space, the general-
256 ized identifiability guarantees in Defn. 5 extend to every
257 atomic region in the corresponding Venn diagram.³

258 **Example 4** (Identifying atomic regions). Let I_1, I_2 , and I_3 be the latent index sets associated with
259 three observed variables in Fig. 3. Consider the atomic region $(I_1 \cap I_2) \setminus I_3$. To disentangle it from the
260 rest, we first take $X_K = X_1$, $X_V = X_2$, so $I_K = I_1$, $I_V = I_2$. Then $i \in (I_1 \cap I_2) \setminus I_3 \subseteq I_K \cap I_V$,
261 and $j \in I_K \Delta I_V = (I_1 \setminus I_2) \cup (I_2 \setminus I_1)$, ensuring Z_i is not a function of Z_j in the symmetric
262 difference. Second, take $X_K = X_1 \cup X_2$, $X_V = X_3$, so $I_K = I_1 \cup I_2$ and $I_V = I_3$. Then
263 $i \in (I_1 \cap I_2) \setminus I_3 \subseteq I_K \setminus I_V$ and $j \in I_3 = I_V$, ensuring Z_i is also disentangled from latents of X_3 .
264 Together, these guarantee that the atomic region $(I_1 \cap I_2) \setminus I_3$ is disentangled from the rest. Other
265 cases follow similarly and are in Appx. B. Therefore, each atomic region is disentangled from all
266 other variables, and thus is region-wise (block-wise) identifiable⁴ under the invertibility condition.

266 ³An atomic region in the Venn diagram is a non-empty set of the form $\bigcap_{i=1}^n B_i$, where each $B_i \in \{I_i, [d_z] \setminus I_i\}$ for a finite collection of sets $\{I_1, \dots, I_n\}$. In the example, these correspond to all 7 distinct regions.

267 ⁴A model is block-wise identifiable (Von Kügelgen et al., 2021) if the mapping between the estimated and
268 ground-truth latent variables is a composition of block-wise invertible functions and permutations. Intuitively,
269 variables can be entangled within the same block (set) but not across different blocks (sets).

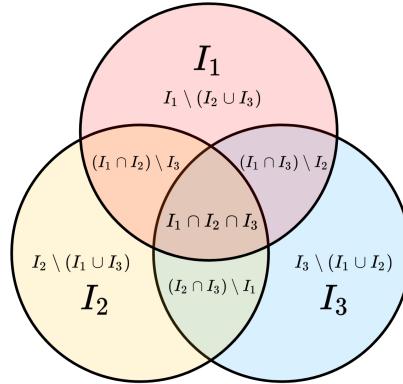


Figure 3: Running example.

270 **Remark 2** (Connection to block-identifiability). By leveraging basic set-theoretic operations, we
 271 can construct a Venn diagram over the latent supports and identify all atomic regions, each de-
 272 fined as a minimal, non-overlapping region closed under finite intersections and complements.
 273 This perspective is conceptually related to block-wise identifiability (Von Kügelgen et al., 2021; Li
 274 et al., 2023; Yao et al., 2024b), but differs fundamentally in its assumptions and goals. Prior work
 275 achieves block identifiability by exploiting additional information such as multiple views or domains
 276 (Von Kügelgen et al., 2021; Yao et al., 2024b; Li et al., 2023). In contrast, our approach requires
 277 no such weak supervision. Notably, Yao et al. (2024b) also proposes an identifiability algebra, but
 278 in the opposite direction: they show that the intersection of latent groups can be identified after the
 279 groups themselves are recovered using multi-view signals. Our formulation instead starts from basic
 280 assumptions without any additional information, and directly targets the identifiability of intersec-
 281 tions and complements without relying on external (weak) supervision. Of course, since the goals
 282 and setups are fundamentally different, our results do not supersede existing block-identifiability
 283 results, but rather offer a complementary perspective on recovering local structures.
 284

285 3.3 GENERALIZED IDENTIFIABILITY

286 Having established the characterization and implications of generalized identifiability, we now turn
 287 to its formal proof. Let H denote a matrix sharing the support of the matrix-valued function h in
 288 the identity $D_Z g(z) h(z, \hat{z}) = D_{\hat{Z}} \hat{g}(\hat{z})$. We begin by introducing the following assumption, which
 289 ensures sufficient nonlinearity in the system. Some arguments are omitted for brevity.

290 **Assumption 1 (Sufficient nonlinearity).** For each $i \in [d_x]$, there exists a set S_i of $\|(D_Z g)_{i,\cdot}\|_0$
 291 points such that the corresponding vectors for a model (g, p_Z) :

$$292 \left(\frac{\partial X_i}{\partial Z_1}, \frac{\partial X_i}{\partial Z_2}, \dots, \frac{\partial X_i}{\partial Z_{d_z}} \right) \Big|_{z=z^{(k)}}, k \in S_i,$$

295 are linearly independent, where $z^{(k)}$ denotes a sample with index k and $\text{supp}((D_Z g(z^{(k)}))H)_{i,\cdot}) \subseteq$
 296 $\text{supp}((D_{\hat{Z}} \hat{g})_{i,\cdot})$.

297 **Interpretation.** The assumption ensures the connection between the structure and the nonlinear
 298 function. In the asymptotic cases, we can usually find several samples in which the corresponding
 299 Jacobian vectors are linearly independent, i.e., span the support space. The assumption of non-
 300 exceeding support at these points is also typically mild since $(D_{\hat{Z}} \hat{g}(\hat{z}))_{i,\cdot} = (D_Z g(z))_{i,\cdot} h(z, \hat{z})$.

301 **Connection to the literature.** The sufficient nonlinearity assumption is a standard one, making it
 302 feasible to draw the connection between the Jacobian and the structure. It has been widely used in the
 303 literature (Lachapelle et al., 2022; Zheng et al., 2022; Kong et al., 2023; Yan et al., 2023), and aligns
 304 with the sufficient variability assumption (Hyvärinen & Morioka, 2016; Khemakhem et al., 2020;
 305 Sorrenson et al., 2020; Lachapelle et al., 2022; Zhang et al., 2024; Lachapelle et al., 2024). While
 306 most prior works often focus on variability across environments, sufficient nonlinearity imposes
 307 variability in the Jacobians across multiple samples to span the support space, following the spirit in
 308 (Lachapelle et al., 2022; Zheng et al., 2022; Lachapelle et al., 2024).

309 Then we are ready to present our main theorem for the generalized identifiability:

311 **Theorem 1 (Generalized identifiability).** Consider any two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$
 312 following the process in Sec. 2. Suppose Assum. 1 holds and:

- 313 i. The probability density of Z is positive in \mathbb{R}^{d_z} ;
- 314 ii. (Sparsity regularization⁵) $\|D_{\hat{Z}} \hat{g}\|_0 \leq \|D_Z g\|_0$.

316 Then if $\theta \sim_{obs} \hat{\theta}$, we have generalized identifiability (Defn. 6), i.e., $\theta \sim_{set} \hat{\theta}$.

318 We further show that the dependency structure is identifiable up to a standard relabeling indetermi-
 319 nacy, providing structural insight when the underlying connections are of interest.

320 **Theorem 2 (Structure identifiability).** Consider any two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$
 321 following the process in Sec. 2. Suppose assumptions in Thm. 1 hold. If $\theta \sim_{obs} \hat{\theta}$, the support of the
 322 Jacobian matrix $D_{\hat{Z}} \hat{g}$ is identical to that of $D_Z g$, up to a permutation of column indices.

323 ⁵Notably, this is a regularization during estimation, instead of an assumption restricting the data.

324 **Universal inductive bias.** The first additional condition of positive density is standard and appears
 325 in nearly all previous identifiability results. We therefore focus on the sparsity regularization. Note
 326 that this is *not an assumption* on the data-generating process itself, but a practical inductive bias
 327 applied only during estimation. Thus, **the ground-truth process does not need to be sparse at all**.
 328 **Definition 6** characterizes the allowable ambiguity between observationally equivalent models. The
 329 role of the sparsity regularizer is simply to select, among all observationally equivalent estimators,
 330 a representative whose dependency structure is the most sparse. This choice lies entirely on the
 331 estimation side and does not constrain the form of the true data-generating mechanism.

332 This dependency sparsity reflects an inductive bias toward the simplicity of the hidden world.
 333 Among the many interpretations of Occam’s razor, our approach aligns with the connectionist view,
 334 which prefers to always shave away unnecessary relations. This principle is fundamental and has
 335 been extensively studied in several fields. For example, in structural causal models, fully connected
 336 graphs are always Markovian to the observed distribution, but principles such as faithfulness, fru-
 337 gality, and minimality are used to eliminate spurious or redundant edges, revealing the true causal
 338 structure (Zhang, 2013). These simplicity criteria have been validated both theoretically and em-
 339 pirically over decades, supporting the use of sparsity as a reasonable inductive bias during regulariza-
 340 tion. Moreover, this regularization is highly practical: it can be integrated into most differentiable
 341 models, as long as gradients of the mappings with respect to latent variables are accessible.

342 3.4 FROM SETS TO ELEMENTS

344 Having established generalized identifiability through set-theoretic indeterminacy, which provides
 345 meaningful guarantees when full recovery is out of reach, a natural question arises: can stronger
 346 results, such as element identifiability for all latent variables, as targeted by most prior work, be
 347 obtained by imposing additional constraints?

348 **Definition 7 (Element-wise indeterminacy).** We say there is an **element-wise indeterminacy** be-
 349 tween two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$, denoted $\theta \sim_{\text{elem}} \hat{\theta}$, if and only if

$$350 \quad 351 \quad \hat{Z} = P_{\pi} \varphi(Z),$$

352 where $\varphi(Z) = (\varphi_1(Z_1), \dots, \varphi_{d_z}(Z_{d_z}))$, $\varphi : \mathcal{Z} \implies \hat{\mathcal{Z}}$ is a element-wise diffeomorphism and P_{π}
 353 is a permutation matrix corresponding to a d_z -permutation π .

354 **Definition 8 (Element identifiability** (Hyvärinen & Pajunen, 1999)). For a model $\theta = (g, p_Z)$, we
 355 have **element identifiability**, if and only if, for any other model $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$,

$$357 \quad \theta \sim_{\text{obs}} \hat{\theta} \implies \theta \sim_{\text{elem}} \hat{\theta}.$$

359 **Connection to generalized identifiability.** Generalized identifiability (Defn. 6) focuses on recovering
 360 partial information from subsets of observed variables, while permutation identifiability seeks to
 361 recover all latent variables up to element-wise indeterminacy, which is strictly stronger. As a result,
 362 achieving permutation identifiability naturally requires stronger assumptions.

363 Interestingly, this can be a natural consequence of set-theoretic indeterminacy. As discussed in
 364 Sec. 3.2, generalized identifiability guarantees the recovery of atomic regions in the Venn diagram.
 365 Therefore, if the Venn diagram is sufficiently rich, meaning that each latent variable corresponds to
 366 its own atomic region, we obtain element-wise identifiability directly. Since the Venn diagram is
 367 simply a representation of the dependency structure, we now formalize the corresponding structural
 368 condition as follows. For each $X_j \in A$, let I_j be the index set of latent variables connected to X_j .

369 **Assumption 2 (Sufficient diversity).** For each latent variable Z_i ($i \in [d_z]$), there exists a set of
 370 observed variables A such that at least one of the following three conditions holds:

- 371 1. There exists $X_k \in A$ such that $\bigcup_{X_j \in A} I_j = [d_z]$, $I_k \setminus \bigcup_{X_j \in A \setminus \{X_k\}} I_j = i$.
- 372 2. There exists $X_k \in A$ such that $\bigcup_{X_j \in A} I_j = [d_z]$, $\left(\bigcap_{X_j \in A \setminus \{X_k\}} I_j \right) \setminus I_k = i$.
- 373 3. (Zheng et al., 2022) The intersection of supports satisfies $\bigcap_{X_j \in A} I_j = i$.

376 **Theorem 3 (Element identifiability).** Consider any two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$
 377 following the process in Sec. 2. Suppose assumptions in Thm. 1 and Assum. 2 hold. Then we have
 identifiability up to element-wise indeterminacy, i.e., $\theta \sim_{\text{obs}} \hat{\theta} \implies \theta \sim_{\text{elem}} \hat{\theta}$.

378 **Generalized structural condition.** The *sufficient diversity* serves as a generalized condition for
 379 element identifiability in fully unsupervised settings. The most closely related work is [Zheng et al.](#)
 380 (2022), which also derives nonparametric identifiability results based purely on structural assump-
 381 tions, without relying on auxiliary variables, interventions, or restrictive functional forms. However,
 382 their structural sparsity condition aligns exactly with the third clause of *sufficient diversity*, making
 383 it strictly stronger. In contrast, our formulation introduces two additional conditions as *alterna-
 384 tives*, expanding the class of admissible structures and offering greater flexibility. We conjecture
 385 that sufficient diversity may even be necessary when no distributional or functional form constraints
 386 are imposed, as it arises naturally from the structure of atomic regions in the Venn diagram. Since
 387 any dependency structure admits such a representation, and atomic regions serve as its minimal
 388 elements, our condition may capture the essential structural requirement for element-level recovery.
 389

390 **Diversity is not sparsity.** It is worth emphasizing that our diversity condition is fundamentally
 391 different from sparsity assumptions. Diversity does not require the structure to be sparse: it remains
 392 valid even in nearly fully connected settings, as long as there is some variation (e.g., even a single
 393 differing edge) in the connectivity patterns across variables. By contrast, sparsity-based assumptions
 394 strictly enforce sparse structures. For example, the well-known anchor feature assumption ([Arora](#)
 395 et al., 2012; [Moran et al.](#), 2021) requires each latent variable to have at least two observed variables
 396 that are unique to it, thereby excluding dense structures.
 397

398 4 EXPERIMENT

399 In this section, we provide empirical support for our results in both synthetic and real-world settings.
 400 Due to page limits, **additional experimental results are deferred to Appendix C**, including (1)
 401 *comparisons of more Jacobian/Hessian penalties* (e.g., ([Wei et al.](#), 2021; [Peebles et al.](#), 2020)), (2)
 402 *analyses of regularization weights*, and (3) *further visual results on synthetic and real data*.
 403

404 4.1 SYNTHETIC EXPERIMENTS

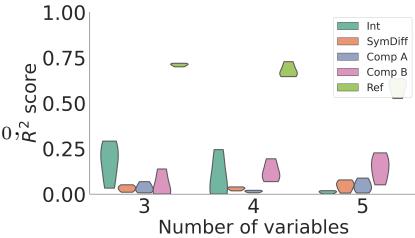
405 **Setup.** We follow the data generation process in Sec. 2.
 406 We employ the variational autoencoder as our backbone
 407 model with a dependency sparsity regularization in the
 408 objective function as:

$$409 \mathcal{L} = \underbrace{\mathbb{E}_{q(Z|X)}[\ln p(X|Z)] - \beta D_{KL}(q(Z|X)||p(Z))}_{\text{Evidence Lower Bound}} + \alpha \|D_{\hat{z}\hat{g}}\|_0, \quad 410$$

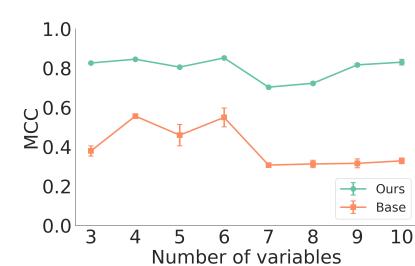
411 where D_{KL} is the Kullback–Leibler divergence, $q(Z|X)$ the variational posterior, $p(Z)$ the prior, $p(X|Z)$ the like-
 412 lihood, and α, β regularization weights. We use 10,000
 413 samples and set $\alpha = \beta = 0.05$ for all experiments, and all generation processes are nonlinear,
 414 implemented by MLPs with Leaky ReLU. [It might be worth noting that, under the definition of](#)
 415 [identifiability, the only rigorous way to validate the theory is to examine the correspondence be-](#)
 416 [tween the ground truth latents and the estimated latents.](#)

417 **Generalized Identifiability.** We begin by evaluating general-
 418 ized identifiability across groups of observed vari-
 419 ables. We generate datasets with dimensionality in
 420 $\{3, 4, 5\}$ and split the observed variables into two groups,
 421 X_K and X_V . For each dataset, we compute the R^2 score,
 422 lower means more disentangled, between: (1) Int , $I_K \cap I_V$ and $I_K \Delta I_V$; (2) $SymDiff$, $I_K \Delta I_V$ and $I_K \cap I_V$; and (3)
 423 $Comp A$ and $Comp B$, both directions between $I_K \setminus I_V$ and $I_V \setminus I_K$. We also include Ref , the R^2 between Z and \hat{Z} , as a baseline indicating the expected level of R^2
 424 for entangled variables. As shown in Fig. 4, all disentan-
 425 glement conditions implied by set-theoretic indeterminacy (Defn. 5) are satisfied: the R^2 between
 426 structurally disjoint components is consistently much lower than Ref , supporting the validity of gen-
 427 eralized identifiability.
 428

429 **Element Identifiability.** We evaluate whether comparing multiple variable pairs enables recovery
 430 of latent variables up to element-wise indeterminacy. We construct datasets with varying dimen-



431 Figure 4: R^2 in simulation.
 432



433 Figure 5: MCC in simulation.
 434

Method	Shapes3D		Cars3D		MPI3D	
	FactorVAE \uparrow	DCI \uparrow	FactorVAE \uparrow	DCI \uparrow	FactorVAE \uparrow	DCI \uparrow
<i>VAE-based</i>						
FactorVAE (Kim & Mnih, 2018)	0.833 \pm 0.025	0.484 \pm 0.120	0.708 \pm 0.026	0.135 \pm 0.030	0.599 \pm 0.064	0.345 \pm 0.047
FactorVAE + Latent Sparsity	0.837 \pm 0.069	0.477 \pm 0.152	0.501 \pm 0.434	0.113 \pm 0.069	0.440 \pm 0.065	0.325 \pm 0.028
FactorVAE + Dependency Sparsity	0.871 \pm 0.053	0.575 \pm 0.032	0.752 \pm 0.040	0.144 \pm 0.053	0.639 \pm 0.084	0.384 \pm 0.031
<i>Diffusion-based</i>						
EncDiff (Yang et al., 2024)	0.9999 \pm 0.0001	0.901 \pm 0.050	0.779 \pm 0.060	0.250 \pm 0.020	0.868 \pm 0.033	0.676 \pm 0.018
EncDiff + Latent Sparsity	0.967 \pm 0.042	0.891 \pm 0.057	0.729 \pm 0.003	0.241 \pm 0.016	0.879 \pm 0.015	0.684 \pm 0.020
EncDiff + Dependency Sparsity	1.0000 \pm 0.0000	0.947 \pm 0.005	0.756 \pm 0.041	0.256 \pm 0.011	0.881 \pm 0.024	0.667 \pm 0.047
<i>GAN-based</i>						
DisCo (Ren et al., 2021)	0.852 \pm 0.037	0.710 \pm 0.020	0.727 \pm 0.106	0.319 \pm 0.031	0.396 \pm 0.023	0.306 \pm 0.079
DisCo + Latent Sparsity	0.864 \pm 0.007	0.707 \pm 0.024	0.761 \pm 0.148	0.294 \pm 0.023	0.308 \pm 0.031	0.314 \pm 0.050
DisCo + Dependency Sparsity	0.868 \pm 0.017	0.712 \pm 0.018	0.789 \pm 0.029	0.320 \pm 0.003	0.410 \pm 0.122	0.324 \pm 0.059

Table 1: Comparison of disentanglement on FactorVAE score and DCI (mean \pm std, higher is better). Bold numbers denote the best value *within each model family* for a given dataset/metric.

sions and structures that either satisfy Sufficient Diversity (Assum. 2) (*Ours*) or violate it through fully dense dependencies (*Base*). Following prior work (Hyvärinen et al., 2024), we use the mean correlation coefficient (MCC) between estimated and ground-truth latent variables as the evaluation metric. As shown in Fig. 5, only datasets satisfying the structural condition achieve high MCC, confirming that element-wise identifiability holds under our assumptions.

4.2 VISUAL EXPERIMENTS

Setup. Following the literature, we evaluate identification in more complex settings by learning latent variables as generative factors. Specifically, we follow the setting of (Yang et al., 2024) and use three standard benchmark datasets of disentangled representation learning: Cars3D (Reed et al., 2015), Shapes3D (Kim & Mnih, 2018), and MPI3D (Gondal et al., 2019), which are benchmark datasets with known generative factors such as object color, shape, scale, orientation, and viewpoint, ranging from synthetic renderings to real-world images.

To evaluate the effectiveness of the proposed sparsity loss, we incorporate it into three powerful disentangled representation learning methods based on mainstream generative models: Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Diffusion Models. These methods correspond to FactorVAE (Kim & Mnih, 2018), DisCo (Ren et al., 2021), and EncDiff (Yang et al., 2024), respectively. We consider two types of baselines: 1) the original methods, i.e., FactorVAE, DisCo, and EncDiff, and 2) versions of these methods that incorporate L1 regularization on Z (latent sparsity). In contrast, our approach applies an L1 regularization on Jacobian (dependency sparsity). Following standard practice, we use FactorVAE score (Kim & Mnih, 2018) and the DCI Disentanglement score (Eastwood & Williams, 2018) as evaluation metrics. We repeat each method over three random seeds. Please refer to Appx. C for more details on setups.

Dependency sparsity in the literature. Notably, dependency sparsity has been widely used as a simple and standard regularization across diverse settings, from disentanglement to LLMs (Rhodes & Lee, 2021; Zheng et al., 2022; Farnik et al., 2025), although a general identifiability theory is still lacking. Thus, its empirical effectiveness is already well established, and our experiments aim to provide further supporting evidence.

Latent or dependency sparsity? Table 1 shows that across most datasets and backbone methods, introducing the proposed dependency sparsity consistently helps the understanding of the hidden world. Notably, these generative models often benefit more from dependency sparsity than from latent sparsity. This is particularly interesting given the widespread use of sparse latent regularization in mechanistic interpretability (e.g., sparse autoencoders (Cunningham et al., 2023)). Our results highlight not only the advantage of dependency sparsity, but also lend insight to recent concerns about the limitations of latent sparsity raised in the interpretability literature, such as feature absorption, linear constraints, and high dimensionality (Sharkey et al., 2025).

5 CONCLUSION

We introduce *diverse dictionary learning* to investigate which aspects of the hidden world can be recovered under basic conditions, and which inductive biases may be universally beneficial during estimation. Our guarantees, grounded in set algebra, offer a complementary local view to prior results based on global assumptions, and also unify existing structural conditions for full identifiability.

486 For future work, it is worth exploring generalized identifiability in foundation models. Current mod-
 487 els are largely driven by empirical insights, and inductive biases inspired by identifiability, which
 488 have been overlooked, may offer fresh directions for breakthroughs. With massive data and com-
 489 putation available, asymptotic guarantees are becoming increasingly relevant, making identifiability
 490 practically significant. A deeper investigation along this line remains an open limitation of our work.
 491

492 **REFERENCES**

494 Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing over-
 495 complete dictionaries for sparse representation. *IEEE Transactions on signal processing*, 54(11):
 496 4311–4322, 2006.

497 Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models—going beyond svd. In *2012*
 498 *IEEE 53rd annual symposium on foundations of computer science*, pp. 1–10. IEEE, 2012.

499 Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S Cohen. Weakly supervised causal repre-
 500 sentation learning. *Advances in Neural Information Processing Systems*, 35:38319–38331, 2022.

502 Simon Buchholz, Michel Besserve, and Bernhard Schölkopf. Function classes for identifiable non-
 503 linear independent component analysis. *arXiv preprint arXiv:2208.06406*, 2022.

504 Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. In *NeurIPS 2024*
 505 *Workshop on Scientific Methods for Understanding Deep Learning*.

507 Guangyi Chen, Yifan Shen, Zhenhao Chen, Xiangchen Song, Yuwen Sun, Weiran Yao, Xiao Liu,
 508 and Kun Zhang. Caring: Learning temporal causal representation under non-invertible generation
 509 process. In *International Conference on Machine Learning*, pp. 7236–7259. PMLR, 2024.

510 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
 511 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
 512 2023.

514 Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disen-
 515 tangled representations. In *6th International Conference on Learning Representations*, 2018.

516 Lucy Farnik, Tim Lawson, Conor Houghton, and Laurence Aitchison. Jacobian sparse autoencoders:
 517 Sparsify computations, not just activations. In *Forty-second International Conference on Machine*
 518 *Learning*, 2025.

519 Simon Foucart and Holger Rauhut. Restricted isometry property. In *A Mathematical Introduction*
 520 *to Compressive Sensing*, pp. 133–174. Springer, 2013.

522 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 523 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth Inter-
 524 national Conference on Learning Representations*, 2025.

525 Charles J Garfinkle and Christopher J Hillar. On the uniqueness and stability of dictionaries for
 526 sparse representation of noisy signals. *IEEE Transactions on Signal Processing*, 67(23):5884–
 527 5892, 2019.

529 Victor Geadah, Gabriel Barello, Daniel Greenidge, Adam S Charles, and Jonathan W Pillow. Sparse-
 530 coding variational autoencoders. *Neural computation*, 36(12):2571–2601, 2024.

531 Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Locatello, Martin
 532 Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, and Stefan Bauer.
 533 On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset.
 534 *Advances in Neural Information Processing Systems*, 32, 2019.

535 Edgar Herbert Granger. Aristotle on genus and differentia. *Journal of the History of Philosophy*, 22
 536 (1):1–23, 1984. doi: 10.1353/hph.1984.0001.

538 Hermanni Hälvä, Sylvain Le Corff, Luc Lehéricy, Jonathan So, Yongjie Zhu, Elisabeth Gassiat, and
 539 Aapo Hyvärinen. Disentangling identifiable features from noisy data with structured nonlinear
 ICA. *Advances in Neural Information Processing Systems*, 34, 2021.

540 Jingzhou Hu and Kejun Huang. Global identifiability of ℓ_1 -based dictionary learning via matrix
 541 volume optimization. *Advances in Neural Information Processing Systems*, 36:36165–36186,
 542 2023.

543 Yingyao Hu and Susanne M Schennach. Instrumental variable treatment of nonclassical measure-
 544 ment error models. *Econometrica*, 76(1):195–216, 2008.

545 Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
 546 and nonlinear ICA. *Advances in Neural Information Processing Systems*, 29:3765–3773, 2016.

547 Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
 548 uniqueness results. *Neural networks*, 12(3):429–439, 1999.

549 Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ICA using auxiliary variables
 550 and generalized contrastive learning. In *International Conference on Artificial Intelligence and
 551 Statistics*, pp. 859–868. PMLR, 2019.

552 Aapo Hyvärinen, Ilyes Khemakhem, and Ricardo Monti. Identifiability of latent-variable and
 553 structural-equation models: from linear to nonlinear. *Annals of the Institute of Statistical Mathe-
 554 matics*, 76(1):1–33, 2024.

555 Yibo Jiang and Bryon Aragam. Learning nonparametric latent causal graphs with unknown inter-
 556 ventions. *Advances in Neural Information Processing Systems*, 36:60468–60513, 2023.

557 Jikai Jin and Vasilis Syrgkanis. Learning causal representations from general environments: Identi-
 558 fiability and intrinsic ambiguity. *arXiv preprint arXiv:2311.12267*, 2023.

559 Alexander Jung, Yonina C Eldar, and Norbert Görz. On the minimax risk of dictionary learning.
 560 *IEEE Transactions on Information Theory*, 62(3):1501–1515, 2016.

561 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoen-
 562 coders and nonlinear ICA: A unifying framework. In *International Conference on Artificial In-
 563 telligence and Statistics*, pp. 2207–2217. PMLR, 2020.

564 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *International conference on ma-
 565 chine learning*, pp. 2649–2658. PMLR, 2018.

566 Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Identifiability of deep
 567 generative models without auxiliary information. *Advances in Neural Information Processing
 568 Systems*, 35:15687–15701, 2022.

569 Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akin-
 570 wande, and Kun Zhang. Partial identifiability for domain adaptation. In *International Conference
 571 on Machine Learning*, pp. 11455–11472. PMLR, 2022.

572 Lingjing Kong, Biwei Huang, Feng Xie, Eric Xing, Yuejie Chi, and Kun Zhang. Identification of
 573 nonlinear latent hierarchical models. *Advances in Neural Information Processing Systems*, 36:
 574 2010–2032, 2023.

575 Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre
 576 Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A
 577 new principle for nonlinear ICA. *Conference on Causal Learning and Reasoning*, 2022.

578 Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-Julien. Additive de-
 579 coders for latent variables identification and cartesian-product extrapolation. *Advances in Neural
 580 Information Processing Systems*, 36, 2024.

581 Zijian Li, Ruichu Cai, Guangyi Chen, Boyang Sun, Zhifeng Hao, and Kun Zhang. Subspace identi-
 582 fication for multi-source domain adaptation. *Advances in Neural Information Processing Systems*,
 583 36:34504–34518, 2023.

584 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Efstratios Gavves.
 585 Biscuit: Causal representation learning from binary interactions. In *Uncertainty in Artificial
 586 Intelligence*, pp. 1263–1273. PMLR, 2023.

594 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
 595 Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
 596 of disentangled representations. In *international conference on machine learning*, pp. 4114–4124.
 597 PMLR, 2019.

598 Gemma E Moran and Bryon Aragam. Towards interpretable deep generative models via causal
 599 representation learning. *arXiv preprint arXiv:2504.11609*, 2025.

600 Gemma E Moran, Dhanya Sridhar, Yixin Wang, and David M Blei. Identifiable variational autoen-
 601 coders via sparse decoding. *arXiv preprint arXiv:2110.10804*, 2021.

602 Hiroshi Morioka and Aapo Hyvärinen. Causal representation learning made identifiable by grouping
 603 of observational variables. In *International Conference on Machine Learning*, pp. 36249–36293.
 604 PMLR, 2024.

605 Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
 606 employed by v1? *Vision research*, 37(23):3311–3325, 1997.

607 William Peebles, John Peebles, Jun-Yan Zhu, Alexei Efros, and Antonio Torralba. The hessian
 608 penalty: A weak prior for unsupervised disentanglement. In *European conference on computer
 609 vision*, pp. 581–597. Springer, 2020.

610 Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. *Advances
 611 in neural information processing systems*, 28, 2015.

612 Olav Reiersøl. Identifiability of a linear relation between variables which are subject to error. *Econo-
 613 metrica: Journal of the Econometric Society*, pp. 375–389, 1950.

614 Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Learning disentangled representa-
 615 tion by exploiting pretrained generative models: A contrastive learning view. *arXiv preprint
 616 arXiv:2102.10543*, 2021.

617 Travers Rhodes and Daniel Lee. Local disentanglement in variational auto-encoders using jacobian
 618 l_1 regularization. *Advances in Neural Information Processing Systems*, 34:22708–22719, 2021.

619 Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
 620 Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems in
 621 mechanistic interpretability. *arXiv preprint arXiv:2501.16496*, 2025.

622 Peter Sorrenson, Carsten Rother, and Ullrich Köthe. Disentanglement by nonlinear ICA with general
 623 incompressible-flow networks (GIN). *arXiv preprint arXiv:2001.04872*, 2020.

624 Yuchen Sun and Kejun Huang. Global identifiability of overcomplete dictionary learning via l_1 and
 625 volume minimization. In *The Thirteenth International Conference on Learning Representations*,
 626 2025.

627 Yuewen Sun, Lingjing Kong, Guangyi Chen, Loka Li, Gongxu Luo, Zijian Li, Yixuan Zhang, Yujia
 628 Zheng, Mengyue Yang, Petar Stojanov, et al. Causal representation learning from multimodal
 629 biomedical observations. In *The Thirteenth International Conference on Learning Representa-
 630 tions*, 2024.

631 Anisse Taleb and Christian Jutten. Source separation in post-nonlinear mixtures. *IEEE Transactions
 632 on signal Processing*, 47(10):2807–2820, 1999.

633 Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 634 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 635 isolates content from style. *Advances in neural information processing systems*, 34:16451–16467,
 636 2021.

637 Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Gresele, Armin Kekić, Elias Barein-
 638 boim, David Blei, and Bernhard Schölkopf. Nonparametric identifiability of causal repres-
 639 entations from unknown interventions. *Advances in Neural Information Processing Systems*, 36:
 640 48603–48638, 2023.

648 Yuxiang Wei, Yupeng Shi, Xiao Liu, Zhilong Ji, Yuan Gao, Zhongqin Wu, and Wangmeng Zuo.
 649 Orthogonal jacobian regularization for unsupervised disentanglement in image generation. In
 650 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 6721–6730, 2021.
 651

652 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 653 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

654 Shaoan Xie, Lingjing Kong, Mingming Gong, and Kun Zhang. Multi-domain image generation and
 655 translation with identifiability guarantees. In *The Eleventh international conference on learning
 656 representations*, 2023.

657 Shaoan Xie, Lingjing Kong, Yujia Zheng, Zeyu Tang, Eric P Xing, Guangyi Chen, and Kun Zhang.
 658 Learning vision and language concepts for controllable image generation. In *Forty-second Inter-
 659 national Conference on Machine Learning*, 2025a.

660 Shaoan Xie, Lingjing Kong, Yujia Zheng, Yu Yao, Zeyu Tang, Eric P Xing, Guangyi Chen,
 661 and Kun Zhang. Smartclip: Modular vision-language alignment with identification guarantees.
 662 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 29780–29790,
 663 2025b.

664 Hanqi Yan, Lingjing Kong, Lin Gui, Yuejie Chi, Eric Xing, Yulan He, and Kun Zhang. Counter-
 665 factual generation with identifiability guarantees. *Advances in Neural Information Processing
 666 Systems*, 36:56256–56277, 2023.

667 Tao Yang, Cuiling Lan, Yan Lu, and Nanning Zheng. Diffusion model with cross attention as an in-
 668 ductive bias for disentanglement. In *The Thirty-eighth Annual Conference on Neural Information
 669 Processing Systems*, 2024.

670 Dingling Yao, Caroline Muller, and Francesco Locatello. Marrying causal representation learning
 671 with dynamical systems for science. *Advances in Neural Information Processing Systems*, 37:
 672 71705–71736, 2024a.

673 Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius,
 674 Julius von Kügelgen, and Francesco Locatello. Multi-view causal representation learning with
 675 partial observability. In *International Conference on Learning Representations*, 2024b.

676 Weiran Yao, Yuewen Sun, Alex Ho, Changyin Sun, and Kun Zhang. Learning temporally causal
 677 latent processes from general temporal data. *arXiv preprint arXiv:2110.05428*, 2021.

678 Jiji Zhang. A comparison of three occam’s razors for markovian causal models. *The British journal
 679 for the philosophy of science*, 2013.

680 Kun Zhang, Shaoan Xie, Ignavier Ng, and Yujia Zheng. Causal representation learning from multi-
 681 ple distributions: A general setting. In *Forty-first International Conference on Machine Learning*,
 682 2024.

683 Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ICA: Sparsity and
 684 beyond. In *Advances in Neural Information Processing Systems*, 2022.

685 Yujia Zheng, Yang Liu, Jiaxiong Yao, Yingyao Hu, and Kun Zhang. Nonparametric factor analysis
 686 and beyond. In *International Conference on Artificial Intelligence and Statistics*, pp. 424–432.
 687 PMLR, 2025.

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
 703
 704 **Diverse Dictionary Learning**
 705
 706 **Supplementary Material**
 707

708 **Table of Contents**
 709

710	A Proofs	15
711	A.1 Proof of Proposition 1	15
712	A.2 Proof of Theorem 1	16
713	A.3 Proof of Theorem 2	19
714	A.4 Proof of Theorem 3	21
715		
716	B Additional Discussion	25
717	B.1 The Venn diagram.	25
718	B.2 Further discussion on the connection of conditions.	26
719	B.3 Further discussion on the connection with SAEs.	26
720	B.4 Further discussion on sufficient nonlinearity	27
721	B.5 Dependency sparsity regularization on large models	27
722	B.6 General noise and non-invertibility	28
723	B.7 Further discussion on potential impact.	28
724		
725	C Additional Experiments	30
726	C.1 Additional synthetic experiments	30
727	C.2 Additional visual experiments	31
728		
729	D Disclosure Statement	34

730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756	Symbol	Description
758	$X = (X_1, \dots, X_{d_x}) \in \mathbb{R}^{d_x}$	Observed variables (data space)
759	$Z = (Z_1, \dots, Z_{d_z}) \in \mathbb{R}^{d_z}$	Latent variables (hidden space)
760	$g : \mathbb{R}^{d_z} \rightarrow \mathbb{R}^{d_x}$	Generative map, diffeomorphism onto its image
761	$\text{supp}(M; \Theta)$	Support of a matrix-valued function $M : \Theta \rightarrow \mathbb{R}^{m \times n}$
762	$S = \text{supp}(D_z g; \mathcal{Z})$	Dependency structure: support of Jacobian between Z and X
763	$\theta = (g, p_Z)$	Model consisting of generative map and latent distribution
764	$\theta \sim_{\text{obs}} \hat{\theta}$	Observational equivalence (same induced distribution on X)
765	$\theta \sim_{\text{set}} \hat{\theta}$	Set-theoretic indeterminacy (intersection, symmetric difference, complement disentangled)
766	$I_S \subseteq [d_z]$	Latent index set associated with observed variable set X_S
767	$I_K \cap I_V$	Intersection of latent supports (shared factors)
768	$I_K \Delta I_V$	Symmetric difference of latent supports (unique factors)
769	$I_K \setminus I_V, I_V \setminus I_K$	Complements (exclusive latent components)
770	Atomic region	Minimal block in Venn diagram defined by intersections and complements of latent supports
771	$\theta \sim_{\text{elem}} \hat{\theta}$	Element-wise indeterminacy (permutation + invertible reparametrization)
772		
773		
774		

Table 2: Notation used throughout the paper.

A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 1 (Implications of generalized identifiability). *For any two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$, if $\theta \sim_{\text{set}} \hat{\theta}$, then for any two sets of observed variables X_K and X_V , and their corresponding latent index sets I_K and I_V , Z_i is not a function of $\hat{Z}_{\pi(j)}$ for all (i, j) satisfying at least one of the following, where π is a permutation:*

- 787 (i) (Object-centric) $i \in I_K, j \in I_V \setminus I_K$ or $i \in I_V, j \in I_K \setminus I_V$;
- 788 (ii) (Individual-centric) $i \in (I_K \setminus I_V), j \in I_V$, or $i \in (I_V \setminus I_K), j \in I_K$;
- 790 (iii) (Shared-centric) $i \in I_K \cap I_V, j \in I_K \Delta I_V$.

Proof. For $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$, since $\theta \sim_{\text{set}} \hat{\theta}$, for any two sets of observed variables X_K and X_V , and their corresponding latent index sets I_K and I_V , there exists a permutation π over $\{1, \dots, d_z\}$ such that Z_i is not a function of $\hat{Z}_{\pi(j)}$ for any (i, j) satisfying at least one of the following conditions:

- 798 (i) (Intersection) $i \in I_K \cap I_V, j \in I_K \Delta I_V$;
- 799 (ii) (Symmetric difference) $i \in I_K \Delta I_V, j \in I_K \cap I_V$;
- 801 (iii) (Complement) $i \in I_K \setminus I_V, j \in I_V \setminus I_K$, or $i \in I_V \setminus I_K, j \in I_K \setminus I_V$.

803 Our goal is to prove that, the same holds for all (i, j) satisfying at least one of the following conditions:

- 806 (i) (Object-centric disentanglement) $i \in I_K, j \in I_V \setminus I_K$ or $i \in I_V, j \in I_K \setminus I_V$;
- 807 (ii) (Individual-centric disentanglement) $i \in I_K \setminus I_V, j \in I_V$, or $i \in I_V \setminus I_K, j \in I_K$;
- 809 (iii) (Shared-centric disentanglement) $i \in I_K \cap I_V, j \in I_K \Delta I_V$.

Let us start with the first case. If $i \in I_K$, it is either the case $i \in I_K \cap I_V$ or $i \in I_K \setminus I_V$. For $i \in I_K \cap I_V$, according to the case of *Intersection* in set-theoretic indeterminacy, we have

$$\frac{\partial Z_i}{\partial \hat{Z}_{\pi(j)}} = 0, \quad (2)$$

for any $j \in I_K \Delta I_V$. Similarly, for $i \in I_K \setminus I_V$, we also have Eq. (2) for $j \in I_V \setminus I_K$. Combining these together, Eq. (2) must hold for any $i \in I_K$ and $j \in I_V \setminus I_K$. The similar derivation holds for any $i \in I_V$ and $j \in I_K \setminus I_V$. Thus, the first case holds.

Then we consider the second case. If $i \in I_K \setminus I_V$, then according to the case of *symmetric difference* in set-theoretic indeterminacy, we have Eq. (2) holds for $j \in I_K \cap I_V$.

Moreover, according to the case of *complement* in set-theoretic indeterminacy, we have Eq. (2) holds for $j \in I_V \setminus I_K$. Note that there is

$$(I_V \setminus I_K) \cup (I_K \cap I_V) = I_V. \quad (3)$$

Thus, for any $i \in I_K \setminus I_V$, we have Eq. (2) holds for any $j \in I_V$. The similar derivation holds for any $i \in I_V \setminus I_K$ and $j \in I_K$. Thus, the second case holds.

The third case is identical to the case of *intersection* in set-theoretic indeterminacy. Thus, for $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$, $\theta \sim_{\text{set}} \hat{\theta}$ implies our goals. \square

A.2 PROOF OF THEOREM 1

Theorem 1 (Generalized identifiability). Consider any two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$ following the process in Sec. 2. Suppose Assum. 1 holds and:

- i. The probability density of Z is positive in \mathbb{R}^{d_Z} ;
- ii. (Sparsity regularization⁶) $\|D_{\hat{Z}}\hat{g}\|_0 \leq \|D_Z g\|_0$.

Then if $\theta \sim_{\text{obs}} \hat{\theta}$, we have generalized identifiability (Defn. 6), i.e., $\theta \sim_{\text{set}} \hat{\theta}$.

Proof. Since $\theta \sim_{\text{obs}} \hat{\theta}$, by the change-of-variable formula there must be

$$\hat{Z} = \hat{g}^{-1} \circ g(Z) = \phi(Z), \quad (4)$$

where $\phi = \hat{g}^{-1} \circ g$ is an invertible function and thus ϕ^{-1} exists. Therefore, according to the chain rule, we have

$$D_{\hat{Z}}\hat{g} = D_Z g D_Z \phi^{-1}. \quad (5)$$

For each $i \in [d_x]$, consider a set S_i of $\|(D_Z g)_{i,\cdot}\|_0$ distinct points and the corresponding Jacobians as follows

$$\left(\frac{\partial X_i}{\partial Z_1}, \frac{\partial X_i}{\partial Z_2}, \dots, \frac{\partial X_i}{\partial Z_{d_Z}} \right) \Big|_{(z)=(z^{(k)})}, k \in S_i. \quad (6)$$

According to Assumption 1, all vectors in Eq. (6) are linearly independent.

Let us construct a matrix M_ϕ . Since all vectors in Eq. (6) are linearly independent, for any $j \in \text{supp}((D_Z g)_{i,\cdot})$, we have

$$M_{\phi j,\cdot} = \sum_{k \in S_i} \beta_k (D_Z g(z^{(k)}))_{i,\cdot} M_\phi, \quad (7)$$

where $\beta_k, \forall k \in S_i$ denote coefficients, and M_ϕ denotes a matrix.

We wish to construct a constant matrix M_ϕ satisfying

$$\sum_{k \in S_i} \beta_k (D_Z g(z^{(k)}))_{i,\cdot} M_\phi \in \text{span}\{e_j : j \in \text{supp}((D_{\hat{Z}}\hat{g})_{i,\cdot})\}, \quad (8)$$

for each $i \in [d_x]$, while ensuring that

$$\text{supp}(M_\phi) = \text{supp}(D_{\hat{Z}}\phi^{-1}), \quad (9)$$

⁶Notably, this is a regularization during estimation, instead of an assumption restricting the data.

864 According to Assumption 1, we have
 865

$$866 \text{supp}(D_Z g(z^{(k)}) M_\phi)_{i,\cdot} \subseteq \text{supp}(D_{\hat{Z}} \hat{g}(\hat{z}^{(k)}))_{i,\cdot}, \forall k \in S_i. \quad (10)$$

867 Therefore, there must be
 868

$$869 D_Z g(z^{(k)})_{i,\cdot} M_\phi \in \text{span}\{e_j : j \in \text{supp}((D_{\hat{Z}} \hat{g})_{i,\cdot})\}, \quad (11)$$

870 which implies
 871

$$872 \sum_{k \in S_i} \beta_k (D_Z g(z^{(k)}))_{i,\cdot} M_\phi \in \text{span}\{e_j : j \in \text{supp}((D_{\hat{Z}} \hat{g})_{i,\cdot})\}. \quad (12)$$

873 Equivalently, we have
 874

$$875 M_{\phi j,\cdot} \in \text{span}\{e_k : k \in \text{supp}((D_{\hat{Z}} \hat{g})_{i,\cdot})\}, \forall j \in \text{supp}((D_Z g)_{i,\cdot}). \quad (13)$$

876 Define a bipartite graph $G = (R, C, E)$ where $R = C = \{1, 2, \dots, d_z\}$ and an edge exists between
 877 $j \in R$ and $k \in C$ if and only if $D_{\hat{Z}} \phi_{j,k}^{-1} \neq 0$.
 878

879 Since $D_{\hat{Z}} \phi^{-1}$ is invertible, its rows are linearly independent, so for every subset $S \subseteq R$, the corre-
 880 sponding rows have a nonzero determinant, implying that
 881

$$882 | \{k \in C \mid \exists j \in S, D_{\hat{Z}} \phi_{j,k}^{-1} \neq 0\} | \geq |S|. \quad (14)$$

883 By Hall's marriage theorem, there exists a perfect matching between R and C . This matching
 884 corresponds to a permutation $\pi \in S_n$ such that
 885

$$886 (D_{\hat{Z}} \phi^{-1})_{j,\pi(j)} \neq 0, \forall j \in \{1, 2, \dots, n\}. \quad (15)$$

887 In particular, for every $j \in \text{supp}((D_Z g)_{i,\cdot}) \subseteq \{1, 2, \dots, n\}$, we have
 888

$$889 (D_{\hat{Z}} \phi^{-1})_{j,\pi(j)} \neq 0. \quad (16)$$

890 Because $\text{supp}(M_\phi) = \text{supp}(D_{\hat{Z}} \phi^{-1})$, this implies
 891

$$892 M_{\phi j,\pi(j)} \neq 0, \forall j \in \text{supp}((D_Z g)_{i,\cdot}). \quad (17)$$

893 Further incorporating Eq. (13), it follows that
 894

$$895 \pi(j) \in \text{span}\{e_k : k \in \text{supp}((D_{\hat{Z}} \hat{g})_{i,\cdot})\}, \forall j \in \text{supp}((D_Z g)_{i,\cdot}). \quad (18)$$

896 Therefore, for any non-zero element in $D_Z g$, there always exists a corresponding non-zero element
 897 in $D_{\hat{Z}} \hat{g}$, with the relations on their indices as follows
 898

$$899 (D_Z g)_{i,j} \neq 0 \implies (D_{\hat{Z}} \hat{g})_{i,\pi(j)} \neq 0. \quad (19)$$

900 Furthermore, because of the assumption that
 901

$$902 \|D_{\hat{Z}} \hat{g}\|_0 \leq \|D_Z g\|_0, \quad (20)$$

903 Eq. (19) can be further restricted to an equivalence between the sparsity patterns, i.e.,
 904

$$905 (D_Z g)_{i,j} \neq 0 \iff (D_{\hat{Z}} \hat{g})_{i,\pi(j)} \neq 0 \quad (21)$$

906 We then consider the following two cases for the set-theoretic indeterminacy. Specifically, for any
 907 two sets of observed variables X_K and X_V and the index sets of their latent variables, I_K and I_V ,
 908 $K \neq V$, we consider the following cases:
 909

- 910 (i) (Intersection) $i \in I_K \cap I_V, j \in I_K \Delta I_V$;
- 911 (ii) (Symmetric difference) $i \in I_K \Delta I_V, j \in I_K \cap I_V$;
- 912 (iii) (Complement) $i \in I_K \setminus I_V, j \in I_V \setminus I_K$, or $i \in I_V \setminus I_K, j \in I_K \setminus I_V$.

918 Let us start from the first case, where $t \in I_K \cap I_V$, $r \in I_K \Delta I_V$. Denote the index sets of X_K and
 919 X_V as J_K and J_V . Then, there exists $k \in J_K$ such that
 920

$$921 \quad t \in \text{supp}(D_Z g)_{k,.} \quad (22)$$

923 This further implies the following relation based on Eq. (13)

$$924 \quad M_{\phi_{t,.}} \in \text{span}\{e_{k'} : k' \in \text{supp}((D_{\hat{Z}} \hat{g})_{k,.})\}. \quad (23)$$

926 Similarly, there exists $v \in J_V$ such that

$$927 \quad t \in \text{supp}(D_Z g)_{v,.}, \quad (24)$$

929 which further implies

$$930 \quad M_{\phi_{t,.}} \in \text{span}\{e'_k : k' \in \text{supp}((D_{\hat{Z}} \hat{g})_{v,.})\}. \quad (25)$$

931 For $r \in I_K \Delta I_V$, suppose

$$932 \quad M_{\phi_{t,\pi(r)}} \neq 0. \quad (26)$$

934 According to Eqs. (23) and (25), there must be

$$935 \quad \pi(r) \in \text{supp}(D_{\hat{Z}} \hat{g})_{k,.}, \quad (27)$$

$$936 \quad \pi(r) \in \text{supp}(D_{\hat{Z}} \hat{g})_{v,.}. \quad (28)$$

938 Together with Eq. (21), these further imply

$$940 \quad r \in \text{supp}(D_Z g)_{k,.}, \quad (29)$$

$$941 \quad r \in \text{supp}(D_Z g)_{v,.}. \quad (30)$$

943 This leads to

$$944 \quad r \in I_K \cap I_V, \quad (31)$$

945 which contradict $r \in I_K \Delta I_V$. Therefore, there must be

$$946 \quad M_{\phi_{t,\pi(r)}} = 0. \quad (32)$$

948 Since M_{ϕ} is the support of $D_{\hat{Z}} \phi^{-1}$, this implies that, for $t \in I_K \cap I_V$ and $r \in I_K \Delta I_V$, we have

$$950 \quad \frac{\partial Z_t}{\partial \hat{Z}_{\pi(r)}} = 0. \quad (33)$$

953 Then we consider the case where $t \in I_K \cap I_V$ and $r \in I \setminus (I_K \cup I_V)$. Suppose

$$955 \quad M_{\phi_{t,\pi(r)}} \neq 0. \quad (34)$$

956 According to Eq. (23), there must be

$$958 \quad \pi(r) \in \text{supp}(D_{\hat{Z}} \hat{g})_{k,.}. \quad (35)$$

959 Together with Eq. (21), these further imply

$$961 \quad r \in \text{supp}(D_Z g)_{k,.}. \quad (36)$$

963 This leads to

$$964 \quad r \in I_K, \quad (37)$$

965 which contradict $r \in I \setminus (I_K \cup I_V)$. Therefore, there must be

$$966 \quad M_{\phi_{t,\pi(r)}} = 0, \quad (38)$$

968 where $t \in I_K \cap I_V$ and $r \in I \setminus (I_K \cup I_V)$.

969 Therefore, according to Eqs. (33) and (38) and the invertibility of ϕ , for $t \in I_K \cap I_V$, Z_t has to
 970 depend only on $\hat{Z}_{\pi(t)}$ and not other variables. Therefore, there exists an invertible function h s.t.
 971 $Z_t = h(\hat{Z}_{\pi(t)})$.

972 Further consider the setting where $r \in I_K \Delta I_V$. Since $t \in I_K \cap I_V$ and $(I_K \Delta I_V) \cap (I_K \cap I_V) = \emptyset$,
 973 Z_r is independent of $Z_t = h(\hat{Z}_{\pi(t)})$. Therefore, Z_r does not depend on $\hat{Z}_{\pi(t)}$ and thus
 974

$$\frac{\partial Z_r}{\partial \hat{Z}_{\pi(t)}} = 0, \quad (39)$$

975 which is the second case.
 976

977 Then we consider the third case where $t \in I_K \setminus I_V$ and $r \in I_V \setminus I_K$. If $t \in I_K \setminus I_V$, there exists
 978 $k \in J_K$ such that

$$t \in \text{supp}(D_Z g)_{k,.}. \quad (40)$$

979 Then there is

$$M_{\phi_{t,.}} \in \text{span}\{e_{k'} : k' \in \text{supp}((D_{\hat{Z}} \hat{g})_{k,.})\}. \quad (41)$$

980 For $r \in I_V \setminus I_K$, suppose

$$M_{\phi_{t,\pi(r)}} \neq 0. \quad (42)$$

981 Then we have

$$\pi(r) \in \text{supp}(D_{\hat{Z}} \hat{g})_{k,.}, \quad (43)$$

982 which follows

$$r \in \text{supp}(D_Z g)_{k,.}. \quad (44)$$

983 This is a contradiction since $r \in I_V \setminus I_K$. Thus, we can also prove that, for the third case, where
 984 $t \in I_V \setminus I_K$ and $r \in I_K \setminus I_V$, there must be

$$\frac{\partial Z_t}{\partial \hat{Z}_{\pi(r)}} = 0. \quad (45)$$

985 This concludes the proof. □

1000 A.3 PROOF OF THEOREM 2

1001 **Theorem 2 (Structure identifiability).** Consider any two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$
 1002 following the process in Sec. 2. Suppose assumptions in Thm. 1 hold. If $\theta \sim_{\text{obs}} \hat{\theta}$, the support of the
 1003 Jacobian matrix $D_{\hat{Z}} \hat{g}$ is identical to that of $D_Z g$, up to a permutation of column indices.

1004

1005 *Proof.* Since $\theta \sim_{\text{obs}} \hat{\theta}$, by considering $\phi = \hat{g}^{-1} \circ g$ and the change-of-variable formula, we have

$$\hat{Z} = \phi(Z), \quad (46)$$

1006 where ϕ is an invertible function and thus ϕ^{-1} exists. Therefore, according to the chain rule, we
 1007 have

$$D_{\hat{Z}} \hat{g} = D_Z g D_{\hat{Z}} \phi^{-1}. \quad (47)$$

1008 For each $i \in [d_x]$, consider a set S_i of $\|(D_Z g)_{i,.}\|_0$ distinct points and the corresponding Jacobians
 1009 as follows

$$\left(\frac{\partial X_i}{\partial Z_1}, \frac{\partial X_i}{\partial Z_2}, \dots, \frac{\partial X_i}{\partial Z_{d_z}} \right) \Big|_{(z)=(z^{(k)})}, k \in S_i. \quad (48)$$

1010 According to Assumption 1, all vectors in Eq. (48) are linearly independent.

1011 Let us construct a matrix M_{ϕ} . Since all vectors in Eq. (48) are linearly independent, for any
 1012 $j \in \text{supp}((D_Z g)_{i,.})$, we have

$$M_{\phi j,.} = \sum_{k \in S_i} \beta_k (D_Z g(z^{(k)}))_{i,.} M_{\phi}, \quad (49)$$

1013 where $\beta_k, \forall k \in S_i$ denote coefficients.

1014 We wish to construct a constant matrix M_{ϕ} satisfying

$$\sum_{k \in S_i} \beta_k (D_Z g(z^{(k)}))_{i,.} M_{\phi} \in \text{span}\{e_j : j \in \text{supp}((D_{\hat{Z}} \hat{g})_{i,.})\}, \quad (50)$$

1026 for each $i \in [d_x]$, while ensuring that
 1027

$$1028 \quad \text{supp}(M_\phi) = \text{supp}(D_{\hat{Z}}\phi^{-1}), \quad (51)$$

1030 According to Assumption 1, we have
 1031

$$1032 \quad \text{supp}(D_Zg(z^{(k)})M_\phi)_{i,\cdot} \subseteq \text{supp}(D_{\hat{Z}}\hat{g}(\hat{z}^{(k)}))_{i,\cdot}, \forall k \in S_i. \quad (52)$$

1033 Therefore, there must be
 1034

$$1035 \quad D_Zg(z^{(k)})_{i,\cdot} M_\phi \in \text{span}\{e_j : j \in \text{supp}((D_{\hat{Z}}\hat{g})_{i,\cdot})\}, \quad (53)$$

1036 which implies
 1037

$$1038 \quad \sum_{k \in S_i} \beta_k (D_Zg(z^{(k)}))_{i,\cdot} M_\phi \in \text{span}\{e_j : j \in \text{supp}((D_{\hat{Z}}\hat{g})_{i,\cdot})\}. \quad (54)$$

1041 Equivalently, we have
 1042

$$1043 \quad M_{\phi,j,\cdot} \in \text{span}\{e_k : k \in \text{supp}((D_{\hat{Z}}\hat{g})_{i,\cdot})\}, \forall j \in \text{supp}((D_Zg)_{i,\cdot}). \quad (55)$$

1044 Define a bipartite graph $G = (R, C, E)$ where $R = C = \{1, 2, \dots, d_z\}$ and an edge exists between
 1045 $j \in R$ and $k \in C$ if and only if $D_{\hat{Z}}\phi_{j,k}^{-1} \neq 0$.
 1046

1047 Since $D_{\hat{Z}}\phi^{-1}$ is invertible, its rows are linearly independent, so for every subset $S \subseteq R$, the corre-
 1048 sponding rows have a nonzero determinant, implying that
 1049

$$1050 \quad |\{k \in C \mid \exists j \in S, D_{\hat{Z}}\phi_{j,k}^{-1} \neq 0\}| \geq |S|. \quad (56)$$

1051 By Hall's marriage theorem, there exists a perfect matching between R and C . This matching
 1052 corresponds to a permutation $\pi \in S_n$ such that
 1053

$$1054 \quad (D_{\hat{Z}}\phi^{-1})_{j,\pi(j)} \neq 0, \forall j \in \{1, 2, \dots, n\}. \quad (57)$$

1055 In particular, for every $j \in \text{supp}((D_Zg)_{i,\cdot}) \subseteq \{1, 2, \dots, n\}$, we have
 1056

$$1057 \quad (D_{\hat{Z}}\phi^{-1})_{j,\pi(j)} \neq 0. \quad (58)$$

1059 Because $\text{supp}(M_\phi) = \text{supp}(D_{\hat{Z}}\phi^{-1})$, this implies
 1060

$$1061 \quad M_{\phi,j,\pi(j)} \neq 0, \forall j \in \text{supp}((D_Zg)_{i,\cdot}). \quad (59)$$

1062 Further incorporating Eq. (55), it follows that
 1063

$$1064 \quad \pi(j) \in \text{span}\{e_k : k \in \text{supp}((D_{\hat{Z}}\hat{g})_{i,\cdot})\}, \forall j \in \text{supp}((D_Zg)_{i,\cdot}). \quad (60)$$

1066 Therefore, for any non-zero element in D_Zg , there always exists a corresponding non-zero element
 1067 in $D_{\hat{Z}}\hat{g}$, with the relations on their indices as follows
 1068

$$1069 \quad (D_Zg)_{i,j} \neq 0 \implies (D_{\hat{Z}}\hat{g})_{i,\pi(j)} \neq 0. \quad (61)$$

1070 Furthermore, because of the assumption that
 1071

$$1072 \quad \|D_{\hat{Z}}\hat{g}\|_0 \leq \|D_Zg\|_0, \quad (62)$$

1073 Eq. (61) can be further restricted to an equivalence between the sparsity patterns, i.e.,
 1074

$$1075 \quad (D_Zg)_{i,j} \neq 0 \iff (D_{\hat{Z}}\hat{g})_{i,\pi(j)} \neq 0. \quad (63)$$

1076 Therefore, there must be
 1077

$$1078 \quad \text{supp}(D_Zg) = \text{supp}((D_{\hat{Z}}\hat{g})P), \quad (64)$$

1079 where P denotes a permutation matrix. Thus, the support of the Jacobian matrix $D_{\hat{Z}}\hat{g}$ is identical to
 1080 that of D_Zg , up to a permutation of column indices. \square

1080 A.4 PROOF OF THEOREM 3
1081

1082 **Theorem 3 (Element identifiability).** Consider any two models $\theta = (g, p_Z)$ and $\hat{\theta} = (\hat{g}, p_{\hat{Z}})$
1083 following the process in Sec. 2. Suppose assumptions in Thm. 1 and Assum. 2 hold. Then we have
1084 identifiability up to element-wise indeterminacy, i.e., $\theta \sim_{obs} \hat{\theta} \implies \theta \sim_{elem} \hat{\theta}$.
1085

1086 *Proof.* Since all assumptions in Thm. 1 are satisfied, for these two models $\theta = (g, p_Z)$ and $\hat{\theta} =$
1087 $(\hat{g}, p_{\hat{Z}})$ following the process in Sec. 2, we can follow the same steps in Sec. A.2 to derive Eq. (21),
1088 i.e.,

$$1089 (D_z g)_{i,j} \neq 0 \iff (D_{\hat{Z}} \hat{g})_{i,\pi(j)} \neq 0. \quad (65)$$

1090 Then, for any latent variable $Z_i \in Z$, let us consider all conditions in Assum. 2. We begin with the
1091 first condition: there exists a set of observed variables A and an element $X_k \in A$ such that

$$1092 \bigcup_{X_j \in A} I_j = [d_z], \quad \text{and} \quad I_k \setminus \bigcup_{X_j \in A \setminus \{X_k\}} I_j = \{i\}. \quad (66)$$

1095 Our want to show that, for any other $r \neq i$, we have

$$1096 \frac{\partial Z_i}{\partial \hat{Z}_{\pi(r)}} = 0. \quad (67)$$

1099 We consider two cases:

- 1101 • $r \in (\bigcup_{X_j \in A \setminus \{X_k\}} I_j) \setminus I_k$;
- 1102 • $r \in (\bigcup_{X_j \in A \setminus \{X_k\}} I_j) \cap I_k$.

1104 Suppose $r \in (\bigcup_{X_j \in A \setminus \{X_k\}} I_j) \setminus I_k$. Let us denote $J_{A \setminus k}$ as the index set of $A \setminus \{X_k\}$. Since
1105 $I_k \setminus \bigcup_{X_j \in A \setminus \{X_k\}} I_j = \{i\}$, for any $v \in J_{A \setminus k}$, there must be

$$1106 i \notin \text{supp}(D_z g)_{v,.}, \quad (68)$$

1109 We then suppose for contradiction that

$$1110 M_{\phi_{i,.}} \in \text{span}\{e_l : l \in \text{supp}((D_{\hat{Z}} \hat{g})_{v,.})\}. \quad (69)$$

1112 In the proof of Theorem 1, we have proved that

$$1113 M_{\phi_{i,\pi(i)}} \neq 0. \quad (70)$$

1115 Then we have

$$1116 \pi(i) \in \text{supp}(D_{\hat{Z}} \hat{g})_{v,.}. \quad (71)$$

1117 According to Eq. (65), this implies

$$1118 i \in \text{supp}(D_z g)_{v,.}. \quad (72)$$

1119 This contradicts

$$1120 i \notin \text{supp}(D_z g)_{v,.}. \quad (73)$$

1122 Thus, there must be

$$1123 M_{\phi_{i,.}} \notin \text{span}\{e_l : l \in \text{supp}((D_{\hat{Z}} \hat{g})_{v,.})\} \quad (74)$$

1124 We further suppose by contradiction that

$$1125 M_{\phi_{i,\pi(r)}} \neq 0, \quad (75)$$

1127 for $r \in (\bigcup_{X_j \in A \setminus \{X_k\}} I_j) \setminus I_k$. Then, according to Eq. (74), there must be

$$1128 \pi(r) \notin \text{supp}(D_{\hat{Z}} \hat{g})_{v,.}, \quad (76)$$

1130 which implies

$$1131 r \notin \text{supp}(D_z g)_{v,.}. \quad (77)$$

1132 This is, again, a contradiction to $r \in (\bigcup_{X_j \in A \setminus \{X_k\}} I_j) \setminus I_k$. As a result, there must be

$$1133 M_{\phi_{i,\pi(r)}} = 0. \quad (78)$$

1134 We then consider the other case, where we assume $r \in (\bigcup_{X_j \in A \setminus \{X_k\}} I_j) \cap I_k$. Then there exists
 1135 $q \in J_{A \setminus k}$ s.t.
 1136

$$1137 \quad i \in \text{supp}(D_Z g)_{q,.}, \quad (79)$$

1138 which further implies

$$1139 \quad M_{\phi_{i,.}} \in \text{span}\{e_{q'} : q' \in \text{supp}((D_{\hat{Z}} \hat{g})_{q,.})\}. \quad (80)$$

1140 Since we also have

$$1141 \quad i \notin \text{supp}(D_Z g)_{q,.}. \quad (81)$$

1142 We suppose for contradiction that

$$1144 \quad M_{\phi_{i,.}} \in \text{span}\{e_l : l \in \text{supp}((D_{\hat{Z}} \hat{g})_{q,.})\}. \quad (82)$$

1145 Since there is

$$1147 \quad M_{\phi_{i,\pi(i)}} \neq 0. \quad (83)$$

1148 It follows that

$$1149 \quad \pi(i) \in \text{supp}(D_{\hat{Z}} \hat{g})_{q,.}. \quad (84)$$

1150 According to Eq. (65), it implies

$$1152 \quad i \in \text{supp}(D_Z g)_{q,.}. \quad (85)$$

1153 This contradicts the case that $i \notin \text{supp}(D_Z g)_{q,.}$, and thus there must be

$$1155 \quad M_{\phi_{i,.}} \notin \text{span}\{e_l : l \in \text{supp}((D_{\hat{Z}} \hat{g})_{q,.})\}. \quad (86)$$

1156 For $r \in (\bigcup_{X_j \in A \setminus \{X_k\}} I_j) \cap I_k$, suppose

$$1158 \quad M_{\phi_{i,\pi(r)}} \neq 0. \quad (87)$$

1160 Given Eqs. (80) and (86), we have

$$1161 \quad \pi(r) \in \text{supp}(D_{\hat{Z}} \hat{g})_{i,.}, \quad (88)$$

$$1163 \quad \pi(r) \notin \text{supp}(D_{\hat{Z}} \hat{g})_{q,.}. \quad (89)$$

1164 Because of Eq. (65), these further imply

$$1166 \quad r \in \text{supp}(D_Z g)_{i,.}, \quad (90)$$

$$1168 \quad r \notin \text{supp}(D_Z g)_{q,.}. \quad (91)$$

1169 This leads to

$$1170 \quad r \in I_k \setminus \bigcup_{X_j \in A \setminus \{X_k\}} I_j, \quad (92)$$

1172 which contradicts

$$1174 \quad r \in \left(\bigcup_{X_j \in A \setminus \{X_k\}} I_j \right) \cap I_k. \quad (93)$$

1176 Therefore, there must be

$$1178 \quad M_{\phi_{i,\pi(r)}} = 0. \quad (94)$$

1179 Since M_{ϕ} is the support of $D_{\hat{Z}} \phi^{-1}$, this implies that, for any other $r \neq i$, we have

$$1181 \quad \frac{\partial Z_i}{\partial \hat{Z}_{\pi(r)}} = 0. \quad (95)$$

1183 Because ϕ is invertible, each row of $D_{\hat{Z}} \phi^{-1}$ must at least have one non-zero element. Therefore, it
 1184 follows that

$$1186 \quad \frac{\partial Z_i}{\partial \hat{Z}_{\pi(i)}} = 0. \quad (96)$$

1187 Thus, with the first condition in Assum. 2, we have identifiability up to element-wise indeterminacy.

1188 Next, we consider the second condition in Assum. 2. By applying the case of *Intersection* in Defn.
 1189 5 for all pairs of observed variables in X , there is
 1190

$$\frac{\partial Z_{\bigcap_{X_j \in A \setminus \{X_k\}} I_j}}{\partial \sigma(\hat{Z})_{\Delta_{X_j \in A \setminus \{X_k\}} I_j}} = 0, \quad (97)$$

1194 where σ denotes the transformation for the permutation pi . Then for $\bigcup_{X_j \in A \setminus \{X_k\}} I_j$ and I_k , by the
 1195 *individual-centric disentanglement* in Prop. 1, there is
 1196

$$\frac{\partial Z_{\left(\bigcup_{X_j \in A \setminus \{X_k\}} I_j\right) \setminus I_k}}{\partial \sigma(\hat{Z})_{I_k}} = 0. \quad (98)$$

1200 Note that

$$\left(Z_{\bigcap_{X_j \in A \setminus \{X_k\}} I_j} \right) \cap \left(Z_{\left(\bigcup_{X_j \in A \setminus \{X_k\}} I_j\right) \setminus \{X_k\}} \right) = Z_{\left(\bigcap_{X_j \in A \setminus \{X_k\}} I_j\right) \setminus I_k} \quad (99)$$

1204 Considering both Eqs. (97) and (99), we have

$$\frac{\partial Z_{\left(\bigcap_{X_j \in A \setminus \{X_k\}} I_j\right) \setminus I_k}}{\partial \sigma(\hat{Z})_{\Delta_{X_j \in A \setminus \{X_k\}} I_j}} = 0. \quad (100)$$

1208 Considering both Eqs. (98) and (99), we have

$$\frac{\partial Z_{\left(\bigcap_{X_j \in A \setminus \{X_k\}} I_j\right) \setminus I_k}}{\partial \sigma(\hat{Z})_{I_k}} = 0. \quad (101)$$

1214 Note that

$$\sigma(\hat{Z})_{\Delta_{X_j \in A \setminus \{X_k\}} I_j} \cup \sigma(\hat{Z})_{I_k} \quad (102)$$

$$= [d_z] \setminus \left(\left(\bigcap_{X_j \in A \setminus \{X_k\}} I_j \right) \setminus I_k \right) \quad (103)$$

$$= [d_z] \setminus i. \quad (104)$$

1221 Further given the invertibility of ϕ , each row of $D_{\hat{Z}}\phi^{-1}$ must at least have one non-zero element.
 1222 Therefore, it follows that

$$\frac{\partial Z_i}{\partial \hat{Z}_{\pi(i)}} \neq 0. \quad (105)$$

1225 Lastly, we consider the third condition in Assum. 2. That part of proof directly follows from
 1226 (Lachapelle et al., 2022; Zheng et al., 2022). Suppose for each row in M_ϕ , there are more than one
 1227 non-zero element. Then

$$\exists j_1 \neq j_2, M_{\phi_{j_1, \cdot}} \cap M_{\phi_{j_2, \cdot}} \neq \emptyset. \quad (106)$$

1229 Then consider $j_3 \in [d_z]$ such that

$$\pi(j_3) \in M_{\phi_{j_1, \cdot}} \cap M_{\phi_{j_2, \cdot}}. \quad (107)$$

1233 Since $j_1 \neq j_3$, it is either $j_3 \neq j_1$ or $j_3 \neq j_2$. Without loss of generality, we assume $j_3 \neq j_1$.
 1234

1235 Since we have

$$\bigcap_{X_j \in A_{j_1}} I_j = j_1, \quad (108)$$

1238 there must exists $X_{i_3} \in A_{j_1}$ such that $j_3 \neq I_{i_3}$. Because $j_1 \in I_{i_3}$, we have

$$(i_3, j_1) \in \text{supp}(D_Z g), \quad (109)$$

1240 which further implies

$$M_{\phi_{j_1, \cdot}} \in \text{span}\{e'_k : k' \in \text{supp}((D_{\hat{Z}}\hat{g})_{i_3, \cdot})\}. \quad (110)$$

1242 Given Eq. (107), it implies
 1243
 1244

$$\pi(j_3) \in \text{supp}(D_{\hat{Z}}\hat{g})_{i_3,\cdot} \quad (111)$$

1245 This, again, implies
 1246

$$j_3 \in \text{supp}(D_Zg)_{i_3,\cdot}, \quad (112)$$

1247 which contradicts $j_3 \neq I_{i_3}$. Therefore, for each row in M_ϕ , there are no more than one non-zero
 1248 element. Because M_ϕ is invertible. each row must at least have one non-zero element. Thus, there
 1249 must be exactly one non-zero element each row, which is

$$\frac{\partial Z_i}{\partial \hat{Z}_{\pi(i)}} \neq 0. \quad (113)$$

1250 Thus, we have proved our goal with all three conditions. \square
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

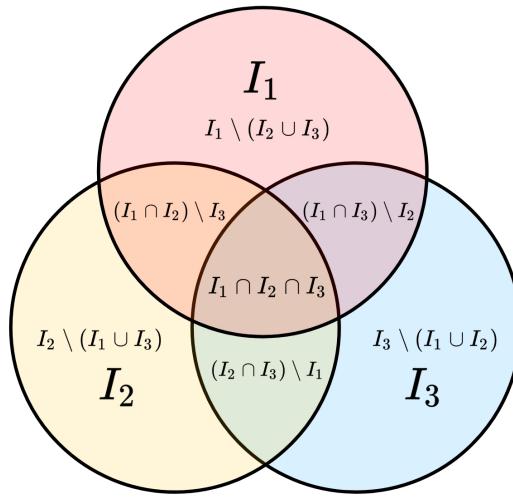


Figure 6: The Venn diagram example (Fig. 3).

B ADDITIONAL DISCUSSION

B.1 THE VENN DIAGRAM.

Here we provide the full derivation of the Venn diagram example.

Example 5 (Identifying all atomic regions). *Let I_1 , I_2 , and I_3 be the latent index sets of X_1 , X_2 , and X_3 in Fig. 3. For each atomic region \mathcal{A} we pick two sets of observed variables (X_K, X_V) so that every $i \in \mathcal{A}$ satisfies one of the three conditions in Defn. 5 with every $j \notin \mathcal{A}$. This guarantees that the latents in \mathcal{A} are disentangled from all others, establishing block-wise identifiability.*

(i) $I_1 \setminus (I_2 \cup I_3)$ Step 1: Take $X_K = X_1$, $X_V = X_2$. Then $i \in I_K \setminus I_V$ and every $j \in I_2$ lies in $I_V \setminus I_K$, so case (iii) applies. Step 2: Take $X_K = X_1$, $X_V = X_3$. Now $i \in I_K \setminus I_V$ and every $j \in I_3$ is in $I_V \setminus I_K$, again case (iii). All indices outside \mathcal{A} belong to I_2 or I_3 (or both), so \mathcal{A} is disentangled.

(ii) $I_2 \setminus (I_1 \cup I_3)$ Symmetric to (i) with the roles of (1, 2) and (2, 1) swapped: use $(X_K, X_V) = (X_2, X_1)$ and (X_2, X_3) .

(iii) $I_3 \setminus (I_1 \cup I_2)$ Symmetric to (i): use $(X_K, X_V) = (X_3, X_1)$ and (X_3, X_2) .

(iv) $(I_1 \cap I_2) \setminus I_3$ This is the worked example already given; we recap for completeness. Step 1: (X_1, X_2) yields $i \in I_K \cap I_V$, $j \in I_K \Delta I_V$ (case (ii)). Step 2: $(X_1 \cup X_2, X_3)$ yields $i \in I_K \setminus I_V$, $j \in I_V$ (case (iii)).

(v) $(I_1 \cap I_3) \setminus I_2$ Step 1: $X_K = X_1$, $X_V = X_3$: $i \in I_K \cap I_V$, $j \in I_K \Delta I_V$ (case (ii)). Step 2: $X_K = X_1 \cup X_3$, $X_V = X_2$: $i \in I_K \setminus I_V$, $j \in I_V$ (case (iii)).

(vi) $(I_2 \cap I_3) \setminus I_1$ Step 1: $X_K = X_2$, $X_V = X_3$: $i \in I_K \cap I_V$, $j \in I_K \Delta I_V$ (case (ii)). Step 2: $X_K = X_2 \cup X_3$, $X_V = X_1$: $i \in I_K \setminus I_V$, $j \in I_V$ (case (iii)).

(vii) $I_1 \cap I_2 \cap I_3$ Step 1: $X_K = X_1$, $X_V = X_2$: $i \in I_K \cap I_V$, any j that differs only by presence in I_1 or I_2 lies in $I_K \Delta I_V$ (case (ii)). Step 2: $X_K = X_1 \cup X_2$, $X_V = X_3$: $i \in I_K \cap I_V$, while every remaining j either (a) appears in exactly one of I_1, I_2, I_3 and so is in $I_K \Delta I_V$ (case (ii)), or (b) lies solely in I_3 and is in $I_V \setminus I_K$ (case (iii)).

In every case the chosen pairs cover all $j \notin \mathcal{A}$, so each atomic region is disentangled from the rest and hence block-wise identifiable under the invertibility assumption.

1350 B.2 FURTHER DISCUSSION ON THE CONNECTION OF CONDITIONS.
13511352 The spirit of many of our conditions stems from the classical literature of latent variable models.
1353 Here we discuss the connections in more details:1354 **Connection between diversity and sparsity assumptions.** The structural diversity condition is
1355 firstly introduced in our work for the nonlinear case, but other conditions on the structure appear in
1356 related field, e.g., the sparsity condition. For instance, the anchor feature assumption (Arora et al.,
1357 2012; Moran et al., 2021), structural sparsity Zheng et al. (2022), sparse dictionary (Garfinkle &
1358 Hillar, 2019), and many others. Although both diversity and sparsity concern latent structure, they
1359 are fundamentally different. Diversity focuses on variation in the dependency between latent and ob-
1360 served variables, and does not require sparsity at all. It remains valid even in nearly fully connected
1361 graphs, as long as there is some variation (e.g., even a single differing edge) in the connectivity
1362 patterns across variables. In contrast, sparsity conditions do not imply diversity and always enforce
1363 sparse connectivities.1364 **Connection between injectivity and RIP assumptions.** Injectivity is a standard requirement to en-
1365 sure that latent information is not lost through the generative map. In the linear setting, this reduces
1366 to classical Restricted Isometry Property (RIP) conditions (Foucart & Rauhut, 2013; Jung et al.,
1367 2016), which are known to be necessary for linear dictionary learning. Our injectivity condition is
1368 the natural nonlinear analogue: it prevents degenerate mappings that collapse latent variation, stand-
1369 ard in almost all previous work on nonparametric identifiability (Hyvärinen et al., 2024; Moran &
1370 Aragam, 2025).1371 **Connection between dependency sparsity and latent sparsity regularizations.** Beyond assump-
1372 tions on the data generating process, there are also connections in terms of regularization during
1373 estimation. Most prior work on sparse dictionary learning imposes sparsity directly on the recov-
1374 ered latent variables Z . The most prominent example is the Sparse Autoencoder (SAE), which is
1375 based on sparse dictionary learning and widely used in mechanistic interpretability. However, as
1376 highlighted by recent reviews (Cunningham et al., 2023), latent sparsity causes issues such as fea-
1377 ture absorption and extremely high latent dimensionality (e.g., millions of variables). In contrast,
1378 we regularize sparsity on the dependency structure (Jacobian sparsity) rather than the latents them-
1379 selves, which avoids these issues and has shown benefits both in our own experiments (Sec. 4.2) and
1380 in recent work on large language models, such as the Jacobian Sparse Autoencoder (Farnik et al.,
1381 2025).1382 B.3 FURTHER DISCUSSION ON THE CONNECTION WITH SAEs.
13831384 **Discussion.** Mechanistic interpretability often seeks to uncover the underlying concepts that drive
1385 the behavior of large language models, whether to understand sources of hallucination or to explain
1386 model responses. Sparse Autoencoders (SAEs) have been widely used for this purpose, but, as noted
1387 in the community [3], SAEs rely on sparse dictionary learning and therefore inherit its limitations:
13881389

- 1390 • First, SAEs fundamentally assume a linear generative function, since sparse dictionary
1391 learning lacks nonlinear identifiability. As you mentioned, the Linear Representation Hy-
1392 pothesis (LRH) is a reasonable working assumption in many contexts, but LRH concerns
1393 the linear relation within the latent space of Z rather than the linearity of the generative
1394 map g in $X = g(Z)$. In reality, most models have highly nonlinear generative functions
1395 (for example, due to nonlinear activations such as ReLU or GeLU). Assuming linearity at
1396 the generative level simplifies implementation but inevitably introduces bias and prevents
1397 full recovery of the true latent factors in these nonlinear settings.

1398 Different from the theoretical foundation of SAEs (i.e., sparse dictionary learning), our
1399 diverse dictionary learning provides theoretical guarantees for nonlinear latent variable
1400 models, offering a provably rigorous tool for mechanistic interpretability in almost all real-
1401 world scenarios, covering the previously unsupported nonlinear cases.1402

- 1403 • Second, SAEs impose sparsity directly on the latent variables. This often forces extremely
1404 high-dimensional latent spaces (e.g., millions of units) to represent real-world concepts.
1405 More, latent sparsity can cause feature splitting and absorption, where important concepts
1406 are lost due to the encouragement of sparse latents. For instance, if we only maximize the

1404 latent sparsity, each feature will only corresponds to several samples, capture concepts that
 1405 are very specific (e.g., persian cats) versus more general concepts (e.g., cats).

1406 In contrast, diverse dictionary learning encourages dependency sparsity (Jacobian sparsity)
 1407 rather than latent sparsity, and is designed for nonlinear generative models with identifiability
 1408 guarantees. This provides a principled solution to both limitations of SAEs and has
 1409 meaningful implications for mechanistic interpretability.

1410
 1411 **Empirical Evidence.** The recent Jacobian Sparse Autoencoder (JSOE) work (Farnik et al., 2025)
 1412 provides extensive empirical support for the same dependency sparsity regularization required by our
 1413 diverse dictionary learning theory. Their results suggest that replacing traditional SAE losses with
 1414 dependency sparsity-based losses can improve both interpretability and efficiency. We therefore
 1415 refer readers in mechanistic interpretability to their thorough empirical study.

1416 At the same time, there is one perspective that (Farnik et al., 2025) has not evaluated against other SAE base-
 1417 lines, i.e., the number of dead features. To make the
 1418 empirical evidences even more comprehensive, we con-
 1419 ducted new experiments on the OpenWebtext with GPT2-
 1420 Small, comparing JSOE with Top-K SAE (Gao et al.,
 1421 2025) and Batch Top-K SAE (Bussmann et al.), with the
 1422 latent dimension as 12,288. The results are in Table 3.

1423 These results, together with the comprehensive experiments in (Farnik et al., 2025), further sup-
 1424 port the advantages of dependency sparsity, demonstrating that it not only yields more interpretable
 1425 representations but also preserves active and meaningful latent features more effectively.

1426 B.4 FURTHER DISCUSSION ON SUFFICIENT NONLINEARITY

1427 The sufficient nonlinearity assumption is meant to ensure that the Jacobian varies enough across
 1428 samples so that its Jacobian vectors span the relevant support. Although this condition may seem
 1429 demanding at first glance, it is usually quite mild in practice. For each observed variable X_i , the
 1430 requirement involves only $|(D_Z g)_{i,:}|_0$ samples, which is simply the number of latent variables that
 1431 influence X_i , and this number is typically far smaller than the available sample size.

1432 When g is smooth and the latent distribution has a continuous density, Jacobian evaluations at in-
 1433 dependently drawn samples form continuous random vectors. Such vectors are in general position
 1434 with probability one, which means that a small number of random samples already produces Jaco-
 1435 bian rows that span the required support. For example, if X_i depends on five latent coordinates, then
 1436 roughly five random samples are usually sufficient, even in much higher dimensional systems.

1437 When g is smooth and the latent distribution has a continuous density, Jacobian evaluations at in-
 1438 dependently drawn samples form continuous random vectors. Such vectors are in general position
 1439 with probability one, which means that a small number of random samples already produces Jaco-
 1440 bian rows that span the required support. For example, if X_i depends on five latent coordinates, then
 1441 roughly five random samples are usually sufficient, even in much higher dimensional systems.

1442 The second part $\text{supp}((D_Z g(z^{(k)})H)_{i,:}) \subseteq \text{supp}((D_{\hat{Z}} \hat{g})_{i,:})$ is also mild. We have $(D_{\hat{Z}} \hat{g}(\hat{z}))_{i,:} =$

1443 $(D_Z g(z))_{i,:} h(z, \hat{z})$, which already lies inside $\text{supp}((D_{\hat{Z}} \hat{g})_{i,:})$. Even in rare cases where a specific
 1444 matrix fails to match the support due to particular value combinations, the condition still holds
 1445 asymptotically, since it only requires the existence of one matrix in the whole space.

1446 B.5 DEPENDENCY SPARSITY REGULARIZATION ON LARGE MODELS

1447 Computing the full Jacobian of a large model can be expensive. Fortunately, recent work (Farnik
 1448 et al., 2025) shows that dependency sparsity regularization remains practical even at scale up to
 1449 common LLMs when combined with two standard strategies.

- 1450 • **Apply latent sparsity first.** Large models often have high dimensional latent spaces, but
 1451 for any given input, many latent coordinates are inactive or irrelevant. A common approach
 1452 is to first identify the active coordinates and compute the Jacobian only with respect to this
 1453 subset. Since the active block is often tiny compared to the full latent space, this reduces
 1454 both computation and memory by several orders of magnitude in typical transformer archi-
 1455 tectures [1]. In practice, the Jacobian is rarely formed as a dense $d_x \times d_z$ matrix, but only
 1456 as a restricted slice that corresponds to the active latent directions for that specific input.
- 1457 • **Use efficient closed-form expressions.** For several widely used architectures, the Jaco-
 1458 bian with respect to selected latent directions has efficient factorizations. As shown in [1],

Table 3: Number of dead features under different methods

Method	# of Dead Features
Top-K SAE	439
Batch Top-K	207
JSOE	62

1458 models with residual attention and feedforward structure admit closed form expressions for
 1459 the relevant Jacobian blocks that require only a few matrix multiplications and inexpensive
 1460 elementwise operations. This avoids repeated backward passes through the full model and
 1461 keeps the cost manageable even when the underlying network is large.
 1462

1463 With these strategies, training a large model with our dependency sparsity regularization is reported
 1464 to be only about twice as slow as training with standard ℓ_1 regularization on the latent variables Z
 1465 (Farnik et al., 2025).

1466

1467 B.6 GENERAL NOISE AND NON-INVERTIBILITY

1468

1469 In our paper, we follow the standard setup in the identifiability literature regarding noise and invert-
 1470 ibility because violations of it usually require much stronger assumptions to compensate. That said,
 1471 we feel that more discussion on how to handle these cases is helpful in certain scenarios.
 1472

1473

1474 Handling general noises. Most identifiability results for latent variable models focus on additive
 1475 independent noise or noiseless settings. This holds for both classical linear models (Reiersøl, 1950)
 1476 and recent nonparametric work (Hyvärinen et al., 2024). The main difficulty is separating noise
 1477 from latent variables, since in the general form they can be entangled in complex ways. Recent
 1478 work (Zheng et al., 2025), based on the Hu-Schennach theorem (Hu & Schennach, 2008), shows
 1479 that general noise can be separated under additional assumptions on the generative function f and
 1480 on conditional independence across groups of observed variables. As noted in Remark 1, under the
 1481 same conditions, our results extend to settings with general noise.

1482

1483 Handling partial non-invertibility. Invertibility and its variants are among the most common
 1484 assumptions in the literature. Without additional assumptions, it can even be necessary, since in-
 1485 formation that is lost during generation cannot be recovered in principle. In scenarios where partial
 1486 non-invertibility must be addressed, one may consider incorporating temporal information together
 1487 with sufficient changes in the nonstationary transition (Chen et al., 2024), which can provide the
 1488 extra information needed for recovery. Since our theory focuses on the general setting without any
 1489 auxiliary information, we adopt the standard assumption of invertibility.
 1490

1491

1492 B.7 FURTHER DISCUSSION ON POTENTIAL IMPACT.

1493

1494 In a nutshell, recovering the ground-truth data generative process is important for both predictive
 1495 and non-predictive tasks. Machine learning is fundamentally a balance between inductive bias and
 1496 data. By uncovering the hidden world underlying the data, we obtain principled, domain-agnostic
 1497 inductive biases grounded in fundamental understanding rather than heuristics. These insights can be
 1498 embedded directly into model architectures, training objectives, and evaluation protocols, yielding
 1499 systems that are more robust, generalizable, and data-efficient. Importantly, these inductive biases
 1500 are not merely theoretical; they have already produced measurable improvements across diverse
 1501 real-world domains.

1502

We first highlight two overarching benefits:

1503

1504

1505

1506

1507

1508

1509

1510

1511

1500 Truthfulness. It is well known that, given any pair of observationally equivalent models (e.g.,
 1501 models perfectly trained by MLE), without additional assumptions, there is no guarantee at all that
 1502 these models actually recover the underlying data generative processes. This has led to the critical
 1503 issue of non-identifiability of the nonlinear latent variable model (e.g., the classical work on the
 1504 non-uniqueness of nonlinear ICA (Hyvärinen & Pajunen, 1999)), and has been widely validated by
 1505 large-scale empirical studies on unsupervised learning (e.g., (Locatello et al., 2019)). This raises
 1506 significant challenges for tasks (e.g., transfer learning, controllable generation, compositional
 1507 generalization, and mechanistic interpretability) where we need to understand the true process, rather
 1508 than purely fitting the observed distribution. Therefore, understanding what aspects can still be re-
 1509 covered, and what inductive biases should be introduced to guide recovery, provide both theoretical
 1510 guarantees and practical guidance on ensuring the truthfulness of the learning. These are exactly
 1511 what our paper aims to address.

1512 **Efficiency.** Recovering the underlying true generative factors provides a principled solution to
 1513 improve the efficiency, since we only need to model those essential representation capturing what
 1514 we are interested, instead of the whole high-dimensional space that also include numerous irrelevant
 1515 information or arbitrary noises. For instance, if we can make sure that the recovered latents will
 1516 not be entangled with other latent variables, we can precisely only on those that relevant to our
 1517 tasks (e.g., content for transfer learning, or specific latent concepts we need to modify) instead of
 1518 the whole latent spaces, not only reducing the cost but enforcing the model to focus only on those
 1519 relevant, improve the efficiency in a principled way.

1520 We have conducted experiments on visual disentanglement to illustrate one of the potential applica-
 1521 tion scenarios. Across datasets and backbone models, the results consistently show that adding
 1522 the identifiability-guided regularization (dependency sparsity) enables the model to recover the un-
 1523 derlying generative factors. This not only improves disentanglement performance, which is itself
 1524 practically important, but also directly benefits the following application scenarios.

1525 **Mechanistic Interpretability.** In many scenarios, we aim to study the underlying concepts that
 1526 generate the responses of LLMs, for many reasons such as investigating the root of hallucination or
 1527 explaining the mechanisms for specific responses or behaviors. This is related to the field of Mech-
 1528 anistic Interpretability, where Sparse Autoencoder (SAE) has been popular. However, as known by
 1529 the community (Sharkey et al., 2025), SAE is based on the theory of Sparse Dictionary Learning,
 1530 and there are some open problems:

1532 First, SAE can only deal with linear data due to the lack of nonlinear identifiability of sparse dic-
 1533 tioanry learning. However, the real-world is full of nonlinearity. Assuming everything is linear
 1534 simplicity the procedure and will unavoidably bring bias and cannot fully recover the truth.

1535 Moreover, SAE encourages sparsity over the latent variables. As a result, it needs an extremely
 1536 high-dimensional vector to capture real-world concepts (e.g., millions of dimensions), and some
 1537 features are easy to be absorbed due to its encourage on latent sparsity. In contrast, our Diverse
 1538 Dictionary Learning encourage the sparsity on the Jacobian (i.e., dependency sparsity) instead of
 1539 latent diversity, and can handle nonlinear generative processes with identifiability guarantees. This
 1540 provides a principled solution to both open problems of SAE, which is highly significant for the
 1541 whole filed of mechanistic interpretability.

1543 **Transfer Learning.** In transfer learning, it is important to disentangle the invariant and changing
 1544 part, such as disentangling invariant content from changing styles. Identifiability has been widely
 1545 leveraged in the previous literature on guaranteeing reliable and efficient domain adaptation (e.g.,
 1546 (Von Kūgelgen et al., 2021; Kong et al., 2022; Li et al., 2023)). Given two observed variables, our
 1547 generalized identifiability results guarantees the recovery of the shared and private parts of their la-
 1548 tent variables, under a simple regularization of dependency sparsity. This provides a flexible frame-
 1549 work for transfer learning that can really capture the essential part across domains.

1550 **Controllable Generation.** A perfect prediction machine can only master at mining correlations,
 1551 while leveraging the true causation relies on identifiability. For instance, if we want to add eyeglasses
 1552 on a kid’s face, due to the overwhelming correlation between wearing eyeglasses and the relatively
 1553 higher age, models sometimes will also increase the age of the kid, even for large foundational
 1554 models. This negligence of the true underlying process is one of the fundamental reasons on why
 1555 large models, although extensively trained on web-scale data, can still provide many extra changes
 1556 that are out of our control. Previous work has already shown that, by incorporating inductive bias
 1557 guided via identifiability, models can achieve precise control on the generated images (Xie et al.,
 1558 2025a; 2023).

1559 **Multi-modal Alignment.** Similarly, one may consider multiple modalities as multiple sets of ob-
 1560 served variables, where the semantically meaningful concepts are those that shared by multiple
 1561 modalities, and the modality-specific concepts (e.g., texture for images, columns for audio) are
 1562 those private latent variables. By formalizing the process as a general dictionary learning problem,
 1563 many previous work have already shown the practical implication of identifiability, such as address-
 1564 ing information misalignment (Xie et al., 2025b) and capturing complex interactions across different
 1565 modalities (Sun et al., 2024).

Dim	Ours	OroJAR	Hessian Penalty
3	0.8258 ± 0.0085	0.7288 ± 0.0280	0.8257 ± 0.0240
4	0.8449 ± 0.0043	0.6301 ± 0.0810	0.8352 ± 0.0396
5	0.8048 ± 0.0080	0.5119 ± 0.1482	0.7789 ± 0.0174

Table 4: MCC under different regularization penalties across dimensions (mean \pm std, higher is better).

Dim	Ours w/o noise	Ours w/ noise	Base
3	0.8258 ± 0.0085	0.8210 ± 0.0088	0.3814 ± 0.0369
4	0.8449 ± 0.0043	0.8381 ± 0.0093	0.5467 ± 0.0326
5	0.8048 ± 0.0080	0.7944 ± 0.0134	0.4576 ± 0.1075

Table 5: MCC across dimensions with and without noise (mean \pm std, higher is better).

Scientific Discovery. Understanding the hidden truth from observation is always one of the main tasks of scientific discovery. Newton observed the falling apple (observation X), then he got curious, studied much, and found out it was actually gravity (latent variables Z) causing items to fall. Therefore, the fundamental task of scientific discovery may be summarized into the simple equation of $X = f(Z)$, where we aim to recover Z based solely on X , which is exactly our task of general dictionary learning. Of course, the guarantee that the recovered latent variables \hat{Z} correspond to the ground-truth latents Z in a meaningful way is what matters the most, and this is exactly the focus of our generalized identifiability theory. There have been numerous successful applications of identifiable representation learning in the literature, such as dynamic systems like climate change (Yao et al., 2024a), robotics (Lippe et al., 2023), neuroimaging (Hyvärinen & Morioka, 2016) and genomics (Morioka & Hyvärinen, 2024).

Of course, the list is non-exclusive, and will only grow faster given the development of large-scale models. The reason is simple: even with infinite data and computation, without identifiability, models may achieve perfect predictions but cannot be guaranteed to recover the underlying truth. Thus, the closer we are to that boundary, the more efforts we should put into going beyond correlation.

C ADDITIONAL EXPERIMENTS

In this section, we present further experiments on both synthetic and real-world data.

C.1 ADDITIONAL SYNTHETIC EXPERIMENTS

We begin with a series of additional experiments in the synthetic setting.

Further discussion on the connection of conditions.

Additional baselines. We first compare dependency sparsity to alternative regularizers. Table 4 reports MCC for $d \in \{3, 4, 5\}$ against two Jacobian/Hessian penalties: OroJAR (Wei et al., 2021) and the Hessian Penalty (Peebles et al., 2020). Neither provides identifiability guarantees in the nonparametric setting. Empirically, both underperform our method, with a widening gap as d increases. This indicates that penalizing the dependency map in a structural way improves recovery of the true latent factors.

Noise robustness. Remark 1 states that our framework naturally extends to generative processes with additive noise. Table 5 confirms this: MCC remains essentially unchanged compared to the noiseless case, with only minor drops, while the base model degrades sharply. This supports the claim that dependency sparsity stabilizes latent recovery under noise. Extending identifiability to arbitrary noise remains more challenging in the nonparametric setting, since invertibility can break down and stronger assumptions are typically required.

λ	Dimensionality		
	3	4	5
0	0.6789 \pm 0.0364	0.7317 \pm 0.1092	0.6989 \pm 0.0133
0.001	0.7313 \pm 0.0242	0.7294 \pm 0.0147	0.7513 \pm 0.0007
0.005	0.7765 \pm 0.0363	0.7826 \pm 0.0244	0.7681 \pm 0.0455
0.01	0.8145 \pm 0.0221	0.8032 \pm 0.0327	0.7979 \pm 0.0421
0.03	0.8268 \pm 0.0268	0.8232 \pm 0.0187	0.8101 \pm 0.0112
0.05	0.8256 \pm 0.0088	0.8420 \pm 0.0401	0.8099 \pm 0.0296

Table 6: MCC across different λ values (sparsity regularization weight) and dimensionalities (mean \pm std, higher is better).

Method	FactorVAE \uparrow	DCI \uparrow
FactorVAE	0.708 \pm 0.026	0.135 \pm 0.030
+ Latent Sparsity	0.501 \pm 0.434	0.113 \pm 0.069
+ Dependency Sparsity	0.752 \pm 0.040	0.144 \pm 0.053
+ Dependency Sparsity (128)	0.723 \pm 0.023	0.141 \pm 0.004

Table 7: Quantitative comparison on Cars3D dataset (mean \pm std, higher is better).

Regularization weight. To examine the effect of regularization strength, we vary the sparsity weight λ in Table 6. MCC increases steadily from $\lambda = 0$ and plateaus around $\lambda \in [0.03, 0.05]$, showing that the method is stable and not overly sensitive once past the under-regularized regime. Importantly, sparsity here serves only as an inductive bias during estimation. Our theory does not assume the data-generating process itself is sparse. Instead, it relies on structural diversity, which can hold even in dense settings. Moreover, the set-theoretic framework is robust to partial violations of assumptions and still enables meaningful recovery when full identifiability is unattainable.

C.2 ADDITIONAL VISUAL EXPERIMENTS

We next evaluate more on images, providing both quantitative comparisons and qualitative analyses.

Scalability. To assess scalability, we upsampled Cars3D to 128×128 and re-ran FactorVAE with dependency sparsity. As shown in Table 7 (last row), performance remains consistent with the 64×64 setting. This suggests that the observed improvements stem from leveraging structural regularization rather than resolution, and that the method scales robustly with image size.

Quantitative evaluation. Table 7 evaluates FactorVAE score and DCI on Cars3D. Adding *dependency* sparsity improves FactorVAE from 0.708 to 0.752 and DCI from 0.135 to 0.144. Latent sparsity often underperforms. Table 8 extends to MPI3D and includes OroJAR and the Hessian Penalty. Dependency sparsity gives the best results on both datasets, improving FactorVAE and DCI while maintaining backbone training stability.

Qualitative evaluation. A key goal of these experiments is to test whether dependency sparsity leads to more interpretable and disentangled latent representations in visual domains. Figure 8 shows latent traversals on Fashion (Xiao et al., 2017) with Flow. Individual latent coordinates correspond

Method	Cars3D		MPI3D	
	FactorVAE \uparrow	DCI \uparrow	FactorVAE \uparrow	DCI \uparrow
FactorVAE	0.708 \pm 0.026	0.135 \pm 0.030	0.599 \pm 0.064	0.345 \pm 0.047
+ Latent Sparsity	0.501 \pm 0.434	0.113 \pm 0.069	0.440 \pm 0.065	0.325 \pm 0.028
+ OroJAR	0.165 \pm 0.235	0.030 \pm 0.007	0.499 \pm 0.090	0.272 \pm 0.054
+ Hessian Penalty	0.321 \pm 0.455	0.082 \pm 0.077	0.506 \pm 0.056	0.254 \pm 0.067
+ Dependency Sparsity	0.752 \pm 0.040	0.144 \pm 0.053	0.639 \pm 0.084	0.384 \pm 0.031

Table 8: Quantitative comparison on Cars3D and MPI3D datasets (mean \pm std, higher is better).

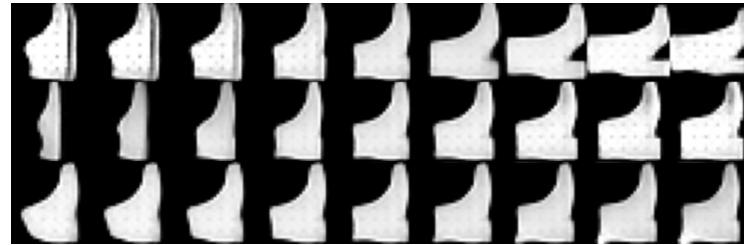


Figure 7: Latent variable visualization on Fashion with Flow + Dependency Sparsity. From top to bottom, the latent variables correspond to gender, heel height, and upper width.

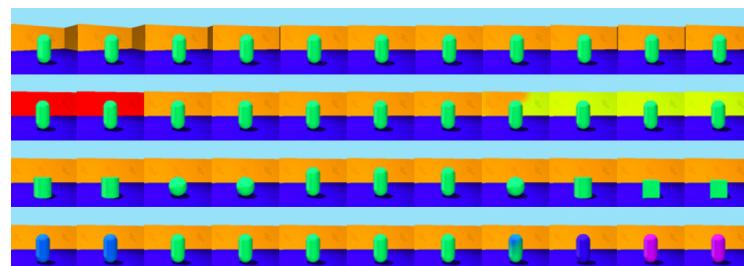


Figure 8: Latent variable visualization on Shapes3D with EncDiff + Dependency Sparsity. From top to bottom, the latent variables correspond to wall angle, wall color, object shape, and object color.

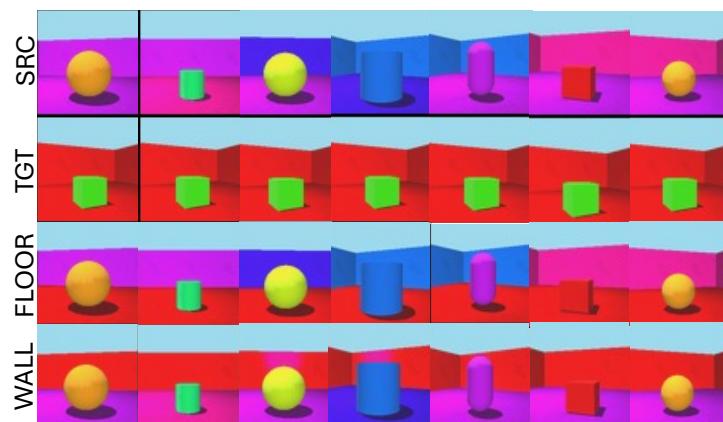
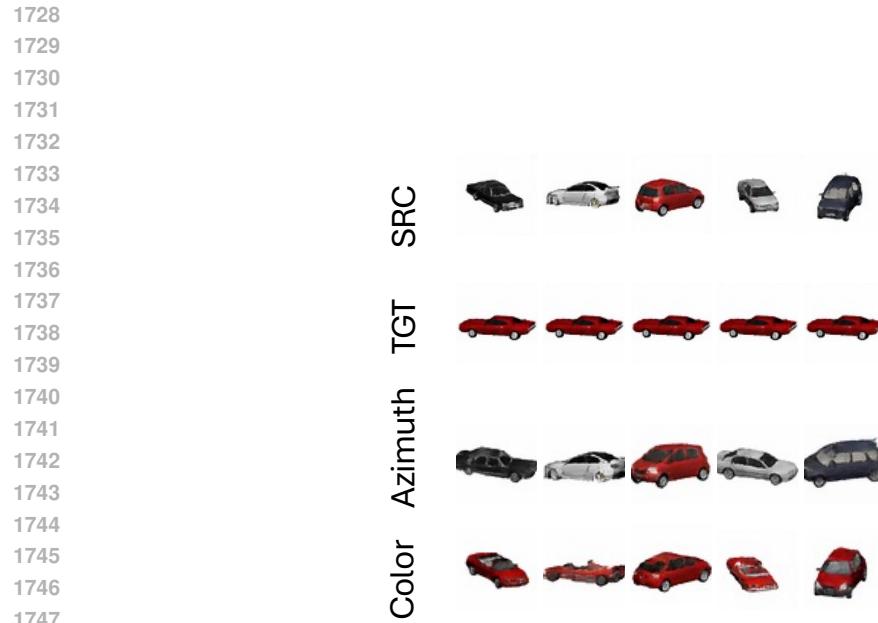
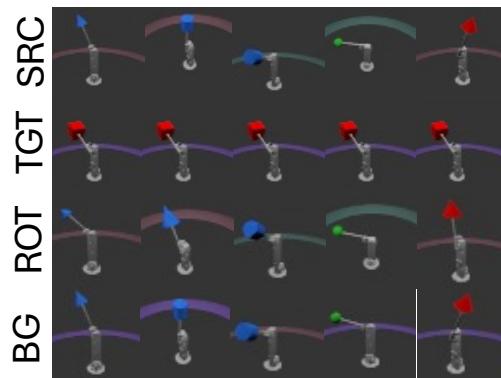


Figure 9: Latent variable visualization on Shapes3D with EncDiff + Dependency Sparsity. Top row: source. Second row: target. Each subsequent row modifies the source by swapping a single latent factor (floor color or wall color) from the target.



1782 cleanly to gender, heel height, and upper width, with minimal interference across factors. The
 1783 Shapes3D traversals in Figure 8 (EncDiff) show similarly sharp control, disentangling wall angle,
 1784 wall color, object shape, and object color. These traversals illustrate that dependency sparsity yields
 1785 latent axes that align with semantic attributes and preserve orthogonality among factors.

1786 Figures 9, 10, and 11 further evaluate controllability via latent swapping. On Shapes3D, swapping
 1787 a single factor cleanly transfers floor or wall color while leaving other factors intact. On Cars3D,
 1788 EncDiff isolates azimuth and color. On MPI3D, rotation and background are controlled indepen-
 1789 dently. These results highlight that dependency sparsity encourages *localized* and *non-overlapping*
 1790 influences, enabling intuitive editing operations without unintended side effects. At the same time,
 1791 the generative quality of the backbone (diffusion in this case) is preserved, with realistic outputs.

1792 Together, these traversals and swaps reinforce the quantitative results: dependency sparsity not only
 1793 improves disentanglement scores but also enhances interpretability and practical usability of the
 1794 learned latents. By aligning latent dimensions with distinct semantic factors, it enables robust single-
 1795 attribute manipulation and semantically meaningful latent arithmetic. These benefits are precisely
 1796 what identifiability is meant to guarantee, providing further empirical validation of our theory.
 1797

1798 **Additional results on controllable generation.** Moreover, we conduct further experiments on
 1799 the benefit of recovering task-relevant representation for controllable generation. We consider the
 1800 problems of

1802 D DISCLOSURE STATEMENT

1803 Grammar checks were performed using LLMs; no significant edits were made.
 1804

1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835