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ABSTRACT

Time-series modeling is broadly adopted to capture underlying patterns and trends
present in historical data, allowing for prediction of future values. However, one
crucial aspect in such modeling is often overlooked: in highly dynamic environ-
ments, data distributions can shift drastically within a second or less. Under this
circumstance, traditional predictive models, even online learning methods struggle
to adapt to the ultra-fast and complex distribution shift present in highly dynamic
scenarios. To address this, we propose InstaTrain, a novel learning paradigm that
enables frequent model updates with microsecond-level intervals for real-world
prediction tasks, allowing it to keep pace with rapidly evolving data distributions.
In this work, (1) We transform the slow and expensive model training process
into an ultra-fast natural annealing process that can be carried out on a dynami-
cal system. (2) Leveraging a recently proposed electronic dynamical system, we
augment the system with a parameter update module, extending its capabilities to
encompass both rapid training and inference. Experimental results across highly
dynamic datasets demonstrate that our method delivers on average, a significant
∼4,000× training speedup, ∼ 105× reduction in training energy costs, and a re-
markable lower test MAE over SOTA methods running on GPUs without / with
the online learning mechanism.

1 INTRODUCTION

Time-series prediction lies at the heart of artificial intelligence, powering applications ranging from
weather forecast (Karevan & Suykens, 2020; Hewage et al., 2020) to product and content recom-
mendation (Kang & McAuley, 2018; Zhang et al., 2021). Current neural network methods have
achieved remarkable success by learning the joint distribution between inputs and predictions (Lim
& Zohren, 2021; Patton, 2013). However, these methods often implicitly assume that the learned
joint distribution remains stable over a considerably long period, an assumption that can easily be
violated when the underlying distribution undergoes severe shifts, consequently causing significant
failures in pre-trained models. In response to this challenge, the community has pivoted towards
more adaptive learning strategies, such as online learning and continual learning approaches (Hoi
et al., 2021; Chen et al., 2021; He & Sick, 2021; Prabowo et al., 2023). These methodologies are
designed to incrementally adjust model parameters, thereby maintaining alignment with current data
trends. Despite their advancements, they struggle to adapt to the circumstances in which data dis-
tribution evolves rapidly due to their insufficient adaptation speed. This underscores the pressing
need for even more agile and responsive learning mechanisms that can swiftly adapt to shifts in data
distribution and ensure model effectiveness.

In the post-Moore’s Law era, the limitations of speed improvements in digital processors (such as
CPUs and GPUs) have become more pronounced, attracting growing attention in novel comput-
ing substrates that harness natural power, a promising yet largely untapped area of research. As a
promising candidate, a recently emerged electronic dynamical system (Afoakwa et al., 2021; Sharma
et al., 2022) stands out, demonstrating the capability to support ultra-fast computing due to its re-
markable low power consumption and exceptionally fast computational speed. Rooted in statistical
physics, the behavior of the system is governed by its Hamiltonian (energy function), similar to nat-
ural dynamical systems where particles naturally move toward lower energy states. In the electronic
dynamical system, lower energy states are rapidly reached through natural annealing – the auto-
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matic movement of electrons among capacitors seeking equilibrium at “speed of electrons”, with
minimal power consumption in milliwatt-scale.

However, despite this system having been utilized to accelerate graph learning inference in previ-
ous work (Wu et al., 2024), the model training process still relies on traditional digital processors,
where the training speed falls short of keeping pace with rapidly evolving data distributions in real-
world applications. Consequently, a more advanced learning paradigm is critically needed to fully
exploit the potential of the dynamical system that taps into nature’s computing power. Since the
system specializes in performing natural annealing, we can address the stringent agility demands for
ultra-rapid model learning if we can transform the sluggish offline-training process into the natural
annealing process. This idea is inspired by the Forward-Forward Algorithm proposed by Hinton
(2022), which advocates for conducting both training and inference on the same hardware, similar
to the way brains function. This unified approach, known as “mortal computation”, is expected to
offer significantly lower costs compared to traditional neural networks running on digital hardware.

Figure 1: Overview of InstaTrain framework.

In response to this opportunity, we propose Insta-
Train, which extends the extraordinary computa-
tional efficiency of the electronic dynamical sys-
tem from inference to training, addressing the need
for capturing rapidly evolving data distributions.
The overall framework of this approach is illus-
trated in Fig. 1, comprising two major components.
(1) Training Algorithm: Formulated as a dynam-
ical system, our model is determined by the train-
able parameters in the Hamiltonian, or energy func-
tion. The proposed algorithm accomplishes train-
ing through an iterative natural annealing process,
which pushes the lowest energy state of the dynam-
ical system to match the ground truth provided by
training data. (2) Hardware Augmentation: We
enhance the dynamical system with parameter up-
date modules to realize a self-training mechanism. This allows both training and inference to be
carried out on the same dynamical system, resulting in outstanding computational efficiency and
essentially, achieving real-time model adaptation upon highly dynamic data distributions.

The core contributions of this paper can be summarized as follows:

• We propose InstaTrain, a novel learning paradigm that directly responds to the demands for
agility and responsiveness in applications with fast evolving distributions.

• We transform the training of a nature-based processor into an iterative natural annealing process
within the dynamical system, which enables ultra-fast model training and updating.

• We augment the original nature-based processor, extending its capabilities from fast inference
to encompass both rapid training and inference.

• Experimental results across three highly dynamic datasets show that the proposed method with
∼1W power delivers a significant ∼3,000× inference speedup, ∼4,000× training speedup, ∼
105× energy cost reduction in training, and a remarkable lower test MAE over SOTA methods
running on GPUs without /with dynamic model updating.

2 BACKGROUND

Ising-Based Hamiltonian. In previous work (Wu et al., 2024), the Hamiltonian function is de-
rived from the classic binary Ising Hamiltonian (Cipra, 1987) rooted in ferromagnetism physics,
but extends its formulation to overcome the limitations of binary variables (aka spins) restricted
to values of +1 or −1. Specifically, the binary limitation of the Ising model refers to the failure
of naively extending its binary nodes to real values. The Hamiltonian of binary Ising model is
H(σ) = −

∑N
i ̸=j Jijσiσj −

∑N
i hiσi. If σ are real-valued, they evolve to ±∞ to pursue the lowest

energy state, which is −∞. Even if boundaries are applied to σ, σ are only intercepted along their
way to infinity, resulting in polarized nodes and essentially a binary model. To resolve this, Wu et al.

2
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(2024) replaces the linear term in the original Hamiltonian with a pure quadratic term as follows:

H(s) = −
N∑
i̸=j

Jijσiσj +

N∑
i

hiσ
2
i , σi ∈ R, (1)

where s = {σ1, σ2, ..., σN} denotes the spins in the dynamical system governed by the Hamiltonian,
Jij represents the relationship between spin σi and spin σj , and hi refers to the self-reaction strength
and is forced positive. The quadratic term acts as an energy regulator, which prevents the energy
from going down to −∞, allowing spins to be localized at certain values. This extension grants
variables the ability to take on real values, thus making it feasible to perform more precise modeling
of real-valued systems in real life. In this work, the Hamiltonian supporting real-valued variables is
employed (i.e., Eq. 1).

The Electronic Dynamical System. To realize the spontaneous energy decrease feature, the elec-
tronic dynamical system Afoakwa et al. (2021) is employed as a physical embodiment of the model.
In the system, the spin dynamics is designed as dσi/dt ∝ −∂H/∂σi to satisfy:

dH
dt

=

N∑
i

∂H
∂σi

dσi

dt
= −

N∑
i

1

C
(
∂H
∂σi

)2 ≤ 0;
dσi

dt
=

1

C
(

N∑
j ̸=i

(Jij + Jji)σj − 2hiσi) (2)

where the positive constant C is capacitance. Additionally, variables σ are modeled as voltages on
capacitors, with J and h as conductance of resistors. The spin dynamics indicates that the value of
a variable σi is influenced by input electric currents (Jij + Jji)σj and local current 2hiσi, charging
or discharging the capacitors at “speed of electrons”.

Offline Hamiltonian Training. To train the parameters J and h in H, prior research (Wu et al.,
2024) employed a conditional likelihood method on traditional digital processors. This approach
focuses on one spin σi at a time, treating other spins σj as conditions. An estimated spin value is:

σ̂i =
1

2hi

N∑
j ̸=i

(Jij + Jji)σj . (3)

After estimating each spin’s value, their differences from ground truths are evaluated using metrics
such as MAE and MSE. By using these metrics as loss functions, the model parameters are optimized
to align the ground truth with the system’s lowest energy state. Consequently, during inference, the
inherent process of spontaneous energy decrease drives the system toward the lowest energy state,
producing the desired solution with the highest probability.

3 METHODOLOGY: INSTATRAIN

In this section, we present InstaTrain, a novel learning paradigm that leverages the natural annealing
process of a dynamical system to enable ultra-fast model training, capturing rapidly evolving data
distribution for prediction tasks. We first introduce our Iterative Natural Annealing based Training
(INAT) algorithm, including how to formulate the prediction problem using the dynamical system
and the detailed training process of the Hamiltonian parameters through iterative natural annealing.
Furthermore, we redesign the original the electronic dynamical system, integrating update modules
to enable the self-training feature.

3.1 ITERATIVE NATURAL ANNEALING BASED TRAINING (INAT)

3.1.1 FORMULATING PREDICTION VIA NATURAL ANNEALING

Our task of time-series prediction is to learn a function fθ that maps the historical variable states st
of a system to its future states st+1, i.e., st+1 = fθ(s

t). The goal is to optimize parameters θ such
that fθ accurately captures the system’s evolution over time.

To achieve the goal, we model the described prediction problem using the Hamiltonian of a dy-
namical system, with st and st+1 representing the spin configurations of the dynamical system in
consecutive time steps. Without loss of generality, we clamp the first N/2 spin values to the input
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state (σ1, ..., σN/2) = st, and aim to get the values of the remaining N/2 spins (σN/2+1, ..., σN ). If
the model’s parameters J and h perfectly capture the dependencies between inputs and predictions,
the ground truth configuration s∗ = (st, st+1) corresponds to the lowest energy of the dynami-
cal system. Consequently, by clamping the input spins to st and allowing the remaining spins to
evolve according to the HamiltonianH, the natural annealing process will drive the system to chase
equilibrium, resulting in the remaining spins moving towards the desired solution st+1.

We can further interpret this annealing process using the Boltzmann distribution, which defines a
mapping from energy to probability. Specifically, the lowest energy spin configuration corresponds
to the maximum probability state through the following:

ps∗ =
1

Z
e−H(s∗), (4)

Figure 2: Prediction via annealing

where Z is the partition function defined as
∫
e−Hdσ,

functioning as a normalizing constant. Therefore, the sys-
tem’s evolution towards the lowest energy state is equiva-
lent to finding the desired prediction st+1 with the highest
probability under the Hamiltonian H. To elucidate more
clearly, we visualize the whole process in Fig. 2. Clamp-
ing the input st confines the entire energy landscape to a
subspace compatible with the given input data. The re-
maining unclamped spins then undergo natural annealing
within this constrained landscape, spontaneously evolv-
ing towards the lowest energy state, yielding the desired
solution st+1. Notably, a physical system governed by its
energy function H can spontaneously evolve towards its
lowest energy configuration through natural annealing, leveraging the full parallelism of the under-
lying physical dynamics.

3.1.2 TRAINING THROUGH ITERATIVE NATURAL ANNEALING

Through the above description, we can perform efficient prediction on the dynamical system given
the optimal Hamiltonian parameters J and h. In terms of training, instead of undergoing costly
training processes on digital processors, it is much more preferable that model training is also avail-
able on the dynamical system. To address this, we describe how to obtain the target parameters from
the training data through an iterative natural annealing process, the same process used for inference.

Specifically, we seek to maximize the likelihood of the training set under the model:

argmax
J,h

∏
s∈T

ps, (5)

where T is the training set constructed as s = (σ1, ..., σN ) =
(
st, st+1

)
. This is equivalent to

minimizing the negative log-likelihood loss:

argmin
J,h

L (s; J, h) = 1

M

∑
s∈T

(
ln (Z)− ln

(
e−H))

, (6)

where M is the number of training samples. Thus, the gradients of L with respect to Jij are given
by

∂L(s)
∂Jij

=
∂ ln(Z)

∂Jij
+

1

M

∑
s∈T

∂H
∂Jij

, (7)

where the two terms are essentially expectations of spin multiplications:

∂ ln(Z)

∂Jij
=

1

Z

∂Z

∂Jij
=

∫
e−Hσiσj dσ∫
e−H dσ

= ⟨σiσj⟩model,
1

M

∑
s∈T

σiσj = ⟨σiσj⟩data. (8)

Particularly, ⟨σiσj⟩data denotes the expectation over the training data, which is tractable, and
⟨σiσj⟩model corresponds to the expectation of σiσj given by the current model. Consequently, the
gradient for the coupling parameter Jij is

∂L (s)
∂Jij

= ⟨σiσj⟩model − ⟨σiσj⟩data . (9)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Model training through iterative natural annealing

In the same way, the gradients of hi are given by
∂L(s)
∂hi

=
∂ln(Z)

∂hi
+

1

M

∑
s∈T

∂H
∂hi

=
∂ln(Z)

∂hi
+

1

M

∑
s∈T

σ2
i = −

〈
σ2
i

〉
model +

〈
σ2
i

〉
data . (10)

Therefore, to update the parameters, we need to calculate ⟨σiσj⟩model and
〈
σ2
i

〉
model. They corre-

spond to the expectation of a large number of states under the current model parameters, which
requires computationally expensive sampling over the model distribution. Instead of employing ex-
pensive sampling methods to estimate ⟨·⟩model, we leverage the intrinsic dynamics of the electronic
system to achieve remarkable efficiency. As described in §3.1.1, we can obtain the current model’s
prediction ŝt+1 through clamping st to input spins and allowing the dynamical system to perform
natural annealing. By measuring the spin configurations at the end of the annealing process, we
can directly calculate the required model expectations ⟨σiσj⟩model and ⟨σ2

i ⟩model. In this way, the
training process is transformed into an iterative natural annealing process, as described in Algorithm
1 and illustrated in Fig. 3. This innovative training process eliminates the need for computationally
expensive sampling techniques or digital offline training. Instead, it harnesses the natural energy
decrease feature to perform efficient computations, enabling ultra-fast model training.

Algorithm 1 Iterative Natural Annealing-based Training
Input: Training set T = {s1, s2, . . . , sM}, initial J0, h0, learning rate η, and training epochs Niter.
Output: Trained Hamiltonian parameters J, h.

1: Initialize J ← J0, h← h0.
2: for i = 1 to Niter do
3: for each sj = (stj , s

t+1
j ) in T do

4: Clamp the first half spins to stj
5: Perform natural annealing to obtain ŝt+1

j

6: Get ⟨σiσj⟩model and ⟨σ2
i ⟩model based on stj , ŝ

t+1
j

7: Get ⟨σiσj⟩data and ⟨σ2
i ⟩data based on stj , s

t+1
j

8: Update Jij ← Jij − η · ⟨σiσj⟩model − ⟨σiσj⟩data)
9: Update hi ← hi − η · (−⟨σ2

i ⟩model + ⟨σ2
i ⟩data)

10: end for
11: end for
12: return J, h

To summarize, the outcome of the natural annealing process depends on the accuracy of the current
Hamiltonian parameters in capturing the dependencies between the inputs and predictions. When
the values of some spins are fixed to st, two scenarios can occur: (1) If the parameters properly
describe the dependencies, the annealing process will converge to the desired solution st+1, repre-
senting the ideal case where the model has successfully learned the correct relationships between
the inputs and predictions. (2) If the parameters do not accurately capture these dependencies, the
annealing process will instead yield results that align with the current model’s expectations, denoted
by ⟨σiσj⟩model and

〈
σ2
i

〉
model. This outcome indicates that the model’s parameters require further

optimization to better represent the underlying dependencies. Regardless of the parameter accuracy,
both scenarios correspond to the equilibrium state of the dynamical system.

5
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3.2 HARDWARE AUGMENTATION
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Figure 4: Redesigned InstaTrain hardware.

The physical realization of this dynamical sys-
tem is achieved by mapping the spin values to the
voltages applied on nano-scale capacitors C, and
modeling the Hamiltonian parameters J and h as
the conductance of resistors. More specifically,
referring to Fig. 4, the value of the spin σi cor-
responds to the voltage Vi, the effective conduc-
tance of the coupling between spin σi and spin
σj is Jij (yellow blocks). The effective conduc-
tance of the added variable resistor for spin σi is
2hi, which is embedded in nodes. This mapping
enables the construction of the dynamical system
using a mesh of programmable resistors, which
are interconnected and span across all spins. By
exploiting the intrinsic dynamics (Eq. 11) of this
resistor-capacitor network, the natural annealing
process (energy decrease) can be physically im-
plemented, allowing for rapid convergence to-
wards the equilibrium state that corresponds to
the desired solutions, or the model’s expectations.

C
dVi

dt
= −∂H

∂Vi
=

∑
j ̸=i

(Jij + Jji)Vj − 2hiVi = Iin − IR. (11)

After the natural annealing process is implemented in this electronic system, we need to further make
the system self-trainable. Compared to the original system, update modules need to be implemented.
In particular, the update modules take the values of spins σi and σj as input, compute ViVj , and
update the voltage VJ applied to the capacitor CJ . A programmable parameter Jij is then updated
according to the value of VJ . As depicted in Fig. 4, we embed the update modules (shown as purple
blocks) in coupling units (for updating Jij) and nodes (for updating hi). The detailed steps are:

1. Initialize Jij through preset, giving VJ an initial value.
2. Initialize Vi and Vj . For an input node, load the ground truth, otherwise initialize it arbitrarily.
3. Start annealing to get the updated Vi and Vj .
4. Obtain ⟨ViVj⟩model using the analog multiplier. The result is captured in capacitors as voltages.
5. Load the ground truths of Vi and Vj .
6. Obtain ⟨ViVj⟩data as voltage using the analog multiplier.
7. Based on the voltage difference between ⟨ViVj⟩model and ⟨ViVj⟩data, the positive path is enabled

if the former is larger, otherwise enable the negative path.
8. The subtraction of the two voltages contributes to VJ , modifying the voltage to update Jij .
9. Repeat steps (2)-(8) for the next epoch.

Through these steps, the entire training process is transformed into an iterative natural annealing
process within the dynamical system, enabling ultra-fast training for highly dynamic applications.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate InstaTrain on five high-frequency datasets, each providing 100 samples per
second. Carbon-Oxide records the sampled concentration of a mixture of carbon oxide and ethy-
lene (Fonollosa et al., 2015b). Methane records the sampled concentration of a mixture of methane
and ethylene (Fonollosa et al., 2015b). Stock contains sampled stock data of S&P-500 (Nasdaq).
Ammonia includes time series recordings from a chemical detection platform, featuring data from
72 metal-oxide sensors across six different locations, all maintained under consistent wind speed
and operating temperatures are collected (Fonollosa et al., 2015a). Toluene comprises time series
recordings from 72 sensors at one location, collected under ten varying conditions (two wind speeds

6
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Table 1: Accuracy comparison across datasets. LF / HF: Low / High Frequency. Online learning
methods only have HF. Gray-shaded results indicate “Not Achievable” results due to slow training.

Dataset Carbon-Oxide Methane Stock Ammonia Toluene

Static

Best GNN 14.40 19.31 2.85 13.43 13.26
Best Trans 14.02 19.29 2.27 12.41 11.95
NPGL 13.90 19.22 2.01 12.15 11.43
InstaTrain 13.88 19.25 2.02 12.08 11.37

LF Update

Best GNN 10.28 11.57 1.70 4.72 5.19
Best Trans 8.53 9.72 1.22 3.94 4.85
NPGL 8.25 9.26 1.18 3.81 4.68
InstaTrain 8.28 9.22 1.20 3.72 4.67

HF Update

Best GNN 7.16 7.36 0.80 1.62 2.11
Best Trans 7.12 7.25 0.73 1.45 1.94
FSNet 7.11 7.14 0.79 1.48 2.07
PatchTST 7.05 7.09 0.80 1.46 2.02
OneNet 6.93 7.11 0.77 1.42 1.93
NPGL 6.81 7.08 0.68 1.39 1.90
InstaTrain 6.79 7.05 0.68 1.36 1.86

and five operating temperatures) from a chemical detection platform (Fonollosa et al., 2015a). The
statistics of these dataset are detailed in the Table 4 in the Appendix

Baselines. We consider three types of baselines for comparison.

• Static Models: SOTA GNNs, SOTA Transformer-based time series prediction models, NP-
GL (Wu et al., 2024), and InstaTrain trained with the first 25% data of each dataset. Then,
these models are tested on the remaining 75% data of each dataset. The GNNs include: Graph-
WaveNet (Wu et al., 2019), MTGNN (Wu et al., 2020), and MegaCRN (Jiang et al., 2023). The
Transformer-based models include: Autoformer (Wu et al., 2021), DLinear (Zeng et al., 2023),
iTransformer (Liu et al., 2023a).

• Low-Frequency Dynamic Models: Based on the pre-trained static models above, the GNNs,
Transformer-based models, NP-GL, and InstaTrain are updated as new data becomes available,
but with a lower update frequency. In particular, the models are updated once after observing
1,000 snapshots, equivalent to 10 seconds in the real world. After each update, the model is
tested on the next 1,000 snapshots.

• High-Frequency Dynamic Models: Similar to low-frequency setup, but the GNNs, Transformer-
based models, NP-GL, and InstaTrain are updated more frequently—once every 100 snapshots.
After each update, the model is tested on the next 100 snapshots. Additionally, we include SOTA
online learning models – FSNet (Pham et al., 2022), online-adapted PatchTST (Nie et al., 2022)
proposed in (Wen et al., 2024), and Onenet (Wen et al., 2024).These online learning models are
implemented based on their default setup for a fair comparison (updated every snapshot).

To more effectively showcase the impact of high-frequency online learning, both low-frequency and
high-frequency models are updated using data from the most recent 100 snapshots in the past.

Platforms. The inference latency and accuracy of the SOTA GNNs and online learning approaches
are measured using an NVIDIA A100-40GB GPU. On the same GPU, the training latency of NP-GL,
GNNs, and online learning approaches are also evaluated. The accuracy and latency of InstaTrain,
as well as the accuracy and inference latency of NP-GL, are measured using a CUDA-based Finite
Element Analysis (FEA) software simulator implemented based on the one of BRIM (Afoakwa
et al., 2021). The Cadence Mixed-signal Design Environment is used to evaluate the power and area
of InstaTrain.

4.2 MAIN RESULTS

Accuracy Evaluations. In Table 1, the accuracy results are shown across five datasets with Mean
Absolute Error (MAE) as the metric. The results for the dynamic models are averaged across all
snapshots in test data. Here, we present the best-performing GNN and Transformer-based model

7
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Figure 5: Average training latency per snapshot.

(Best Trans), a complete version of this table is provided in Table A.1 in the Appendix. The results
demonstrate that InstaTrain outperforms the GNNs and Transformer-based moedls (Trans) in all
three cases (static, low-frequency, and high-frequency) across all datasets, with comparable accuracy
versus NP-GL. The comparison of different update scenarios indicates that high-frequency updates
are necessary to achieve better performance. However, due to the sluggish training speed of NP-GL,
GNNs, Trans, and even SOTA online-training methods, their high-frequency update results are not
achievable, shown as the gray-shaded results in the table. This is because their training latency per
snapshot exceeds 0.01 seconds (see Fig. 5), resulting in a cumulative training time of over 1 second
for 100 snapshots. Consequently, they cannot keep up with the high-frequency update schedule,
making real-time adaption ”Not Achievable” for them in this scenario. However, for the sake of
comparison, we still calculate the accuracy of these baseline models under the high-frequency setup,
assuming they could meet the update schedule. The limitation of baselines makes InstaTrain the
ideal choice for achieving high accuracy, especially in the cases where the speed of data distribution
is ultra-fast. On average, the high-frequency result of InstaTrain achieves 75.11% MAE reduction
compared to static models, and 50.53% versus low-frequency dynamic models. Despite that the
baselines are not fast enough to perform high-frequency update, InstaTrain still achieves 8.42%
MAE reduction compared to them.

Latency Evaluations. The average training latency per snapshot and inference latency per snap-
shot are illustrated in Fig. 5 and Fig. 6, both in the scale of seconds. Since the computing work-
loads involved in low-frequency models and high-frequency models are identical for each update
– the total workload solely depends on the update frequency, we present the training result in “la-
tency per snapshot” instead of the total training time. Fig. 5 demonstrates that InstaTrain achieves
microsecond-level (10−6 second) update time per snapshot, in contrast to tens of milliseconds for
other approaches. The red dashed line indicates the training latency requirement to achieve low-
frequency model update, where all models are qualified, and can achieve the accuracy benefit
brought from static learning to low-frequency online learning. However, the orange dashed line
implies that all selected SOTA models except InstaTrain are not qualified for further improved accu-
racy in high-frequency online learning, corresponding to the “Not Achievable” gray-shaded results
in Table 1. In addition, the inference latency in Fig. 6 shows that InstaTrain also benefits from the ex-
ceptional speed brought by the dynamical system, resulting a similar latency with respect to NP-GL
on the prediction tasks. On average, InstaTrain can achieve a ∼4,000× speedup in online learning
versus all baseline models on all tasks, while achieving ∼3,000× speedup in inference compared to
the baselines other than NP-GL, showcasing the computing capability of a dynamical system.

Hardware Characteristics. The hardware characteristics of InstaTrain are compared to related
work in Table 2. Despite higher power and area resources utilized, the power is still within the
scale of 1 Watt, with comparable area with respect to prior work. More importantly, the proposed
hardware supports ultra-fast online training that is performed on the same hardware as inference,
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Figure 6: Average inference latency per snapshot.
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Table 2: Hardware comparison with related work.
Design Power Area Real-Value Ultra-Fast Training

BRIM (Afoakwa et al., 2021) 250 mW 5 mm2 No No
NP-GL (Wu et al., 2024) 260 mW 5.1 mm2 Yes No

InstaTrain 950 mW 9.7 mm2 Yes Yes

Table 3: Accuracy ablation study on update interval.
Update Interval Carbon-Oxide Methane Stock Ammonia Toluene

1000 8.28 9.22 1.20 3.72 4.67
500 7.26 8.46 0.84 2.41 3.57
100 6.79 7.05 0.68 1.36 1.86
50 6.73 7.02 0.67 1.33 1.85

resulting significantly lower overhead and orders of magnitude training speedup compared to NP-GL
upgraded from BRIM. Furthermore, the speedup and the low power nature of InstaTrain collectively
contribute to a significantly lower energy cost, leading to ∼ 105× reduction in energy consumption
compared to the SOTA GNNs and online learning approaches on high-end GPUs.

Ablation Study. In practice, the update frequency is a vital hyperparameter, in order to balance
the quality and speed. To investigate this, we adjust the model update frequency from every 50
snapshots to 1000 snapshots for all datasets (namely, update interval). The results are shown in
Table 3, indicating that generally, high-frequency online learning results in superior accuracy (shown
in MAE).

5 RELATED WORK

Ising-Based Models. Ising-based dynamical systems have gained attention in the machine learning
community due to their unique properties and potential for solving complex problems. Drawing
inspiration from statistical mechanics in physics, the evolution of a system is based on its energy
function. The majority of studies showcasing the potential of Ising methods have been confined
to relatively straightforward applications, primarily within the binary domain. For instance, the
binary Ising model has been employed to formulate optimization problems (Lucas, 2014), which
can be efficiently solved on specialized hardware platforms designed for the model, namely, Ising
machines (Mohseni et al., 2022) (Codognet et al., 2022). Additionally, several real-world problems,
such as satisfiability (SAT) problems(Sharma et al., 2023a) (Sharma et al., 2023b), traffic congestion
prediction (Pan et al., 2023), uplink MIMO detection (Singh et al., 2023) and collaborative filtering
(Liu et al., 2023b), have also been formulated and addressed using the binary Ising model. While
they have offered valuable insights into practical problem-solving, their methods come with binary
limitations that impede further progress in real-valued applications in the real world.

Although (Wu et al., 2024) extends the original binary Ising model to a real-valued Ising-based
model for real-valued applications, the practical impact of their contributions is limited. Firstly, their
acceleration is restricted to inference alone, leaving the primary bottleneck of training unaddressed.
Secondly, the benefits of accelerated inference are diminished if the model is static and cannot
be promptly updated, especially in highly dynamic applications where patterns evolve rapidly. To
summarize, the slow training process hinders online learning and real-time model updates, which
are crucial for adapting to fast-changing dynamics, thus limiting the real-world applicability of the
proposed real-valued model in many scenarios demanding real-time adaptability and responsiveness.

Ising Machines. Solving complex combinatorial optimization problems is computationally de-
manding for conventional von Neumann architectures, as both the required time and hardware re-
sources grow exponentially with the size of the problem. To solve such computationally demanding
problems, drawing computing power from nature has become a research direction that attracts at-
tention. Among the various nature-based computing approaches, Ising machines have garnered
significant attention due to their ability to efficiently solve optimization problems by leveraging the
principles of the Ising model from statistical physics. The Ising model describes the behavior of
atoms in natural magnets or spin glasses, which can adopt one of two spin states, up or down, to
achieve the lowest energy configuration. This model is applicable to various combinatorial opti-
mization problems (Bian et al., 2010), where finding the ground energy state of the Ising model
equates to solving these problems.
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In addition to (Afoakwa et al., 2021), various Ising machine implementations have been proposed
and developed, each with its unique characteristics and trade-offs. (1) Quantum-based Ising ma-
chines, such as the D-Wave system (Harris et al., 2010), leverage quantum effects, including quan-
tum tunneling, using superconducting qubits. While they offer high computational speed, they re-
quire cryogenic environments to enable superconductivity, resulting in high energy consumption
and limited practicality. (2) Optical Ising machines (Inagaki et al., 2016; Yamamoto et al., 2017;
McMahon et al., 2016) employ optical parametric oscillators to simulate spins and achieve optical
coupling. Although they provide significant parallelism, their scalability and stability are limited
by their large size and sensitivity to temperature fluctuations. (3) Digital annealers (Yamaoka et al.,
2015) are accelerators that perform simulated annealing on digital devices to emulate the continuous
annealing process. While they achieve speeds significantly faster than general-purpose processors,
their efficiency gains do not yet match those of analog Ising machines due to the substantial dif-
ference in hardware operating speed. Among these diverse technologies, the BRIM stands out as
particularly promising, offering high-quality solutions rapidly and efficiently. Its operational ef-
ficiency, coupled with realistic power consumption and minimal chip area, positions BRIM as a
leading candidate in the field of nature-based computing.

6 CONCLUSION

This paper presents InstaTrain, a novel approach to ultra-rapid model learning for prediction tasks.
By transforming the training process into an iterative natural annealing process within a dynamical
system, our method enables the model to self-evolve and autonomously adapt to the ever-changing
correlations between inputs and predictions, addressing the pressing need for agility and responsive-
ness in highly dynamic applications. The developed parameter update modules augment the original
dynamical system used only for inference, extending its capabilities to encompass both rapid train-
ing and inference, thereby harnessing the full potential of this innovative computing substrate. This
pioneering approach transcends the limitations of conventional methods and paves the way for a
new era of ultra-rapid, energy-efficient, and adaptive predictive modeling, empowering applications
in domains characterized by high data volatility and stringent latency requirements. Further explo-
rations could focus on incorporating hardware-accommodating advanced online learning strategies
into the proposed method, which might yield better solutions. To highlight, InstaTrain achieves, on
average, ∼4,000× training speedup supporting microsecond-level model update, 105× energy cost
reduction in training, as well as a remarkable lower MAE over SOTA methods without / with online
learning features.

REPRODUCIBILITY

The GPU-based emulator of the dynamical system processor will be open-sourced, enabling the
reproducibility of this work and open research in this field.
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A APPENDIX

This appendix provides additional experimental results and discussions related to our work.

A.1 DATASET STATISTICS AND EXPERIMENTAL RESULTS

Table 4 summarizes the statistics of the datasets used in our experiments.

Table 4: Dataset statistics
Dataset Carbon-Oxide Methane Stock Ammonia Toluene
# of Samples 60000 60000 40060 12755 12854
# of Nodes 16 16 116 432 720

Additionally, the complete version of Table 1 is provided below for reference.

Table 5: Accuracy comparison across datasets. LF / HF: Low / High Frequency. Online learning
methods only have HF. Gray-shaded results indicate “Not Achievable” results due to slow training.

Dataset Carbon-Oxide Methane Stock Ammonia Toluene

Static

GWN 14.40 19.34 3.34 19.35 13.26
MTGNN 24.47 19.31 2.85 13.43 18.74
MegaCRN 25.94 23.65 3.45 18.12 20.15
Informer 14.16 19.37 2.76 13.59 13.07
DLinear 14.08 19.32 2.31 12.74 12.82
iTransformer 14.02 19.29 2.27 12.41 11.95
NPGL 13.90 19.22 2.01 12.15 11.43
InstaTrain 13.88 19.25 2.02 12.08 11.37

LF Update

GWN 10.28 11.84 1.85 4.72 5.82
MTGNN 12.51 11.57 1.70 4.95 5.19
MegaCRN 12.34 13.49 1.87 5.41 5.93
Informer 9.21 10.41 1.64 4.39 5.25
DLinear 8.82 10.25 1.39 4.16 4.96
iTransformer 8.53 9.72 1.22 3.94 4.85
NPGL 8.25 9.26 1.18 3.81 4.68
InstaTrain 8.28 9.22 1.20 3.72 4.67

HF Update

GWN 7.35 7.40 0.82 1.64 2.26
MTGNN 7.41 7.36 0.80 1.71 2.11
MegaCRN 7.16 7.45 0.86 1.62 2.18
Informer 7.24 7.37 0.85 1.53 2.09
DLinear 7.12 7.25 0.81 1.50 2.15
iTransformer 7.16 7.28 0.73 1.45 1.94
FSNet 7.11 7.14 0.79 1.48 2.07
PatchTST 7.05 7.09 0.80 1.46 2.02
OneNet 6.93 7.11 0.77 1.42 1.93
NPGL 6.81 7.08 0.68 1.39 1.90
InstaTrain 6.79 7.05 0.68 1.36 1.86
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A.2 ENERGY EVOLUTION OF THE DYNAMICAL SYSTEM

We present a visualization of the system’s energy with respect to annealing time for a sample from
the Carbon-Oxide dataset during inference in Fig. 7. The energy curve clearly demonstrates a
convergence pattern, with the system’s energy rapidly decreasing and stabilizing over time as it
approaches equilibrium. Furthermore, we introduce perturbations at an annealing time of 0.6e− 7s
by adding Gaussian noise to the nodes at levels of 10% (blue curve), 20% (green curve), and 30%
(red curve). These perturbations further confirm that the system can achieve equilibrium, as it returns
to a stable state even when subjected to varying degrees of disturbance.

Inject di�erent levels of 
perturbation at 0.6e-7s

Figure 7: System energy with respect to annealing time.
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