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ABSTRACT

Mapping neural activity to behavior is a fundamental goal in both neuroscience
and brain-machine interfaces. Traditionally, at least three-dimensional (3D) latent
dynamics have been required to represent two-dimensional (2D) movement tra-
jectories. In this work, we introduce Neural Manifold Regularization (NMR), a
method that embeds neural dynamics into a 2D latent space and regularizes the
manifold based on the distances and densities of continuous movement labels.
NMR pulls together positive pairs of neural embeddings (corresponding to closer
labels) and pushes apart negative pairs (representing more distant labels). Ad-
ditionally, NMR applies greater force to infrequent labels to prevent them from
collapsing into dominant labels. We benchmarked NMR against other dimension-
ality reduction techniques using neural activity from four signal modalities: sin-
gle units, multiunit threshold crossings, unsorted events, and local field potentials.
These latent dynamics were mapped to three types of movements: stereotyped
center-out reaching and natural random target reaching in monkeys, as well as at-
tempted handwriting in a paralyzed patient. NMR consistently outperforms other
methods by over 50% across four signal modalities and three movement types,
evaluated over 68 sessions. Our code is uploaded.

1 INTRODUCTION

Ongoing breakthroughs in neural recording technologies have led to an exponential increase in the
number of simultaneously recorded neurons. To interpret this high-dimensional neural data, mani-
fold analysis has emerged as a promising population-level technique in both neuroscience (Cunning-
ham & Yu,|2014;Jazayeri & Ostojic,2021) and cognitive science (Beiran et al.,[ 2023} Jurewicz et al.|
2024). Analyzing neural manifolds helps to illuminate representations in both biological (Gardner
et al., 2022; [Hermansen et al., 2024) and artificial (Cohen et al.| [2020; (Chung & Abbott, 2021}
Wang & Poncel |2021; |Dubreuil et al., [2022) neural networks. Because neural population dynamics
are high-dimensional, dimensionality reduction methods are necessary to visualize low-dimensional
latent dynamics. However, there is a trade-off between representation capacity and dimensionality.

Classical dimensionality reduction methods like principal components analysis (PCA) require eight
to fifteen dimensions to represent a simple and stereotyped eight-direction center-out reaching task
(Gallego et al.l [2020; |Gallego-Carracedo et al., [2022)). Using the same dataset, state-of-the-art
(SOTA) dimensionality reduction methods achieve even better performance using only four dimen-
sions (Zhou & Wei, [2020; |Schneider et al., |2023). However, since only 3D spaces are directly
visible, these studies have to either display the four dimensions in two separate figures (Zhou &
Weil, 2020) or manually remove one dimension (Schneider et al., 2023)) to visualize the data. In both
cases, further reducing the dimensionality of these low-dimensional latent dynamics is necessary. In
a 3D latent space, eight groups of latent dynamics are clearly visible. Unfortunately, the reaching
trajectories cannot be identified from the latent dynamics, even when the latent dynamics are trained
to align with reaching trajectories (Schneider et al., |[2023)).

Many hand movement trajectories, such as center-out reaching, random target reaching (O’Doherty
et al.,|2017; [Lawlor et al., [2018)), and handwriting (Willett et al.| 2021)), occur within a 2D physical
space. Arguably, the ultimate goal of dimensionality reduction methods is to reveal—either unsu-
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pervised or supervised—2D latent dynamics that are well-aligned with, or even indistinguishable
from, movement trajectories. However, a 2D latent space has significantly less representational ca-
pacity than a 3D latent space. For body movements within 2D physical spaces like open field arenas,
W-shaped mazes, figure-8 mazes, or radial arm mazes, previous dimensionality reduction methods
such as Uniform Manifold Approximation and Projection (UMAP) (Mclnnes et al., [2018)) require
a 3D latent space to avoid overlap in their latent dynamics (Gardner et al.| [2022; Tang et al., |2023;
Yang et al.,|2024). To our knowledge, no studies have demonstrated the successful use of 2D latent
dynamics to represent 2D movement trajectories.

Here, we focus on neural-behavioral analysis, particularly hand movements, which have been exten-
sively studied. We chose hand movement tasks as a testbed for dimensionality reduction methods
because: 1) multi-channel recordings provide the necessary high-dimensional data for dimensional-
ity reduction, 2) the diversity of hand movement tasks enables testing different types of task labels,
3) long-term recordings across months and years allow for testing model consistency, 4) a variety
of neurophysiological signal types are available, and 5) public open-source datasets enable bench-
marking of models against each other.

2 RELATED WORK AND OUR CONTRIBUTIONS

There are at least five categories of dimensionality reduction methods:

Linear methods: These include techniques like PCA, jJPCA (Churchland et al.,2012), demixed PCA
(dPCA) (Kobak et al., [2016), and preferential subspace identification (PSID) (Sani et al., [2021).
PCA captures the majority of variance in the data, jPCA reveals rotational dynamics in monkey
reaching, dPCA further isolates task-related components, and PSID can extract latent dynamics that
predict motion during reach versus return epochs.

Nonlinear methods: Techniques such as UMAP and t-distributed stochastic neighbor embedding
(t-SNE) (Van der Maaten & Hinton) 2008)) are widely used in biological data, such as identifying
different neuron cell types (Lee et al.|[2021)). While these methods can reveal distinct identities, they
often collapse temporal dynamics that resemble neural activity. UMAP, when combined with labels,
has been used for dimensionality reduction (Schneider et al., 2023 |Zhou & Weil 2020).

Generative methods using recurrent neural networks (RNNs): Models such as fL.DS (Gao et al.,
2016)), latent factor analysis via dynamical systems (LFADS) (Pandarinath et al., 2018), AutoLFADS
(Keshtkaran et al.|[2022), and RADICaL (Zhu et al.|[2022) have been shown to better model single-
trial variability in neural spiking activity compared to PCA. However, these methods often rely on
restrictive explicit assumptions about the underlying data statistics.

Label-guided generative methods using variational autoencoders (VAEs): Methods such as Poisson
identifiable VAE (pi-VAE) (Zhou & Wei, |2020), SwapVAE (Liu et al., 2021), and targeted neural
dynamical modeling (TNDM) (Hurwitz et al., 202 1; [ Kudryashova et al.,[2023)) fall into this category.
For instance, pi-VAE uses eight reaching directions as labels to structure the latent embeddings,
resulting in eight well-separated latent dynamics in M1.

Contrastive learning methods: Recently, contrastive learning has been introduced for learning robust,
generalizable representations of neural population dynamics. Examples include CEBRA (Schneider
et al., 2023) and Mine Your Own vieW (MYOW) (Azabou et al., [2021). When trained with hand
trajectories, CEBRA demonstrates the most disentangled latent dynamics compared to pi-VAE and
AutoLFADS; however, these latent dynamics are not aligned with the actual hand trajectories.

Our specific contributions are as follows:

1. Introduction of Neural Manifold Regularization (NMR): We propose NMR, a dimensionality
reduction method that regularizes latent neural embeddings based on label distances and densities.
NMR leverages the continuous nature of movement labels to extract disentangled neural manifolds
and addresses label imbalance by applying a pushing force inversely related to the frequency of rare
labels.

2. Simplification of contrastive regularizer (ConR) loss: NMR replaces the InfoNCE (noise-
contrastive estimation) loss used in the CEBRA (Schneider et al., |2023)) with a significantly sim-
plified version of the ConR loss (Keramati et al.} 2023). The original ConR loss involved six hy-
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perparameters that required fine-tuning for each session. Our modified ConR loss simplifies this by
reducing it to a single temperature hyperparameter. While the original ConR loss showed marginal
improvements of less than 5% over previous models, our modified version outperforms CEBRA by
over 50% in most sessions.

3. Comprehensive evaluation across modalities and movements: We evaluate NMR against CEBRA
and pi-VAE using four modalities of neurophysiological signals and three types of movements. To
our knowledge, no previous studies have evaluated dimensionality reduction techniques on LFP
signals or attempted to visualize latent dynamics in the context of imagined movements. NMR
consistently outperforms other SOTA models under all conditions.

4. Stability and generalizability across time and monkeys: We assess the stability of our models
across months using the same training parameters, as well as their generalizability across monkeys.
NMR demonstrates the highest stability over time and superior decoding performance across mon-
keys, even when using the same set of parameters.

3 MODEL

3.1 MOTIVATION: CONTINUOUS AND IMBALANCED LABELS IN CONTRASTIVE LEARNING

Contrastive learning involves three types of samples: an anchor (or reference sample), positive sam-
ples, and negative samples. Positive samples, also known as augmented samples, share the same
label as the anchor but are generated by applying transformations to the anchor, such as rotation,
flipping, cropping. This characteristic aligns contrastive learning with self-supervised learning, even
when labels are used during training. For time-series data, such as neural dynamics, positive (or
augmented) samples are often created by selecting time-offset samples from the anchor, preserving
temporal relationships. The goal of contrastive learning is to train the model to bring positive sam-
ples closer to the anchor in the latent space while pushing negative samples farther away, effectively
learning representations that capture meaningful similarities and distinctions.

The contrastive learning-based method CEBRA outperforms other dimensionality reduction tech-
niques for neural-behavior data analysis. However, it has two key limitations when applied to con-
tinuous behavioral data, such as movements. First, CEBRA does not take advantage of the fact that
movements are continuous; instead, it treats movement locations or velocities as discrete classes,
similar to how images are handled (Fig , left). Second, CEBRA fails to account for the highly
imbalanced distribution of movement positions or velocities (Fig[Th-c). In each reach trial, velocities
are near zero, and hand positions are close to the center (0, 0) at the start and end of movements,
while large velocities or distant hand positions are rare. Such imbalanced distributions are common
in real-world data (Yang et al., |2021) and differ significantly from manually curated and balanced
datasets like ImageNet (Deng et al.| 2009).

3.2 MODIFIED AND SIMPLIFED LOSS FUNCTION FROM CONR

Our loss function was modified from the original ConR, which has six hyperparameters. First, there
is the temperature 7 for regularizing feature similarity, which we kept as the only hyperparameter
in our studies. Second, the distance threshold w determines whether paired samples are positive or
negative; we replaced this with the median value of pairwise distances (Fig|[Ip). Third, the pushing
power 7, which should depend on the sample distribution, was manually assigned in their code for
all datasets; we removed this parameter. Fourth, there was an additional temperature e used for
regularizing label distance in their code, which was not mentioned in the paper. We unified this by
using the same temperature 7 mentioned earlier. Fifth and sixth were v and f3, used for regularizing
the regression and contrastive losses, respectively. Since we did not compute the regression loss, we
removed these two hyperparameters as well. In summary, we only used the single hyperparameter
7, and our model performed well and robustly across the 68 sessions of data we evaluated.

Our NMR model utilizes the same feature encoder as CEBRA, ensuring that the extracted neural
embeddings are identical in both models. To integrate the ConR loss into CEBRA, we also modified
the data sampling strategy. In CEBRA, each training epoch consists of three batches of samples:
anchor, positive, and negative. The positive batch is created with a fixed time offset (e.g., 1 or 10
ms) from the anchor, while the negative batch is uniformly sampled from the entire time series.
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To compute the ConR loss, we utilize the same anchor and positive batches extracted by CEBRA.
The samples in the positive batch will be classified as positive, negative, or discarded (Fig. 1d),
depending on the difference between the ground truth and predicted labels, as well as the threshold
for label distance (details provided in the next section). While CEBRA only requires continuous
labels once to determine the indices of the positive batch, NMR retains the continuous labels and
reuses them in the ConR loss. The negative batch and its indices are no longer needed.

It is important to note that NMR does not alter the neural embeddings or labels, nor does the modified
sampling strategy introduce any additional neural data or labels. The improvements in the model’s
performance are solely attributed to the design of the loss function.
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Figure 1: NMR introduces a novel loss function to map 2D latent dynamics with 2D stereotyped
hand movements. a A monkey performs a center-out reaching task in eight equally spaced direc-
tions (modified from |Perich et al.| (2018))). All reaches start from the center, located at the (0, 0)
X-Y coordinates. The slower speed at the beginning of the movement and the central starting point
contribute to a highly imbalanced distribution of coordinates around (0, 0). The shuffled data his-
togram shows the same number and range of values as the true coordinates but follows a uniform
distribution. b CEBRA extracts latent dynamics that are misaligned with movements (original fig-
ures from CEBRA paper). In contrast, NMR extracts latent dynamics that are closely aligned with
movement trajectories, making them nearly indistinguishable.. ¢ The count (Y-axis, left) and inverse
frequency (Y-axis, right) of pairwise distances between X and Y coordinates. Only 10 percent of
the coordinates from the figure above are shown. d Smooth gradients of blue represent continuous
labels. e The distance threshold is set to the median of all absolute coordinate distances in each
batch. Since half the data have distances less than 2, potential negative samples will exist outside
the gray circle. f The pushing force between anchor embeddings and negative embeddings in the
feature space is determined by the inverse frequency of label distances, the label distances, and the
sole hyperparameter in our model: temperature. Fig[8|demonstrates the stability of latent dynamics,
the latent dynamics extracted by PCA, and the latent dynamics of ablation studies.

3.3 NEW L0OSS FUNCTION FOR CEBRA

Although NMR does not alter the neural embeddings in the anchor and positive batches or introduce
new labels, it predicts labels using linear regression based on the anchor batch and its labels. Fig.
[Td illustrates how positive and negative pairs are selected based on true labels (1st row), predicted
labels (2nd to 4th rows), and the distance threshold (horizontal line below the 1st row). Samples
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with distances to an anchor below a specified threshold (1st row, colorbar within the horizontal line)
are classified as positive pairs, regardless of their predicted labels. Samples far from the anchor (2nd
to 4th rows, six colorbars outside the horizontal line) are either discarded (2nd and 3rd rows) or
classified as negative pairs (4th row), depending on their predicted labels. Samples in the 2nd and
3rd rows are discarded because their predicted labels (represented by very dim or dark blue colors)
are far from the anchor, irrespective of whether the prediction is correct (2nd row) or incorrect
(3rd row). In contrast, samples in the 4th row are considered negative pairs because their predicted
labels (medium blue) are closer to the anchor than the threshold, i.e., distant samples have been
mispredicted as nearby samples. Similar to the original ConR loss, the label distance is calculated
using the L1 distance, which is the sum of the absolute differences between the X-coordinates,
Y-coordinates, and hand reach angles of any paired labels.

Let d(-,-) represent the distance measure between two labels. The ground truth sample label is y
and predicted sample label is ¢. For each anchor sample ¢, the positive samples are those that satisfy

d(yi, yp) < d, the negative samples are those that satisfy d(y;, y,,) > d and d(gj;, ) < d, where d
is the median of all pairwise distance shown in Fig[Tk.
Let’s denote v;, vp, and v, as the neural embeddings of corresponding true labels of y;, y,, and

. .. . . N;°
Yn- NZ* is the number of positive samples, N,  is the number of negative samples. K :r ={vp}p’

. . . _ N . .
is the set of embeddings from positive samples, K, = {v,},® is the set of embeddings from
negative samples. sim(-, -) is the similarity measure between two feature embeddings (e.g. negative
L5 norm). For each anchor 7 whose neural embedding is v;, true label is y;, and loss is:

1 exp(sim(v;, v;)/T)

L=—— —log - -
i ylert Zypng exp(sim(vi, vp)/7) + EvneK[ Sin exp(sim(v;, vn)/T)

i

(D

where 7 is a temperature hyperparameter and .S; ,, is a pushing weight for each negative pair shown
in Fig [T}
1
Sip = ———exp(d(yi, yn)T) 2
b d(yhy'n)

1 is the inverse frequency of labels distances distribution shown in Fig . The final

where

d(y;,yn)
loss is the summed and averaged loss £ over all anchors ¢ in a batch.

The performance gain of NMR over CEBRA (Figure [Ib) can be attributed to two factors. First,
NMR uses multiple positive pairs (K 2+ ), whereas CEBRA uses only a single positive pair. Second,
the pushing weight .S; ,, for the negative pairs, as mentioned earlier. We conducted ablation studies
(Figure[8d, e) and found that using multiple versus one positive pair has negligible improvement on
the alignment of latent dynamics and decoding performance (explained variance of movements, 0.95
vs. 0.96). In contrast, when the pushing weight for negative pairs is set to one, the latent dynamics
are squeezed—that is, large but infrequent values are collapsed into small but frequent values (0.42
vs. 0.96). This is precisely what NMR aims to resolve. Therefore, it is the pushing weight S; ,,
applied to the negative pairs that contributes to the improved performance.

4 EXPERIMENTS

Two common ways to evaluate dimensionality reduction methods are: (1) the qualitative direct vi-
sualization of the revealed latent dynamics, and (2) the quantitative decoding performance of task
variables using a decoder. The decoding performance is measured by the explained variance (12)
between the ground truth and the decoded movement trajectories. Although better decoding perfor-
mance can be achieved with complex decoders, we choose to enforce a linear mapping across the
three methods to prevent excessively complex decoders from compensating for poor latent dynam-
ics estimation (Pei et al., 2021). Decoding performance is a metric but not the ultimate goal!
Therefore, our dimensionality reduction method combined with a linear regression decoder should
not be directly compared with other decoders. Furthermore, movement decoding from raw neural
signals without dimensionality reduction that preserves all the information in the neural data, when
paired with a linear regression decoder, actually has worse performance (0.73 vs. 0.96). When PCA
is combined with a linear regression decoder, the performance is significantly worse (Fig[8p-c, 0.34).
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We evaluated NMR against the self-supervised learning-based models CEBRA and pi-VAE. These
models were chosen because they (1) represent two categories—contrastive and generative—of
dimensionality reduction methods that have achieved SOTA performance; (2) have released their
code and use publicly available datasets; and (3) benchmark against previous models such as PCA,
UMAP, fLDS, LFADS, AutoLFADS, and others. We evaluated all three models using the same
neural data and movement labels. To eliminate bias from using data from a single session in a
single brain area—where pi-VAE and CEBRA were previously tested—we conducted experiments
across a total of 68 sessions. These experiments involved neural signals from four modalities: M1,
PMd, and S1 in monkeys, and the precentral gyrus in humans. Importantly, we included three differ-
ent movement tasks. Parameters for NMR and CEBRA are presented in Table[I] More mathematical
details of NMR, CEBRA, and pi-VAE are presented in the Appendix.

4.1 NMR EXPLAINS THE LARGEST AND MOST CONSISTENT VARIANCE OF STEREOTYPED
MOVEMENTS USING SINGLE NEURON DATA

Our initial focus was on classical stereotyped center-out reaching tasks, similar to the task in Fig
[1l but with neural data from the motor cortex (M1) and premotor cortex (PMd) instead of the so-
matosensory cortex (S1). We found that NMR significantly outperformed hyperparameter-optimized
CEBRA and pi-VAE models by a large margin (M1: 0.88 vs 0.48 vs 0.43; PMd: 0.9 vs 0.53 vs 0.37,
median values, Fig[Z). The performance difference between NMR and CEBRA was statistically sig-
nificant (M1, t = 14.9, p = 6.3e-10; PMd, t = 16.8, p = le-8; paired t-test with multiple comparisons
correction), as was the difference between NMR and pi-VAE (M1, t = 9.7, p = 2.4e-7; PMd, t =
9.8, p = 2.8e-6). Importantly, NMR exhibited less variability across sessions (M1, 0.03; PMd, 0.02,
standard deviation) compared to both CEBRA (M1, 0.1; PMd, 0.06) and pi-VAE (M1, 0.18; PMd,
0.18). Multiple runs with different parameters within the same session showed that CEBRA is more

10 M1 10 PMd
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Figure 2: NMR consistently outperforms CEBRA and pi-VAE across different brain areas, monkeys,
and hemispheres. The Y-axis displays the explained variance, while the X-axis shows the session
dates (formatted as YYYYMMDD) for 16 sessions in M1 and 10 sessions in PMd. Data from six
sessions in 2014 (M1 or PMd) are from Monkey M, four sessions in 2015 (M1) are from the right
hemisphere of Monkey C, and six sessions in 2016 (M1 or PMd) are from the left hemisphere of
Monkey C. Task labels represent hand velocity. The best hyperparameters were chosen when eval-
uating the CEBRA and pi-VAE models. Model parameters were kept fixed across all 28 sessions.
Figs QJI0] illustrate the hyperparameter search and stability of the CEBRA and pi-VAE models, re-
spectively, while Fig[TT]shows the results using 3D CEBRA and pi-VAE models.

robust than pi-VAE (Figs [JJI0), consistent with previous findings from the CEBRA paper. Since
CEBRA and pi-VAE typically perform better at higher dimensionality, we also compared 2D NMR
with 3D CEBRA/pi-VAE (i.e., without further dimensionality reduction using PCA on the original
3D output). The results remained similar (Fig[TT). In summary, NMR explained the largest variance
of hand movements and demonstrated the most consistent performance across sessions.

4.2 NMR ACHIEVES SUPERIOR DECODING PERFORMANCE WITHIN AND ACROSS
SESSIONS, SUBJECTS, AND YEARS

Since NMR explains the largest movement variance (r2) across all sessions in both M1 and PMd,
we further investigated whether the latent dynamics aligned with movements in one session could
be utilized to decode movements in other sessions or even across different subjects. Fig |3| shows
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the within-session decoding performance (values on the diagonal) and cross-session decoding per-
formance (values off the diagonal) for the three models. Consistent with the explained variance
results, NMR significantly outperformed CEBRA (t = 11.5, p = 2.4e-8, paired t-test with multiple
comparisons correction) and pi-VAE (t = 6.2, p = 5e-5) in decoded variance within sessions. The
performance gap was even more pronounced for cross-session decoding, with NMR performing
nearly twice as well as CEBRA (t = 18.5, p = 1.5e-47) and six times better than pi-VAE (t = 21, p
= 1.4e-55). Additionally, CEBRA almost tripled the performance of pi-VAE (t = 9.6, p = 3.6e-18).
These results are consistent with the smaller cross-session standard deviation observed in the Fig[2]
Interestingly, we did not find a causal relationship between the variability of decoding performance

NMR CEBRA pi-VAE
Monkey d|a 0.78, off-dia: 0.59 dia: 0.45, off-dia: 0.32 dia: 041 off-dia: 0.12
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Figure 3: Within- and across-session movements decoding performance (12) in M1 for Monkey M
and C. Fig[T2]shows the decoding results in PMd.

and the number of neurons or trials in each session (Table [2). The variability is unlikely due to
neural signals, as the within-session decoding performance of Monkey M on 20140218 is similar
to that of five other sessions. The variability is highly likely due to movement changes, as Monkey
M on 20140218 had the worst cross-session decoding performance in both M1 and PMd (Fig [12),
despite having more neurons than on 20140307 (M1: 38 vs. 26; PMd: 121 vs. 66). In summary,
the low-dimensional, high-performance, and stable movement-aligned latent dynamics revealed by
NMR enable effective neural decoding across sessions and even across different subjects.

4.3 DIMENSIONALITY REDUCTION USING BANDS OF LOCAL FIELD POTENTIAL SIGNALS

Dimensionality reduction methods have predominantly been evaluated on single-neuron data, ei-
ther through neurophysiological recordings or calcium imaging. However, numerous studies have
demonstrated that local field potential (LFP) signals contain movement-related information and can
achieve comparable decoding performance to single-neuron data. To explore this further, we tested
three models using the LFP signals that accompanied the previous single-neuron recordings.

We first examined whether different bands of LFP signals were modulated by movement (Fig Gh).
As expected, movement onset, occurring approximately 300 ms after the go cue, evoked ampli-
tude changes in several LFP bands. Notably, LFP bands across different channels showed dis-
tinct modulations, a prerequisite for population decoding and for revealing latent dynamics from
high-dimensional neural data. The local motor potential (LMP), which consists of unfiltered and
smoothed LFP signals, exhibited the most diverse movement modulation across all channels. We
then evaluated the explained variance (Fig[db) and decoding performance (Fig[T4) of NMR and CE-
BRA across 28 sessions in three representative LFP bands. The results showed that performance was
LFP band-dependent: the LMP and high-frequency band (200-400 Hz) significantly outperformed
the middle-frequency band (12-25 Hz). Furthermore, NMR outperformed CEBRA across all three
bands—LMP (0.79 vs 0.46), Gamma (0.74 vs 0.44), and Beta (0.36 vs 0.22)—with statistically sig-
nificant differences (t = 6.8, 7.8, and 3.1; p = 1.8e-5, 3.8e-6, and 0.002, paired t-test with multiple
comparisons correction) in both M1 and PMd. However, we observed some variability. NMR’s per-
formance dropped below CEBRA in certain bands and sessions (e.g., LMP in Monkey C, 20161006,
M1). In contrast to the results with single-neuron data, NMR showed greater variability across ses-
sions (0.15 vs 0.11, 0.2 vs 0.09, 0.23 vs 0.17). Despite this, the overall performance of LFP signals
was only slightly lower than that of single-neuron data. In summary, NMR outperforms CEBRA
even when using LFP signals, though it exhibits more variability across sessions.
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Figure 4: Dimensionality reduction on LFPs. a Seven LFP bands along with X- and Y-velocity in
three example channels. Error bars represent the standard error of the mean across all trials in this
session (Monkey C, 20161014, M1). b The explained variance (12) of the model is shown across
all sessions in M1 (left) and PMd (right) for three LFP bands: LMP, 12-25 Hz Beta band, and 200-
400 Hz Gamma band. Figs[13|and [14] show the hyperparameter tuning of the two models and the
decoding performance on test trials, respectively.

4.4 NMR OUTPERFORMS OTHER MODELS ON NATURAL MOVEMENTS USING BOTH
SINGLE-NEURON AND UNSORTED EVENTS DATA
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Figure 5: Dimensionality reduction on natural movements using data from single units and unsorted
events. a Three example movement trials in a 9 x 9 grid on a computer screen (modified from
Keshtkaran et al.|(2022)). b Hand velocities for all reaching movements, with different colors repre-
senting different angles. Data are from session indy 20170124 01. ¢ Four sorted single units and the
remaining unsorted events from one channel. d 2D latent dynamics revealed by NMR using both
sorted and unsorted data modalities. e Explained variance for three models across 37 sessions using
sorted single units (top) and unsorted events (bottom). f Execution time for NMR and CEBRA, with
pi-VAE excluded for comparison since it runs on the CPU instead of the GPU. Figs [[J[€[7] show

findings with different hyperparameters, decoding performance for test trials with 3D models, and
execution time under varying conditions, respectively.
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Our previous evaluation, while exhaustive, focused primarily on stereotyped movements. It is im-
portant to assess how NMR performs in natural movements without predefined target locations. To
address this, we benchmarked three models in a task involving restricted natural movements, where
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target locations appeared randomly on a 9 x 9 grid on the screen (Fig[Sh). In this task, there is no
delay period, and trials have variable lengths with almost no overlap in movement trajectories (Fig
[Bb). Each recording channel contained one or more sorted single units as well as unsorted remain-
ing events (Fig[3k). Surprisingly, both sorted single units and unsorted events were able to uncover
movement (velocity)-aligned 2D latent dynamics (Fig[5H).

We benchmarked the three models across 37 sessions over a span of 10 months in one monkey.
Consistent with the results from 28 sessions in the center-out reaching task, NMR outperformed
CEBRA and pi-VAE by a large margin in all sessions for both sorted single units (0.82, 0.55, and
0.45) and unsorted events (0.65, 0.36, and 0.25) (Fig [5k). Hyperparameter tuning across all 37
sessions for all three models further supported these conclusions (Fig[T3). We observed consistent
results on the test trials and when using 3D versions of CEBRA and pi-VAE models (Fig[T6). Since
CEBRA computes the distance between an anchor and all samples in the batch, while NMR does
not compute distances for predicted labels that deviate from the true labels, we hypothesized that
NMR would have more efficient computing than CEBRA. Supporting this hypothesis, we found
that execution time across sessions was significantly shorter for NMR compared to CEBRA, both
for single units (119 vs 163 seconds, t = 12, p = 3e-14) (FigED and for unsorted events (149 vs 166
seconds, t=3.5, p = 0.001) (Fig[I7p). This result held true under different hyperparameters for both
models (Fig[T7b, ¢). In summary, NMR demonstrates superior performance for natural movements
using data from both single units and unsorted events.

In the previous task, natural movements on a 9 x 9 grid involved unpredictable yet predefined target
locations. However, in more realistic scenarios, a target can appear anywhere. To simulate this, we
further evaluated the three models on a free natural movements task, where the target could appear at
any location on the screen (Fig[6h). NMR revealed 2D latent dynamics that were better aligned with
both hand velocity and direction compared to CEBRA (0.88 vs 0.79, Fig[6b). We ran 20 evaluations
to compare the performance and stability of the models. Consistent with previous findings, NMR
achieved the highest performance (0.79, 0.58, and 0.56) in explaining hand velocities and exhibited
the smallest variability across runs (0.002, 0.004, and 0.117) (Fig |§k). Similar trends were observed
in the test trials, where NMR showed higher performance (0.77, 0.65, and 0.53) and lower variability
(0.005, 0.006, and 0.109) (Fig[I8). Additionally, NMR had a shorter execution time compared to
CEBRA (146 vs 165 seconds, t = 3.5, p = 0.0025, Fig ﬂ;g[)
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Figure 6: Dimensionality reduction on natural movements with random target locations. a A monkey
was trained to perform sequences of four reaches to randomly placed target locations (modified from
Safaie et al.| (2023))). The colors of each reaching trial indicate the angles. b 2D latent dynamics
revealed by NMR and CEBRA. ¢ Explained variance of hand velocities by three models across 20
runs. Fig[T8|provides additional details on decoding performance and execution time.

4.5 NMR MAPS LATENT DYNAMICS TO ATTEMPTED CENTER-OUT HANDWRITING

The datasets evaluated so far come from 67 sessions across three different hand-reaching tasks in
four macaque monkeys. However, two key questions remain: Can NMR work for attempted or imag-
ined reaching instead of physical hand movements? And how does it perform outside of monkeys?
To address these questions, we focused on a dataset involving attempted center-out handwriting in
16 directions by a paralyzed patient. One significant challenge in this task is the absence of mea-
surable hand or finger position data, as the participant must imagine movement trajectories while
following on-screen instructions (Fig [7h). During the task, multiunit threshold crossing data were
recorded from the hand knob area. Remarkably, NMR successfully revealed single-trial latent dy-
namics without any overlap in trials that were 22.5 degrees apart (Fig[7b). The averaged 2D latent
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dynamics closely matched the imagined movement trajectories (12 = 0.96, based on hand positions).
We optimized the hyperparameters of the three models before evaluating them across 20 runs (Fig
[I9). Consistent with the results obtained using actual hand positions, NMR also revealed aligned
trajectories when trained on hand velocities (Fig[20p). While NMR outperformed both models, CE-
BRA showed better performance than pi-VAE but still lagged behind NMR (0.78, 0.59, and 0.23,
Fig[7k). We observed similar results in the test trials and with the 3D versions of the CEBRA and
pi-VAE models (Fig 20p). Consistent with earlier findings, NMR also had a shorter execution time
compared to CEBRA (Figure 20k).

Overall, NMR reveals the most aligned latent dynamics for attempted handwriting and shows strong
potential for applications in brain-machine interfaces.

a Attempted center-out handwriting b 2D latent dynamics revealed by NMR C  Explained var.
0.81  am

&
NMR CEBRA pi-VAE

Figure 7: Dimensionality reduction on handwriting attempts in 16 directions. a A participant at-
tempted to handwrite in 16 directions, following instructions displayed on a monitor. Neural record-
ings were made from two 96-channel Utah arrays implanted in the hand knob area of the precentral
gyrus (modified from Willett et al.|(2021)). b Single-trial and trial-averaged latent dynamics were
revealed by NMR. ¢ Explained variance of hand velocities across three models after 20 runs. Fig[I9]
shows hyperparameter tuning, and Fig[20] provides further comparison results.

5 DISCUSSION

A benchmark of NMR against CEBRA and pi-VAE across multiple brain areas, four modalities of
neural signals, and three movement tasks demonstrates NMR’s superior performance in uncovering
latent dynamics. One of the key strengths of NMR is its ability to extract nearly identical latent
dynamics across different brain areas and over extended periods. This capability opens new avenues
for both fundamental neuroscience research and brain-machine interface (BMI) applications. Pre-
vious studies by [Gallego et al.| (2020) and Safaie et al.[ (2023) revealed preserved latent dynamics
across time and subjects performing similar behaviors using the PCA method. However, the latent
dynamics revealed by NMR (as shown in Figs are significantly more informative than those
uncovered by PCA. We believe NMR will help neuroscientists probe the stability of latent dynamics
under various conditions.

For BMI applications, we demonstrate that NMR, combined with a simple linear decoder, can pre-
dict hand movements across years, subjects, and hemispheres. This capability allows for training
latent dynamics within and between subjects, enabling the prediction of movements in other sub-
jects. The linear decoder’s lack of hyperparameters is an additional advantage. Furthermore, NMR
also revealed almost perfectly aligned 2D latent dynamics in a paralyzed human patient, further
highlighting its potential for use in BMI applications for humans.

If the ultimate goal of a dimensionality reduction method is to align latent dynamics with any move-
ments, then NMR is still far from achieving this. For the three movement tasks evaluated in this
study, the movement trajectories are relatively simple. For complex movements like handwriting
characters such as ”m” or ’k” (Willett et al., 2021)), the latent dynamics will collapse. We believe
this is due to the calculation of label distance; geodesic distance might be more suitable than Man-
hattan or Euclidean distance. Furthermore, we consider speech (Silva et al.,[2024)—which involves
coordinated movements of the jaw, tongue, lips, and larynx—to be one of the most challenging
movement tasks. We believe it is still feasible to reveal the latent dynamics, though they are un-
likely to be 2D, if the label distance of articulatory kinematic trajectories (AKTs) (Chartier et al.,
2018) can be quantified. A model may need to reduce the dimensionality of both AKTs (coordinated
movements in 13 dimensions) and neural dynamics.
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A APPENDIX

A.1 CODE

Operating system: Ubuntu 22.04.3 LTS, GPU: NVIDIA RTX A5000, CPU: Intel Xeon W-2225.

We have uploaded all of our code, including the modified loss function, preprocessing scripts, and
figure generation code. We modified only four files in the “cebra” code folder. The latest CEBRA
version that we used was released on January 10, so all files except these four have a modified date
of January 10. The modified files include two in the data folder (single_session.py and datatypes.py)
and two in the solver folder (single_session.py and base.py). We revised three of four files for data
sampling (retain continuous labels) as follows:

In single_session.py (Lines 69-71, 76-79), we retained continuous labels for computing the ConR
loss later on. Notably, NMR and CEBRA both utilize continuous labels in continuous.py within the
“distribution” folder, which we did not modity.

Lines 69-71 for extracting continuous labels and ConR parameters from inputs

XY_position = self.continuous_index[:, 0:2]
Z_target = self.continuous_index[:, 2] [index.reference]
para = self.continuous_index[0:4, 3]

Lines 76-79 for retaining continuous labels

index_ref = XY _position[index.reference, 0]
index_pos = XY_position[index.reference, 1]
Z_target = Z_target,

para = para

14
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We commented out two lines (Line 75 and 260) because the computation of the ConR loss does not
require the embeddings or indices of negative samples extracted by CEBRA.

negative=self[index.negative],
negative_idx = reference_idx[num_samples:]

Original file for reference:

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
data/single_session.py#

In datatypes.py (Lines 55-58 and 64-67 to add labels, and Lines 54 and 63 to comment out neg-
ative samples), we used this file to retain the continuous labels, serving a similar purpose as sin-
gle_session.py. Original file for reference:

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
data/datatypes.py#L46

In the solver folder, single_session.py (Lines 72-76 for adding labels and Line 71 for commenting
out negative samples) also retains the continuous labels but on the GPU, fulfilling the same function
as the files above. Original file for reference:

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
solver/single_session.py#L59

The computation of ConR loss is implemented in base.py in the solver folder. This file contains
two key parts: Target label prediction (Lines 346-356), where we use linear regression on the CPU
with scikit-learn. ConR loss calculation (Lines 61-163), where we use two embeddings, real and
predicted labels, and two parameters. Original file for reference:

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
solver/base.py#L225

A.2 INFONCE vs CONR LOSS

The computation of InfoNCE loss contains these key five lines of code:

# feature similarity of all positive and negative samples
1. pos_dist = einsum("nd,nd->n", ref, pos)/tau

2. neg_dist = einsum("nd,md->nm", ref, neg)/tau

# attract similar samples

3. pos_loss = -pos_dist.mean ()

# repel dissimilar samples

4. neg_loss = logsumexp (neg_dist, dim = 1) .mean()

# minimize this loss during in each epoch

5. loss = pos_loss + neg_loss

The computation of ConR loss contains these key ten lines of code:

=

feature similarity of all samples
logits = - (features([:, None, :] - features|[None, :, :])
.norm (2, dim=-1).div(t)

=

pushing weight
pushing w = inverse_freqg » torch.exp(l_dist_XY *x e) % neg_i

# find positive pairs, I_dist is the true pairwise distance,
# w is distance threshold

2. pos_1 = 1_dist.le(w)

# find negative pairs, p_dist is the the predicted distance
3. neg_i = ((7(l_dist.le(w))) x (p_dist.le(w)))

# feature similarity of positive samples

4. pos = torch.exp(logits * pos_1i)

# feature similarity of negative samples

5. neg = torch.exp(logits * neg_1i)

#

6.
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# denominator (equation on the right)

7. neg_exp_dot = (pushing_w * neg).sum(l)

# denominator

8. loss_single_denom = (pos.sum(l) + neg_exp_dot) .unsqueeze (-1)
# single sample ConR loss (numerator/denominator)

9. loss_single = torch.div(pos, loss_single_denom)

# sum and averaged over all samples in the batch

10. loss = (-torch.log(loss_single) * pos_i).sum(1l)

/ (pos_i.sum(1l)) .mean ()

A.3 SAMPLING

A.3.1 NEGATIVE SAMPLES

The key difference between two losses is the selection of negative samples, which are dependent
and independent of behavioral labels in NMR and CEBRA, respectively. Here, we put the codes and
their links of negative sampling in CEBRA when supervised with continuous labels.

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
data/single_session.py#L162

L162 class ContinuousDatalLoader(cebra_data.Loader): ”Contrastive learning conditioned on a con-
tinuous behavior variable.”

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
data/single_session.py#L249

# call \sample_prior" function in continuous.py file
in the \distributions" folder

1249 reference_idx = self.distribution.sample_prior (num_samplesx2)
L250 negative_idx = reference_idx[num_samples:]
L251 reference_idx = reference_idx[:num_samples]

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
distributions/continuous.py#L34

class Prior(abc_.PriorDistribution, abc_.HasGenerator):” An empirical prior distribution for continu-
ous datasets.”

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/

distributions/continuous.py#L52

def sample_prior(self, num_samples: int, offset:

Optional [Offset] = None) -> torch.Tensor:

"Return uniformly sampled indices."

# random integers from low to high

return self.randint (self.offset.left, self.num_samples -
self.offset.right, (num_samples,))

The CEBRA paper (5th paragraph of Methods/Sampling) also stated that “In the simplest case,
negative sampling returns a random sample from the empirical distribution by returning a randomly
chosen index from the dataset.”

A.3.2 POSITIVE SAMPLES

NMR used the same positive samples extracted by CEBRA.

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
data/single_session.py#L252

This indices of positive samples are assigned in this line:

positive_idx = self.distribution.sample_conditional (reference_idx)
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This function will call ”sample_conditional” from “TimedeltaDistribution” class in continuous.py
file in the “distributions” folder:

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
distributions/continuous.py#L200

This is where “TimedeltaDistribution” is defined which will define a conditional distribution based
on continous behavioral changes over time:

class TimedeltaDistribution() :

self.data = continuous # continuous movements labels

self.time_differencel[time_delta:] = (self.data[time_delta:]
- self.data[:-time_deltal)

self.index = cebra.distributions.ContinuousIndex (self.data)

It will call the ContinuousIndex function in the index.py file of the same folder

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
distributions/index.py#L131

This is where ”ContinuousIndex” is defined:

class ContinuousIndex (distributions.Index) :
def search(self, query):

distance = self.dist_matrix(query),

return torch.argmin (distance, dim=0)

It will call ”DistanceMatrix” that is defined in:

https://github.com/AdaptiveMotorControlLab/CEBRA/blob/main/cebra/
distributions/index.py#L55

It will use most naive neighbor search implementation that involves the brute-force computation of
distances between all pairs of points in the dataset.

class DistanceMatrix (cebra.io.HasDevice) :

This is where ”sample_conditional” is defined:

https://github.com/AdaptiveMotorControllLab/CEBRA/blob/main/cebra/
distributions/continuous.py#L240

def sample_conditional (self, reference_idx)-> torch.Tensor:

num_samples = reference_idx.size (0)
# return random integers
diff_idx = self.randint (len(self.time_difference), (num_samples,))
# time-offset to reference as positive samples
query = self.data[reference_idx] + self.time_difference[diff_ idx]

# call the search function mentioned earlier
return self.index.search (query)

A.4 PARAMETERS AND HYPERPARAMETERS

All parameters and hyperparameters for our models are presented in the seven main figures, the
thirteen supplementary figures, and summarized Table [T} Additionally, since all training was done
in Jupyter Notebook, the hyperparameters are also saved there. Please note that the input data for
both NMR and CEBRA are identical. For NMR and CEBRA, no validation data is used; instead, an
80/20 split is applied for training and testing. In contrast, the pi-VAE model uses a 60/20/20 split for
training, validation, and testing. pi-VAE was executed on a CPU due to issues with an older version
of TensorFlow, which is why we did not compare its execution time with that of NMR and CEBRA.
The execution time refers to the training or model fitting time and is associated with the following
line of code for both CEBRA and NMR:
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model.fit (neural, continuous_index)
The inference time corresponds to the line of code:
model.transform(neural)

It converts raw neural dynamics into latent dynamics. This operation is performed on a CPU and
takes approximately 0.1 seconds, being similar for both models.

Table 1: Parameters and hyperparameter for NMR and CEBRA models. The XY coordinates rep-
resent either hand positions (Figures 1 and 7) or velocities (Figures 2—-6). Note that hand reaching
angles range from O to 360 degrees, but the XY coordinates (maxXY) have different units—such as
cm/s or m/s—and may represent different metrics like position or velocity. Since we need to sum
the absolute distances of the X-coordinate, Y-coordinate, and angle, we multiply the XY coordinates
by a scale factor (XY2Z). This means smaller XY coordinates will have a larger magnification, and
vice versa. ITR: iterations, BS: batch size, LR: learning rate, TEMP: temperature 7, maxXY: maxi-
mum values of X and Y coordinates, XY2Z: magnification ratio of XY coordinates, PCG: precentral

gyrus.

Figure ITR (1K) BS LR TEMP maxXY XY2Z
1_S1 positions_NMR 20 512 0.001 0.045 13 50
2_M1_NMR 10 512 0.001 0.07 33 10
2_MI1_CEBRA 5 512 0.001 0.08 33 10
2_PMd_NMR 5 512 0.001 0.08 33 10
2_PMd_CEBRA 10 512 0.001 0.08 33 10
4 M1_NMR 5 512 0.001 0.065 33 10
4 M1_CEBRA 5 512 0.001 0.1 33 10
4_PMd_NMR 5 512 0.001 0.065 33 10
4_PMd_CEBRA 5 512 0.001 0.1 33 10
5_M1 sort_NMR 10 512 0.001 0.06 0.2 2000
5_M1 sort_CEBRA 10 512 0.005 0.1 0.2 2000
5-M1 unsort NMR 10 512 0.0005 0.06 0.2 2000
5_M1 unsort CEBRA 10 512 0.0005 0.1 0.2 2000
6_M1+PMd_NMR 10 512 0.0001 0.08 31 10
6_-M1+PMd_CEBRA 10 512 0.0001 1 31 10
7_PCG positions_ZNMR 10 512 0.0001 0.06 4 100
7_PCG positions_CEBRA 10 512 0.0001 0.1 4 100

A.5 DECODING CROSS MULTI-SESSIONS

For training model cross multiple sessions, the model needs to be trained separately for each session
or animal. We achieved this by iterating through all datasets in the designated folder. In the uploaded
Jupyter Notebooks, all .ipynb files that have “batch” in their name indicate they are designed for
multi-session training. For example, the file “Fig2_ NMR_SU_Batch_PMd.ipynb” trains the NMR
model on all neural data from PMd.

In the Fig 3] which presents the cross-session decoding experiment. In this experiment, the only
fine-tuning performed was rotating the angles of the latent dynamics. This was necessary because,
in some sessions, the angles of the extracted latent dynamics were rotated by 45 degrees or flipped
relative to the ground truth movement trajectories. To address this, we used the orthogonal Pro-
crustes method from SciPy:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.
orthogonal_procrustes.html

Using this method, we selected a target angle and rotated the entire 3D latent dynamics with the
computed orthogonal matrix. This alignment preserves local details and the relative positions of
each reaching direction. Once all latent dynamics were aligned with their corresponding movements,
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we trained a linear regression decoder on 80% of the training data from one session and used it to
decode movements in other sessions with the 20% held-out test data. This information has been
added to the revised manuscript.

A.6 DATASETS

We have evaluated in a total of 1+28+37+1+1+=68 sessions.
Eight direction center-out reaching (Fig[I): 1 monkey, 1 session

The neural data was recorded from Somatosensory cortex. The data will be downloaded in the
CEBRA software pakcage automatically.

Eight direction center-out reaching (Fig 2BH): 2 monkeys, 28 sessions
https://datadryad.org/stash/dataset/doi:10.5061/dryad.xd2547dkt
This data is released accompanying this paper |Gallego-Carracedo et al.| (2022):
https://elifesciences.org/articles/73155%data

The data is Matlab format and we extract following information: tgtDir (Target direction, radians
for Monkey Chewie and Mihali), idx-goCueTime (The time go Cue is one), vel(XY velocities), M1-
spikes for both Chewie 2015 and Chewie 2016, and PMd-spikes only for Chewie 2016. The time
bin is 30ms and we extract all the spikes after each go Cue. We extracted 40 bins for both monkeys.
We smoothed the discrete spike count in the Matlab using a Gaussian kernel. The standard deviation
is 1.5 and kernel size is six standard deviations. We keep all the trials and neurons.

Natural movements in 9 x 9 Grid (FigE]) (O’Doherty et al.,[2017):1 monkey, 37 sessions
https://zenodo.org/records/583331

Natural movements with random targets (Fig@) (Lawlor et al., 2018): 1 monkey, 1 session
https://crcns.org/data-sets/motor-cortex/pmd-1/about-pmd-1

We used the first session of Monkey MM that performed 496 trials of reaching tasks. There are 67
neurons in M1 and 94 neurons in PMd.

Human Handwriting (Fig (Willett et al.,[2021): 1 patient, 1 session
https://datadryad.org/stash/dataset/doi:10.5061/dryad.wh70rxwmv

Table 2: Datasets information for decoding across sessions, hemispheres, animals, and years related
to Fig[3| n/a: no recordings in the PMd of right hemisphere.

Date  Monkey Hemisphere Trial M1 PMd

140217 Mihili Right 208 44 104
140218 Mihili Right 225 38 121
140303 Mihili Right 208 52 66
140304 Mihili Right 203 39 76
140306 Mihili Right 217 43 86
140307 Mihili Right 216 26 66
150313  Chewie Right 1038 86 n/a
150309  Chewie Right 1026 72 n/a
150629  Chewie Right 179 49 n/a
150630 Chewie Right 178 44 n/a
160929  Chewie Left 208 74 114
161005  Chewie Left 202 82 167
161006  Chewie Left 209 63 192
161007  Chewie Left 168 70 137
161014  Chewie Left 740 88 190
161021  Chewie Left 286 84 211
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a Hand positions C 2D latent dynamics with
PCA

r2=0.3384

b 2D latent dynamics d 2D latent dynamics with

with NMR only one positive pair

Run #1 r2=0.9671 r2=0.9516

e 2D latent dynamics with

pushing weight set to one
Run #2 r2=0.9639 : r2=0.4228

Figure 8: Single-trial and trial-averaged hand positions and latent dynamics. a Ground truth move-
ment trajectories. b Two additional examples of Fig[Tb (right panel). ¢ 2D latent dynamics extracted
using PCA applied to raw 65D neural signals. d 2D latent dynamics extracted with NMR, containing
only one positive pair (i.e., its own augmented sample with the same label and zero distance to the
anchor sample). e 2D latent dynamics extracted with NMR, with the pushing weight .S; ,, set to one.
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Figure 9: Hyperparameter tuning and stability of CEBRA. a. Hyperparameter search across five dif-
ferent iterations and six different temperatures. The evaluated session is from Monkey C (20161014,
M1). b. A finer hyperparameter search at 10,000 iterations. ¢. Explained variance (left) and decoded
variance (right) at two different iteration numbers across 14 sessions in M1.
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Figure 10: Hyperparameter tuning and stability of pi-VAE. a. Hyperparameter search across four
different iterations and four different learning rates. The evaluated session is from Monkey C
(20161014, M1). b. Similar search, but using a larger batch size. ¢. Explained and decoded vari-
ance under different iteration numbers and across multiple runs. Note that the performance shows a
similar trend across sessions but has larger variability within each session. d. Similar to panel c, but
models are evaluated in PMd.
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a —&-NMR 20% test trials of 2D models
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Figure 11: Test trial performance and 3D model comparison. Same format as Figure 2, but for held-
out 20% test trials using 3D CEBRA and pi-VAE models. a. Decoded 12 across sessions in M1 and
PMd using 2D models. b. Explained 12 and ¢. Decoded 12 for 2D NMR compared to 3D CEBRA
and 3D pi-VAE models.

NMR CEBRA pi-VAE
Monkey dia: 0.71, off-dia: 0.45 dia: 0.45, off-dia: 0.35 dia: 034 off-dia: -0.49

20140217
20140218
M< 20140303 08
20140304
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20160929 o
20161005 :
€<20161006
20161007 0.2
20161014
20161021 0.0

Figure 12: Decoding results in PMd, following the same format as Fig[3] The t-statistics and p-values
for the diagonal values are 10.1821 and 1.9¢-06 (NMR vs CEBRA), 5.0372 and 1.1e-03 (NMR vs
pi-VAE), 1.8407 and 0.2783 (CEBRA vs pi-VAE). The t-statistics and p-values for the off-diagonal
values are 6.5845 and 3.0e-09 (NMR vs CEBRA), 6.2945 and 1.3e-08 (NMR vs pi-VAE), 5.7219
and 2.0e-07 (CEBRA vs pi-VAE).
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Figure 13: Hyperparameter tuning for two models. a. Explained variance across four iterations and
eight temperatures in the high Gamma band (200-400 Hz) for NMR. b. Similar tuning results for
CEBRA in the LMP (smoothed LFP signals) and Gamma bands.
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Figure 14: Decoding performance on held-out test trials, following the same format as Fig[4]
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Figure 15: Explained variance under different hyperparameters. a. Variance results for four different
learning rates, smaller batch sizes (256 vs. 512), and fewer iterations (5,000 vs. 10,000). b. Results
for three different learning rates. ¢. Comparison between two runs using the same learning rate but
higher iterations (200 vs. 100) and a much lower learning rate.
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Figure 16: Decoding performance for test trials (a) and 3D CEBRA/pi-VAE models (b, ¢).

24



Under review as a conference paper at ICLR 2025

a NMR vs CEBRA: Multi-unit Hash
1)
2 200
o
v
[
£ 1751
g —&— NMR
= 150 4 —&— CEBRA
S
3 1251
Q
>
b NMR: Single-unit spike
. 200
0 —o— Irle-4
“E’ 150 —o— Ir5e-4
= —o— Irle-3
§ 100 4 —o— Irse-3
2 —o— bs256
g 50 1 —e— itr5k
0
— 200
C)
Q
£ 150 1 —o— Ir5e-4
.5 100 4 —o— Irle-3
] —o— Ir5e-3
(9]
2 50
w
0
PP ISP TP TPITIS 0"6"&’0 "'6"6”6”0 I PFPPIF I PP
S %'043’@‘» "190/1« 'i‘%“ 4"06\4\%6“ xi”&ta’l«z‘f’\’foﬁ‘ S @‘L”/ﬁ’"‘i\‘%"’
SERRES bbbbbb SE LS BOL6%6
N R N A N N N AN AN AN IV TN xxsxs OXOOE GO O QAN
¢°'»°w°¢°w°w°"19¢°w°w°'1,°w°¢°’»°¢°w°w°¢°w°¢°¢°¢°m°¢°w°w°¢°w°w°m°¢°w°w°¢°’»°w o

Figure 17: Execution time for NMR and CEBRA models. a. Same format as Figure 5f, but for
unsorted events. b. Comparison of execution times for four different learning rates, smaller batch
sizes, and fewer iterations. ¢. Execution time results for three different learning rates.

Consistency (20 runs) of 20% Test Trials Execution time
0.75 { [ 200 1 o
- é’@
% o NMR | _ o [%o°
0.50 - " °®
r2 ®° o CEBRA T 100 |
& 58« ®ol o pivAE E
0.00 - 0 .

Figure 18: Model decoding performance in the testing trials and execution times.
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Figure 20: 2D latent dynamics of the three models and performance across different conditions. a.
2D latent dynamics in training trials (left) and held-out test trials (right). b. Explained variance of
hand velocities in training and test trials at two sets of iterations. ¢. Similar analysis for 3D CEBRA
and pi-VAE models. d. Execution time comparison between NMR and CEBRA at two different

iteration levels
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