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ABSTRACT

Given only observational data X = g(Z), where both the latent variables Z and
the generating process g are unknown, recovering Z is ill-posed without addi-
tional assumptions. Existing methods often assume linearity or rely on auxiliary
supervision and functional constraints. However, such assumptions are rarely ver-
ifiable in practice, and most theoretical guarantees break down under even mild
violations, leaving uncertainty about how to reliably understand the hidden world.
To make identifiability actionable in the real-world scenarios, we take a comple-
mentary view: in the general settings where full identifiability is unattainable,
what can still be recovered with guarantees, and what biases could be universally
adopted? We introduce the problem of diverse dictionary learning to formalize
this view. Specifically, we show that intersections, complements, and symmet-
ric differences of latent variables linked to arbitrary observations, along with the
latent-to-observed dependency structure, are still identifiable up to appropriate in-
determinacies even without strong assumptions. These set-theoretic results can
be composed using set algebra to construct structured and essential views of the
hidden world, such as genus-differentia definitions. When sufficient structural
diversity is present, they further imply full identifiability of all latent variables.
Notably, all identifiability benefits follow from a simple inductive bias during es-
timation that can be readily integrated into most models. We validate the theory
and demonstrate the benefits of the bias on both synthetic and real-world data.

1 INTRODUCTION

Dictionary learning, in its most general form, assumes that observations X are generated by latent
variables Z through an unknown function f , i.e., X = f(Z). The goal is to recover the latent
generative process from observational data, a fundamental task in both science and machine learning.
The nonparametric formulation X = f(Z) unifies a wide range of latent variable models, including
independent component analysis, factor analysis, and causal representation learning.

Identifiability, the ability to recover the true generative model from data, is crucial for understanding
the hidden world. Yet in general dictionary learning, the problem is fundamentally ill-posed without
additional assumptions, akin to finding a needle in a haystack. To reduce this ambiguity, most prior
work imposes strong parametric constraints to limit the potential solution space. This practice is so
widespread that, although dictionary learning is fundamentally nonparametric, it is almost always
instantiated as a linear model, where observations are sparse linear combinations of latent variables
(Olshausen & Field, 1997; Aharon et al., 2006; Geadah et al., 2024). However, this linearity could
be overly restrictive and fails to capture the complexity of many real-world generative processes.
A relevant example is sparse autoencoders (SAEs), commonly used in mechanistic interpretability,
especially for foundation models. Although effective in some settings, SAEs are rooted in sparse
linear dictionary learning, raising concerns about their ability to represent the inherently nonlinear
structure of large-scale neural representations.

Many efforts have been made to relax the linearity assumption. In nonlinear ICA, one line of work
leverages auxiliary variables as weak supervision to achieve identifiability under statistical indepen-
dence (Hyvärinen & Morioka, 2016; Hyvärinen et al., 2019; Yao et al., 2021; Hälvä et al., 2021;
Lachapelle et al., 2022), while another constrains the mixing function itself (Taleb & Jutten, 1999;
Moran et al., 2021; Kivva et al., 2022; Zheng et al., 2022; Buchholz et al., 2022). In causal rep-
resentation learning, identifiability often depends on access to interventional data (von Kügelgen
et al., 2023; Jiang & Aragam, 2023; Jin & Syrgkanis, 2023; Zhang et al., 2024) or counterfactual
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views (Von Kügelgen et al., 2021; Brehmer et al., 2022), which assume some control over the data-
generating process to enable meaningful manipulation.

However, a gap remains between theoretical guarantees and practical utility. Theoretically, while
additional assumptions can yield recovery guarantees, it is rarely possible to verify whether such
assumptions hold in practice. Understanding what guarantees remain valid under assumption viola-
tions is therefore essential for reliably uncovering the truth in general settings. Practically, we are
less concerned with identifiability under ideal conditions and more interested in which inductive bi-
ases promote recovery, especially when the ground truth is unknown. Yet most existing approaches
fail to offer any guarantees under even mild violations of their assumptions, making their associated
biases, such as contrastive objectives or weak supervision, difficult to generalize across settings.

Therefore, in the general scenarios, two questions remain:

• What aspects of the latent process can still be recovered?
• What inductive biases should be introduced to guide recovery?

To answer these questions and thus achieve actionable identifiability, we focus on a new problem
aiming to offer meaningful guarantees across a wide range of scenarios: diverse dictionary learn-
ing. Rather than seeking to recover all latent variables in the system, we consider a complementary
question: what aspects of the latent process remain identifiable even in the general settings with
only basic assumptions? We show that, even without specific parametric constraints or auxiliary
supervision, structured subsets of latent variables can still be identified through their set-theoretic
relationships with observed variables. In particular, for any set of observed variables, the intersec-
tion, complement, and symmetric difference of their associated latent supports are identifiable (Thm.
1). Moreover, the dependency structure between latent and observed variables is also identifiable
up to standard indeterminacy of relabeling (Thm. 2). These flexible results naturally uncover many
informative perspectives of the hidden world through the lens of diversity: the intersection captures
the common latent factors (genus) underlying multiple objects, while the complement and symmet-
ric difference allow us to isolate the parts that are unique or non-overlapping (differentia), providing
a principled way to understand the hidden world from the classical genus-differentia definitions
(Granger, 1984) (Prop. 1) or the atomic regions in the Venn diagram (Sec. 3.2).

Since this form of identifiability is defined entirely through basic set-theoretic operations, it is highly
flexible and applies to arbitrary subsets of observed variables based on set algebra. When the full set
of observed variables is considered and the dependency structure between latent and observed vari-
ables is sufficiently diverse, it becomes possible to recover all latent variables, yielding a generalized
structural criterion for full identifiability (Thm. 3). Notably, for estimation, these identifiability ben-
efits require only a simple sparsity regularization on the dependency structure, which can be readily
implemented in most models that admit a Jacobian. Our theory also makes it rather universal, sup-
porting meaningful recovery across a wide range of settings, from partial to full identifiability, and
thus serves as a robust and broadly applicable regularization principle. We incorporate this universal
bias into different types of generative models and observe immediate benefits from the correspond-
ing identifiability guarantee in both synthetic and real-world datasets.

2 BACKGROUND AND PROBLEM SETUP

We adopt the standard perspective of latent variable models, where the observed world is generated
from latent variables through a hidden process:

X = g(Z), (1)

where X = (X1, · · · , Xdx) ∈ Rdx denotes the observed variables, and Z = (Z1, · · · , Zdz ) ∈ Rdz

denotes the latent variables. Let X and Z denote the supports of X and Z, respectively.

Connection to linear dictionary learning. Our task can be viewed as a nonlinear version of clas-
sical dictionary learning. Both classical approaches (Olshausen & Field, 1997; Aharon et al., 2006)
and more recent ones (Hu & Huang, 2023; Sun & Huang, 2025) model observations as linear com-
binations of dictionary atoms D, i.e., X = DZ. Differently, we consider the nonlinear setting
X = g(Z), where g is a nonlinear function. Although arising in different contexts, linear dictionary
learning provides a useful analogy for some necessary conditions to avoid ill-posed settings. In the
linear case, conditions like Restricted Isometry Property had to be introduced, which ensure that
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different latent codes map to distinguishable outputs, making the linear operator injective and thus
no information is lost (Foucart & Rauhut, 2013; Jung et al., 2016). By analogy, the nonlinear setting
also requires restrictions on g to ensure injectivity. Following the literature on nonlinear identifia-
bility, g is assumed to be a C2 diffeomorphism onto its image (smooth and injective) (Hyvärinen &
Pajunen, 1999; Lachapelle et al., 2022; Hyvärinen et al., 2024; Moran & Aragam, 2025).

Connection to nonlinear identifiability results. However, simply avoiding information loss is
insufficient for full latent recovery with guarantees in the nonlinear regime. Prior work (see the
survey (Hyvärinen et al., 2024)) addresses this by constraining the form of g (e.g., post-nonlinear
models) or by introducing auxiliary information, such as domain or time indices, or interven-
tional/counterfactual data. In contrast, we focus on general real-world settings and deliberately
avoid such assumptions, aiming to understand what can be recovered from this minimal setup. Nat-
urally, some basic conditions, such as invertibility and differentiability, are necessary to rule out
pathological cases, but our goal is to keep these as general as possible, even with the trade-off that
recovering every latent variable becomes infeasible.
Remark 1 (Extension to noisy processes). Equation (1) considers a deterministic function, but it
can be naturally extended to settings with additive noise using standard deconvolution (Kivva et al.,
2022), or to more general noise models under additional assumptions (Hu & Schennach, 2008).

Figure 1: Example
of structure.

Structure. The dependency structure between latent and observed variables,
though hidden, captures the fundamental relationships underlying the data
and is inherently nonparametric. To explore theoretical guarantees in general
settings, this structure provides a natural starting point (Moran et al., 2021;
Zheng et al., 2022; Kivva et al., 2022). Before diving deep into the hidden
relations, we need to formalize them from the nonparametric functions. We
first define the nonzero pattern of a matrix-valued function as:
Definition 1. The support of a matrix-valued function M : Θ → Rm×n is
the set of index pairs (i, j) such that the (i, j)-th entry of M(θ) is nonzero for
some input θ ∈ Θ:

supp(M; Θ) := {(i, j) ∈ [m]× [n] | ∃θ ∈ Θ,M(θ)i,j ̸= 0} .

For a constant matrix, its support is a special case of Defn. 1, which is the set of indices of non-zero
elements. Then, we define the dependency structure as the support of the Jacobian of g:
Definition 2. The dependency structure between latent variables Z and observed variables X =
g(Z) is defined as the support of the Jacobian matrix of g. Formally,

S := supp(Dzg;Z) =

{
(i, j) ∈ [dx]× [dz] | ∃z ∈ Z,

∂gi(z)

∂zj
̸= 0

}
.

This structure S captures which latent variables functionally influence which observed variables
through the generative map g. It might be noteworthy that, since it is defined via the Jacobian, it
reflects functional rather than statistical dependencies. In particular, it does not require statistical
independence of Z and is therefore not limited to the mixing structures typically considered in ICA.
Example 1. Figure 1 illustrates the dependency structure of a generative process. The top panel
shows the ground-truth mapping from latent variables Z = (Z1, Z2, Z3) to observed variables
X = (X1, X2, X3). The bottom panel shows the support of the Jacobian DZg(Z), where non-zero
entries are marked with “∗”. Notably, the Jacobian structure also captures dependencies between
latent variables, such as the interaction between Z1 and Z2.

3 THEORY

In this section, we develop the identifiability theory of diverse dictionary learning. Our theory begins
with a generalized notion of identifiability based on set-theoretic indeterminacy (Sec. 3.1), capturing
what remains recoverable under minimal assumptions. We then illustrate its practical implications,
such as disentanglement and atomic region recovery, through concrete examples (Sec. 3.2). These
insights motivate the formal guarantees in Thms. 1 and 2 (Sec. 3.3). Finally, we show how the same
framework extends naturally to element-wise identifiability under a generalized structural condition
(Thm. 3, Sec. 3.4). All proofs are provided in Appx. A.
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3.1 CHARACTERIZATION OF GENERALIZED IDENTIFIABILITY

As previously discussed, identifying all latent variables is fundamentally ill-posed without additional
information, such as restricted functional classes or multiple distributions. In general scenarios
where such constraints are absent, a natural question arises: what aspects of the latent process
remain recoverable? Before presenting our identifiability results, we first formalize this goal, which
has not been addressed in the existing literature.

We begin by defining when two models are observationally indistinguishable from the perspective
of the observed data, which is the goal of estimation based on observation.

Definition 3 (Observational equivalence). we say there is an observational equivalence between
two models θ = (g, pZ) and θ̂ = (ĝ, pẐ), denoted θ ∼obs θ̂, if and only if,

p(x; θ) = p(x; θ̂), ∀x ∈ X .

Given that estimation yields an observationally equivalent model, our goal is to determine whether
the latent variables recovered by this model correspond meaningfully to those in the ground-truth
model. Since we avoid placing restrictive assumptions on the entire system, we adopt a localized
perspective: instead of analyzing global correspondence, we examine the relationship between latent
components at the level of specific observed variables. Inspired by set theory, we introduce a new
notion of indeterminacy that formalizes ambiguity through basic set-theoretic operations.

Definition 4 (Latent index set). For any set of observed variables XS , its latent index set IS ⊆ [dz]
is defined as

IS := { i ∈ [dz] | ∂XS

∂Zi
̸= 0 },

i.e., the set of indices of latent variables ZIS that influence XS .

Definition 5 (Set-theoretic indeterminacy). There is a set-theoretic indeterminacy between two
models θ = (g, pZ) and θ̂ = (ĝ, pẐ), denoted θ ∼set θ̂, if and only if, for any two sets of observed
variables XK and XV , and their latent index sets IK and IV , there exists a permutation π over [dz]
such that Zi is not a function of Ẑπ(j)

1 for all (i, j) satisfying at least one of the following:

(i) (Intersection) i ∈ IK ∩ IV , j ∈ IK∆IV ;

(ii) (Symmetric difference2) i ∈ IK∆IV , j ∈ IK ∩ IV ;

(iii) (Complement) i ∈ IK \ IV , j ∈ IV \ IK , or i ∈ IV \ IK , j ∈ IK \ IV .

Figure 2: Example of Defn. 5.

Intuitively, set-theoretic indeterminacy guarantees that certain com-
ponents of the latent variables defined by basic set-theoretic opera-
tions are disentangled from the rest, with an example as:

Example 2. Figure 2 illustrates latent variables indexed by IK and
IV , which influence the observed variable sets XK and XV . The
intersection IK ∩ IV contains shared latent factors, while the sym-
metric difference IK∆IV consists of those unique to one set but not
the other. According to set-theoretic indeterminacy, latent variables
in the intersection IK∩IV cannot be expressed as functions of those
in the symmetric difference IK∆IV , ensuring that shared compo-
nents remain disentangled from exclusive ones. Similarly, variables in the symmetric difference
IK∆IV cannot be entangled with IK ∩ IV , preserving directional separability. Finally, the com-
plement condition prohibits mutual entanglement between the exclusive parts IK \ IV and IV \ IK ,
guaranteeing that what is unique to one observed group cannot explain what is unique to another.

Because these operations form the foundation of set algebra, they can be flexibly composed to derive
a variety of meaningful perspectives on the hidden variables, which we will detail later. We are now
ready to define what it means for a model to have generalized identifiability.

1Given the standard invertibility assumption, the reverse also holds because of the block-diagonal Jacobian,
which applies similarly in related definitions.

2The symmetric difference IK∆IV denotes elements in IK or IV but not in both, i.e., (IK \IV )∪(IV \IK).
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Definition 6 (Generalized identifiability). For a model θ = (g, pZ), we have generalized identifi-
ability, if and only if, for any other model θ̂ = (ĝ, pẐ),

θ ∼obs θ̂ =⇒ θ ∼set θ̂.

3.2 IMPLICATIONS OF GENERALIZATION

In the previous section, we introduced a new characterization of identifiability suited to general,
unconstrained settings. Built from basic set-theoretic operations, this formulation appears flexible
and composable. Yet it remains unclear how general it truly is, and more importantly, why that
generality matters. To answer this, we examine its implications through a concrete example in
Fig. 3, highlighting both its expressive power and practical utility. We begin with several interesting
implications of the generalization:
Proposition 1 (Implications of generalized identifiability). For any two models θ = (g, pZ) and
θ̂ = (ĝ, pẐ), if θ ∼set θ̂, then for any two sets of observed variables XK and XV , and their
corresponding latent index sets IK and IV , Zi is not a function of Ẑπ(j) for all (i, j) satisfying at
least one of the following, where π is a permutation:

(i) (Object-centric) i ∈ IK , j ∈ IV \ IK or i ∈ IV , j ∈ IK \ IV ;

(ii) (Individual-centric) i ∈ (IK \ IV ), j ∈ IV , or i ∈ (IV \ IK), j ∈ IK;

(iii) (Shared-centric) i ∈ IK ∩ IV , j ∈ IK∆IV .
Example 3. In Fig. 3, Prop. 1 implies that, if we consider two groups of observed variables, such as
X1 and {X2, X3}, regions like I1\(I2∪I3) illustrate individual-centric disentanglement, where la-
tents unique to one group must be disentangled from the rest. Regions such as I1, I2, or I3 represent
object-centric disentanglement, where latents relevant to a single object must remain disentangled
from the rest. The shared part can also be disentangled in a similar manner.

Figure 3: Running example.

Why does it matter in the real world? These impli-
cation types correspond to meaningful structures in real-
world tasks. Object-centric disentanglement aligns with
modularity in object-centric learning, where each object
should have its own latent representation. Individual-
centric disentanglement supports domain adaptation by
isolating domain-specific factors. Shared-centric disen-
tanglement captures common factors across domains or
entities, which is essential for transferability and gen-
eralization. These patterns emerge naturally from set-
theoretic indeterminacy and offer a principled way to de-
sign models that reflect the genus-differentia structure.

Atomic regions in the Venn diagram. If the union of the
latent index sets covers the full latent space, the general-
ized identifiability guarantees in Defn. 5 extend to every
atomic region in the corresponding Venn diagram.3

Example 4 (Identifying atomic regions). Let I1, I2, and I3 be the latent index sets associated with
three observed variables in Fig. 3. Consider the atomic region (I1∩I2)\I3. To disentangle it from the
rest, we first take XK = X1, XV = X2, so IK = I1, IV = I2. Then i ∈ (I1 ∩ I2) \ I3 ⊆ IK ∩ IV ,
and j ∈ IK∆IV = (I1 \ I2) ∪ (I2 \ I1), ensuring Zi is not a function of Zj in the symmetric
difference. Second, take XK = X1 ∪ X2, XV = X3, so IK = I1 ∪ I2 and IV = I3. Then
i ∈ (I1 ∩ I2) \ I3 ⊆ IK \ IV and j ∈ I3 = IV , ensuring Zi is also disentangled from latents of X3.
Together, these guarantee that the atomic region (I1 ∩ I2) \ I3 is disentangled from the rest. Other
cases follow similarly and are in Appx. B. Therefore, each atomic region is disentangled from all
other variables, and thus is region-wise (block-wise) identifiable4 under the invertibility condition.

3An atomic region in the Venn diagram is a non-empty set of the form
⋂n

i=1 Bi, where each Bi ∈ {Ii, [dz]\
Ii} for a finite collection of sets {I1, . . . , In}. In the example, these correspond to all 7 distinct regions.

4A model is block-wise identifiable (Von Kügelgen et al., 2021) if the mapping between the estimated and
ground-truth latent variables is a composition of block-wise invertible functions and permutations. Intuitively,
variables can be entangled within the same block (set) but not across different blocks (sets).
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Remark 2 (Connection to block-identifiability). By leveraging basic set-theoretic operations, we
can construct a Venn diagram over the latent supports and identify all atomic regions, each de-
fined as a minimal, non-overlapping region closed under finite intersections and complements.
This perspective is conceptually related to block-wise identifiability (Von Kügelgen et al., 2021; Li
et al., 2023; Yao et al., 2024b), but differs fundamentally in its assumptions and goals. Prior work
achieves block identifiability by exploiting additional information such as multiple views or domains
(Von Kügelgen et al., 2021; Yao et al., 2024b; Li et al., 2023). In contrast, our approach requires
no such weak supervision. Notably, Yao et al. (2024b) also proposes an identifiability algebra, but
in the opposite direction: they show that the intersection of latent groups can be identified after the
groups themselves are recovered using multi-view signals. Our formulation instead starts from basic
assumptions without any additional information, and directly targets the identifiability of intersec-
tions and complements without relying on external (weak) supervision. Of course, since the goals
and setups are fundamentally different, our results do not supersede existing block-identifiability
results, but rather offer a complementary perspective on recovering local structures.

3.3 GENERALIZED IDENTIFIABILITY

Having established the characterization and implications of generalized identifiability, we now turn
to its formal proof. Let H denote a matrix sharing the support of the matrix-valued function h in
the identity DZg(z)h(z, ẑ) = DẐ ĝ(ẑ). We begin by introducing the following assumption, which
ensures sufficient nonlinearity in the system. Some arguments are omitted for brevity.
Assumption 1 (Sufficient nonlinearity). For each i ∈ [dx], there exists a set Si of ∥(DZg)i,·∥0
points such that the corresponding vectors for a model (g, pZ):(

∂Xi

∂Z1
,
∂Xi

∂Z2
, . . . ,

∂Xi

∂Zdz

) ∣∣∣∣
z=z(k)

, k ∈ Si,

are linearly independent, where z(k) denotes a sample with index k and supp((DZg(z
(k))H)i,·) ⊆

supp((DẐ ĝ)i,·).

Interpretation. The assumption ensures the connection between the structure and the nonlinear
function. In the asymptotic cases, we can usually find several samples in which the corresponding
Jacobian vectors are linearly independent, i.e., span the support space. The assumption of non-
exceeding support at these points is also typically mild since (DẐ ĝ(ẑ))i,· = (DZg(z))i,·h(z, ẑ).

Connection to the literature. The sufficient nonlinearity assumption is a standard one, making it
feasible to draw the connection between the Jacobian and the structure. It has been widely used in the
literature (Lachapelle et al., 2022; Zheng et al., 2022; Kong et al., 2023; Yan et al., 2023), and aligns
with the sufficient variability assumption (Hyvärinen & Morioka, 2016; Khemakhem et al., 2020;
Sorrenson et al., 2020; Lachapelle et al., 2022; Zhang et al., 2024; Lachapelle et al., 2024). While
most prior works often focus on variability across environments, sufficient nonlinearity imposes
variability in the Jacobians across multiple samples to span the support space, following the spirit in
(Lachapelle et al., 2022; Zheng et al., 2022; Lachapelle et al., 2024).

Then we are ready to present our main theorem for the generalized identifiability:

Theorem 1 (Generalized identifiability). Consider any two models θ = (g, pZ) and θ̂ = (ĝ, pẐ)
following the process in Sec. 2. Suppose Assum. 1 holds and:

i. The probability density of Z is positive in Rdz ;

ii. (Sparsity regularization5) ∥DẐ ĝ∥0 ≤ ∥DZg∥0.

Then if θ ∼obs θ̂, we have generalized identifiability (Defn. 6), i.e., θ ∼set θ̂.

We further show that the dependency structure is identifiable up to a standard relabeling indetermi-
nacy, providing structural insight when the underlying connections are of interest.

Theorem 2 (Structure identifiability). Consider any two models θ = (g, pZ) and θ̂ = (ĝ, pẐ)

following the process in Sec. 2. Suppose assumptions in Thm. 1 hold. If θ ∼obs θ̂, the support of the
Jacobian matrix Dẑ ĝ is identical to that of Dzg, up to a permutation of column indices.

5Notably, this is a regularization during estimation, instead of an assumption restricting the data.
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Universal inductive bias. The first additional condition of positive density is standard and appears
in nearly all previous identifiability results. We therefore focus on the sparsity regularization. Note
that this is not an assumption on the data-generating process itself, but a practical inductive bias
applied only during estimation. Thus, the ground-truth process does not need to be sparse at all.
Definition 6 characterizes the allowable ambiguity between observationally equivalent models. The
role of the sparsity regularizer is simply to select, among all observationally equivalent estimators,
a representative whose dependency structure is the most sparse. This choice lies entirely on the
estimation side and does not constrain the form of the true data-generating mechanism.

This dependency sparsity reflects an inductive bias toward the simplicity of the hidden world.
Among the many interpretations of Occam’s razor, our approach aligns with the connectionist view,
which prefers to always shave away unnecessary relations. This principle is fundamental and has
been extensively studied in several fields. For example, in structural causal models, fully connected
graphs are always Markovian to the observed distribution, but principles such as faithfulness, fru-
gality, and minimality are used to eliminate spurious or redundant edges, revealing the true causal
structure (Zhang, 2013). These simplicity criteria have been validated both theoretically and empir-
ically over decades, supporting the use of sparsity as a reasonable inductive bias during regulariza-
tion. Moreover, this regularization is highly practical: it can be integrated into most differentiable
models, as long as gradients of the mappings with respect to latent variables are accessible.

3.4 FROM SETS TO ELEMENTS

Having established generalized identifiability through set-theoretic indeterminacy, which provides
meaningful guarantees when full recovery is out of reach, a natural question arises: can stronger
results, such as element identifiability for all latent variables, as targeted by most prior work, be
obtained by imposing additional constraints?
Definition 7 (Element-wise indeterminacy). We say there is an element-wise indeterminacy be-
tween two models θ = (g, pZ) and θ̂ = (ĝ, pẐ), denoted θ ∼elem θ̂, if and only if

Ẑ = Pπφ(Z),

where φ(Z) = (φ1(Z1), . . . , φdz (Zdz )), φ : Z =⇒ Ẑ is a element-wise diffeomorphism and Pπ

is a permutation matrix corresponding to a dz-permutation π.
Definition 8 (Element identifiability (Hyvärinen & Pajunen, 1999)). For a model θ = (g, pZ), we
have element identifiability, if and only if, for any other model θ̂ = (ĝ, pẐ),

θ ∼obs θ̂ =⇒ θ ∼elem θ̂.

Connection to generalized identifiability. Generalized identifiability (Defn. 6) focuses on recover-
ing partial information from subsets of observed variables, while permutation identifiability seeks to
recover all latent variables up to element-wise indeterminacy, which is strictly stronger. As a result,
achieving permutation identifiability naturally requires stronger assumptions.

Interestingly, this can be a natural consequence of set-theoretic indeterminacy. As discussed in
Sec. 3.2, generalized identifiability guarantees the recovery of atomic regions in the Venn diagram.
Therefore, if the Venn diagram is sufficiently rich, meaning that each latent variable corresponds to
its own atomic region, we obtain element-wise identifiability directly. Since the Venn diagram is
simply a representation of the dependency structure, we now formalize the corresponding structural
condition as follows. For each Xj ∈ A, let Ij be the index set of latent variables connected to Xj .
Assumption 2 (Sufficient diversity). For each latent variable Zi (i ∈ [dz]), there exists a set of
observed variables A such that at least one of the following three conditions holds:

1. There exists Xk ∈ A such that
⋃

Xj∈A Ij = [dz], Ik \
⋃

Xj∈A\{Xk} Ij = i.

2. There exists Xk ∈ A such that
⋃

Xj∈A Ij = [dz],
(⋂

Xj∈A\{Xk} Ij

)
\ Ik = i.

3. (Zheng et al., 2022) The intersection of supports satisfies
⋂

Xj∈A Ij = i.

Theorem 3 (Element identifiability). Consider any two models θ = (g, pZ) and θ̂ = (ĝ, pẐ)
following the process in Sec. 2. Suppose assumptions in Thm. 1 and Assum. 2 hold. Then we have
identifiability up to element-wise indeterminacy, i.e., θ ∼obs θ̂ =⇒ θ ∼elem θ̂.
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Generalized structural condition. The sufficient diversity serves as a generalized condition for
element identifiability in fully unsupervised settings. The most closely related work is Zheng et al.
(2022), which also derives nonparametric identifiability results based purely on structural assump-
tions, without relying on auxiliary variables, interventions, or restrictive functional forms. However,
their structural sparsity condition aligns exactly with the third clause of sufficient diversity, making
it strictly stronger. In contrast, our formulation introduces two additional conditions as alterna-
tives, expanding the class of admissible structures and offering greater flexibility. We conjecture
that sufficient diversity may even be necessary when no distributional or functional form constraints
are imposed, as it arises naturally from the structure of atomic regions in the Venn diagram. Since
any dependency structure admits such a representation, and atomic regions serve as its minimal
elements, our condition may capture the essential structural requirement for element-level recovery.

Diversity is not sparsity. It is worth emphasizing that our diversity condition is fundamentally
different from sparsity assumptions. Diversity does not require the structure to be sparse: it remains
valid even in nearly fully connected settings, as long as there is some variation (e.g., even a single
differing edge) in the connectivity patterns across variables. By contrast, sparsity-based assumptions
strictly enforce sparse structures. For example, the well-known anchor feature assumption (Arora
et al., 2012; Moran et al., 2021) requires each latent variable to have at least two observed variables
that are unique to it, thereby excluding dense structures.

4 EXPERIMENT

In this section, we provide empirical support for our results in both synthetic and real-world settings.
Due to page limits, additional experimental results are deferred to Appendix C, including (1)
comparisons of more Jacobian/Hessian penalties (e.g., (Wei et al., 2021; Peebles et al., 2020)), (2)
analyses of regularization weights, and (3) further visual results on synthetic and real data.

4.1 SYNTHETIC EXPERIMENTS

Figure 4: R2 in simulation.

Setup. We follow the data generation process in Sec. 2.
We employ the variational autoencoder as our backbone
model with a dependency sparsity regularization in the
objective function as:
L = Eq(Z|X)[ln p(X|Z)]− βDKL(q(Z|X)||p(Z))︸ ︷︷ ︸

Evidence Lower Bound

+α∥Dẑĝ∥0,

where DKL is the Kullback–Leibler divergence, q(Z|X)
the variational posterior, p(Z) the prior, p(X|Z) the like-
lihood, and α, β regularization weights. We use 10, 000
samples and set α = β = 0.05 for all experiments, and all generation processes are nonlinear,
implemented by MLPs with Leaky ReLU. It might be worth noting that, under the definition of
identifiability, the only rigorous way to validate the theory is to examine the correspondence be-
tween the ground truth latents and the estimated latents.

Figure 5: MCC in simulation.

Generalized Identifiability. We begin by evaluating gen-
eralized identifiability across groups of observed vari-
ables. We generate datasets with dimensionality in
{3, 4, 5} and split the observed variables into two groups,
XK and XV . For each dataset, we compute the R2 score,
lower means more disentangled, between: (1) Int, IK∩IV
and IK∆IV ; (2) SymDiff, IK∆IV and IK ∩ IV ; and (3)
Comp A and Comp B, both directions between IK \ IV
and IV \ IK . We also include Ref, the R2 between Z

and Ẑ, as a baseline indicating the expected level of R2

for entangled variables. As shown in Fig. 4, all disentan-
glement conditions implied by set-theoretic indeterminacy (Defn. 5) are satisfied: the R2 between
structurally disjoint components is consistently much lower than Ref, supporting the validity of gen-
eralized identifiability.

Element Identifiability. We evaluate whether comparing multiple variable pairs enables recovery
of latent variables up to element-wise indeterminacy. We construct datasets with varying dimen-
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Method Shapes3D Cars3D MPI3D
FactorVAE ↑ DCI ↑ FactorVAE ↑ DCI ↑ FactorVAE ↑ DCI ↑

VAE-based
FactorVAE (Kim & Mnih, 2018) 0.833 ± 0.025 0.484 ± 0.120 0.708 ± 0.026 0.135 ± 0.030 0.599 ± 0.064 0.345 ± 0.047
FactorVAE + Latent Sparsity 0.837 ± 0.069 0.477 ± 0.152 0.501 ± 0.434 0.113 ± 0.069 0.440 ± 0.065 0.325 ± 0.028
FactorVAE + Dependency Sparsity 0.871 ± 0.053 0.575 ± 0.032 0.752 ± 0.040 0.144 ± 0.053 0.639 ± 0.084 0.384 ± 0.031

Diffusion-based
EncDiff (Yang et al., 2024) 0.9999 ± 0.0001 0.901 ± 0.050 0.779 ± 0.060 0.250 ± 0.020 0.868 ± 0.033 0.676 ± 0.018
EncDiff + Latent Sparsity 0.967 ± 0.042 0.891 ± 0.057 0.729 ± 0.003 0.241 ± 0.016 0.879 ± 0.015 0.684 ± 0.020
EncDiff + Dependency Sparsity 1.0000 ± 0.0000 0.947 ± 0.005 0.756 ± 0.041 0.256 ± 0.011 0.881 ± 0.024 0.667 ± 0.047

GAN-based
DisCo (Ren et al., 2021) 0.852 ± 0.037 0.710 ± 0.020 0.727 ± 0.106 0.319 ± 0.031 0.396 ± 0.023 0.306 ± 0.079
DisCo + Latent Sparsity 0.864 ± 0.007 0.707 ± 0.024 0.761 ± 0.148 0.294 ± 0.023 0.308 ± 0.031 0.314 ± 0.050
DisCo + Dependency Sparsity 0.868 ± 0.017 0.712 ± 0.018 0.789 ± 0.029 0.320 ± 0.003 0.410 ± 0.122 0.324 ± 0.059

Table 1: Comparison of disentanglement on FactorVAE score and DCI (mean±std, higher is better).
Bold numbers denote the best value within each model family for a given dataset/metric.

sions and structures that either satisfy Sufficient Diversity (Assum. 2) (Ours) or violate it through
fully dense dependencies (Base). Following prior work (Hyvärinen et al., 2024), we use the mean
correlation coefficient (MCC) between estimated and ground-truth latent variables as the evaluation
metric. As shown in Fig. 5, only datasets satisfying the structural condition achieve high MCC,
confirming that element-wise identifiability holds under our assumptions.

4.2 VISUAL EXPERIMENTS

Setup. Following the literature, we evaluate identification in more complex settings by learning
latent variables as generative factors. Specifically, we follow the setting of (Yang et al., 2024) and
use three standard benchmark datasets of disentangled representation learning: Cars3D (Reed et al.,
2015), Shapes3D (Kim & Mnih, 2018), and MPI3D (Gondal et al., 2019), which are benchmark
datasets with known generative factors such as object color, shape, scale, orientation, and viewpoint,
ranging from synthetic renderings to real-world images.

To evaluate the effectiveness of the proposed sparsity loss, we incorporate it into three powerful
disentangled representation learning methods based on mainstream generative models: Variational
Autoencoders (VAE), Generative Adversarial Networks (GAN), and Diffusion Models. These meth-
ods correspond to FactorVAE (Kim & Mnih, 2018), DisCo (Ren et al., 2021), and EncDiff (Yang
et al., 2024), respectively. We consider two types of baselines: 1) the original methods, i.e., Factor-
VAE, DisCo, and EncDiff, and 2) versions of these methods that incorporate L1 regularization on
Z (latent sparsity). In contrast, our approach applies an L1 regularization on Jacobian (dependency
sparsity). Following standard practice, we use FactorVAE score (Kim & Mnih, 2018) and the DCI
Disentanglement score (Eastwood & Williams, 2018) as evaluation metrics. We repeat each method
over three random seeds. Please refer to Appx. C for more details on setups.

Dependency sparsity in the literature. Notably, dependency sparsity has been widely used as a
simple and standard regularization across diverse settings, from disentanglement to LLMs (Rhodes
& Lee, 2021; Zheng et al., 2022; Farnik et al., 2025), although a general identifiability theory is still
lacking. Thus, its empirical effectiveness is already well established, and our experiments aim to
provide further supporting evidence.

Latent or dependency sparsity? Table 1 shows that across most datasets and backbone methods,
introducing the proposed dependency sparsity consistently helps the understanding of the hidden
world. Notably, these generative models often benefit more from dependency sparsity than from
latent sparsity. This is particularly interesting given the widespread use of sparse latent regular-
ization in mechanistic interpretability (e.g., sparse autoencoders (Cunningham et al., 2023)). Our
results highlight not only the advantage of dependency sparsity, but also lend insight to recent con-
cerns about the limitations of latent sparsity raised in the interpretability literature, such as feature
absorption, linear constraints, and high dimensionality (Sharkey et al., 2025).

5 CONCLUSION

We introduce diverse dictionary learning to investigate which aspects of the hidden world can be
recovered under basic conditions, and which inductive biases may be universally beneficial during
estimation. Our guarantees, grounded in set algebra, offer a complementary local view to prior re-
sults based on global assumptions, and also unify existing structural conditions for full identifiability.
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For future work, it is worth exploring generalized identifiability in foundation models. Current mod-
els are largely driven by empirical insights, and inductive biases inspired by identifiability, which
have been overlooked, may offer fresh directions for breakthroughs. With massive data and com-
putation available, asymptotic guarantees are becoming increasingly relevant, making identifiability
practically significant. A deeper investigation along this line remains an open limitation of our work.
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Symbol Description

X = (X1, . . . , Xdx) ∈ Rdx Observed variables (data space)
Z = (Z1, . . . , Zdz ) ∈ Rdz Latent variables (hidden space)
g : Rdz → Rdx Generative map, diffeomorphism onto its image
supp(M ; Θ) Support of a matrix-valued function M : Θ → Rm×n

S = supp(Dzg;Z) Dependency structure: support of Jacobian between Z and X

θ = (g, pZ) Model consisting of generative map and latent distribution
θ ∼obs θ̂ Observational equivalence (same induced distribution on X)
θ ∼set θ̂ Set-theoretic indeterminacy (intersection, symmetric difference, com-

plement disentangled)
IS ⊆ [dz] Latent index set associated with observed variable set XS

IK ∩ IV Intersection of latent supports (shared factors)
IK∆IV Symmetric difference of latent supports (unique factors)
IK \ IV , IV \ IK Complements (exclusive latent components)
Atomic region Minimal block in Venn diagram defined by intersections and comple-

ments of latent supports
θ ∼elem θ̂ Element-wise indeterminacy (permutation + invertible reparametriza-

tion)

Table 2: Notation used throughout the paper.

A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 1 (Implications of generalized identifiability). For any two models θ = (g, pZ) and
θ̂ = (ĝ, pẐ), if θ ∼set θ̂, then for any two sets of observed variables XK and XV , and their
corresponding latent index sets IK and IV , Zi is not a function of Ẑπ(j) for all (i, j) satisfying at
least one of the following, where π is a permutation:

(i) (Object-centric) i ∈ IK , j ∈ IV \ IK or i ∈ IV , j ∈ IK \ IV ;

(ii) (Individual-centric) i ∈ (IK \ IV ), j ∈ IV , or i ∈ (IV \ IK), j ∈ IK;

(iii) (Shared-centric) i ∈ IK ∩ IV , j ∈ IK∆IV .

Proof. For θ = (g, pZ) and θ̂ = (ĝ, pẐ), since θ ∼set θ̂, for any two sets of observed variables
XK and XV , and their corresponding latent index sets IK and IV , there exists a permutation π

over {1, . . . , dz} such that Zi is not a function of Ẑπ(j) for any (i, j) satisfying at least one of the
following conditions:

(i) (Intersection) i ∈ IK ∩ IV , j ∈ IK∆IV ;

(ii) (Symmetric difference) i ∈ IK∆IV , j ∈ IK ∩ IV ;

(iii) (Complement) i ∈ IK \ IV , j ∈ IV \ IK , or i ∈ IV \ IK , j ∈ IK \ IV .

Our goal is to prove that, the same holds for all (i, j) satisfying at least one of the following condi-
tions:

(i) (Object-centric disentanglement) i ∈ IK , j ∈ IV \ IK or i ∈ IV , j ∈ IK \ IV ;

(ii) (Individual-centric disentanglement) i ∈ IK \ IV , j ∈ IV , or i ∈ IV \ IK , j ∈ IK ;

(iii) (Shared-centric disentanglement) i ∈ IK ∩ IV , j ∈ IK∆IV .
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Let us start with the first case. If i ∈ IK , it is either the case i ∈ IK ∩ IV or i ∈ IK \ IV . For
i ∈ IK ∩ IV , according to the case of Intersection in set-theoretic indeterminacy, we have

∂Zi

∂Ẑπ(j)

= 0, (2)

for any j ∈ IK∆IV . Similarly, for i ∈ IK \ IV , we also have Eq. (2) for j ∈ IV \ IK . Combining
these together, Eq. (2) must holds for any i ∈ IK and j ∈ IV \ IK . The similar derivation holds for
any i ∈ IV and j ∈ IK \ IV . Thus, the first case holds.

Then we consider the second case. If i ∈ IK \IV , then according to the case of symmetric difference
in set-theoretic indeterminacy, we have Eq. (2) holds for j ∈ IK ∩ IV .

Moreover, according to the case of complement in set-theoretic indeterminacy, we have Eq. (2)
holds for j ∈ IV \ IK . Note that there is

(IV \ IK) ∪ (IK ∩ IV ) = IV . (3)

Thus, for any i ∈ IK \ IV , we have Eq. (2) holds for any j ∈ IV . The similar derivation holds for
any i ∈ IV \ IK and j ∈ IK . Thus, the second case holds.

The third case is identical to the case of intersection in set-theoretic indeterminacy. Thus, for θ =

(g, pZ) and θ̂ = (ĝ, pẐ), θ ∼set θ̂ implies our goals.

A.2 PROOF OF THEOREM 1

Theorem 1 (Generalized identifiability). Consider any two models θ = (g, pZ) and θ̂ = (ĝ, pẐ)
following the process in Sec. 2. Suppose Assum. 1 holds and:

i. The probability density of Z is positive in Rdz ;

ii. (Sparsity regularization6) ∥DẐ ĝ∥0 ≤ ∥DZg∥0.

Then if θ ∼obs θ̂, we have generalized identifiability (Defn. 6), i.e., θ ∼set θ̂.

Proof. Since θ ∼obs θ̂, by the change-of-variable formula there must be

Ẑ = ĝ−1 ◦ g(Z) = ϕ(Z), (4)

where ϕ = ĝ−1 ◦ g is an invertible function and thus ϕ−1 exists. Therefore, according to the chain
rule, we have

DẐ ĝ = DZgDẐϕ
−1. (5)

For each i ∈ [dx], consider a set Si of ∥(DZg)i,·∥0 distinct points and the corresponding Jacobians
as follows (

∂Xi

∂Z1
,
∂Xi

∂Z2
, . . . ,

∂Xi

∂Zdz

) ∣∣∣∣
(z)=(z(k))

, k ∈ Si. (6)

According to Assumption 1, all vectors in Eq. (6) are linearly independent.

Let us construct a matrix Mϕ. Since all vectors in Eq. (6) are linearly independent, for any j ∈
supp((DZg)i,·), we have

Mϕj,· =
∑
k∈Si

βk(DZg(z
(k)))i,·Mϕ, (7)

where βk,∀k ∈ Si denote coefficients, and Mϕ denotes a matrix.

We wish to construct a constant matrix Mϕ satisfying∑
k∈Si

βk (DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}, (8)

for each i ∈ [dx], while ensuring that

supp(Mϕ) = supp(DẐϕ
−1), (9)

6Notably, this is a regularization during estimation, instead of an assumption restricting the data.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

According to Assumption 1, we have

supp(DZg(z
(k))Mϕ)i,· ⊆ supp(DẐ ĝ(ẑ

(k)))i,·,∀k ∈ Si. (10)

Therefore, there must be

DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}, (11)

which implies ∑
k∈Si

βk (DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}. (12)

Equivalently, we have

Mϕj,· ∈ span{ek : k ∈ supp((DẐ ĝ)i,·)},∀j ∈ supp((DZg)i,·). (13)

Define a bipartite graph G = (R,C,E) where R = C = {1, 2, . . . , dz} and an edge exists between
j ∈ R and k ∈ C if and only if DẐϕ

−1
j,k ̸= 0.

Since DẐϕ
−1 is invertible, its rows are linearly independent, so for every subset S ⊆ R, the corre-

sponding rows have a nonzero determinant, implying that

|{k ∈ C | ∃ j ∈ S, DẐϕ
−1
j,k ̸= 0}| ≥ |S|. (14)

By Hall’s marriage theorem, there exists a perfect matching between R and C. This matching
corresponds to a permutation π ∈ Sn such that

(DẐϕ
−1)j,π(j) ̸= 0,∀j ∈ {1, 2, . . . , n}. (15)

In particular, for every j ∈ supp((DZg)i,·) ⊆ {1, 2, . . . , n}, we have

(DẐϕ
−1)j,π(j) ̸= 0. (16)

Because supp(Mϕ) = supp(DẐϕ
−1), this implies

Mϕj,π(j) ̸= 0,∀j ∈ supp((DZg)i,·). (17)

Further incorporating Eq. (13), it follows that

π(j) ∈ span{ek : k ∈ supp((DẐ ĝ)i,·)},∀j ∈ supp((DZg)i,·). (18)

Therefore, for any non-zero element in Dzg, there always exists a corresponding non-zero element
in Dẑĝ , with the relations on their indices as follows

(Dzg)i,j ̸= 0 =⇒ (Dẑ ĝ)i,π(j) ̸= 0. (19)

Furthermore, because of the assumption that

∥DẐ ĝ∥0 ≤ ∥DZg∥0, (20)

Eq. (19) can be further restricted to an equivalence between the sparsity patterns, i.e.,

(Dzg)i,j ̸= 0 ⇐⇒ (Dẑ ĝ)i,π(j) ̸= 0 (21)

We then consider the following two cases for the set-theoretic indeterminacy. Specifically, for any
two sets of observed variables XK and XV and the index sets of their latent variables, IK and IV ,
K ̸= V , we consider the following cases:

(i) (Intersection) i ∈ IK ∩ IV , j ∈ IK∆IV ;

(ii) (Symmetric difference) i ∈ IK∆IV , j ∈ IK ∩ IV ;

(iii) (Complement) i ∈ IK \ IV , j ∈ IV \ IK , or i ∈ IV \ IK , j ∈ IK \ IV .
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Let us start from the first case, where t ∈ IK ∩ IV , r ∈ IK∆IV . Denote the index sets of XK and
XV as JK and JV . Then, there exists k ∈ JK such that

t ∈ supp(DZg)k,·. (22)

This further implies the following relation based on Eq. (13)

Mϕt,· ∈ span{ek′ : k′ ∈ supp((DẐ ĝ)k,·)}. (23)

Similarly, there exists v ∈ JV such that

t ∈ supp(DZg)v,·, (24)

which further implies
Mϕt,· ∈ span{e′k : k′ ∈ supp((DẐ ĝ)v,·)}. (25)

For r ∈ IK∆IV , suppose
Mϕt,π(r) ̸= 0. (26)

According to Eqs. (23) and (25), there must be

π(r) ∈ supp(DẐ ĝ)k,·, (27)

π(r) ∈ supp(DẐ ĝ)v,·. (28)

Together with Eq. (21), these further imply

r ∈ supp(DZg)k,·, (29)

r ∈ supp(DZg)v,·. (30)

This leads to
r ∈ IK ∩ IV , (31)

which contradict r ∈ IK∆IV . Therefore, there must be

Mϕt,π(r) = 0. (32)

Since Mϕ is the support of DẐϕ
−1, this implies that, for t ∈ IK ∩ IV and r ∈ IK∆IV , we have

∂Zt

∂Ẑπ(r)

= 0. (33)

Then we consider the case where t ∈ IK ∩ IV and r ∈ I \ (IK ∪ IV ). Suppose

Mϕt,π(r) ̸= 0. (34)

According to Eq. (23), there must be

π(r) ∈ supp(DẐ ĝ)k,·. (35)

Together with Eq. (21), these further imply

r ∈ supp(DZg)k,·. (36)

This leads to
r ∈ IK , (37)

which contradict r ∈ I \ (IK ∪ IV ). Therefore, there must be

Mϕt,π(r) = 0, (38)

where t ∈ IK ∩ IV and r ∈ I \ (IK ∪ IV ).

Therefore, according to Eqs. (33) and (38) and the invertibility of ϕ, for t ∈ IK ∩ IV , Zt has to
depend only on Ẑπ(t) and not other variables. Therefore, there exists an invertible function h s.t.
Zt = h(Ẑπ(t)).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Further consider the setting where r ∈ IK∆IV . Since t ∈ IK ∩ IV and (IK∆IV )∩ (IK ∩ IV ) = ∅,
Zr is independent of Zt = h(Ẑπ(t)). Therefore, Zr does not depend on Ẑπ(t) and thus

∂Zr

∂Ẑπ(t)

= 0, (39)

which is the second case.

Then we consider the third case where t ∈ IK \ IV and r ∈ IV \ IK . If t ∈ IK \ IV , there exists
k ∈ JK such that

t ∈ supp(DZg)k,·. (40)

Then there is
Mϕt,· ∈ span{ek′ : k′ ∈ supp((DẐ ĝ)k,·)}. (41)

For r ∈ IV \ IK , suppose
Mϕt,π(r) ̸= 0. (42)

Then we have
π(r) ∈ supp(DẐ ĝ)k,·, (43)

which follows
r ∈ supp(DZg)k,·. (44)

This is a contradiction since r ∈ IV \ IK . Thus, we can also prove that, for the third case, where
t ∈ IV \ IK and r ∈ IK \ IV , there must be

∂Zt

∂Ẑπ(r)

= 0. (45)

This concludes the proof.

A.3 PROOF OF THEOREM 2

Theorem 2 (Structure identifiability). Consider any two models θ = (g, pZ) and θ̂ = (ĝ, pẐ)

following the process in Sec. 2. Suppose assumptions in Thm. 1 hold. If θ ∼obs θ̂, the support of the
Jacobian matrix Dẑ ĝ is identical to that of Dzg, up to a permutation of column indices.

Proof. Since θ ∼obs θ̂, by considering ϕ = ĝ−1 ◦ g and the change-of-variable formula, we have

Ẑ = ϕ(Z), (46)

where ϕ is an invertible function and thus ϕ−1 exists. Therefore, according to the chain rule, we
have

DẐ ĝ = DZgDẐϕ
−1. (47)

For each i ∈ [dx], consider a set Si of ∥(DZg)i,·∥0 distinct points and the corresponding Jacobians
as follows (

∂Xi

∂Z1
,
∂Xi

∂Z2
, . . . ,

∂Xi

∂Zdz

) ∣∣∣∣
(z)=(z(k))

, k ∈ Si. (48)

According to Assumption 1, all vectors in Eq. (48) are linearly independent.

Let us construct a matrix Mϕ. Since all vectors in Eq. (48) are linearly independent, for any
j ∈ supp((DZg)i,·), we have

Mϕj,· =
∑
k∈Si

βk(DZg(z
(k)))i,·Mϕ, (49)

where βk,∀k ∈ Si denote coefficients.

We wish to construct a constant matrix Mϕ satisfying∑
k∈Si

βk (DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}, (50)
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for each i ∈ [dx], while ensuring that

supp(Mϕ) = supp(DẐϕ
−1), (51)

According to Assumption 1, we have

supp(DZg(z
(k))Mϕ)i,· ⊆ supp(DẐ ĝ(ẑ

(k)))i,·,∀k ∈ Si. (52)

Therefore, there must be

DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}, (53)

which implies ∑
k∈Si

βk (DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}. (54)

Equivalently, we have

Mϕj,· ∈ span{ek : k ∈ supp((DẐ ĝ)i,·)},∀j ∈ supp((DZg)i,·). (55)

Define a bipartite graph G = (R,C,E) where R = C = {1, 2, . . . , dz} and an edge exists between
j ∈ R and k ∈ C if and only if DẐϕ

−1
j,k ̸= 0.

Since DẐϕ
−1 is invertible, its rows are linearly independent, so for every subset S ⊆ R, the corre-

sponding rows have a nonzero determinant, implying that

|{k ∈ C | ∃ j ∈ S, DẐϕ
−1
j,k ̸= 0}| ≥ |S|. (56)

By Hall’s marriage theorem, there exists a perfect matching between R and C. This matching
corresponds to a permutation π ∈ Sn such that

(DẐϕ
−1)j,π(j) ̸= 0,∀j ∈ {1, 2, . . . , n}. (57)

In particular, for every j ∈ supp((DZg)i,·) ⊆ {1, 2, . . . , n}, we have

(DẐϕ
−1)j,π(j) ̸= 0. (58)

Because supp(Mϕ) = supp(DẐϕ
−1), this implies

Mϕj,π(j) ̸= 0,∀j ∈ supp((DZg)i,·). (59)

Further incorporating Eq. (55), it follows that

π(j) ∈ span{ek : k ∈ supp((DẐ ĝ)i,·)},∀j ∈ supp((DZg)i,·). (60)

Therefore, for any non-zero element in Dzg, there always exists a corresponding non-zero element
in Dẑĝ , with the relations on their indices as follows

(Dzg)i,j ̸= 0 =⇒ (Dẑ ĝ)i,π(j) ̸= 0. (61)

Furthermore, because of the assumption that

∥DẐ ĝ∥0 ≤ ∥DZg∥0, (62)

Eq. (61) can be further restricted to an equivalence between the sparsity patterns, i.e.,

(Dzg)i,j ̸= 0 ⇐⇒ (Dẑ ĝ)i,π(j) ̸= 0. (63)

Therefore, there must be
supp(Dzg) = supp((Dẑ ĝ)P ), (64)

where P denotes a permutation matrix. Thus, the support of the Jacobian matrix Dẑ ĝ is identical to
that of Dzg, up to a permutation of column indices.
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A.4 PROOF OF THEOREM 3

Theorem 3 (Element identifiability). Consider any two models θ = (g, pZ) and θ̂ = (ĝ, pẐ)
following the process in Sec. 2. Suppose assumptions in Thm. 1 and Assum. 2 hold. Then we have
identifiability up to element-wise indeterminacy, i.e., θ ∼obs θ̂ =⇒ θ ∼elem θ̂.

Proof. Since all assumptions in Thm. 1 are satisfied, for these two models θ = (g, pZ) and θ̂ =
(ĝ, pẐ) following the process in Sec. 2, we can follow the same steps in Sec. A.2 to derive Eq. (21),
i.e.,

(Dzg)i,j ̸= 0 ⇐⇒ (Dẑ ĝ)i,π(j) ̸= 0. (65)
Then, for any latent varible Zi ∈ Z, let us consider all conditions in Assum. 2. We begin with the
first condition: there exists a set of observed variables A and an element Xk ∈ A such that⋃

Xj∈A

Ij = [dz], and Ik \
⋃

Xj∈A\{Xk}

Ij = {i}. (66)

Our want to show that, for any other r ̸= i, we have

∂Zi

∂Ẑπ(r)

= 0. (67)

We consider two cases:

• r ∈ (
⋃

Xj∈A\{Xk} Ij) \ Ik;

• r ∈ (
⋃

Xj∈A\{Xk} Ij) ∩ Ik.

Suppose r ∈ (
⋃

Xj∈A\{Xk} Ij) \ Ik. Let us denote JA\k as the index set of A \ {Xk}. Since
Ik \

⋃
Xj∈A\{Xk} Ij = {i}, for any v ∈ JA\k, there must be

i /∈ supp(Dzg)v,., (68)

We then suppose for contradiction that

Mϕi,· ∈ span{el : l ∈ supp((DẐ ĝ)v,·)}. (69)

In the proof of Theorem 1, we have proved that

Mϕi,π(i) ̸= 0. (70)

Then we have
π(i) ∈ supp(DẐ ĝ)v,·. (71)

According to Eq. (65), this implies
i ∈ supp(DZg)v,·. (72)

This contradicts
i /∈ supp(DZg)v,·. (73)

Thus, there must be
Mϕi,· /∈ span{el : l ∈ supp((DẐ ĝ)v,·)} (74)

We further suppose by contradiction that

Mϕi,π(r) ̸= 0, (75)

for r ∈ (
⋃

Xj∈A\{Xk} Ij) \ Ik. Then, according to Eq. (74), there must be

π(r) /∈ supp(DẐ ĝ)v,·, (76)

which implies
r /∈ supp(DZg)v,·. (77)

This is, again, a contradiction to r ∈ (
⋃

Xj∈A\{Xk} Ij) \ Ik. As a result, there must be

Mϕi,π(r) = 0. (78)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We then consider the other case, where we assume r ∈ (
⋃

Xj∈A\{Xk} Ij) ∩ Ik. Then there exists
q ∈ JA\k s.t.

i ∈ supp(DZg)q,·, (79)

which further implies
Mϕi,· ∈ span{eq′ : q′ ∈ supp((DẐ ĝ)q,·)}. (80)

Since we also have
i /∈ supp(DZg)q,·. (81)

We suppose for contradiction that

Mϕi,· ∈ span{el : l ∈ supp((DẐ ĝ)q,·)}. (82)

Since there is
Mϕi,π(i) ̸= 0. (83)

It follows that
π(i) ∈ supp(DẐ ĝ)q,·. (84)

According to Eq. (65), it implies
i ∈ supp(DZg)q,·. (85)

This contradicts the case that i /∈ supp(DZg)q,·, and thus there must be

Mϕi,· /∈ span{el : l ∈ supp((DẐ ĝ)q,·)}. (86)

For r ∈ (
⋃

Xj∈A\{Xk} Ij) ∩ Ik, suppose

Mϕi,π(r) ̸= 0. (87)

Given Eqs. (80) and (86), we have

π(r) ∈ supp(DẐ ĝ)i,·, (88)

π(r) /∈ supp(DẐ ĝ)q,·. (89)

Because of Eq. (65), these further imply

r ∈ supp(DZg)i,·, (90)

r /∈ supp(DZg)q,·. (91)

This leads to
r ∈ Ik \

⋃
Xj∈A\{Xk}

Ij , (92)

which contradicts

r ∈

 ⋃
Xj∈A\{Xk}

Ij

 ∩ Ik. (93)

Therefore, there must be
Mϕi,π(r) = 0. (94)

Since Mϕ is the support of DẐϕ
−1, this implies that, for any other r ̸= i, we have

∂Zi

∂Ẑπ(r)

= 0. (95)

Because ϕ is invertible, each row of DẐϕ
−1 must at least have one non-zero element. Therefore, it

follows that
∂Zi

∂Ẑπ(i)

= 0. (96)

Thus, with the first condition in Assum. 2, we have identifiability up to element-wise indeterminacy.
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Next, we consider the second condition in Assum. 2. By applying the case of Intersection in Defn.
5 for all pairs of observed variables in X , there is

∂Z⋂
Xj∈A\{Xk} Ij

∂σ(Ẑ)∆Xj∈A\{Xk}Ij

= 0, (97)

where σ denotes the transformation for the permutation pi. Then for
⋃

Xj∈A\{Xk} Ij and Ik, by the
individual-centric disentanglement in Prop. 1, there is

∂Z(⋃
Xj∈A\{Xk} Ij

)
\Ik

∂σ(Ẑ)Ik
= 0. (98)

Note that (
Z⋂

Xj∈A\{Xk} Ij

)
∩
(
Z(⋃

Xj∈A\{Xk} Ij
)
\{Xk}

)
= Z(⋂

Xj∈A\{Xk} Ij
)
\Ik

(99)

Considering both Eqs. (97) and (99), we have

∂Z(⋂
Xj∈A\{Xk} Ij

)
\Ik

∂σ(Ẑ)∆Xj∈A\{Xk}Ij

= 0. (100)

Considering both Eqs. (98) and (99), we have

∂Z(⋂
Xj∈A\{Xk} Ij

)
\Ik

∂σ(Ẑ)Ik
= 0. (101)

Note that

σ(Ẑ)∆Xj∈A\{Xk}Ij ∪ σ(Ẑ)Ik (102)

=[dz] \

 ⋂
Xj∈A\{Xk}

Ij

 \ Ik

 (103)

=[dz] \ i. (104)

Further given the invertibility of ϕ, each row of DẐϕ
−1 must at least have one non-zero element.

Therefore, it follows that
∂Zi

∂Ẑπ(i)

̸= 0. (105)

Lastly, we consider the third condition in Assum. 2. That part of proof directly follows from
(Lachapelle et al., 2022; Zheng et al., 2022). Suppose for each row in Mϕ, there are more than one
non-zero element. Then

∃j1 ̸= j2,Mϕj1,· ∩Mϕj2,· ̸= ∅. (106)

Then consider j3 ∈ [dz] such that

π(j3) ∈ Mϕj1,· ∩Mϕj2,·. (107)

Since j1 ̸= j3, it is either j3 ̸= j1 or j3 ̸= j2. Without loss of generality, we assume j3 ̸= j1.

Since we have ⋂
Xj∈Aj1

Ij = j1, (108)

there must exists Xi3 ∈ Aj1 such that j3 ̸= Ii3 . Because j1 ∈ Ii3 , we have

(i3, j1) ∈ supp(DZg), (109)

which further implies
Mϕj1,· ∈ span{e′k : k′ ∈ supp((DẐ ĝ)i3,·)}. (110)
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Given Eq. (107), it implies
π(j3) ∈ supp(DẐ ĝ)i3,·. (111)

This, again, implies
j3 ∈ supp(DZg)i3,·, (112)

which contradicts j3 ̸= Ii3 . Therefore, for each row in Mϕ, there are no more than one non-zero
element. Because Mϕ is invertible. each row must at least have one non-zero element. Thus, there
must be exactly one non-zero element each row, which is

∂Zi

∂Ẑπ(i)

̸= 0. (113)

Thus, we have proved our goal with all three conditions.
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Figure 6: The Venn diagram example (Fig. 3).

B ADDITIONAL DISCUSSION

B.1 THE VENN DIAGRAM.

Here we provide the full deriviation of the Venn diagram example.
Example 5 (Identifying all atomic regions). Let I1, I2, and I3 be the latent index sets of X1, X2,
and X3 in Fig. 3. For each atomic region A we pick two sets of observed variables (XK , XV ) so
that every i ∈ A satisfies one of the three conditions in Defn. 5 with every j /∈ A. This guarantees
that the latents in A are disentangled from all others, establishing block-wise identifiability.

(i) I1 \ (I2 ∪ I3) Step 1: Take XK = X1, XV = X2. Then i ∈ IK \ IV and every j ∈ I2 lies
in IV \ IK , so case (iii) applies. Step 2: Take XK = X1, XV = X3. Now i ∈ IK \ IV and every
j ∈ I3 is in IV \ IK , again case (iii). All indices outside A belong to I2 or I3 (or both), so A is
disentangled.

(ii) I2 \ (I1 ∪ I3) Symmetric to (i) with the roles of (1, 2) and (2, 1) swapped: use (XK , XV ) =
(X2, X1) and (X2, X3).

(iii) I3 \ (I1 ∪ I2) Symmetric to (i): use (XK , XV ) = (X3, X1) and (X3, X2).

(iv) (I1 ∩ I2) \ I3 This is the worked example already given; we recap for completeness. Step 1:
(X1, X2) yields i ∈ IK ∩ IV , j ∈ IK∆IV (case (ii)). Step 2: (X1 ∪X2, X3) yields i ∈ IK \ IV ,
j ∈ IV (case (iii)).

(v) (I1 ∩ I3) \ I2 Step 1: XK = X1, XV = X3: i ∈ IK ∩ IV , j ∈ IK∆IV (case (ii)). Step 2:
XK = X1 ∪X3, XV = X2: i ∈ IK \ IV , j ∈ IV (case (iii)).

(vi) (I2 ∩ I3) \ I1 Step 1: XK = X2, XV = X3: i ∈ IK ∩ IV , j ∈ IK∆IV (case (ii)). Step 2:
XK = X2 ∪X3, XV = X1: i ∈ IK \ IV , j ∈ IV (case (iii)).

(vii) I1 ∩ I2 ∩ I3 Step 1: XK = X1, XV = X2: i ∈ IK ∩ IV , any j that differs only by presence
in I1 or I2 lies in IK∆IV (case (ii)). Step 2: XK = X1 ∪X2, XV = X3: i ∈ IK ∩ IV , while every
remaining j either (a) appears in exactly one of I1, I2, I3 and so is in IK∆IV (case (ii)), or (b) lies
solely in I3 and is in IV \ IK (case (iii)).

In every case the chosen pairs cover all j /∈ A, so each atomic region is disentangled from the rest
and hence block-wise identifiable under the invertibility assumption.
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B.2 FURTHER DISCUSSION ON THE CONNECTION OF CONDITIONS.

The spirit of many of our conditions stems from the classical literature of latent variable models.
Here we discuss the connections in more details:

Connection between diversity and sparsity assumptions. The structural diversity condition is
firstly introduced in our work for the nonlinear case, but other conditions on the structure appear in
related field, e.g., the sparsity condition. For instance, the anchor feature assumption (Arora et al.,
2012; Moran et al., 2021), structural sparsity Zheng et al. (2022), sparse dictionary (Garfinkle &
Hillar, 2019), and many others. Although both diversity and sparsity concern latent structure, they
are fundamentally different. Diversity focuses on variation in the dependency between latent and ob-
served variables, and does not require sparsity at all. It remains valid even in nearly fully connected
graphs, as long as there is some variation (e.g., even a single differing edge) in the connectivity
patterns across variables. In contrast, sparsity conditions do not imply diversity and always enforce
sparse connectivities.

Connection between injectivity and RIP assumptions. Injectivity is a standard requirement to en-
sure that latent information is not lost through the generative map. In the linear setting, this reduces
to classical Restricted Isometry Property (RIP) conditions (Foucart & Rauhut, 2013; Jung et al.,
2016), which are known to be necessary for linear dictionary learning. Our injectivity condition is
the natural nonlinear analogue: it prevents degenerate mappings that collapse latent variation, stan-
dard in almost all previous work on nonparametric identifiability (Hyvärinen et al., 2024; Moran &
Aragam, 2025).

Connection between dependency sparsity and latent sparsity regularizations. Beyond assump-
tions on the data generating process, there are also connections in terms of regularization during
estimation. Most prior work on sparse dictionary learning imposes sparsity directly on the recov-
ered latent variables Z. The most prominent example is the Sparse Autoencoder (SAE), which is
based on sparse dictionary learning and widely used in mechanistic interpretability. However, as
highlighted by recent reviews (Cunningham et al., 2023), latent sparsity causes issues such as fea-
ture absorption and extremely high latent dimensionality (e.g., millions of variables). In contrast,
we regularize sparsity on the dependency structure (Jacobian sparsity) rather than the latents them-
selves, which avoids these issues and has shown benefits both in our own experiments (Sec. 4.2) and
in recent work on large language models, such as the Jacobian Sparse Autoencoder (Farnik et al.,
2025).

B.3 FURTHER DISCUSSION ON THE CONNECTION WITH SAES.

Discussion. Mechanistic interpretability often seeks to uncover the underlying concepts that drive
the behavior of large language models, whether to understand sources of hallucination or to explain
model responses. Sparse Autoencoders (SAEs) have been widely used for this purpose, but, as noted
in the community [3], SAEs rely on sparse dictionary learning and therefore inherit its limitations:

• First, SAEs fundamentally assume a linear generative function, since sparse dictionary
learning lacks nonlinear identifiability. As you mentioned, the Linear Representation Hy-
pothesis (LRH) is a reasonable working assumption in many contexts, but LRH concerns
the linear relation within the latent space of Z rather than the linearity of the generative
map g in X = g(Z). In reality, most models have highly nonlinear generative functions
(for example, due to nonlinear activations such as ReLU or GeLU). Assuming linearity at
the generative level simplifies implementation but inevitably introduces bias and prevents
full recovery of the true latent factors in these nonlinear settings.
Different from the theoretical foundation of SAEs (i.e., sparse dictionary learning), our
diverse dictionary learning provides theoretical guarantees for nonlinear latent variable
models, offering a provably rigorous tool for mechanistic interpretability in almost all real-
world scenarios, covering the previously unsupported nonlinear cases.

• Second, SAEs impose sparsity directly on the latent variables. This often forces extremely
high-dimensional latent spaces (e.g., millions of units) to represent real-world concepts.
More, latent sparsity can cause feature splitting and absorption, where important concepts
are lost due to the encouragement of sparse latents. For instance, if we only maximize the
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latent sparsity, each feature will only corresponds to several samples, capture concepts that
are very specific (e.g., persian cats) versus more general concepts (e.g., cats).
In contrast, diverse dictionary learning encourages dependency sparsity (Jacobian sparsity)
rather than latent sparsity, and is designed for nonlinear generative models with identifia-
bility guarantees. This provides a principled solution to both limitations of SAEs and has
meaningful implications for mechanistic interpretability.

Empirical Evidence. The recent Jacobian Sparse Autoencoder (JSAE) work (Farnik et al., 2025)
provides extensive empirical support for the same dependency sparsity regularization required by our
diverse dictionary learning theory. Their results suggest that replacing traditional SAE losses with
dependency sparsity–based losses can improve both interpretability and efficiency. We therefore
refer readers in mechanistic interpretability to their thorough empirical study.

Table 3: Number of dead features under
different methods

Method # of Dead Features
Top-K SAE 439
Batch Top-K 207
JSAE 62

At the same time, there is one perspective that (Farnik
et al., 2025) has not evaluated against other SAE base-
lines, i.e., the number of dead features. To make the
empirical evedeinces even more comprehensive, we con-
ducted new experiments on the OpenWebtext with GPT2-
Small, comparing JSAE with Top-K SAE (Gao et al.,
2025) and Batch Top-K SAE (Bussmann et al.), with the
latent dimension as 12, 288. The results are in Table 3.

These results, together with the comprehensive experiments in (Farnik et al., 2025), further sup-
port the advantages of dependency sparsity, demonstrating that it not only yields more interpretable
representations but also preserves active and meaningful latent features more effectively.

B.4 FURTHER DISCUSSION ON SUFFICIENT NONLIENARITY

The sufficient nonlinearity assumption is meant to ensure that the Jacobian varies enough across
samples so that its Jacobian vectors span the relevant support. Although this condition may seem
demanding at first glance, it is usually quite mild in practice. For each observed variable Xi, the
requirement involves only |(DZg)i,·|0 samples, which is simply the number of latent variables that
influence Xi, and this number is typically far smaller than the available sample size.

When g is smooth and the latent distribution has a continuous density, Jacobian evaluations at in-
dependently drawn samples form continuous random vectors. Such vectors are in general position
with probability one, which means that a small number of random samples already produces Jaco-
bian rows that span the required support. For example, if Xi depends on five latent coordinates, then
roughly five random samples are usually sufficient, even in much higher dimensional systems.

The second part supp((DZg(z
(k))H)i,·) ⊆ supp((DẐ ĝ)i,·). is also mild. We have (DẐ ĝ(ẑ))i,· =

(DZg(z))i,·h(z, ẑ), which already lies inside supp((DẐ ĝ)i,·). Even in rare cases where a specific
matrix fails to match the support due to particular value combinations, the condition still holds
asymptotically, since it only requires the existence of one matrix in the whole space.

B.5 DEPENDENCY SPARSITY REGULARIZATION ON LARGE MODELS

Computing the full Jacobian of a large model can be expensive. Fortunately, recent work (Farnik
et al., 2025) shows that dependency sparsity regularization remains practical even at scale up to
common LLMs when combined with two standard strategies.

• Apply latent sparsity first. Large models often have high dimensional latent spaces, but
for any given input, many latent coordinates are inactive or irrelevant. A common approach
is to first identify the active coordinates and compute the Jacobian only with respect to this
subset. Since the active block is often tiny compared to the full latent space, this reduces
both computation and memory by several orders of magnitude in typical transformer archi-
tectures [1]. In practice, the Jacobian is rarely formed as a dense dx × dz matrix, but only
as a restricted slice that corresponds to the active latent directions for that specific input.

• Use efficient closed-form expressions. For several widely used architectures, the Jaco-
bian with respect to selected latent directions has efficient factorizations. As shown in [1],
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models with residual attention and feedforward structure admit closed form expressions for
the relevant Jacobian blocks that require only a few matrix multiplications and inexpensive
elementwise operations. This avoids repeated backward passes through the full model and
keeps the cost manageable even when the underlying network is large.

With these strategies, training a large model with our dependency sparsity regularization is reported
to be only about twice as slow as training with standard ℓ1 regularization on the latent variables Z
(Farnik et al., 2025).

B.6 GENERAL NOISE AND NON-INVERTIBILITY

In our paper, we follow the standard setup in the identifiability literature regarding noise and invert-
ibility because violations of it usually require much stronger assumptions to compensate. That said,
we feel that more discussion on how to handle these cases is helpful in certain scenarios.

Handling general noises. Most identifiability results for latent variable models focus on additive
independent noise or noiseless settings. This holds for both classical linear models (Reiersøl, 1950)
and recent nonparametric work (Hyvärinen et al., 2024). The main difficulty is separating noise
from latent variables, since in the general form they can be entangled in complex ways. Recent
work (Zheng et al., 2025), based on the Hu-Schennach theorem (Hu & Schennach, 2008), shows
that general noise can be separated under additional assumptions on the generative function f and
on conditional independence across groups of observed variables. As noted in Remark 1, under the
same conditions, our results extend to settings with general noise.

Handling partial non-invertibility. Invertibility and its variants are among the most common
assumptions in the literature. Without additional assumptions, it can even be necessary, since in-
formation that is lost during generation cannot be recovered in principle. In scenarios where partial
non-invertibility must be addressed, one may consider incorporating temporal information together
with sufficient changes in the nonstationary transition (Chen et al., 2024), which can provide the
extra information needed for recovery. Since our theory focuses on the general setting without any
auxiliary information, we adopt the standard assumption of invertibility.

B.7 FURTHER DISCUSSION ON POTENTIAL IMPACT.

In a nutshell, recovering the ground-truth data generative process is important for both predictive
and non-predictive tasks. Machine learning is fundamentally a balance between inductive bias and
data. By uncovering the hidden world underlying the data, we obtain principled, domain-agnostic
inductive biases grounded in fundamental understanding rather than heuristics. These insights can be
embedded directly into model architectures, training objectives, and evaluation protocols, yielding
systems that are more robust, generalizable, and data-efficient. Importantly, these inductive biases
are not merely theoretical; they have already produced measurable improvements across diverse
real-world domains.

We first highlight two overarching benefits:

Truthfulness. It is well known that, given any pair of observationally equivalent models (e.g.,
models perfectly trained by MLE), without additional assumptions, there is no guarantee at all that
these models actually recover the underlying data generative processes. This has led to the critical
issue of non-identifiability of the nonlinear latent variable model (e.g., the classical work on the
non-uniqueness of nonlinear ICA (Hyvärinen & Pajunen, 1999)), and has been widely validated by
large-scale empirical studies on unsupervised learning (e.g., (Locatello et al., 2019)). This raises
significant challenges for tasks (e.g., transfer learning, controllable generation, compositional gen-
eralization, and mechanistic interpretability) where we need to understand the true process, rather
than purely fitting the observed distribution. Therefore, understanding what aspects can still be re-
covered, and what inductive biases should be introduced to guide recovery, provide both theoretical
guarantees and practical guidance on ensuring the truthfulness of the learning. These are exactly
what our paper aims to address.
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Efficiency. Recovering the underlying true generative factors provides a principled solution to
improve the efficiency, since we only need to model those essential representation capturing what
we are interested, instead of the whole high-dimensional space that also include numerous irrelevant
information or arbitrary noises. For instance, if we can make sure that the recovered latents will
not be entangled with other latent variables, we can precisely only on those that relevant to our
tasks (e.g., content for transfer learning, or specific latent concepts we need to modify) instead of
the whole latent spaces, not only reducing the cost but enforcing the model to focus only on those
relevant, improve the efficiency in a principled way.

We have conducted experiments on visual disentanglement to illustrate one of the potential appli-
cation scenarios. Across datasets and backbone models, the results consistently show that adding
the identifiability-guided regularization (dependency sparsity) enables the model to recover the un-
derlying generative factors. This not only improves disentanglement performance, which is itself
practically important, but also directly benefits the following application scenarios.

Mechanistic Interpretability. In many scenarios, we aim to study the underlying concepts that
generate the responses of LLMs, for many reasons such as investigating the root of hallucination or
explaining the mechanisms for specific responses or behaviors. This is related to the field of Mech-
anistic Interpretability, where Sparse Autoencoder (SAE) has been popular. However, as known by
the community (Sharkey et al., 2025), SAE is based on the theory of Sparse Dictionary Learning,
and there are some open problems:

First, SAE can only deal with linear data due to the lack of nonlinear identifibality of sparse dic-
tioanry learning. However, the real-world is full of nonlinearity. Assuming everything is linear
simplicity the procedure and will unavoidably bring bias and cannot fully recover the truth.

Moreover, SAE encourages sparsity over the latent variables. As a result, it needs an extremely
high-dimensional vector to capture real-world concepts (e.g., millions of dimensions), and some
features are easy to be absorbed due to its encourage on latent sparsity. In contrast, our Diverse
Dictionary Learning encourage the sparsity on the Jacobian (i.e., dependency sparsity) instead of
latent diversity, and can handle nonlinear generative processes with identiability guarantees. This
provides a principled solution to both open problems of SAE, which is highly significant for the
whole filed of mechanistic interpretability.

Transfer Learning. In transfer learning, it is important to disentangle the invariant and changing
part, such as disentangling invariant content from changing styles. Identifiability has been widely
leveraged in the previous literature on guaranteeing reliable and efficient domain adaptation (e.g.,
(Von Kügelgen et al., 2021; Kong et al., 2022; Li et al., 2023)). Given two observed variables, our
generalized identifiability results guarantees the recovery of the shared and private parts of their la-
tent variables, under a simple regularization of dependency sparsity. This provides a flexible frame-
work for transfer learning that can really capture the essential part across domains.

Controllable Generation. A perfect prediction machine can only master at mining correlations,
while leveraging the true causation relies on identifiability. For instance, if we want to add eyeglasses
on a kid’s face, due to the overwhelming correlation between wearing eyeglasses and the relatively
higher age, models sometimes will also increase the age of the kid, even for large foundational
models. This negligence of the true underlying process is one of the fundamental reasons on why
large models, although extensively trained on web-scale data, can still provide many extra changes
that are out of our control. Previous work has already shown that, by incorporating inductive bias
guided via identifiability, models can achieve precise control on the generated images (Xie et al.,
2025a; 2023).

Multi-modal Alignment. Similarly, one may consider multiple modalities as multiple sets of ob-
served variables, where the semantically meaningful concepts are those that shared by multiple
modalities, and the modality-specific concepts (e.g., texture for images, volumns for audio) are
those private latent variables. By formalizing the process as a general dictionary learning problem,
many previous work have already shown the practical implication of identifiability, such as address-
ing information misalignment (Xie et al., 2025b) and capturing complex interactions across different
modalities (Sun et al., 2024).
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Dim Ours OroJAR Hessian Penalty
3 0.8258 ± 0.0085 0.7288 ± 0.0280 0.8257 ± 0.0240
4 0.8449 ± 0.0043 0.6301 ± 0.0810 0.8352 ± 0.0396
5 0.8048 ± 0.0080 0.5119 ± 0.1482 0.7789 ± 0.0174

Table 4: MCC under different regularization penalties across dimensions (mean ± std, higher is
better).

Dim Ours w/o noise Ours w/ noise Base
3 0.8258 ± 0.0085 0.8210 ± 0.0088 0.3814 ± 0.0369
4 0.8449 ± 0.0043 0.8381 ± 0.0093 0.5467 ± 0.0326
5 0.8048 ± 0.0080 0.7944 ± 0.0134 0.4576 ± 0.1075

Table 5: MCC across dimensions with and without noise (mean±std, higher is better).

Scientific Discovery. Understanding the hidden truth from observation is always one of the main
tasks of scientific discovery. Newton observed the falling apple (observation X), then he got curi-
ous, studied much, and found out it was actually gravity (latent variables Z) causing items to fall.
Therefore, the fundamental task of scientific discovery may be sumamrized into the simple equation
of X = f(Z), where we aim to recover Z based solely on X , which is exactly our task of general
dictionary learning. Of course, the guarantee that the recovered latent variables Ẑ correspond to
the ground-truth latents Z in a meaningful way is what matters the most, and this is exactly the
focus of our generalized identifiability theory. There have been numerous successful applications
of identifiable representation leraning in the literature, such as dynamic systems like climate change
(Yao et al., 2024a), robotics (Lippe et al., 2023), neuralimaging (Hyvärinen & Morioka, 2016) and
genomics (Morioka & Hyvarinen, 2024).

Of course, the list is non-exclusive, and will only grow faster given the development of large-scale
models. The reason is simple: even with infinite data and computation, without identifiability, mod-
els may achieve perfect predictions but cannot be guaranteed to recover the underlying truth. Thus,
the closer we are to that boundary, the more efforts we should put into going beyond correlation.

C ADDITIONAL EXPERIMENTS

In this section, we present further experiments on both synthetic and real-world data.

C.1 ADDITIONAL SYNTHETIC EXPERIMENTS

We begin with a series of additional experiments in the synthetic setting.

Further discussion on the connection of conditions.

Additional baselines. We first compare dependency sparsity to alternative regularizers. Table 4
reports MCC for d ∈ {3, 4, 5} against two Jacobian/Hessian penalties: OroJAR (Wei et al., 2021)
and the Hessian Penalty (Peebles et al., 2020). Neither provides identifiability guarantees in the non-
parametric setting. Empirically, both underperform our method, with a widening gap as d increases.
This indicates that penalizing the dependency map in a structural way improves recovery of the true
latent factors.

Noise robustness. Remark 1 states that our framework naturally extends to generative processes
with additive noise. Table 5 confirms this: MCC remains essentially unchanged compared to the
noiseless case, with only minor drops, while the base model degrades sharply. This supports the
claim that dependency sparsity stabilizes latent recovery under noise. Extending identifiability to
arbitrary noise remains more challenging in the nonparametric setting, since invertibility can break
down and stronger assumptions are typically required.
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λ
Dimensionality

3 4 5
0 0.6789 ± 0.0364 0.7317 ± 0.1092 0.6989 ± 0.0133

0.001 0.7313 ± 0.0242 0.7294 ± 0.0147 0.7513 ± 0.0007
0.005 0.7765 ± 0.0363 0.7826 ± 0.0244 0.7681 ± 0.0455
0.01 0.8145 ± 0.0221 0.8032 ± 0.0327 0.7979 ± 0.0421
0.03 0.8268 ± 0.0268 0.8232 ± 0.0187 0.8101 ± 0.0112
0.05 0.8256 ± 0.0088 0.8420 ± 0.0401 0.8099 ± 0.0296

Table 6: MCC across different λ values (sparsity regularization weight) and dimensionalities
(mean±std, higher is better).

Method FactorVAE ↑ DCI ↑
FactorVAE 0.708 ± 0.026 0.135 ± 0.030
+ Latent Sparsity 0.501 ± 0.434 0.113 ± 0.069
+ Dependency Sparsity 0.752 ± 0.040 0.144 ± 0.053
+ Dependency Sparsity (128) 0.723 ± 0.023 0.141 ± 0.004

Table 7: Quantitative comparison on Cars3D dataset (mean±std, higher is better).

Regularization weight. To examine the effect of regularization strength, we vary the sparsity
weight λ in Table 6. MCC increases steadily from λ = 0 and plateaus around λ ∈ [0.03, 0.05],
showing that the method is stable and not overly sensitive once past the under-regularized regime.
Importantly, sparsity here serves only as an inductive bias during estimation. Our theory does not
assume the data-generating process itself is sparse. Instead, it relies on structural diversity, which
can hold even in dense settings. Moreover, the set-theoretic framework is robust to partial violations
of assumptions and still enables meaningful recovery when full identifiability is unattainable.

C.2 ADDITIONAL VISUAL EXPERIMENTS

We next evaluate more on images, providing both quantitative comparisons and qualitative analyses.

Scalability. To assess scalability, we upsampled Cars3D to 128× 128 and re-ran FactorVAE with
dependency sparsity. As shown in Table 7 (last row), performance remains consistent with the
64 × 64 setting. This suggests that the observed improvements stem from leveraging structural
regularization rather than resolution, and that the method scales robustly with image size.

Quantitative evaluation. Table 7 evaluates FactorVAE score and DCI on Cars3D. Adding de-
pendency sparsity improves FactorVAE from 0.708 to 0.752 and DCI from 0.135 to 0.144. Latent
sparsity often underperforms. Table 8 extends to MPI3D and includes OroJAR and the Hessian
Penalty. Dependency sparsity gives the best results on both datasets, improving FactorVAE and DCI
while maintaining backbone training stability.

Qualitative evaluation. A key goal of these experiments is to test whether dependency sparsity
leads to more interpretable and disentangled latent representations in visual domains. Figure 8 shows
latent traversals on Fashion (Xiao et al., 2017) with Flow. Individual latent coordinates correspond

Method Cars3D MPI3D
FactorVAE ↑ DCI ↑ FactorVAE ↑ DCI ↑

FactorVAE 0.708 ± 0.026 0.135 ± 0.030 0.599 ± 0.064 0.345 ± 0.047
+ Latent Sparsity 0.501 ± 0.434 0.113 ± 0.069 0.440 ± 0.065 0.325 ± 0.028
+ OroJAR 0.165 ± 0.235 0.030 ± 0.007 0.499 ± 0.090 0.272 ± 0.054
+ Hessian Penalty 0.321 ± 0.455 0.082 ± 0.077 0.506 ± 0.056 0.254 ± 0.067
+ Dependency Sparsity 0.752 ± 0.040 0.144 ± 0.053 0.639 ± 0.084 0.384 ± 0.031

Table 8: Quantitative comparison on Cars3D and MPI3D datasets (mean±std, higher is better).
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Figure 7: Latent variable visualization on Fashion with Flow + Dependency Sparsity. From top to
bottom, the latent variables correspond to gender, heel height, and upper width.

Figure 8: Latent variable visualization on Shapes3D with EncDiff + Dependency Sparsity. From top
to bottom, the latent variables correspond to wall angle, wall color, object shape, and object color.
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Figure 9: Latent variable visualization on Shapes3D with EncDiff + Dependency Sparsity. Top row:
source. Second row: target. Each subsequent row modifies the source by swapping a single latent
factor (floor color or wall color) from the target.
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cars3d
Figure 10: Latent variable visualization on Cars3D with EncDiff + Dependency Sparsity. Top row:
source. Second row: target. Each subsequent row modifies the source by swapping a single latent
factor (azimuth and color) from the target.
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mpi3d Figure 11: Latent variable visualization on MPI3D with EncDiff + Dependency Sparsity. Top row:
source. Second row: target. Each subsequent row modifies the source by swapping a single latent
factor (rotation and background) from the target.
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cleanly to gender, heel height, and upper width, with minimal interference across factors. The
Shapes3D traversals in Figure 8 (EncDiff) show similarly sharp control, disentangling wall angle,
wall color, object shape, and object color. These traversals illustrate that dependency sparsity yields
latent axes that align with semantic attributes and preserve orthogonality among factors.

Figures 9, 10, and 11 further evaluate controllability via latent swapping. On Shapes3D, swapping
a single factor cleanly transfers floor or wall color while leaving other factors intact. On Cars3D,
EncDiff isolates azimuth and color. On MPI3D, rotation and background are controlled indepen-
dently. These results highlight that dependency sparsity encourages localized and non-overlapping
influences, enabling intuitive editing operations without unintended side effects. At the same time,
the generative quality of the backbone (diffusion in this case) is preserved, with realistic outputs.

Together, these traversals and swaps reinforce the quantitative results: dependency sparsity not only
improves disentanglement scores but also enhances interpretability and practical usability of the
learned latents. By aligning latent dimensions with distinct semantic factors, it enables robust single-
attribute manipulation and semantically meaningful latent arithmetic. These benefits are precisely
what identifiability is meant to guarantee, providing further empirical validation of our theory.

Additional results on controllable generation. Moreover, we conduct further experiments on
the benefit of recovering task-relevant representation for controllable generation. We consider the
problems of
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