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Abstract

Training and fine-tuning Large Language Models (LLMs) require substantial com-
putational resources and time due to their large model sizes and optimizer states.
To address these challenges and enhance accessibility, several memory-efficient
techniques have been introduced. For instance, Low-Rank Adaptation (LoRA)
optimizes model weights within a low-rank subspace, while Gradient Low-Rank
Projection (GaLore) reduces the memory footprint by projecting gradients into a
lower-dimensional space. In this paper, we introduce Gradient Subspace Tracking
(SubTrack), a method that restricts optimization to a compact core subspace of the
gradient matrices, and efficiently updates its subspace estimation by leveraging
estimation errors and previously identified subspaces. Our results show that even
with rank-1 updates to the underlying subspace, SubTrack achieves performance
comparable to or better than GaLore, while reducing runtime by an average of
15% and up to 20.56% on some datasets.

1 Introduction

Large Language Models (LLMs) have achieved state-of-the-art performance across numerous tasks;
however, their training and fine-tuning demand substantial resources, making them impractical for
many applications. [32, 12, 22, 20, 21, 10, 16]. As a result, there is an acute need to develop
memory-efficient methods to democratize their use and mitigate environmental impacts. Several
techniques, such as gradient checkpointing [5] and memory offloading [23] have been proposed to
lower memory usage. In this context, Parameter-Efficient Fine-Tuning (PEFT) approaches focus on
optimizing a subset of model parameters or operating in a lower-dimensional space to reduce memory
usage [7, 29, 17, 24, 27, 20, 11]. Notably, LoRA [11] decomposes weight matrices into two low-rank
matrices, optimizing parameters in a lower-dimensional space.

Memory requirements are not limited to the trainable parameters, and a significant portion is consumed
by the optimizers. To address this, more recently reducing the optimizer parameters have been another
area of focus [15, 1, 19, 6, 31, 21, 32, 22]. GaLore [32] reduces memory usage by projecting gradient
matrices into a low-rank subspace by performing periodic Singular Value Decomposition (SVD) on
the gradient matrix, to get a rank-r estimation of the gradient space. This approach presents several
challenges. First, SVD is computationally expensive, and if the gradient does not evolve within a
nearly constant subspace, GaLore must increase the frequency of SVD operations. This poses a
significant issue since not all layers’ gradients converge to a stable subspace early in the training
process [12]. Moreover, applying SVD to a single gradient matrix can be influenced by data noise
[26], and GaLore does not use 1) the information in the orthogonal space [21] or 2) the previously
computed subspaces to alleviate this effect, thus slowing convergence.

To this end, we propose Gradient Subspace Tracking (SubTrack), a Grassmannian-based subspace
tracking method that efficiently updates the subspace using rank-1 updates. SubTrack accumulates
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gradients between two update steps to reduce noise effect and leverages information from the
orthogonal complement to enhance subspace estimation through simple linear algebra operations
which are more computationally efficient compared to GaLore, as SubTrack does not perform periodic
SVD on the main gradient matrices. Additionally, SubTrack dynamically captures changes in the
gradient subspace and reduces the jumps in subspace updates, for faster convergence.

2 Related Works

LoRA [11], is a widely recognized method for reducing the number of trainable parameters. It
projects the model weights into a lower-dimensional space, which in turn reduces memory require-
ments. Dettmers et al. [7] employ quantization techniques and paged optimizers on top of LoRA to
further reduce memory usage. Yaras et al. [29] introduced Deep LoRA, which utilizes deep matrix
factorization to address overfitting and reduce the need for precise tuning of the rank parameter.
Several other works also extend LoRA to improve the efficiency of training large models [17, 24, 27].
Miles et al. [20] propose compressing the intermediate activation vectors and then reconstructing
them for a proper backpropagation. Additionally, Hao et al. [10] demonstrate that full-parameter
fine-tuning is feasible by employing random projections to the gradient matrix by showing that LoRA
is essentially a down-projection of gradient.

Several approaches focus on reducing memory consumption in optimizers, as optimizers like Adam
[14] are responsible for a substantial portion of memory usage [15, 1, 19, 6, 31]. MicroAdam [21]
addresses this by compressing the gradient space while using the resulting error via feedback loops.
According to Gur-Ari et al. [9], a substantial portion of gradients tends to lie within a small subspace
that remains largely consistent. This observation has been approved by multiple studies, including
Schneider et al. [25], Yaras et al. [28]. Gradient Low-Rank Projection (GaLore) [32] leverages this
property of gradient space to reduce memory requirements by projecting gradients into a lower-
dimensional subspace. This approach has been successfully integrated with other methods to further
reduce memory usage during fine-tuning [16]. However, not all layer gradients in an LLM evolve
in a low-rank subspace. Jaiswal et al. [12] identify layers with constantly changing gradients where
low-rank projection is inefficient. By analyzing the singular values’ distribution, they select layers
that evolve within a small subspace for fine-tuning, while freezing the others. Gradient Structured
Sparsification (Grass) [22] further minimizes memory usage by applying sparse projection matrices,
transforming the gradient matrix into a sparse vector space.

When working with high-dimensional data, a common strategy is to project the data into a lower-
dimensional space, and there are many studies focusing on cases where the underlying subspace
evolves over time. Balzano et al. [2] introduce an incremental method for updating subspaces on the
Grassmannian manifold when data is partially observed. Zhang and Balzano [30] and Kasai [13]
address the challenge of noisy data in streaming and evolving environments, and Blocker et al. [4]
introduced a method for time-varying data based on Geodesics in Grassmannian space.

3 SubTrack: Tracking the Gradient Subspace

Since gradients tend to evolve within a small subspace, compressing the gradient space can effectively
reduce the optimizers’ memory footprint. However, the gradient’s subspace does not always remain
stable, and tracking this changes is crucial for optimization purposes. GaLore [32] addresses this
by periodically performing SVD on gradient matrices. We propose Gradient Subspace Tracking or
SubTrack, a computationally efficient method for tracking gradient subspaces. SubTrack leverages
information in the orthogonal space and the previously computed subspace to update the core
subspace. The subspace initialization is performed using SVD, as follows

G0 = UΣV ⊤ ≈
r∑

i=1

σiuiv
⊤
i , P0 = [u1, u2, ..., ur], Q0 = [v1, v2, ..., vr]. (1)

Here, G0 is an m × n gradient matrix at step 0, and U , S, and V are its SVD components, with r
representing the specified rank. At each optimization step, we project the gradients onto left singular
vectors subspace if m ≤ n, and onto right singular vectors otherwise, to further optimizing the
memory usage[32]. The optimization then takes place in this subspace and afterward, the gradient is
projected back, enabling full parameter tuning. Henceforth, we assume that m ≤ n w.l.o.g.
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To utilize the orthogonal space while mitigating the effects of noise, SubTrack computes an accumu-
lated gradient by averaging the gradients between two subspace update steps, as shown below, where
Tn and Tn−1 are the steps in which we update the underlying subspace.

Gacc =
1

Tn − Tn−1

Tn∑
t=

Tn−1

Gt (2)

We then frame the problem of identifying the subspace as selecting the appropriate element from the
Grassmannian, which is the set of all d-dimensional subspaces within an n-dimensional vector space
[3]. Our goal is to minimize the Euclidean distance between the current subspace and the observed
accumulated gradient Gacc at each update step, with the cost function defined as

F (St) = min
A
∥StA−Gacc∥2F , (3)

where St is an orthonormal matrix whose columns span the current subspace and A is the answer
of the least square problem. The derivative of this function with respect to St is in (4), and R =
Gacc − StA lies in the orthogonal complement of St. We then compute the tangent vector∇F on
the Grassmannian manifold for updating the subspace in the given direction [8] as in (5), in which
the second equality holds as R is orthogonal to StS

⊤
t .

∂F

∂St
= 2(StA−Gacc)A

⊤ = −2RA⊤ (4)

∇F = (I − StS
⊤
t )

∂F

∂St
=

∂F

∂St
= −2RA⊤ ≈ ÛF Σ̂F V̂

⊤
F (5)

∇F gives the direction for adjusting the subspace considering the error that lies in the orthogonal
complement; however, to keep subspace changes to a minimum; SubTrack first computes a rank-1
estimation of ∇F indicated by its largest singular value and associated singular vectors gained form
its SVD, represented as ÛF Σ̂F V̂

⊤
F , for updating the subspace. As demonstrated by Edelman et al.

[8], Bendokat et al. [3], the subspace can be updated with a step of size η on the Grassmannian using
the SVD of associated tangent vector, as shown in Equation 6.

St+1(η) = (StV̂F ÛF )

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St(I − V̂F V̂

⊤
F ) (6)

Using the geometry of Grassmannian manifold, SubTrack effectively tracks the underlying subspace
of gradient space, and Algorithm 1 presents the pseudo-code of this method.

4 Experiments

Fin-Tuning Experiment.To ensure a fair comparison of computational efficiency between SubTrack
and GaLore, we fine-tuned RoBERTa-Base [18] measuring the corresponding wall-time and per-
formance while keeping all shared hyperparameters consistent. Wall-time is the real-world elapsed
time it takes for a process or operation to complete, measured from start to finish, including both
the actual runtime and any waiting time for resources or data retrieval. To compare wall-time,
RoBERTa-Base was fine-tuned on GLUE tasks for 2500 iterations, with the subspace update interval
set to 500 iterations with ranks 4 and 8. Consequently, both methods update the underlying subspace
exactly five times, and evaluation steps were excluded to ensure an accurate runtime comparison.
For performance evaluation, the model was fine-tuned on these tasks for 30 epochs, with results
presented in Table 1. As shown, SubTrack reduces runtime by up to 20.56%. Despite restricting
updates to rank-1 changes to the previous subspace, Table 1 demonstrates that SubTrack achieves
performance comparable to or even surpassing that of GaLore. Further experimental details are
provided in Appendix A.

Runtime Consistency. Figure 1 compares the wall-times of GaLore and SubTrack across subspace
update intervals ranging from 50 to 500 while fine-tuning RoBERTa-Base on the COLA task with
an NVIDIA T4 GPU. The subspace update interval denotes the number of iterations between two
updates; thus, increasing this interval reduces the update frequency. As shown, GaLore’s runtime
significantly increases with more frequent subspace updates, whereas SubTrack maintains minimal
runtime overhead regardless of the update frequency.
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Algorithm 1 SubTrack

Require: Sequence of m × n gradients Gt with m ≤ n (w.l.o.g.), step-size η, rank r, subspace
update steps k
Initialize Subspace via SVD Decomposition:
P0 ← U [:, : r] , where U,Σ, V ← SVD(G0)
S0 ← P0 {The initial subspace}
Gacc = 0m×n {To keep the accumulated gradient}
for t = 1, . . . , T do

if t mod k = 0 then
Prepare accumulated gradients: Gacc =

Gacc+Gt

k
Update subspace:
Glr = argminA ∥(St−1A−Gacc)∥2 {Solving the least square problem}
R = Gacc − St−1Glr {Computing the residual}
∇F = −2RG⊤

lr ≈ ÛF Σ̂F V̂
⊤
F {Computing the rank-1 estimation of tangent vector}

St = (St−1V̂F ÛF )

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St−1(I − V̂F V̂

⊤
F ) {Updating the subspace}

Reset accumulated gradients: Gacc = 0m×n

else
Keep using previous subspace: Gacc = Gacc +Gt , St = St−1

Return final projected gradient to the optimizer: S⊤
t Gt

Table 1: Evaluating SubTrack and GaLore on their performance and runtime when fine-tuning RoBERTa-Base
on GLUE tasks for ranks 8. All hyperparameters including scale-factor and subspace update interval are the
same. SubTrack achieved better average performance compared to GaLore while spending a considerably less
time for fine-tuning. The performance is measured after fine-tuning for 30 epochs. Wall-times are reported in
seconds, and are measured after fine-tuning for 2500 iterations, removing the evaluation steps while performing
exactly 5 updates for having a fair comparison between these two methods.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP Avg

GaLore [32] Perf. 60.34 90.58 92.58 76.53 94.27 87.12 92.20 87.86 85.18
Rank = 4 Time 195.7 195.1 200.2 325.8 185.7 206.8 216.5 190.4 214.5

SubTrack (Ours) Perf. 61.32 90.64 92.66 77.98 94.15 86.85 91.85 87.50 85.37
Rank = 4 Time 155.7 158.0 172.7 305.7 147.5 175.0 192.2 155.8 182.8

Reduction in Wall-Time 20.44% 19.02% 13.74% 6.17% 20.57% 15.38% 11.22% 18.17% 15.59%

GaLore [32] Perf. 58.54 90.61 91.30 74.37 94.50 87.34 92.71 87.99 84.67
Rank = 8 Time 188.0 195.6 196.5 328.3 187.1 208.0 217.1 189.4 213.7

SubTrack (Ours) Perf. 58.54 90.87 91.43 76.53 94.27 87.09 92.49 87.57 84.85
Rank = 8 Time 149.4 159.1 171.2 304.9 148.9 177.1 192.1 156.8 182.4

Reduction in Wall-Time 20.56% 18.68% 12.87% 7.11% 20.37% 14.89% 11.48% 17.21% 15.40%

5 Discussion and Conclusion

We proposed a computationally efficient method that projects gradients into a lower-dimensional
subspace, updating this subspace by tracking its changes over time. SubTrack preserves the previously
computed subspace and incorporates gradient components from the orthogonal complement to
perform rank-1 updates. This approach reduces the frequency of abrupt transitions between iterations
and leverages the available information effectively.

In some cases, the extent of changes in the subspace may require updates of rank greater than 1.
During our experiments, we observed that applying updates as per (6), using the SVD of the tangent
vector from (5), can hinder convergence if the singular values of the tangent vector become very
small. Furthermore, simultaneously updating subspace dimensions associated with sufficiently large
singular values caused convergence issues in some cases. Therefore, we restricted updates to rank-1
in this paper, as this approach still enabled SubTrack to achieve performance comparable to or better
than GaLore, with reduced runtime. In future work, we plan to explore increasing the rank of updates
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Figure 1: Comparing runtimes of GaLore and SubTrack. RoBERTa-Base is fine-tuned for 10 epochs on COLA.
Subspace update intervals range from 50 to 500. Notice that by increasing subspace update interval, the update
frequency actually decreases, as it indicates the number of iterations between two subspace update steps.

without compromising convergence. Additionally, dynamically selecting the step size could eliminate
the need for manual tuning as a hyperparameter and further enhance convergence.
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A Fine-Tuning RoBERTa-Base

To compare the computational efficiency and performance of SubTrack with GaLore, we fine-tuned
RoBERTa-Base using the hyperparameters reported in Table 2, which are identical to those reported
in the GaLore paper for rank-4 and rank-8 subspaces, with a subspace update interval of 500 iterations.

Table 2: Hyperparameters of fine-tuning RoBERTa-Base.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 1E-05
SubTrack Step Size 0.001 0.001 1.5 0.1 0.0001 0.001 1.0 1.0

Rank Config. r = 4
α 4

Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
SubTrack Step Size 0.001 0.01 15.0 3.0 0.001 0.001 1.0 1.0

Rank Config. r = 8
α 2

Max Seq. Len. 512
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