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Abstract

Recent large language models (LLMs) have ad-001
vanced table understanding capabilities but rely002
on converting tables into text sequences. While003
multimodal large language models (MLLMs)004
enable direct visual processing, they face lim-005
itations in handling scientific tables due to006
fixed input image resolutions and insufficient007
numerical reasoning capabilities. To address008
these challenges, we present MMSci, a compre-009
hensive dataset for scientific table understand-010
ing and reasoning. MMSci consists of three011
key components: (1) MMSci-Pre, a domain-012
specific dataset of 52K scientific table struc-013
ture recognition samples, (2) MMSci-Ins, an014
instruction tuning dataset with 12K samples015
across three table-based tasks, and (3) MMSci-016
Eval, a benchmark with 3,114 testing samples017
specifically designed to evaluate numerical rea-018
soning capabilities. Based on MMSci, we lever-019
age and evaluate MLLMs with dynamic input020
resolution capabilities for scientific table under-021
standing. Extensive experiments demonstrate022
that our domain-specific approach with 52K023
scientific table images achieves superior per-024
formance compared to 150K general-domain025
tables, highlighting the importance of data qual-026
ity over quantity. Our proposed framework027
shows significant improvements in both gen-028
eral table understanding and numerical reason-029
ing capabilities, with strong generalisation to030
held-out datasets. Our code and data are pub-031
licly available at https://anonymous.4open.032
science/r/MMSci_Table-F278/.033

1 Introduction034

Tables serve as a fundamental tool for organising035

structured information across diverse domains. Re-036

cent studies have shown the potential of leverag-037

ing large language models (LLMs) to automati-038

cally understand and process tabular data, which039

has emerged as a critical research direction with040

applications such as Table Question Answering041

(TQA) (Pasupat and Liang, 2015), Table Fact Veri-042

fication (TFV) (Chen et al., 2020a), and Table-to- 043

Text Generation (T2T) (Moosavi et al., 2021). 044

However, current table-oriented LLMs (Zhang 045

et al., 2023; Li et al., 2023b) face inherent limita- 046

tions as they require converting tables into sequen- 047

tial text formats (i.e., HTML strings), potentially 048

losing crucial structural and positional information. 049

While table-based multimodal large language mod- 050

els (MLLMs) have addressed this by enabling di- 051

rect processing of table images, several critical lim- 052

itations persist: (1) fixed input image resolutions 053

that constrain practical applicability, (2) limited ca- 054

pability in processing scientific tables that contain 055

significant numerical values, and (3) insufficient 056

numerical reasoning abilities for scientific domain 057

tasks. These limitations are particularly significant 058

in scientific domains, where tables frequently in- 059

corporate complex numerical relationships. 060

Recent MLLMs have demonstrated success with 061

general tables but struggle with scientific tables due 062

to their dense numerical content and complex rea- 063

soning requirements. Our work demonstrates that 064

domain-specific data quality significantly outper- 065

forms quantity, challenging conventional scaling 066

laws in multimodal learning. Scientific table nu- 067

merical reasoning requires multi-step operations 068

including addition, subtraction, comparison, and 069

other mathematical operations to derive conclu- 070

sions from tabular data, going beyond simple fact 071

extraction. Current MLLMs, however, lack the spe- 072

cific training data to handle these sophisticated sci- 073

entific table understanding and reasoning require- 074

ments. 075

To address these challenges, we introduce MM- 076

Sci, a comprehensive dataset for scientific table 077

understanding and reasoning. We first conduct a 078

systematic analysis of table source effectiveness 079

through MMSci-Pre, a carefully curated dataset 080

containing 52K structure recognition samples de- 081

rived from scientific papers. Our experimental re- 082

sults demonstrate that MLLMs trained on these 083
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domain-specific table images significantly outper-084

form those trained on 150K general-domain tables,085

establishing the importance of data quality over086

quantity in table understanding tasks.087

Building upon this foundation, we then create088

MMSci-Ins, an instruction tuning dataset com-089

prising 12K samples with explicit intermediate090

reasoning steps across three fundamental tasks:091

TQA, TFV, and T2T. Each sample includes de-092

tailed step-by-step reasoning processes to develop093

models’ table-based numerical reasoning and sci-094

entific analysis capabilities. To overcome the lim-095

itations of fixed-resolution approaches in existing096

table MLLMs (Lee et al., 2023; Alonso et al., 2024;097

Zheng et al., 2024), we leverage and evaluate exist-098

ing dynamic input resolution capabilities across dif-099

ferent model architectures (Qwen2-VL-7B-Instruct100

and LLaVA-NeXT-7B). Our analysis reveals that101

mere technical capability for dynamic resolution is102

insufficient without proper cross-modal alignment.103

Experimental results demonstrate consistent per-104

formance improvements across both general table105

understanding and specialised numerical reasoning106

tasks.107

To enable comprehensive evaluation, we estab-108

lish MMSci-Eval, a benchmark with 3,114 testing109

samples requiring numerical reasoning capabilities.110

The benchmark provides rigorous assessment of111

models’ performance across TQA, TFV, and T2T112

tasks. Our extensive experiments demonstrate that113

our 52K scientific table images prove more effec-114

tive than 150K general-domain table images for115

both general understanding and numerical reason-116

ing tasks. This efficiency highlights the value of117

domain-specific, high-quality data in developing118

robust table understanding capabilities.119

Our contributions are summarised as follows:120

• We introduce MMSci, a comprehensive121

dataset consisting of three components: (1)122

MMSci-Pre, consists of 52K table image-to-123

HTML table structure recognition samples;124

(2) MMSci-Ins, an instruction tuning dataset125

of 12K samples with reasoning steps; and (3)126

MMSci-Eval, a benchmark with 3,114 sam-127

ples for numerical reasoning capabilities as-128

sessment across TQA, TFV, and T2T tasks.129

• We develop a comprehensive table-based130

MLLM framework that achieves strong per-131

formance on three table-based numerical rea-132

soning tasks while demonstrating robust gen-133

eralisation to held-out datasets.134

• We implement dynamic input resolution ca- 135

pabilities across different model architectures, 136

validating the effectiveness of our approach 137

through consistent performance gains on both 138

Qwen2-VL-7B-Instruct and LLaVA-NeXT- 139

7B. 140

2 Related Work 141

2.1 Table Understanding Models 142

Early table-based models based on general lan- 143

guage models with large-scale table corpus (Liu 144

et al., 2022; Chen et al., 2023) only support lim- 145

ited types of tables and tasks. Table understanding 146

capabilities have been enhanced through prompt en- 147

gineering (Chen, 2023; Sui et al., 2023), instruction 148

tuning (Zhang et al., 2023; Li et al., 2023b; Yang 149

et al., 2024b) and external tools (Lu et al., 2023a; 150

Li et al., 2023a) with the development of LLMs. 151

However, these approaches require converting ta- 152

bles into text formats, limiting their applications. 153

Recently, MLLMs have emerged as a promising 154

direction for table understanding. TableGPT2 (Su 155

et al., 2024a) features a novel table encoder to han- 156

dle table cell-level information. Pix2Struct (Lee 157

et al., 2023) introduces a unified image-to-text 158

model pretrained on web page screenshots with 159

HTML supervision. PixT3 (Alonso et al., 2024) 160

takes table-to-text tasks as table visual recognition 161

tasks and generates texts. Table-LLaVA (Zheng 162

et al., 2024) introduces a novel multimodal table 163

understanding approach that directly processes ta- 164

ble images. However, these approaches do not 165

focus on datasets requiring sophisticated numerical 166

reasoning capabilities. 167

2.2 Table-based Reasoning and Datasets 168

Table-based reasoning requires reasoning over both 169

free-form natural language queries and structured 170

tables. Early works either rely on executable lan- 171

guages (e.g., SQL) (Yin et al., 2016; Yu et al., 172

2018) to capture logical structure in statements. 173

TAPAS (Herzig et al., 2020), and DATER (Ye et al., 174

2023) encode sentence-table pairs and transform 175

table-based reasoning into question-answering or 176

inference tasks. Existing datasets primarily fo- 177

cus on specific domains like Wikipedia and fi- 178

nance. HybridQA (Chen et al., 2020b) derived 179

from Wikipedia emphasises span lookup, while 180

TAT-QA (Zhu et al., 2021), FinQA (Chen et al., 181

2021), and DocMath-Eval (Zhao et al., 2024) ad- 182

dress numerical reasoning in the financial domain. 183
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Figure 1: Overview of the proposed framework, which consists of four key stages: (1) Table Image Generation; (2)
MMSci Dataset Construction; (3) Table Structure Learning; and (4) Visual Instruction Tuning.

SciGen (Moosavi et al., 2021) introduces a scien-184

tific table-to-text generation dataset that requires185

arithmetic reasoning, but focuses mainly on gener-186

ation rather than comprehensive reasoning evalua-187

tion. However, these datasets have relatively lim-188

ited reasoning types, significantly differing from189

real-world scientific table understanding that re-190

quire numerical computation reasoning. To address191

this gap, we propose MMSci dataset that combines192

multiple reasoning types to enhance model perfor-193

mance on complex scientific table understanding194

tasks.195

3 Construction of MMSci Dataset196

As shown in Figure 1, the MMSci dataset construc-197

tion consists of three key components: (1) Data Col-198

lection, (2) MMSci-Pre Dataset Construction, and199

(3) MMSci-Ins and MMSci-Eval Dataset Creation200

with Numerical Reasoning Augmentation. These201

components directly correspond to the dataset con-202

struction stages in the upper part of our framework.203

3.1 Data Collection204

To construct MMSci dataset, we focus on scien-205

tific tables containing significant numerical values206

and complex reasoning requirements. We collect207

raw tabular data from the SciGen dataset (Moosavi208

et al., 2021), which provides pairs of scientific ta-209

bles and their corresponding descriptions across210

computer science research domains. These descrip-211

tions naturally require numerical reasoning oper-212

ations (including addition, subtraction, max/min,213

comparison, and division) over table values, mak- 214

ing them ideal for our purpose. We transform 215

the original textual tables into high-quality HTML 216

format and then render them into table images 217

while preserving their structural integrity. This 218

process ensures the visual representation maintains 219

the complex layouts and relationships present in 220

the original scientific tables. From this process, we 221

collect 52K image-to-HTML pairs based on tables 222

from the training set and development set of the 223

SciGen dataset. 224

3.2 MMSci-Pre Dataset Construction 225

Existing table-based MLLMs (Lee et al., 2023; 226

Alonso et al., 2024; Zheng et al., 2024) demonstrate 227

that generating textual table representations from 228

table images is crucial for aligning visual structure 229

with textual content. Based on our collected image- 230

HTML pairs, we create 52K instruction-following 231

image-to-HTML samples via the Imgkit1 python 232

package. Each sample consists of a table image 233

paired with its corresponding HTML representa- 234

tion. The resulting dataset, MMSci-Pre, contains 235

52K samples specifically designed for table struc- 236

ture learning. 237

3.3 MMSci-Ins and MMSci-Eval Dataset 238

Creation 239

For our instruction tuning and evaluation datasets, 240

we select 12,000 tables from the training set and 241

1,038 from the testing set of SciGen dataset to 242

1https://pypi.org/project/imgkit/
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create MMSci-Ins and MMSci-Eval, respectively.243

These datasets focus on complex numerical reason-244

ing tasks requiring multi-step operations including245

addition, subtraction, comparison, max/min iden-246

tification, and other mathematical operations. For247

each table, we employ GPT-4o (OpenAI, 2024) to248

generate task-specific content across three table-249

based tasks. For Table Question Answering (TQA),250

we generate questions paired with step-by-step rea-251

soning processes and final answers. For Table Fact252

Verification (TFV), we create claims with support-253

ing reasoning steps and verification results (sup-254

ported, refuted, or not enough information). For255

Table-to-Text Generation (T2T), we augment exist-256

ing table-to-text pairs with detailed reasoning steps.257

To ensure quality, we implement a rigorous veri-258

fication process. First, we apply self-consistency259

Chain-of-Thought (CoT) reasoning (Wang et al.,260

2023) with multiple reasoning paths and voting.261

Second, we use GPT-4o to validate consistency262

between reasoning steps and final outputs. Third,263

we conduct human verification on 40% of gener-264

ated samples. Finally, we regenerate any identi-265

fied incorrect samples to maintain dataset quality.266

This process results in MMSci-Ins with 12K high-267

quality instruction-tuning samples and MMSci-268

Eval with 3,114 testing examples. Both datasets269

maintain a balanced distribution across the three270

tasks, with each table paired with one sample per271

task type. Each sample includes detailed step-by-272

step reasoning processes that enable models to273

learn both final outputs and the logical progression274

needed to arrive at conclusions. Detailed dataset275

quality statistics are provided in Appendix A.2.276

4 Experiments277

4.1 Model Training278

To demonstrate the effectiveness of MMSci dataset,279

we train two series of MLLM following the ar-280

chitecture of Qwen2-VL-7B-Instruct (Wang et al.,281

2024) and LLaVA-NeXT-7B (Li et al., 2024).282

Model Architectures. Both models follow a283

three-component design: Qwen2-VL-7B-Instruct284

consists of a Vision Transformer (ViT) (Doso-285

vitskiy, 2020) as the vision tower, a MLP as286

the vision-language connector, and a Qwen2-7B-287

Instruct (Yang et al., 2024a) as the language288

model. LLaVA-NeXT-7B uses a pre-trained CLIP289

model (Radford et al., 2021) as the visual encoder,290

a MLP connector, and a Vicuna-7B model (Chiang291

et al., 2023) as the backbone. In both architectures,292

the vision encoder processes images into visual 293

features, which are projected into the LLM’s word 294

embedding space via the MLP connector. 295

We divide the training into two stages: 296

Table Structure Learning. We use both MMSci- 297

Pre and MMTab-Pre (Zheng et al., 2024) corpus 298

(202K table image-to-HTML pairs in total) to align 299

visual features with textual representations in differ- 300

ent experimental settings as shown in Table 1. Mod- 301

els learn to generate HTML table representations, 302

developing table structure perception capabilities. 303

For LLaVA-NeXT-7B, only the MLP connector 304

parameters are updated during this stage. 305

Visual Instruction Tuning. We use 12K 306

instruction-following samples from MMSci-Ins to 307

fine-tune the MLLMs while keeping visual en- 308

coders frozen. Only the MLP projection layer and 309

LLM weights are updated, focusing on developing 310

instruction-following numerical reasoning capabil- 311

ities across TQA, TFV, and T2T tasks. 312

Notably, both models support dynamic input 313

resolutions, addressing a key limitation of exist- 314

ing table MLLMs (Lee et al., 2023; Alonso et al., 315

2024; Zheng et al., 2024) that require fixed-size in- 316

put image resolutions (e.g., 336×336). Qwen2-VL 317

achieves this through 2D-RoPE (Su et al., 2024b) to 318

capture two-dimensional positional information of 319

images while LLaVA-NeXT employs a simpler ap- 320

proach of splitting images into grids and encoding 321

them independently. While both Qwen2-VL and 322

LLaVA-NeXT support dynamic input resolutions, 323

our analysis reveals significant performance differ- 324

ences when applied to scientific tables. This sug- 325

gests that mere technical capability for dynamic res- 326

olution is insufficient without proper cross-modal 327

alignment. 328

4.2 Experimental Settings 329

Baselines. We select several state-of-the-art 330

MLLMs as our baselines, including GPT-4V (Ope- 331

nAI, 2023), InternVL-2-76B (Chen et al., 2024), 332

LLaVA-NeXT series (72B/34B/13B/7B) (Li et al., 333

2024), Qwen-2-VL-Instruct series (72B/7B) (Wang 334

et al., 2024), Table-LLaVA series (13B/7B) (Zheng 335

et al., 2024), Pixtral-12B (Agrawal et al., 336

2024), Llama-3.2-11B-Vision-Ins. (Meta, 2024), 337

MiniCPM-V-2.6-8B (Yao et al., 2024), and 338

InternVL-2-8B (Chen et al., 2024). 339

Datasets and Metrics. The held-in evaluation 340

sets in Table 1 include TQA, TFV and T2T tasks 341

of MMSci-Eval. The held-out evaluation sets in Ta- 342

ble 2 are from MMTab-Eval benchmark (Zheng 343
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Models
MMSci-Eval Held-out

TQA TFV T2T TABMWP TAT-QA
Acc. Acc. BLEU Acc. Acc.

Baseline
GPT-4V (OpenAI, 2023) 53.13 78.01 4.80 60.00 32.50
InternVL-2-76B (Chen et al., 2024) 40.31 62.46 1.79 46.28 6.73
LLaVA-NeXT-72B (Li et al., 2024) 11.75 49.28 1.79 10.69 3.29
Qwen-2-VL-72B-Ins. (Wang et al., 2024) 39.11 64.06 2.83 41.42 17.65
LLaVA-NeXT-34B (Li et al., 2024) 9.73 42.19 2.33 6.96 1.29
LLaVA-NeXT-13B (Li et al., 2024) 2.31 1.83 1.79 1.67 0.43
Table-LLaVA-13B (Zheng et al., 2024) 8.57 51.15 0.03 59.77 15.67
Pixtral-12B (Agrawal et al., 2024) 0.96 5.49 4.12 4.64 7.46
Llama-3.2-11B-Vision-Ins. (Meta, 2024) 1.15 5.85 3.04 7.39 0.37
LLaVA-NeXT-7B (Li et al., 2024) 0.19 0.86 2.99 1.73 0.72
Qwen-2-VL-7B-Ins. (Wang et al., 2024) 25.62 52.79 3.04 34.43 16.19
InternVL-2-8B (Chen et al., 2024) 25.72 44.99 2.64 18.42 7.12
MiniCPM-V-2.6-8B (Yao et al., 2024) 26.58 33.23 0.07 24.30 11.94
Table-LLaVA-7B (Zheng et al., 2024) 7.99 39.30 0.03 57.78 12.82
Ours (LLaVA-NeXT-7B)
MMSci-Pre (52k) + MMSci-Ins 17.72 57.12 2.93 49.47 10.46
MMTab-Pre (150k) + MMSci-Ins 15.79 56.16 2.88 47.55 8.03
MM-Pre (202k) + MMSci-Ins 23.02 58.57 2.36 49.72 12.27
w/o MM-Pre (202k) 15.22 51.73 2.86 46.24 7.63

Ours (Qwen2-VL-7B-Ins.)
MMSci-Pre (52k) + MMSci-Ins 41.13 72.92 3.24 49.50 19.68
MMTab-Pre (150k) + MMSci-Ins 40.75 72.73 3.16 49.08 19.30
MM-Pre (202k) + MMSci-Ins 42.10 73.98 3.29 49.96 20.85
w/o MM-Pre (202k) 41.71 70.90 3.29 48.02 20.07

Table 1: Performance comparison on MMSci-Eval and held-out tabular numerical reasoning datasets. MM-Pre
(202k) indicates the combination of MMTab-Pre (150k) and MMSci-Pre (52k). w/o MM-Pre represents only
training with MMSci-Ins dataset. Best results are in bold, second best are underlined.

et al., 2024). TQA contains TABMWP (Lu344

et al., 2023b), WTQ (Pasupat and Liang, 2015),345

HiTab (Cheng et al., 2022), TAT-QA (Zhu et al.,346

2021), and FeTaQA (Nan et al., 2022), where347

TABMWP and TAT-QA specifically focus on tab-348

ular numerical reasoning. TFV contains Tab-349

Fact (Chen et al., 2020a) and InfoTabs (Gupta et al.,350

2020), while Table-to-Text (T2T) generation uses351

HiTab_T2T (Cheng et al., 2022), Rotowire (Wise-352

man et al., 2017), and WikiBIO (Lebret et al.,353

2016). While these datasets contain tables from354

Wikipedia, financial reports, and government doc-355

uments, our MMSci-Eval datasets primarily fea-356

ture scientific tables with numerical values from357

research papers. We use accuracy and BLEU (Pap-358

ineni et al., 2002) for TQA, TFV, and T2T bench-359

marks.360

5 Results and Analysis361

5.1 Performance on Numerical Reasoning362

Datasets363

The experimental results demonstrate the effec-364

tiveness of our proposed approach across vari-365

ous multimodal table understanding tasks. As366

shown in Table 1, we compare our method with367

state-of-the-art baselines on both MMSci bench-368

marks (TQA, TFV, T2T) and held-out tabular nu-369

merical reasoning datasets (TABMWP, TAT-QA).370

Among the baseline models, GPT-4V (OpenAI,371

2023) achieves superior performance across all 372

tasks, establishing strong benchmarks with 53.13% 373

accuracy on TQA, 78.01% on TFV, and notably 374

strong generalisation ability on held-out numerical 375

reasoning datasets. Large-scale open-sourced mod- 376

els like InternVL-2-76B (Chen et al., 2024) and 377

Qwen-2-VL-72B (Wang et al., 2024) also demon- 378

strate competitive performance but show relatively 379

weaker generalisation to held-out numerical rea- 380

soning datasets. 381

As for our approaches, with LLaVA-NeXT-7B as 382

the foundation model, we observe that training with 383

MMSci-Pre (52k) dataset demonstrates higher per- 384

formance (17.72% on TQA, 57.12% on TFV) com- 385

pared to training with MMTab-Pre (150k) dataset 386

(15.79% on TQA, 56.16% on TFV). The com- 387

bination of both table structure learning dataset 388

(MM-Pre 202k) further improves performance to 389

23.02% on TQA and 58.57% on TFV. Notably, our 390

approach shows strong generalisation ability on 391

held-out datasets, achieving 49.72% on TABMWP 392

with the experiment setting of MM-Pre (202k) + 393

MMSci-Ins. 394

With Qwen2-VL-7B-Instruct as the foundation 395

model, we observe significantly stronger perfor- 396

mance across all settings. Training with MMSci- 397

Pre (52k) + MMSci-Ins achieves comparable or 398

better performance (41.13% on TQA, 72.92% 399

on TFV) compared to training with MMTab-Pre 400

(150k) + MMSci-Ins (40.75% on TQA, 72.73% 401
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Method
TQA TFV T2T

TABMWP WTQ HiTab TAT-QA FeTaQA Avg. TQA TabFact InfoTabs Avg. TFV HiTab_T2T Rotowire WikiBIO Avg. T2T

Acc. Acc. Acc. Acc. BLEU Acc. Acc. Acc. Acc. BLEU BLEU BLEU BLEU

Baseline

GPT-4V (OpenAI, 2023) 60.50 48.00 27.50 32.50 11.04 35.91 45.50 65.60 55.55 2.98 4.23 1.94 3.05

Qwen2-VL-7B-Ins. (Wang et al., 2024) 34.44 12.55 3.36 16.19 11.75 15.66 20.28 34.19 27.23 1.90 2.30 2.94 2.38

LLaVA-NeXT-7B (Li et al., 2024) 1.73 0.00 0.00 0.00 1.17 0.58 1.24 1.78 1.51 0.45 1.04 0.67 0.72

Table-LLaVA-7B (Zheng et al., 2024) 57.78 18.43 10.09 12.82 25.60 24.94 59.85 65.26 62.56 9.74 10.46 9.68 9.96

Table-LLaVA-13B (Zheng et al., 2024) 59.77 20.41 10.85 15.67 28.03 26.95 65.00 66.91 65.96 10.40 8.83 9.67 9.63

Ours (LLaVA-NeXT-7B)

MMSci-Pre (52k) + MMSci-Ins 8.76 3.22 0.63 0.39 5.99 3.80 35.78 25.37 30.57 1.57 1.10 1.78 1.48

MMTab-Pre (150k) + MMSci-Ins 9.00 2.62 0.63 0.26 7.23 3.95 36.22 26.91 31.56 1.64 0.84 1.57 1.35

MM-Pre (202k) + MMSci-Ins 10.66 4.83 0.82 0.65 9.39 5.27 39.63 27.63 33.63 1.13 0.83 1.90 1.29

w/o MM-Pre (202k) 9.69 2.74 0.19 0.39 6.84 3.97 31.72 23.80 27.76 1.69 0.79 1.53 1.34

Ours (Qwen2-VL-7B-Ins.)

MMSci-Pre (52k) + MMSci-Ins 49.51 18.74 4.95 19.69 12.89 21.15 37.93 45.33 41.63 0.75 2.81 2.69 2.08

MMTab-Pre (150k) + MMSci-Ins 49.09 18.95 4.63 19.30 9.77 20.35 40.00 46.56 43.28 0.91 1.26 2.89 1.69

MM-Pre (202k) + MMSci-Ins 46.97 19.73 4.38 20.85 12.34 20.85 39.99 45.96 42.97 0.96 1.32 2.60 1.63

w/o MM-Pre (202k) 48.02 18.67 5.33 20.08 12.58 20.94 33.53 44.93 39.23 0.71 2.76 2.70 2.06

Table 2: Performance comparison on MMTab held-out datasets. Best results are in bold, second best are underlined.

Models
MMSci-Eval Held-out

TQA TFV T2T TABMWP TAT-QA

Ours (LLaVA-NeXT-7B)
MMSci-Pre (52k) + MMSci-Ins 17.72 57.12 2.93 49.47 10.46
w/o Reasoning 10.75 42.73 2.16 42.50 7.68
MMTab-Pre (150k) + MMSci-Ins 15.79 56.16 2.88 43.55 8.03
w/o Reasoning 9.58 50.31 1.93 42.50 7.42
MM-Pre (202k) + MMSci-Ins 23.02 58.57 2.36 49.72 12.27
w/o Reasoning 12.73 45.21 2.16 46.50 19.68
w/o MM-Pre (202k) 15.22 51.73 2.86 46.24 7.63
w/o Reasoning 9.43 42.31 2.36 45.50 8.39
Ours (Qwen2-VL-7B-Ins.)
MMSci-Pre (52k) + MMSci-Ins 41.13 72.92 3.24 49.50 19.68
w/o Reasoning 35.06 66.47 3.14 44.08 16.72
MMTab-Pre (150k) + MMSci-Ins 40.75 72.73 3.16 49.08 19.30
w/o Reasoning 34.48 66.28 2.27 43.97 16.07
MM-Pre (202k) + MMSci-Ins 42.10 73.98 3.29 49.96 20.85
w/o Reasoning 35.45 67.43 1.97 46.34 17.68
w/o MM-Pre (202k) 41.71 70.90 3.29 48.02 20.07
w/o Reasoning 34.44 62.90 3.18 44.60 14.68

Table 3: Ablation study results for reasoning steps on
MMSci-Eval and held-out datasets.

on TFV), despite using only one-third of the ta-402

ble structure learning data. The experiment set-403

ting of training with MM-Pre (202k) + MMSci-404

Ins achieves the best performance with 42.10%405

accuracy on TQA and 73.98% on TFV, while406

also demonstrating strong generalisation ability on407

held-out numerical reasoning datasets (49.96% on408

TABMWP and 20.85% on TAT-QA).409

These results demonstrate that our proposed410

MMSci-Pre dataset with 52K scientific domain-411

specific data is more effective than MMTab-Pre412

with 150K general-domain data, highlighting the413

importance of data quality over quantity. Further-414

more, Qwen2-VL-7B-Instruct consistently outper-415

forms LLaVA-NeXT-7B across all experimental416

settings, suggesting its stronger capability in table417

understanding and numerical reasoning tasks. Be-418

sides, our approach shows strong generalisation419

to held-out tabular numerical reasoning datasets,420

demonstrating enhanced general ability in multi-421

modal table understanding and reasoning.422

While the absolute performance (42.10% on 423

TQA) may appear modest, it represents substan- 424

tial improvement for the challenging task of scien- 425

tific table reasoning. Similar to early work in other 426

complex domains, these results establish important 427

baselines that future research can build upon. 428

5.2 Performance on Held-out MMTab 429

Benchmarks 430

The experimental results in Table 2 also demon- 431

strate the effectiveness and generalisation ability 432

of our proposed approach across various held-out 433

MMTab benchmark. GPT-4V (OpenAI, 2023) 434

show strong performance across all tasks, achiev- 435

ing 35.91% average accuracy on TQA, 55.55% 436

on TFV, and 3.05 BLEU on T2T. Table-LLaVA 437

models, which are specifically trained on MMTab- 438

Ins dataset, demonstrate competitive performance. 439

Table-LLaVA-13B achieves strong results on TFV 440

(65.96% average accuracy) and T2T (9.63 BLEU) 441

while Table-LLaVA-7B shows robust performance 442

on TABMWP (57.78%). 443

As for our approaches, with LLaVA-NeXT-7B 444

as the foundation model, we observe that training 445

with MMSci-Pre (52k) and MMSci-Ins, despite 446

not being trained on MMTab-Ins dataset (Zheng 447

et al., 2024), demonstrates promising generalisa- 448

tion ability. The MMSci-Pre (52k) + MMSci-Ins 449

combination achieves 3.80% average accuracy on 450

TQA and 30.57% on TFV with only scientific do- 451

main data. The combination of both table struc- 452

ture learning datasets (MM-Pre 202k) further im- 453

proves performance across all metrics, reaching 454

5.27% on TQA and 33.63% on TFV. As for Qwen2- 455

VL-7B-Instruct as the foundation model, we ob- 456

serve significantly stronger generalisation capa- 457

6



4000 6000 8000 10000 12000
Training Data

32

34

36

38

40

42

Ac
c.

TQA
w reasoning
w / o reasoning

4000 6000 8000 10000 12000
Training Data

62

64

66

68

70

72

74

Ac
c.

TFV
w reasoning
w / o reasoning

4000 6000 8000 10000 12000
Training Data

2.8

2.9

3.0

3.1

3.2

3.3

BL
EU

T2T
w reasoning
w / o reasoning

Figure 2: Performance scaling with increasing instruction tuning data size on three MMSci tasks.

bility. MMSci-Pre (52k) + MMSci-Ins combina-458

tion achieves 21.15% average accuracy on TQA459

and 41.63% on TFV, demonstrating strong zero-460

shot transfer to MMTab benchmark despite using461

only scientific domain data (MMSci dataset). This462

performance is particularly impressive when com-463

pared to MMTab-Pre (150k) + MMSci-Ins com-464

bination, which uses three times more image-to-465

HTML data. Even without any table structure learn-466

ing (w/o MM-Pre), our approach achieves compet-467

itive results, highlighting the effectiveness of our468

MMSci-Ins instruction tuning dataset.469

These results empirically demonstrate our470

MMSci-Pre dataset with 52K scientific domain-471

specific data achieves comparable or better per-472

formance than MMTab-Pre with 150K general-473

domain data in MMTab held-out benchmark,474

highlighting the importance of scientific domain-475

specific tables. Even without MMTab table struc-476

ture learning data, our approach demonstrates477

strong generalisation ability, particularly evident in478

the performance of MMSci-Pre (52k) + MMSci-Ins479

and w/o MM-Pre experiment settings.480

5.3 Ablation Study on Reasoning Steps481

We evaluate the effectiveness of reasoning steps482

across different experiment configurations. As483

shown in Table 3, Qwen2-VL-7B-Instruct demon-484

strates superior performance across all configura-485

tions. Without reasoning steps, the model train-486

ing with MMSci-Pre (52k) + MMSci-Ins achieves487

better results than that with MMTab-Pre (150k)488

+ MMSci-Ins, highlighting the importance of489

domain-specific table structure learning over data490

quantity. Adding reasoning steps consistently im-491

proves performance across all metrics, with the492

model reaching its peak performance under the493

MM-Pre (202k) + MMSci-Ins experiment config-494

uration. Similar trends are observed in LLaVA-495

NeXT-7B, though with lower overall performance.496

These patterns extend to held-out tabular numer-497

ical reasoning datasets, where both models show 498

strong generalisation capabilities with reasoning 499

steps, especially on numerical reasoning tasks like 500

TABMWP and TAT-QA. The results demonstrate 501

that a smaller amount of scientific domain-specific 502

table structure learning data, combined with ex- 503

plicit reasoning steps, can be more effective than 504

larger-scale general domain table structure learn- 505

ing. 506

5.4 Impact of Training Data Size 507

As shown in Figure 2, we compare performance of 508

MLLMs training with MM-Pre (202k) + MMSci- 509

Ins across three MMSci tasks (TQA, TFV, T2T) 510

with instruction tuning data (MMSci-Ins dataset) 511

size increasing from 3K to 12K samples. The 512

findings demonstrate consistent advantages of in- 513

corporating reasoning steps across all data scales. 514

Models trained with reasoning steps maintain sub- 515

stantial performance advantages across all tasks 516

(7-8% for TQA, 8-10% for TFV, 0.3-0.4 BLEU for 517

T2T). While both variants benefit from increased 518

training data, models with reasoning steps show 519

stronger scaling behavior, particularly in TQA and 520

TFV tasks. The persistent performance gap across 521

all data sizes suggests that reasoning steps provide 522

fundamental improvements in model learning that 523

cannot be simply achieved through increased train- 524

ing data alone. 525

5.5 Representational Alignment Analysis 526

In this section, we conduct an in-depth analysis to 527

assess the language-vision alignment from the per- 528

spective of the representation space. This analysis 529

aims to provide further insights into the observed 530

variations in model performance, particularly in the 531

context of scientific multimodal table understand- 532

ing and reasoning tasks. 533

Preliminaries. We formalise MLLMs within the 534

framework of an unembedding-embedding archi- 535

tecture. In this framework, the unembedding stage 536
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Models Cycle KNN Mutual KNN Lcs KNN CKA CKNNA SVCCA Edit KNN
Unembedding stage: ImageNet(Concepts)

Random 0.02761 0.01257 0.52355 0.08614 0.00714 0.12425 0.00019
Qwen2-VL-7B-Ins. 0.68110 0.03486 1.28153 0.08856 0.03067 0.14318 0.00112
Llama3.2-11B-Vision-Ins. 0.08608 0.04205 1.52788 0.06079 0.01403 0.11651 0.00061
LLaVA-NeXT-7B 0.57173 0.02077 0.81645 0.08024 0.01577 0.13240 0.00037
Phi3.5-Vision-Ins. 0.02761 0.01257 0.52355 0.08614 0.00714 0.12118 0.00019
InternVL2-8B 0.08175 0.01637 0.72495 0.09185 0.00062 0.12148 0.00044

Unembedding stage: Wikipedia Caption (short descriptive sentences)
Qwen2-VL-7B-Ins. 0.49414 0.06855 2.05078 0.08876 0.04093 0.20229 0.00175
Llama3.2-11B-Vision-Ins. 0.31347 0.03623 1.29980 0.00968 0.00779 0.22120 0.00050
LLaVA-NeXT-7B 0.57813 0.03935 1.36523 0.07933 0.03998 0.23114 0.00082
Phi3.5-Vision-Ins. 0.04980 0.03027 1.14843 0.01669 0.03890 0.18183 0.00066
InternVL2-8B 0.36914 0.04132 1.55761 0.04732 0.01658 0.21739 0.00093

Embedding stage: MMSci T2T tasks (table to text description).
Qwen2-VL-7B-Ins. 0.38631 0.06726 2.03660 0.19318 0.05514 0.38461 0.00183
Llama3.2-11B-Vision-Ins. 0.31310 0.02200 0.84007 1.73979e-8 0.03208 0.08180 0.00026
LLaVA-NeXT-7B 0.38246 0.04514 1.49325 0.15203 0.06673 0.28857 0.00109
Phi3.5-Vision-Ins. 0.38053 0.06712 2.12909 0.16121 0.03688 0.26982 0.00127
InternVL2-8B 0.36512 0.04651 1.56647 0.04230 0.02675 0.11876 0.00096

Table 4: Kernel alignment analysis. The representation for each sample is the averaged token embeddings. The best
two values are shown in bold and underlined.

is responsible for learning transformations between537

observations (e.g., text, vision) and latent spaces538

through encoders, while the embedding stage cap-539

tures the complex interactions among latent vari-540

ables within the latent space of LLMs’ hidden lay-541

ers. Each stage serves distinct functions and yields542

representations with different properties (Park et al.,543

2024). Consequently, by focusing on each stage544

independently, we can have a systematical evalua-545

tion of model behaviours in representation spaces.546

To assess the representational alignment between547

vision-language modalities at each stage, we next548

measure the geometrical similarity between them549

via the kernel.550

Kernels, characterising the distance metrics be-551

tween points in a representation space, are com-552

monly used to assess vector space (Huh et al.,553

2024). Typically, the more similarity between two554

kernels derived from different spaces (text or vi-555

sion) indicates a higher degree of alignment be-556

tween those modality spaces. This similarity can557

be quantified via kernel-alignment metrics, such558

as Centered Kernel Distance (CKA) (Kornblith559

et al., 2019). For more information about kernel-560

alignment metrics used in the experiment, we refer561

to Huh et al. (2024) for a deep understanding.562

Quantitative evaluation. For the unembedding563

stage, we specifically choose two language-vision564

datasets: ImageNet (Deng et al., 2009) and565

Wikipedia Caption (WIT) (Srinivasan et al., 2021).566

We randomly select 2048 samples from each567

dataset. These datasets offer varying levels of fine568

granularity in language-vision alignment, enabling569

a comprehensive assessment of representational570

performance. As illustrated in Table 4, we can ob-571

serve that the Qwen2-VL-7B-Instruct can generally 572

outperform other baselines on both datasets, indi- 573

cating it has better fine-grained alignment between 574

language and vision. In the embedding stage, we 575

evaluate alignment on the MMSci T2T task. Since 576

some models do not support single-modality input, 577

we utilise a reference language model (e.g., open- 578

llama- 7B (Geng and Liu, 2023)) as the text encoder 579

and MLLMs as the image encoder with prompt 580

“please describe the table”. Alignment is measured 581

based on the output embedding from the last hid- 582

den layer. As shown in Table 4, Qwen2-VL-7B- 583

Instruct outperforms the other models, demonstrat- 584

ing its superior language-vision alignment capabil- 585

ity. This segment of the experiment demonstrates 586

that the Qwen2-VL-7B-Instruct model exhibits su- 587

perior language-vision alignment within the rep- 588

resentation space. This finding is consistent with 589

the cross-modal consistency analysis presented in 590

Appendix C.1, where we evaluate different table 591

information modalities as inputs to MLLMs and 592

assess their cross-modal consistency (i.e., the pro- 593

portion of identical predictions) on TQA and TFV 594

tasks. 595

6 Conclusion 596

In this paper, we introduce a comprehensive frame- 597

work for multimodal scientific table understand- 598

ing and reasoning with dynamic input image res- 599

olutions. Experimental results validate our frame- 600

work’s effectiveness across different model archi- 601

tectures, showing consistent improvements in both 602

general table understanding and numerical reason- 603

ing capabilities, with strong generalisation to held- 604

out datasets. 605
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Limitations606

While this work advances scientific multimodal607

table understanding and reasoning, several limita-608

tions remain for future research. First, our frame-609

work primarily focuses on scientific tables contain-610

ing numerical values, while other types of scientific611

tables (e.g., qualitative comparison tables, method-612

ology tables) are not extensively covered. Second,613

though our framework demonstrates strong perfor-614

mance on numerical reasoning tasks, the current615

approach may still struggle with complex statistical616

analyses and domain-specific mathematical nota-617

tions that are common in scientific literature. Third,618

while our models support dynamic input resolu-619

tions, processing extremely large tables with dense620

information remains challenging due to computa-621

tional constraints and potential information loss622

during visual encoding.623

Ethical Statement624

The MMSci datasets are constructed from publicly625

available scientific papers and their associated ta-626

bles, primarily sourced from open-access repos-627

itories and academic databases with appropriate628

licenses. All table images are generated through au-629

tomated scripts from the original scientific papers,630

maintaining their integrity while ensuring proper631

attribution. The instruction tuning samples are cre-632

ated based on the original scientific context, pre-633

serving the academic nature of the source material.634

Our framework is designed to assist in scientific635

research by improving the accessibility and under-636

standing of tabular data in academic literature. We637

anticipate that this work will contribute positively638

to the research community by facilitating more639

efficient analysis of scientific publications. The640

code and datasets are made publicly available for641

research purposes, promoting transparency and re-642

producibility in the field of multimodal scientific643

table understanding.644
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A Details about MMSci 945

A.1 Datasets Statistics 946

Table 5 presents the distribution of reasoning types 947

in our MMSci-Eval dataset. The most common 948

type is addition (21.1%), followed by subtraction 949

(15.3%) and max/min operations (15.7%). Division 950

and comparison operations also appear frequently 951

(14.2% and 13.7% respectively). More complex 952

operations like ranking (9.6%) and look-up (8.9%) 953

occur less frequently, while domain knowledge cal- 954

culations are rare (1.5%). 955

The average number of reasoning steps varies 956

significantly across types, with subtraction requir- 957

ing the most steps (4.1) and look-up operations re- 958

quiring the fewest (1.5). This variation reflects the 959

inherent complexity of different mathematical oper- 960

ations and their application to tabular data. Notably, 961

even seemingly simple operations like addition re- 962

quire multiple steps (2.8) on average, indicating 963

the complexity of reasoning with tabular scientific 964

data. 965

MMSci-Ins MMSci-Eval
0

20

40

60

80

100
94.36 95.25

5.64 4.75

Correct
False

Figure 3: Evaluation of generated data of MMSci-Ins
and MMSci-Eval dataset. Correct refers to the data
verified correctly by human annotators.

A.2 Dataset Quality Control 966

To ensure data quality, we conduct a rigorous hu- 967

man verification process for both MMSci-Ins and 968

MMSci-Eval datasets. For MMSci-Ins, we manu- 969

ally verify 40% of the generated samples, achieving 970

a high accuracy rate of 94.36%. For MMSci-Eval, 971

given its critical role as a benchmark, we carefully 972

examine all 3,114 generated samples and achieve 973

an accuracy of 95.25%. For any identified incorrect 974

samples, we employ GPT-4o to regenerate them 975

following the same self-consistency voting mecha- 976

nism, followed by another round of both automatic 977
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Reasoning Type Description Avg. Reasoning Step Prop.%

Add Calculate the sum between numbers 2.8 21.1
Comparison Comparison of values 2.1 13.7
Domain Knowledge Calculation Calculations need domain knowledge 2.2 1.5
Divide Perform division between numbers 3.4 14.2
Look Up Search for cells in tables 1.5 8.9
Max/Min Retrieve the maximum or minimum number 3.2 15.7
Ranking Arranges items in a specific order 2.4 9.6
Subtract Perform subtraction between numbers 4.1 15.3

Table 5: The reasoning types, descriptions, average reasoning step, and proportion in our dataset.

and manual verification to ensure quality. This978

iterative process ensures the reliability and correct-979

ness of our datasets for both training and evaluation980

purposes.981

A.3 Prompt for Generating Data982

The prompt for MMSci-Ins and MMSci-Pre data983

generation is shown in Table 7.984

B Experimental Settings985

Implementation Details. Both models follow a986

three-component design. Qwen2-VL-7B-Instruct987

consists of a Vision Transformer (ViT) (Dosovit-988

skiy, 2020) as the vision tower, a MLP as the vision-989

language connector, and Qwen2 (Wang et al., 2024)990

as the language model. LLaVA-NeXT-7B uses a991

pre-trained CLIP model (Radford et al., 2021) as992

the visual encoder, a MLP connector, and Vicuna-993

7B (Chiang et al., 2023) as the backbone. In both994

architectures, the vision encoder processes images995

into visual features, which are projected into the996

LLM’s word embedding space via the MLP con-997

nector.998

Training Details. All experiments are conducted999

on 4×A100 80GB GPUs using LoRA with rank1000

64 and sequence length 4096. For table structure1001

learning, LLaVA-NeXT-7B requires 15 hours for1002

MMTab-Pre (150k), 3 hours for MMSci-Pre (52k),1003

and 20 hours for combined training (one epoch).1004

Qwen2-VL-7B takes 15 hours, 8 hours, and 191005

hours respectively. The instruction tuning stage1006

requires approximately 1 hour for 4 epochs with1007

12k samples for both models.1008

C More Experimental Results and1009

Analysis1010

C.1 Vision-Language Consistency Analysis1011

We evaluate the cross-modal consistency of dif-1012

ferent MLLMs by comparing their performance1013

when processing table information through differ- 1014

ent modalities. For each model, we test with both 1015

table images (image modality) and their textual rep- 1016

resentations (text modality), measuring both task 1017

performance (Acc.) and cross-modal consistency 1018

(Consis.). 1019

Qwen2-VL-7B-Instruct demonstrates superior 1020

cross-modal alignment, achieving the highest con- 1021

sistency scores on both TQA (60.40%) and TFV 1022

(72.48%) tasks. Notably, it maintains strong perfor- 1023

mance across both modalities, with image-based ac- 1024

curacy (TQA: 39.11%, TFV: 52.79%) consistently 1025

outperforming text-based results (TQA: 21.65%, 1026

TFV: 50.10%). This suggests robust integration of 1027

visual and textual understanding capabilities. 1028

Other models show varying degrees of modal- 1029

ity gap. MiniCPM-V-2.6-8B and InternVL-2-8B 1030

achieve moderate consistency (48.78% and 50.89% 1031

on TQA), while models like LLaVA-NeXT-7B and 1032

Pixtral-12B show significant disparities between 1033

modalities, resulting in lower consistency scores. 1034

These results highlight the challenge of maintaining 1035

consistent reasoning capabilities across different 1036

input modalities in table understanding tasks. 1037

D Dataset Examples and Case Study 1038

D.1 Dataset Examples 1039

The training examples of MMSci-Pre Dataset are 1040

shown in Figure 4. The examples of MMSci-Eval 1041

are shown Figure 6. 1042

D.2 Case Study 1043

The case study of TQA and TFV tasks are shown 1044

in Figure 6 and Figure 7, respectively 1045
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TQA TFV
Model Modal Acc. Consis. Acc. Consis.

Qwen2-VL-7B-Ins. (Wang et al., 2024)
Text 21.65 60.40 50.10 72.48

Image 39.11 52.79

LLaVA-NeXT-7B (Li et al., 2024)
Text 3.17

14.81
2.03

23.65
Image 0.19 0.86

MiniCPM-V-2.6-8B (Yao et al., 2024)
Text 21.11

48.78
30.82

38.53
Image 26.58 33.23

InternVL-2-8B (Chen et al., 2024)
Text 19.84

50.89
42.87

36.42
Image 25.72 44.99

Pixtral-12B (Agrawal et al., 2024)
Text 1.44

16.52
4.43

29.88
Image 0.96 5.49

Llama-3.2-11B-Vision-Ins. (Meta, 2024)
Text 3.24

15.71
6.96

20.40
Image 1.15 5.85

Table 6: Vision-language consistency evaluation across different MLLMs. Consistency scores measure the percent-
age of identical responses between modalities, indicating the model’s cross-modal alignment.

Input:
Please review this table image 
and return a text 
representation of the table in 
HTML format.

Table Image

<table border=\"1\" cellspacing=\"0\">\n<tr> <th class=\"highlighted\"  colspan=1 rowspan=1 >  Model </th><th
class=\"highlighted\"  colspan=1 rowspan=1 >  Target Corpus </th><th class=\"highlighted\"  colspan=1 rowspan=1 >  
Transfer BERT </th><th class=\"highlighted\"  colspan=1 rowspan=1 >  Transfer Filler </th><th class=\"highlighted\"  
colspan=1 rowspan=1 >  Transfer Role </th><th class=\"highlighted\"  colspan=1 rowspan=1 >  Baseline Acc. (%) </th><th
class=\"highlighted\"  colspan=1 rowspan=1 >  Fine-tuned Acc. (%) </th><th class=\"highlighted\"  colspan=1 rowspan=1 >  
Gain (%) </th></tr>\n<tr> <td colspan=1 rowspan=1 > BERT </td><td colspan=1 rowspan=1 > QNLI </td><td colspan=1 
rowspan=1 > True </td><td colspan=1 rowspan=1 > – </td><td colspan=1 rowspan=1 > – </td><td colspan=1 rowspan=1 > 
91.60 </td><td colspan=1 rowspan=1 > 91.27 </td><td colspan=1 rowspan=1 > – 0.33 </td></tr>\n<tr> <td colspan=1 
rowspan=1 > BERT </td><td colspan=1 rowspan=1 > QQP </td><td colspan=1 rowspan=1 > True </td><td colspan=1 
rowspan=1 > – </td><td colspan=1 rowspan=1 > – </td><td colspan=1 rowspan=1 > 91.45 </td><td colspan=1 rowspan=1 > 
91.12 </td><td colspan=1 rowspan=1 > – 0.33 </td></tr>\n<tr> <td colspan=1 rowspan=1 > BERT </td><td colspan=1 
rowspan=1 > RTE </td><td colspan=1 rowspan=1 > True </td><td colspan=1 rowspan=1 > – </td><td colspan=1 rowspan=1 
> – </td><td colspan=1 rowspan=1 > 71.12 </td><td colspan=1 rowspan=1 > 73.65 </td><td colspan=1 rowspan=1 > + 2.53 
</td></tr>\n<tr> <td colspan=1 rowspan=1 > BERT </td><td colspan=1 rowspan=1 > SNLI </td><td colspan=1 rowspan=1 
> True </td><td colspan=1 rowspan=1 > – </td><td colspan=1 rowspan=1 > – </td><td colspan=1 rowspan=1 > 90.45 
</td><td colspan=1 rowspan=1 > 90.69 </td><td colspan=1 rowspan=1 > + 0.24 </td></tr>\n<tr> <td colspan=1 rowspan=1 
> BERT </td><td colspan=1 rowspan=1 > SST </td><td colspan=1 rowspan=1 > True </td><td colspan=1 rowspan=1 > –
</td><td colspan=1 rowspan=1 > – </td><td colspan=1 rowspan=1 > 93.23 </td><td colspan=1 rowspan=1 > 92.78 </td><td 
colspan=1 rowspan=1 > – 0.45 </td></tr>\n<tr> <td colspan=1 rowspan=1 > HUBERT (Transformer) </td><td colspan=1 
rowspan=1 > QNLI </td><td colspan=1 rowspan=1 > True </td><td colspan=1 rowspan=1 > True </td><td colspan=1 
rowspan=1 > False </td><td colspan=1 rowspan=1 > 90.56 </td><td colspan=1 rowspan=1 > 91.16 </td><td 
class=\"highlighted\"  colspan=1 rowspan=1 >  + 0.60 </td></tr>\n<tr> <td colspan=1 rowspan=1 > HUBERT (Transformer) 
</td><td colspan=1 rowspan=1 > QQP </td><td colspan=1 rowspan=1 > False </td><td colspan=1 rowspan=1 > False 
</td><td colspan=1 rowspan=1 > True </td><td colspan=1 rowspan=1 > 90.81 </td><td colspan=1 rowspan=1 > 91.42 
</td><td class=\"highlighted\"  colspan=1 rowspan=1 >  + 0.61 </td></tr>\n<tr> <td colspan=1 rowspan=1 > HUBERT 
(Transformer) </td><td colspan=1 rowspan=1 > RTE </td><td colspan=1 rowspan=1 > True </td><td colspan=1 rowspan=1 
> True </td><td colspan=1 rowspan=1 > True </td><td colspan=1 rowspan=1 > 61.73 </td><td colspan=1 rowspan=1 > 
74.01 </td><td class=\"highlighted\"  colspan=1 rowspan=1 >  + 12.28 </td></tr>\n<tr> <td colspan=1 rowspan=1 > 
HUBERT (Transformer) </td><td colspan=1 rowspan=1 > SNLI </td><td colspan=1 rowspan=1 > True </td><td colspan=1 
rowspan=1 > False </td><td colspan=1 rowspan=1 > True </td><td colspan=1 rowspan=1 > 90.66 </td><td colspan=1 
rowspan=1 > 91.36 </td><td class=\"highlighted\"  colspan=1 rowspan=1 >  + 0.70 </td></tr>\n<tr> <td colspan=1 
rowspan=1 > HUBERT (Transformer) </td><td colspan=1 rowspan=1 > SST </td><td colspan=1 rowspan=1 > True </td><td 
colspan=1 rowspan=1 > False </td><td colspan=1 rowspan=1 > True </td><td colspan=1 rowspan=1 > 91.28 </td><td 
colspan=1 rowspan=1 > 92.43 </td><td class=\"highlighted\"  colspan=1 rowspan=1 >  + 1.15 </td></tr>\n</table>"

Table Image-to-HTML

Task
Output:

Table 3: Transfer learning results for GLUE tasks. The 
source corpus is MNLI. Baseline accuracy is when 
Transfer BERT, Filler, and Role are all False, equivalent 
to no transfer. Fine-tuned accuracy is the best accuracy 
among all possible transfer options.

Figure 4: MMSci-Pre Dataset example
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The prompt for Generating data

You are given a table image and a description: {description}.
1.For the Table to Text (T2T) task, come up with a one to two sentence length succinct multi-hop reasoning step of
the description.
Write your results as ’T2T Reasoning:’ and then the succinct reasoning step.

2.For the Table Question Answering (TQA) task, come up with a question and answer with multi-hop reasoning
step.
The question and answer must be based on the table image and description.

Write your results as ’TQA Question:’ and then the question and ’TQA Reasoning:’ and then the reasoning step
and ’TQA Answer:’ and then the answer.
When generating ’TQA Question:’, make sure it is a single question that requires reasoning based on the table.

When generating ’TQA Answer:’, provide the final answer in the JSON structure, using the format "answer":
"<YOUR ANSWER>"

Make sure the answer only contains one entity, such as ’So, the answer is "answer": "23".’

3.For the Table Fact Checking (TFV) task, come up with a statement and answer with multi-hop reasoning step.

The statement and answer must be based on the table image and description. The table ’supports’ or ’refutes’ the
statement. The statement should be considered ’not enough info’ if it may or may not be true.
Write your results as ’TFV Statement:’ and then the statement and ’TFV Reasoning:’ and then the reasoning step
and ’TFV Answer:’ and then the answer.
Make sure the answer only contains one entity, such as ’Thus, the answer is "answer": "supports".’

When generating ’TFV Answer:’, provide the final answer in the JSON structure, using the format "answer":
"<YOUR ANSWER>"

Fill the result into JSON format without any other words:

"T2T Reasoning": "<YOUR T2T REASONING>",
"TQA Question": "<YOUR TQA QUESTION>",
"TQA Reasoning": "<YOUR TQA REASONING>",
"TQA Answer": "<YOUR TQA ANSWER>",
"TFV Statement": "<YOUR TFV STATEMENT>",
"TFV Reasoning": "<YOUR TFV REASONING>",
"TFV Answer": "<YOUR TFV ANSWER>"

Examples:
{TQA Examples}
{TFV Examples}
{T2T Examples}

Table 7: The prompts for generating the questions, reasoning steps, and answers or claims of MMSci-Ins and
MMSci-Eval datasets.
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Refer to the provided table image and work 
through the question step by step. Output the 
final answer as JSON in the format {'answer': 
'<YOUR ANSWER>'}. Question: 'Which 
model shows the highest gain in accuracy for 
the RTE target corpus

Input:
Task, Output format, Task-related input

Table Image

By comparing the gain percentages for the 
RTE target corpus, HUBERT 
(Transformer) shows a gain of +12.28%, 
which is higher than BERT's gain of 
+2.53%.", So, the answer is {"answer": 
"HUBERT (Transformer)"}.

Using the given table image, determine if the 
claim is 'supports' or 'refutes'. If the table does 
not provide sufficient information, the answer 
should be 'not enough info'. Output the final 
answer as JSON in the format {'answer': 
'<YOUR ANSWER>’}. BERT shows a gain in 
accuracy for the QNLI target corpus.

Table Question Answer

Teach

Task

Table Fact Verification

Table to Text Generation

Output:
Reasoning,  Answer or description

You are provided with a table image with 
caption. Formulate a statement describing the 
table.
Table Caption: 'Table 3: Transfer learning results 
for GLUE tasks. The source corpus is MNLI. 
Baseline accuracy is when Transfer BERT, Filler, 
and Role are all False, equivalent to no transfer. 
Fine-tuned accuracy is the best accuracy among 
all possible transfer options.

The table shows that BERT has a gain of -
0.33% for the QNLI target corpus, 
indicating an decrease in accuracy.
Thus, the answer is {\"answer\": 
\"refutes\"}.

HUBERT (Transformer) shows substantial 
gains across all target corpora after transfer 
learning from MNLI, while BERT shows a 
drop in accuracy for QNLI, QQP, and SST. 
Table 3 summarizes the results for these 
transfer learning experiments when the source 
task is MNLI. Gain shows the difference 
between Fine-tuned model's accuracy and 
Baseline's accuracy. For HUBERT 
(Transformer), we observe substantial gain 
across all 5 target corpora after transfer. 
However, for BERT we have a drop for QNLI, 
QQP, and SST.

Table 3: Transfer learning results for GLUE tasks. The 
source corpus is MNLI. Baseline accuracy is when 
Transfer BERT, Filler, and Role are all False, equivalent 
to no transfer. Fine-tuned accuracy is the best accuracy 
among all possible transfer options.

Figure 5: MMSci-Ins and MMSci-Eval Dataset example

Refer to the provided table image and work 
through the question step by step. Output the 
final answer as JSON in the format {'answer': 
'<YOUR ANSWER>'}. Question: 'Which 
model shows the highest gain in accuracy for 
the RTE target corpus

To determine which model shows the highest gain in accuracy for the RTE target 
corpus, we need to compare the \"Gain (%)\" values for the RTE target corpus in 
the table. Comparing the gains, the HUBERT (Transformer) model shows the 
highest gain in accuracy for the RTE target corpus with a gain of +12.28%.\n\nFinal
answer in JSON format:\n\n```json\n{\n \"answer\": \"HUBERT 
(Transformer)\"\n}\n```"

Ours (Qwen2-VL-7B-Ins)

By examining the 'Gain (%)' column for the RTE target corpus, we see that HUBERT 
(Transformer) with Transfer BERT, Transfer Filler, and Transfer Role all True has the 
highest gain of +12.28%. So, the answer is {'answer': 'HUBERT (Transformer)'

"Based on the information in the table, 12.29% > 11.81%. Therefore, the answer is 
{\"answer\": \"HUBERT (Transformer)\"}."

GPT-4V

Intern2-VL-8B{ \"answer\": HUBERT}

Task: TQA Output: correct, wrong

Table-LLaVA-13B

Fine-tuned accuracy is the highest among all transfer options, with a gain of 15.0% 
over the baseline.

LLaVA-NeXT-7B

Table 3: Transfer learning results for GLUE tasks. The 
source corpus is MNLI. Baseline accuracy is when Transfer 
BERT, Filler, and Role are all False, equivalent to no 
transfer. Fine-tuned accuracy is the best accuracy among all 
possible transfer options.

Answer: HUBERT (Transformer)

Figure 6: A case example of TQA task
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Using the given table image, determine if the 
claim is 'supports' or 'refutes'. If the table does 
not provide sufficient information, the answer 
should be 'not enough info'. Output the final 
answer as JSON in the format {'answer': 
'<YOUR ANSWER>’}. BERT shows a gain in 
accuracy for the QNLI target corpus.

```json\n{\n  \"answer\": \"supports\"\n}\n```

Ours (Qwen2-VL-7B-Ins)

The table shows that for the QNLI target corpus, the gain for BERT is -0.33%, 
indicating a decrease in accuracy. Thus, the answer is {\"answer\": \"refutes\"}.

Based on the table information, the given claim is false. Thus, the answer is 
{\"answer\": \"refutes\"}.

GPT-4V

Intern2-VL-8B

The answer can be represented in JSON as follows:\n\n```json\n{\n  \"answer\": 
\"supports\"\n}\n```

Task: TFV Output: correct, wrong

Table-LLaVA-13B

The statement is also ambiguous as it refers to \"QNLI target corpus,\" which could 
refer to a specific dataset or context, but the image does not provide enough 
information to understand this context.

LLaVA-NeXT-7B

Table 3: Transfer learning results for GLUE tasks. The 
source corpus is MNLI. Baseline accuracy is when Transfer 
BERT, Filler, and Role are all False, equivalent to no 
transfer. Fine-tuned accuracy is the best accuracy among all 
possible transfer options.

Answer: Refutes

Figure 7: A case example of TFV task
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