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Abstract

Recently, SimCSE, a simple contrastive learn-001
ing framework for sentence embeddings, has002
shown the feasibility of contrastive learning in003
training sentence embeddings and illustrates its004
expressiveness in spanning an aligned and uni-005
form embedding space. However, prior studies006
have shown that dense models could contain007
harmful parameters that affect the model perfor-008
mance. This prompted us to consider whether009
SimCSE might also have similar harmful pa-010
rameters. To tackle the problem, parameter011
sparsification is applied, where alignment and012
uniformity scores are used to measure the con-013
tribution of each parameter to the overall qual-014
ity of sentence embeddings. Drawing from a015
preliminary study, we hypothesize that param-016
eters with minimal contributions are detrimen-017
tal, and sparsifying them would result in an018
improved model performance. Accordingly, a019
sparsified SimCSE (SparseCSE) is proposed.020
To systematically explore the ubiquity of detri-021
mental parameters and the removal of them, ex-022
tensive experiments are conducted on the stan-023
dard semantic textual similarity (STS) tasks024
and transfer learning tasks. The results show025
that the proposed SparseCSE significantly out-026
perform SimCSE. Furthermore, through an in-027
depth analysis, we establish the validity and sta-028
bility of our sparsification method, showcasing029
that the embedding space generated by Spar-030
seCSE exhibits an improved alignment com-031
pared to that produced by SimCSE. Importantly,032
the uniformity remains uncompromised.033

1 Introduction034

The task of learning universal sentence embeddings035

using large-scale pre-trained models has been ex-036

tensively explored in prior research (Logeswaran037

and Lee, 2018; Reimers and Gurevych, 2019; Li038

et al., 2020a; Zhang et al., 2020a; Gao et al., 2021;039

Liu et al., 2021; Yan et al., 2021; Feng et al., 2022).040

More recently, contrastive learning has been em-041

ployed as a method to enhance the quality of sen-042
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Figure 1: The average performance on STS tasks of
SimCSE-BERTbase when pruned at sparsity levels of
10%, 20%, 30%, 40% and 50% respectively. Details of
the pruning method can be found in Section 2, while the
task specifics and metrics are introduced in Section 3.

tence embeddings (Qiu et al., 2022; Zhang et al., 043

2020a; Gao et al., 2021; Liu et al., 2021; Yan et al., 044

2021). With contrastive learning, the semantically 045

similar sentences are brought closer with each other 046

while the dissimilar sentences are pushed apart, 047

thereby a semantically-driven method, namely Sim- 048

CSE, is established within the space of sentence 049

embeddings. 050

Unsupervised SimCSE (unsup-SimCSE) is a no- 051

table framework for contrastive sentence embed- 052

dings (Gao et al., 2021). It utilizes dropout as a sim- 053

ple data augmentation technique to create positive 054

pairs and employs a cross-entropy objective based 055

on the cosine similarity for contrastive learning. 056

Inspired by recent research on parameter sparsifi- 057

cation (Xia et al., 2022; Prasanna et al., 2020; Hou 058

et al., 2020; Michel et al., 2019), particularly the 059

works on the lottery ticket hypothesis (LTH) (Fran- 060

kle and Carbin, 2019; Bai et al., 2022; Frankle 061

et al., 2020; Yang et al., 2022b) showing its effec- 062

tiveness in improving model performance through 063

pruning, we hypothesize that certain parameters 064

in SimCSE might hinder the representation of uni- 065

versal sentence embeddings. By removing these 066
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Figure 2: The process of obtaining SparseCSE

parameters, we anticipate an improvement in the067

model’s performance.068

To accurately estimate the contribution of each069

parameter, it is essential to consider properties that070

characterize contrastive representation learning. In071

the literature (Wang and Isola, 2020), two such072

properties have been proposed: alignment and uni-073

formity. Alignment measures the proximity of fea-074

tures derived from positive pairs, indicating how075

well the model captures semantic similarity. On the076

other hand, uniformity pertains to the distribution077

of features across the hypersphere, ensuring that the078

representations are spread out evenly. These prop-079

erties offer valuable insights into understanding080

and evaluating contrastive representation learning.081

Utilizing alignment and uniformity as guiding prin-082

ciples, we propose an innovative approach, named083

alignment and uniformity score, to quantify param-084

eter contribution during the preparation phase for085

pruning.086

Now an important research question arises:087

How much pruning is needed to best improve the088

model’s performance? Based on a pilot study pre-089

sented in Figure 1, we observed that model per-090

formance on STS tasks does not consistently in-091

crease or decrease during pruning. Instead it first092

exhibits an upward trend when the model is less093

sparse and then goes down. This suggests that the094

parameters with the lowest scores are detrimental095

to model performance, as evidenced by the perfor-096

mance improvement resulting from their pruning.097

However, an over-sparcification would hurt the per-098

formance. Building upon the above observation,099

we conducted a series of more extensive and de-100

tailed experiments to explore the ubiquity of detri-101

mental parameters and assess the stability of our102

proposed pruning method.103

Specifically, we propose a sparsified SimCSE,104

denoted as SparseCSE. Our approach consists of 105

three stages: training, parameter sparsification, and 106

rewinding. First, we train an unsupervised Sim- 107

CSE model using a pre-trained language model 108

(LM). Then, we estimate the alignment and unifor- 109

mity scores for each parameter based on the trained 110

model’s feedback. Parameters with low scores are 111

pruned and varying sparsity is attempted in our for- 112

mal experiments than in the pilot study, to clearly 113

identify harmful parameters. Finally, the remaining 114

parameters are initialized, and the pruned model is 115

fine-tuned to regain its performance. 116

We extensively evaluate SparseCSE on seven 117

STS tasks and seven transfer learning tasks. The 118

results show that SparseCSE outperforms SimCSE, 119

demonstrating its superior performance. Our prun- 120

ing method is also shown to effectively identify 121

the optimal sparsity for pruning, further enhancing 122

performance. Further analysis reveals the stabil- 123

ity of our pruning method across multiple tasks. 124

Comparison with other works highlights the simi- 125

larity of SparseCSE to SimCSE in uniformity and 126

its competitive performance in alignment. 127

2 Our Method 128

Similar to the lottery ticket approach (Frankle and 129

Carbin, 2019), our method follows a training, prun- 130

ing, and rewinding paradigm as illustrated in Figure 131

2. 132

2.1 Training and Rewinding 133

To effectively train a model that captures univer- 134

sal sentence embeddings, we adopt a contrastive 135

framework similar to the previous work (Gao 136

et al., 2021). This framework is also utilized dur- 137

ing the rewinding stage. In this framework, we 138

employ dropout to create positive representation 139

pairs (hi, h+i ) for each sentence xi in a collection 140
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of sentences ximi=1. The training objective for this141

contrastive framework, using a mini-batch of N142

pairs, can be expressed as follows:143

L(i)
similarity = − log

esim(hi,h
+
i )/τ∑n

j=1 e
sim(hi,h

+
j )/τ

,144

where τ is a temperature hyperparameter and145

sim(h1, h2) represents the Cosine similarity146

h1
T · h2

∥h1∥ · ∥h2∥
.147

During training, an initial pretrained language148

model (LM) is utilized, and all parameters are in-149

volved in this phase. However, during rewinding,150

only the remaining parameters after pruning are151

applied, with their values initialized to their early-152

stage pre-training values. The objective of rewind-153

ing is to enable the pruned model to restore its154

performance prior to pruning.155

2.2 Pruning156

Typical pre-trained language models such as157

BERT (Devlin et al., 2019) and Roberta (Liu et al.,158

2019)), are composed of multiple stacked encoder159

layers known as transformers. Each transformer en-160

coder consists of a multi-head self-attention block161

(MHA) and a feed-forward network block (FFN).162

In line with prior research (Prasanna et al., 2020;163

Hou et al., 2020; Michel et al., 2019), our pruning164

approach primarily focuses on sparsifying the atten-165

tion heads in the MHA blocks and the intermediate166

neurons in the FFN blocks. To determine which167

parameters need to be pruned, we associate a set168

of mask variables with them (Yang et al., 2022a,b)169

and compare the model’s performance before and170

after the pruning operation.171

For a MHA block with NH independent heads,172

the i-th head is parameterized by W
(i)
Q , W

(i)
K ,173

W
(i)
V ∈ Rd×dA , and W

(i)
O ∈ RdA×d. All paral-174

lel heads are further summed to produce the final175

output. Then a variable ξ(i) with values in {0, 1}176

is defined for masking each attention head, and it177

can be represented as:178

MHA(X) =

NH∑
i=1

ξ(i)Attn
(i)

W
(i)
Q ,W

(i)
K ,W

(i)
V ,W

(i)
O

(X),179

where the input X ∈ Rl×d represents a l-length180

sequence of d-dimensional vectors and ξ(i) is de-181

signed as a switching value. When ξ(i) equals to 1,182

it means retaining the attention head, and when it183

equals to 0 it means removing that attention head 184

from the MHA. 185

On the other hand, a FFN block includes two 186

fully-connected layers parameterized by W1 ∈ 187

Rd×DF and W2 ∈ RDF×d, where DF denotes 188

the number of neurons in the intermediate layer of 189

FFN. Likewise, we define the variable ν to mask 190

the neurons in the intermediate layer of FFN: 191

FFN(A) =

DF∑
i=1

ν(i)GELUW1,W2(A), 192

where the input A ∈ Rl×d defines a d-dimensional 193

vectors with l-length sequence. 194

2.3 Alignment and Uniformity Score 195

In order to determine the parameters that have 196

a greater impact on the distribution of universal 197

sentence embeddings, we introduce a joint objec- 198

tive based on the alignment and uniformity proper- 199

ties (Wang and Isola, 2020). 200

Here is the formulation of the alignment loss: 201

LAlignment ≜ log E
xi,xi

+∼Npos

∥hi − hi
+∥2, 202

where hi, hi+ are representations of xi, xi+, which 203

are a pair of positive sentences in a batch of Npos 204

sentences. It indicates that the sentences with simi- 205

lar semantics are expected to be closer in the em- 206

bedding space. 207

And, here is the formulation of the uniformity 208

loss: 209

LUniformity ≜ log E
xi,xj∼N

e−2∥hi−hj∥2 , 210

where hi, hj are representations of xi, xj , which 211

are different sentences in a batch of N sentences. It 212

indicates that sentence embeddings with different 213

semantics are supposed to distribute on the hyper- 214

sphere by larger distances. 215

To balance the alignment and uniformity, we 216

introduce a coefficient λ to quantify the tradeoff. 217

The joint loss LScore for further score calculation 218

can be be written as below: 219

LScore = λ · LAlignment + (1− λ) · LUniformity, 220

Finally, according to the literature (Molchanov 221

et al., 2017), the scores of the attention heads in 222

MHA and the intermediate neurons in FFN can be 223

depicted as: 224
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STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

SimCSE-BERTbase 70.37 82.53 73.46 81.58 77.61 76.55 69.22 75.9

SparseCSE2% 70.15−0.22 82.25−0.28 74.16+0.70 82.15+0.57 78.52+0.91 78.71+2.16 72.76+3.54 76.96+1.06

SparseCSEbest 71.70+1.33
10% 83.41+0.88

25% 74.16+0.70
2% 82.58+1.00

25% 79.10+1.49
4% 78.71+2.16

2% 72.76+3.54
2% 77.49+1.59

SimCSE-BERTlarge 69.93 84.04 75.15 82.99 78.32 79.12 74.16 77.67

SparseCSE2% 69.31−0.62 83.69−0.35 75.72+0.57 83.21+0.22 79.34+1.02 79.41+0.29 74.76+0.60 77.92+0.25

SparseCSEbest 70.67+0.74
1% 84.60+0.56

8% 75.84+0.69
8% 83.21+0.22

1% 79.60+1.28
8% 79.41+0.29

1% 75.27+1.11
3% 78.32+0.64

SimCSE-Robertabase 67.45 81.28 72.74 81.31 80.87 80.12 68.37 76.02

SparseCSE1% 67.85+0.40 81.32+0.04 73.09+0.35 81.82+0.51 81.02+0.15 80.29+0.17 68.76+0.39 76.31+0.29

SparseCSEbest 68.05+0.60
4% 81.82+0.54

4% 73.32+0.58
4% 82.29+0.98

20% 81.02+0.15
2% 80.29+0.17

1% 68.76+0.39
1% 76.48+0.46

Table 1: Performance of sparseCSE on STS tasks. Each backbone has three rows: the baseline, the result with
optimal sparsity based on average score, and the result with optimal sparsity based on each task. The optimal
sparsity values are shown in the bottom right corner. The improvements over the baseline are highlighted in red in
the upper right corner.

I(i)head = ED

∣∣∣∣∂LScore

∂ξ(i)

∣∣∣∣ ,
I(i)neuron = ED

∣∣∣∣∂LScore

∂ν(i)

∣∣∣∣ ,225

where D is a data distribution, E represents expec-226

tation.227

After estimating the scores, we rank the atten-228

tion heads and intermediate neurons respectively229

with the scores, and prune the parameters with low230

scores according to the constraint of the given spar-231

sity.232

3 Experiments233

3.1 Baselines & Implementation234

We start by training unsup-SimCSE models using235

popular language models (BERTbase, BERTlarge,236

Robertabase) as our baselines. Both training and237

rewinding process of sparseCSE follow the training238

details of SimCSE (Gao et al., 2021). We follow the239

training details of SimCSE (Gao et al., 2021) for240

both training and rewinding process of sparseCSE,241

including hyperparameter settings and a dataset242

of one million randomly selected sentences from243

English Wikipedia.244

We prune the baseline models on the dataset245

STS Benchmark (Cer et al., 2017). The dataset was246

originally used to evaluate the alignment and uni-247

formity of sentence embeddings in SimCSE (Gao248

et al., 2021), and we ascertain that it can signif-249

icantly contribute to the computation of pruning250

scores and serve as a guiding factor in the pruning251

process. The objective is to enhance the model 252

with valuable information from alignment and uni- 253

formity. It is noteworthy that opting for a pruning 254

process, as opposed to training, is a judicious deci- 255

sion. This is particularly relevant due to the limita- 256

tion of the small dataset for calculating alignment 257

and uniformity objectives, making model training 258

impractical. 259

During the pruning process, we explore differ- 260

ent sparsity levels from a predefined set (1%, 2%, 261

3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%, 262

40%, 50%), and use a λ value of 0.5 for the main 263

experiment. Additionally, we examine the impact 264

of different λ values (0.25 and 0.75) in further anal- 265

ysis. 266

3.2 Evaluation 267

Following SimCSE (Gao et al., 2021), we eval- 268

uate sentence embeddings on 7 semantic tex- 269

tual similarity (STS) tasks, which include STS 270

2012–2016 (Agirre et al., 2012, 2013, 2014, 2015, 271

2016), STS Benchmark (Cer et al., 2017) and 272

SICK-Relatedness (Marelli et al., 2014). STS 273

tasks can reveal the ability of clustering seman- 274

tically similar sentences, which is one of the main 275

goals for sentence embeddings. Furthermore, we 276

also introduce 7 transfer learning tasks into eval- 277

uation as a supplementary prove. The transfer 278

learning tasks contain MR (Pang and Lee, 2005), 279

CR (Amplayo et al., 2022), SUBJ (Pang and Lee, 280

2004), MPQA (Wiebe et al., 2005), SST-2 (Socher 281

et al., 2013), TREC (Voorhees and Tice, 2000) and 282

MRPC (Dolan and Brockett, 2005), which are dif- 283
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MR CR SUBJ MPQA SST2 TREC MRPC Avg

SimCSE-BERTbase 78.84 84.21 93.83 88.87 83.75 86.40 72.99 84.13

SparseCSE2% 80.88+2.04 86.15+1.94 94.29+0.46 89.40+0.53 84.95+1.20 88.40+2.00 75.54+2.55 85.66+1.53

SparseCSEbest 80.90+2.06
3% 86.15+1.94

2% 94.58+0.75
7% 89.43+0.56

4% 85.83+2.08
3% 88.40+2.00

2% 76.12+3.13
8% 85.92+1.79

SimCSE-BERTlarge 84.02 88.11 94.8 89.59 89.9 90.20 75.48 87.44

SparseCSE2% 84.26+0.24 89.43+1.32 95.27+0.47 89.83+0.24 89.57−0.33 92.40+2.20 76.46+0.98 88.17+0.73

SparseCSEbest 84.65+0.63
3% 89.43+1.32

2% 95.27+0.47
2% 90.07+0.48

9% 89.57−0.33
2% 93.80+3.60

6% 76.52+1.04
3% 88.44+0.99

SimCSE-Robertabase 81.39 86.94 93.20 87.11 87.10 84.20 74.09 84.86

SparseCSE1% 82.18+0.79 88.05+1.11 93.53+0.33 87.59+0.48 87.48+0.38 84.00−0.20 74.78+0.69 85.37+0.51

SparseCSEbest 82.18+0.79
1% 88.21+1.27

3% 93.53+0.33
1% 87.59+0.48

1% 87.48+0.38
1% 86.00+1.80

7% 74.78+0.69
1% 85.64+0.78

Table 2: The result of transfer learning tasks. Data annotation method is the same as the previous table.

ferent sentence classification tasks and can give an284

impression on the quality of sentence embeddings.285

3.3 Main Results286

Table 1 shows the results on STS tasks. The best287

results based on each task are all improved, and288

the model on BERTbase improves the average re-289

sult from 75.9% to 77.49%. We also determine290

an optimal sparsity corresponding to the best av-291

erage score of all tasks. We observe that pruning292

the models with this specific sparsity level leads to293

improvements in almost every task. The results on294

transfer learning tasks are shown in table 2. And295

the average improvement on BERTbase, BERTlarge296

and Robertabase achieves 1.79%, 0.99% and 0.78%,297

respectively. For instance, when applying 2% spar-298

sity to the BERTbase model, we achieve the best av-299

erage improvement of 1.53 on transfer tasks shown300

in Table 2. All tasks benefit from this pruning301

sparsity, with improvements of 2.04, 1.94, 0.46,302

0.53, 1.20, 2.00, and 2.55. The results of transfer303

task show the same trend prove the ubiquity of the304

phenomenon found in Table 1.305

4 Ablation Studies306

4.1 Effects of Rewinding307

As shown in the Table 3, the results compare mod-308

els with and without rewinding. This set of experi-309

ments was conducted on the BERTbase. Significant310

differences can be observed, indicating that the311

rewinding step is essential in this pruning method.312

Rewinding helps the model restore its original text313

representation capability.314

BERTbase STS.Avg

SparseCSE2% 76.96
SparseCSE2%(w/o RW) 39.55
SparseCSEbest 77.49
SparseCSEbest(w/o RW) 46.27

Table 3: Effects of the rewinding(RW) step in the prun-
ing methods.

4.2 Searching within Varying Sparsity 315

The transition of the BERTbase model’s perfor- 316

mance, as measured by the average score across 317

the seven STS tasks, as well as the discrete scores 318

of these tasks, is illustrated in Figure 3. It is evi- 319

dent from the figure that for each task, the model’s 320

performance initially improves and then declines 321

as the sparsity level increases, showing a peak. 322

In every task, this peak appears steadily around a 323

fixed sparsity corresponding to the optimal sparsity 324

value in the main results. This indicates that the 325

best performance observed in the main results for 326

each task is not an isolated occurrence but rather a 327

continuous trend. 328

4.3 Tradeoff of Alignment and Uniformity 329

In our approach, the alignment loss and unifor- 330

mity loss work together to guide parameter scoring, 331

with the coefficient λ regulating their relative in- 332

fluence. To further investigate the contributions of 333

alignment and uniformity strategies to model ef- 334

fectiveness, we conducted additional experiments 335

using different λ values (0.25, 0.5, 0.75) as shown 336

in Figure 4. We observed that the coefficient does 337

not have a significant impact on the peak value of 338
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each task. However, it does influence the pattern of339

how model performance varies with sparsity. When340

λ = 0.5, the pruned model’s performance exhibits341

a rapid increase and decrease at lower sparsity lev-342

els, resulting in a distinct peak. On the other hand,343

with λ = 0.25, the performance trend shows a rela-344

tively flatter increase and decrease, with the peak345

occurring at slightly higher sparsity levels. These346

findings suggest that alignment and uniformity play347

similar roles in guiding contrastive representation348

learning, but they have different effects on parame-349

ter filtering.350

4.4 Impact of Pruning MHA and FFN351

The main method’s pruning strategy advocates for352

pruning both MHA and FFN. This section breaks353

down the method, discussing the effects of pruning354

only MHA and only FFN separately. The results355

are shown in Table 4, Table 5 and Table 6. It can be356

observed that pruning only one of these structures357

impacts the final outcomes across various tasks.358
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5 Analysis with Other Methods 359

We compare SparseCSE with other sentence em- 360

bedding models, including: SimCSE (Gao et al., 361

2021), BERT(first-last avg.) (Devlin et al., 2019; Su 362

et al., 2021), BERT-flow (Li et al., 2020b), BERT- 363

whitening (Su et al., 2021) and SBERT (Reimers 364

and Gurevych, 2019). BERT (first-last avg.) ex- 365

tracts sentence embeddings by averaging the first 366

and last layers of BERT. BERT-flow applies linear 367

transformations and batch normalization to embed- 368

dings from a trained BERT model to improve spa- 369

tial relationships between sentence embeddings and 370

reduce anisotropy. BERT-whitening similarly ad- 371

justs embeddings using a whitening matrix from the 372

covariance matrix. SBERT is a supervised sentence 373

embedding model trained on supervised datasets 374

NLI and STS with the objective of text similarity. 375

Table 7 presents the sentence embedding perfor- 376

mance of various methods on the STS task. Spar- 377
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STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

SparseCSE2% 70.15 82.25 74.16 82.15 78.52 78.71 72.76 76.96
SparseCSE2%(MHAonly) 71.39 82.92 74.55 82.9 77.94 78.24 70.36 76.9
SparseCSE2%(FFNonly) 70.98 82.94 74.51 82.01 77.69 78.03 72.09 76.89

SparseCSEbest 71.70 83.41 74.16 82.58 79.10 78.71 72.76 77.49
SparseCSEbest(MHAonly) 69.84 83.49 74.55 82.18 77.58 78.24 70.36 76.61
SparseCSEbest(FFNonly) 70.02 83.09 74.51 82.11 77.61 78.03 72.09 76.78

Table 4: Effects of structures the proposed method prunes. Results on BERTbase.

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

SparseCSE2% 69.31 83.69 75.72 83.21 79.34 79.41 74.76 77.92
SparseCSE2%(MHAonly) 68.85 83.76 75.23 82.49 78.55 78.42 74.96 77.47
SparseCSE2%(FFNonly) 69.57 83.45 75.32 83.42 78.95 78.71 74.31 77.68

SparseCSEbest 70.67 84.60 75.84 83.21 79.60 79.41 75.27 78.32
SparseCSEbest(MHAonly) 69.12 83.92 75.50 81.85 78.99 78.72 73.59 77.38
SparseCSEbest(FFNonly) 70.11 83.11 73.41 83.08 78.40 78.96 75.41 77.50

Table 5: Effects of structures the proposed method prunes. Results on BERTlarge.

seCSE shows strong performance across all tasks,378

outperforming both unsupervised and supervised379

methods. This advantage is attributed to the su-380

periority of the unsupervised contrastive learning381

approach inherited from the SimCSE model and382

the effectiveness of our proposed pruning method.383

Figure 5 illustrates the alignment and uniformity384

scores of these methods along with their perfor-385

mance on the STS task. Benefited from sparsity386

based on alignment and uniformity properties, spar-387

seCSE demonstrates significant improvements in388

alignment compared to unsup-SimCSE. As a sparse389

version of unsup-SimCSE, sparseCSE inherits its390

advantages in alignment compared to post-training391

methods like BERT-flow and BERT-whitening, and392

uniformity compared to BERT(first-last avg.). This393

highlights that original BERT and post-training ad-394

justments have constraints, while reinforcing sen-395

tence representations during training yields supe-396

rior results. While SBERT was anticipated to out-397

perform unsupervised models but was surpassed by398

SimCSE, SparseCSE further boosts performance.399

Notably, we also included supervised SimCSE400

for comparison with sparseCSE. We found that401

sparseCSE significantly improves alignment, even402

when compared to SBERT and supervised Sim-403

CSE.404

6 Related Work 405

6.1 Sentence Embedding and SimCSE 406

Sentence embedding is a key research area in NLP. 407

Unsupervised sentence embedding is especially 408

important due to the scarcity of data for super- 409

vised training. Initially, post-training methods (Li 410

et al., 2020b; Su et al., 2021) are used to opti- 411

mize sentence representation. However, as dis- 412

cussed in section 4.3, Enhancing sentence repre- 413

sentation during training can provide better results 414

than post-training metheds. SimCSE’s contrastive 415

learning strategy is simple and effective. Following 416

SimCSE, many unsupervised sentence embedding 417

methods (Wu et al., 2022c,b; He et al., 2023; Wang 418

and Dou, 2023) are developed, creating supervised- 419

like tasks from unlabeled data. The proposed prun- 420

ing method focuses on sentence embedding models 421

using unsupervised contrastive learning. Specifi- 422

cally selecting SimCSE as a representative method 423

for pruning, making this study broadly applicable 424

to similar methods. 425

6.2 Lottery Ticket Hypothesis 426

The Lottery Ticket Hypothesis (LTH) (Frankle and 427

Carbin, 2019) suggests that a randomly initialized 428

dense neural network contains a subnetwork that 429

7



STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

SparseCSE1% 67.85 81.32 73.09 81.82 81.02 80.29 68.76 76.31
SparseCSE1%(MHAonly) 67.91 81.91 73.49 82.02 81.13 80.84 69.02 76.62
SparseCSE1%(FFNonly) 67.83 81.27 73.22 81.70 81.12 80.49 68.68 76.33

SparseCSEbest 68.05 81.82 73.32 82.29 81.02 80.29 68.76 76.48
SparseCSEbest(MHAonly) 68.10 81.42 72.71 82.76 80.42 80.84 69.02 76.47
SparseCSEbest(FFNonly) 67.75 81.51 73.27 82.05 81.08 80.49 68.68 76.40

Table 6: Effects of structures the proposed method prunes. Results on RoBERTabase.

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

BERTbase (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55

BERTbase-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
SBERTbase

sup 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SBERTbase-flowsup 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60

SBERTbase-whiteningsup 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
SimCSE-BERTbase 70.37 82.53 73.46 81.58 77.61 76.55 69.22 75.90

SparseCSEbase 71.70 83.41 74.16 82.58 79.10 78.71 72.76 77.49

Table 7: Sentence embedding performance of BERTbase on STS tasks (Spearman’s correlation). Baselines’ results
are from Gao et al. 2021. "sup" means supervised methods.

can achieve comparable or better results. Follow-430

ing the hypothesis, many works (Gale et al., 2019a;431

Desai et al., 2019; Ramanujan et al., 2020; Malach432

et al., 2020; Brix et al., 2020; Liang et al., 2021;433

Wu et al., 2022a; Gong et al., 2022; Jaiswal et al.,434

2023) propose algorithm for getting the winning435

ticket of various models and find it perform well436

in many tasks. Among these, structure pruning437

methods have proven to be effective in pruning438

transformer models (Prasanna et al., 2020; Hou439

et al., 2020; Michel et al., 2019; Chen et al., 2020).440

Inspired by this, we proposed a pruning method441

for sentence embedding models, resulting in spar-442

seCSE. In Section 3.4, we provide a detailed analy-443

sis of the structure pruning methods we used. Fur-444

thermore, to address the time-consuming nature445

of the iterative train-prune-retrain process, many446

studies (Frankle et al., 2019; Rachwan et al., 2022;447

Burkholz et al., 2022; You et al., 2022; Shen et al.,448

2023) have proposed solutions to lower computa-449

tion costs. Since this paper primarily focuses on450

optimizing representations for sentence embedding451

models, efficiency factors will not be discussed in452

detail. However, it is important to emphasize that453

there are effective methods to further improve the 454

training efficiency of sparse sentence embedding 455

models. 456

7 Conclusions 457

In conclusion, this paper introduces a parameter 458

sparsification technique based on alignment and 459

uniformity scores, resulting in the development 460

of SparseCSE, which exhibits impressive perfor- 461

mance. The effectiveness of our pruning method 462

is validated, highlighting the crucial role played by 463

alignment and uniformity in optimizing language 464

representation. Through extensive evaluation on 465

STS tasks, transfer learning tasks, and comparison 466

in terms of alignment and uniformity, SparseCSE 467

demonstrates its competitive edge in sentence em- 468

bedding. The effectiveness of our pruning method 469

is validated, highlighting the crucial role played by 470

alignment and uniformity in optimizing language 471

representation. Through extensive evaluation on 472

STS tasks, transfer learning tasks, and comparison 473

in terms of alignment and uniformity, SparseCSE 474

demonstrates its competitive edge in sentence em- 475

bedding. 476
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8 Limitations477

We have not extended the method to other sentence478

embedding models, but discussed its feasibility on479

SimCSE-derived models.480
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