
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPIKESTEREONET: A BRAIN-INSPIRED FRAME-
WORK FOR STEREO DEPTH ESTIMATION FROM SPIKE
STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional frame-based cameras often struggle with stereo depth estimation
in rapidly changing scenes. In contrast, bio-inspired spike cameras emit asyn-
chronous events at microsecond-level resolution, providing an alternative sens-
ing modality. However, existing methods lack specialized stereo algorithms and
benchmarks tailored to the spike data. To address this gap, we propose SpikeStere-
oNet, a brain-inspired framework to estimate stereo depth directly from raw spike
streams. The model fuses raw spike streams from two viewpoints and iteratively
refines depth estimation through a recurrent spiking neural network (RSNN) up-
date module. To benchmark our approach, we introduce a large-scale synthetic
spike stream dataset and a real-world stereo spike dataset with dense depth anno-
tations. SpikeStereoNet outperforms existing methods on both datasets by lever-
aging spike streams’ ability to capture subtle edges and intensity shifts in challeng-
ing regions such as textureless surfaces and extreme lighting conditions. Further-
more, our framework exhibits strong data efficiency, maintaining high accuracy
even with substantially reduced training data.

1 INTRODUCTION

Depth perception is fundamental for navigating and interacting with the 3D world (Tosi et al., 2025),
driving applications from robotic manipulation (Ma et al., 2024; Li et al., 2024; Wen et al., 2025b;
Gao et al., 2024) to autonomous navigation (Wei et al., 2024; Duba et al., 2024; Kalenberg et al.,
2024; Nahavandi et al., 2022; Wu et al., 2023; Xu et al., 2023c; Wang et al., 2024b). Traditional
stereo vision estimates depth from calibrated image pairs captured by frame-based cameras; how-
ever, it suffers from motion blur and latency in dynamic scenes. Biological vision systems efficiently
process visual inputs using sparse, asynchronous spikes, achieving remarkable speed and energy ef-
ficiency (Kundu et al., 2021; Yang et al., 2023; Datta et al., 2021; Göltz et al., 2021; Wang et al.,
2025; Wolf & Lappe, 2021; Kucik & Meoni, 2021). Neuromorphic spike cameras (Zhao et al., 2024;
Zhang et al., 2022a; Zhao et al., 2021a;b; Hu et al., 2022; Zhao et al., 2022; Chen et al., 2024a) im-
plement this principle in hardware, delivering ultra-high temporal resolution (up to 40,000 Hz) and
capturing rich luminance information through asynchronous binary spike streams. This makes them
suitable for robust perception tasks, such as stereo depth estimation, particularly in highly dynamic
scenarios where conventional methods are ineffective.

Despite their potential, spike cameras present distinct challenges for stereo depth estimation. Their
asynchronous, binary, high-throughput streams conflict with frame-based algorithms that expect
synchronous, intensity-valued image pairs (Tankovich et al., 2021; Lipson et al., 2021; Li et al.,
2022; Zhao et al., 2023; Rao et al., 2023; Xu et al., 2023a; Zeng et al., 2023; Guan et al., 2024;
Wang et al., 2024a; Xu et al., 2023b; Weinzaepfel et al., 2023; Chen et al., 2024b; Cheng et al., 2025;
Jiang et al., 2025; Wen et al., 2025a), and any conversions to frames introduce temporal quantization
errors, motion blur, or significant computational overhead (Zhao et al., 2021b; 2022; Chen et al.,
2023), diminishing the sensor’s intrinsic advantages. Although event-based stereo methods have
been developed for DVS cameras (e.g. (Zhou et al., 2021; Zhang et al., 2022b; Cho et al., 2021;
Lou et al., 2024; Rançon et al., 2022)), they rely on temporal contrast, while spike cameras emit
integrated intensity streams that require tailored processing techniques. Critically, the field lacks
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specialized algorithms and benchmarks designed for stereo depth estimation directly from raw spike
streams, hindering progress in this promising field.

Recent advances in spiking neural networks (SNNs) provide the foundation for our models de-
sign. Classical neuron models offer compact yet expressive dynamics for spike-based computa-
tion (Izhikevich, 2003). Building on these, surrogate-gradient methods enable scalable training of
deep SNNs with gradient-based optimization (Neftci et al., 2019). Adaptive recurrent SNNs fur-
ther improve temporal modeling and efficiency in time-domain tasks (Yin et al., 2021). In parallel,
neuromorphic vision research demonstrates the benefits of spike-driven processing for object per-
ception and recognition, highlighting the potential of spike-based architectures in real-world vision
applications (Bi et al., 2019). Beyond SNNs-based, some work explores biologically inspired net-
work architectures for vision. ClearSight (Lin et al., 2025) proposes a dual-drive hybrid model with
neuron and synapse-based attention for event-based motion deblurring. SABV-Depth (Wang et al.,
2023) integrates bio-inspired attention into a monocular depth network to enhance prediction ac-
curacy. Earlier cortical models for object recognition, such as the neocognitron and hierarchical
feedforward architectures (Fukushima, 1980; Serre et al., 2007), further demonstrate how principles
from visual neuroscience can guide the design of robust perception systems.

To bridge this gap, we introduce SpikeStereoNet (Fig. 1), an end-to-end, biologically inspired frame-
work for generating stereo depth directly from raw spike streams. SpikeStereoNet integrates a re-
current spiking neural network (RSNN) into an iterative refinement loop (Teed & Deng, 2020) and
models neuronal interactions (Kandel et al., 2021) to capture spatiotemporal dynamics inherent in
spike data. The analysis of neuronal dynamics confirms the temporal stability, convergence, and ex-
pressive feature separation of the RSNN components. We introduce two novel benchmark datasets:
a large-scale synthetic dataset with diverse scenes and ground-truth depth, and a real-world dataset
containing synchronized stereo spike streams and corresponding depth sensor measurements. Ex-
perimental results demonstrate that SpikeStereoNet generalizes effectively, maintaining robust per-
formance even when trained with substantially limited data. Our main contributions are as follows:

• We present the large-scale synthetic and real-world raw spike stream datasets for stereo
depth estimation to offer an evaluation benchmark for this emerging field.

• We propose a novel biologically inspired RSNN-based SpikeStereoNet architecture that
refines asynchronous spike data through iterative updates.

• We analyze the dynamics of RSNN iterations to demonstrate the stability and convergence
properties of the model.

• We demonstrate the data efficiency of the proposed framework, highlighting the strong
generalization even with limited training samples.

2 RELATED WORK

Spike Cameras and its Applications. Neuromorphic cameras, including event cameras (Moeys
et al., 2017; Posch et al., 2010; Huang et al., 2017) and spike cameras (Huang et al., 2023), are
inspired by the primate retina and operate asynchronously at the pixel level, providing ultra-high
temporal resolution, wide dynamic range, low latency, and reduced energy consumption. Unlike
event cameras, which follow a differential sampling model and capture only luminance changes in
logarithmic space, spike cameras employ an integral sampling model, accumulating photons until a
threshold is reached and then firing spikes. Although event cameras tend to generate sparser output,
they might lose scene textures, especially in static regions due to their change-based design. In
contrast, spike cameras can capture richer spatial details, making them well suited for tasks such as
high-speed imaging (Zhu et al., 2020), 3D reconstruction (Zhang et al., 2024b), motion deblurring
(Zhang et al., 2024c), optical flow (Zhao et al., 2022), object detection (Zheng et al., 2022), occlusion
removal (Zhang et al., 2023b), monocular depth estimation (Zhang et al., 2022a), and stereo depth
estimation (Wang et al., 2022).

Frame-Based Stereo Depth Estimation. Deep learning has significantly advanced stereo matching,
leading to various methods with enhanced accuracy and generalization. The early methods (Fan
et al., 2021; Yin et al., 2019) constructed cost volumes for each disparity and applied 3D CNNs
for refinement. In contrast, recurrent refinement-based models (Rao et al., 2023; Tian et al., 2023)
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Figure 1: The overall pipeline is illustrated in the figure below. The upper path represents the training
and evaluation process on synthetic dataset, while the lower path shows the transfer learning and
testing procedure on real spike stream data by using the pre-trained model.

inspired by RAFT-Stereo (Lipson et al., 2021; Teed & Deng, 2020) iteratively update the disparity
without building a full 4D volume. It restricts 2D flow to the 1D disparity dimension and uses multi-
level convolutional Gated Recurrent Unit (ConvGRU) for broader receptive fields, demonstrating
strong generalization. Successor models such as DLNR (Zhao et al., 2023), IGEV-Stereo (Xu et al.,
2023a) and Selective-Stereo (Wang et al., 2024a) improve in-domain performance, but RAFT-Stereo
retains advantages in zero-shot settings (Lipson et al., 2021). Recent hybrid methods (Hamid et al.,
2021) combine cost filtering and iterative refinement for better trade-offs. Meanwhile, transformer-
based solutions (Xu et al., 2023b) utilize cross-attention or global self-attention.

Event-Based Stereo Depth Estimation. Event cameras capture pixel-level brightness changes
asynchronously, offering significant advantages over conventional frame-based cameras. Recently,
event-based stereo depth estimation has advanced rapidly (Gallego et al., 2020; Tosi et al., 2025),
with notable methods exploiting camera velocity (Zhang et al., 2022b) or deriving depth without
explicit event matching (Zhou et al., 2018). Deep learning approaches propose novel sequence em-
bedding (Tulyakov et al., 2019) and fuse frame and event data (Nam et al., 2022) to improve depth
estimates in challenging scenarios. Moreover, some works (Cho et al., 2023) leverage standard
models from the image domain, exploiting the inherent connection between frame and event data to
improve stereo depth estimation performance.

3 METHODS

This section describes the overall architecture of our proposed model (Fig. 2). Figs. 2a, b illustrate
the design of the biologically inspired framework. Fig. 2c shows the overall network architecture,
which consists of the following four main components.

Spike Camera Model. The spike camera, mimicking the retinal fovea, consists of a H ×W pixel
array in which each pixel asynchronously fires spikes to report luminance intensity. Specifically,
each pixel independently integrates the incoming light over time. At a given moment t, if the ac-
cumulated brightness at pixel (i, j) reaches or exceeds a fixed threshold C, a spike is fired and the
accumulator is reset: A(i, j, t) =

∫ t

ts
I(i, j, τ) dτ ≥ C, where i, j ∈ Z, i ≤ H, j ≤ W . Here,

A(i, j, t) denotes the accumulated brightness at time t, I(i, j, τ) is the instantaneous brightness at
the pixel (i, j), and ts is the last firing time of the spike. If t corresponds to the first spike, then
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Figure 2: The pipeline of the proposed solution. (a) and (b) The components of the biological visual
system, each corresponding to a specific module in the computational framework. (c) The overview
of SpikeStereoNet: Multi-scale spike features are first extracted to construct a correlation pyramid,
followed by a biologically inspired RSNN-based update operator that iteratively refines disparity
using local cost volumes and contextual cues. The final disparity map are upsampled to produce
high-resolution depth estimates.

ts = 0. Due to circuit-level constraints, spike readout times are quantized. Although firing is asyn-
chronous, all pixels periodically check their spike flags at discrete times n∆t (n ∈ Z), where ∆t is
a short interval on the order of microseconds. As a result, each readout forms a binary spiking frame
of size H ×W . Over time, these frames constitute a H ×W ×N binary spike stream:

S(i, j, n∆t) =

{
1 if ∃ t ∈ [(n− 1)∆t, n∆t] s.t. A(i, j, t) ≥ C,

0 if ∀ t ∈ [(n− 1)∆t, n∆t] s.t. A(i, j, t) < C,
(1)

then we denote the generated spike stream as S ∈ {0, 1}N×H×W , where H and W signify the
height and width of the image, and N represents the temporal steps of the spike stream.

Spike Feature Extraction. The structure of spike feature extraction is illustrated in Fig. 3(a), which
outlines the architecture of the feature network or the context network. The feature network re-
ceives the left and right input spike streams Sl(r) ∈ RN×H×W , applying a 7 × 7 convolution to
downsample them to half-resolution. Then, a series of residual blocks is used for spike feature
extraction, followed by another downsampling layer to obtain 1/4-resolution features. For more
expressive representations, we further generate multi-scale features at 1/4, 1/8, and 1/16 scales, de-
noted {fl,i, fr,i ∈ RCi×Hi×Wi}, i ∈ {4, 8, 16}. Among these, fl,4 and fr,4 are used to construct the
cost volume, while all levels are used as a guide for the 3D regularization network.

The context network shares a similar backbone with feature networks. It consists of residual blocks
and additional downsampling layers to produce multi-scale context features of the original resolu-
tion. These features are used to initialize and inject contexts into RSNNs at each recurrent iteration.

Correlation Volume. Given the left and right feature maps f(l) and f(r), we first construct a cor-
relation cost volume of all pairs: Cijk =

∑
h f(l)hij · f(r)hik. Next, we build a 4-level correlation

pyramid {Ci}4i=1 applying 1D average pooling along the last dimension. Each level is obtained
using a kernel size of 2 and a stride of 2, progressively downsampling the disparity dimension.
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Figure 3: Illustration of the detailed structure of spike feature extraction and the RSNN-based update
module. (a) Spike feature extraction: It comprises one context network and two feature networks,
which extract multi-scale correlation features, contextual features, and the initial hidden state from
the spike streams. A single network structure is illustrated in the diagram. (b) RSNN-based update
block: Local correlations and disparity fields are used to generate motion features, which update
the RSNN hidden states through recurrent and feedforward connections. The RSNN at the highest
resolution is responsible for refining the disparity estimates. (c) Descriptions of key modules.

RSNN-Based Update Operator. To capture multi-scale spatial and temporal information, a three-
layer RSNN is used as the update module. Each RSNN layer contains recurrent intra-layer connec-
tions and feedforward inter-layer connections to facilitate hierarchical temporal processing (Fig. 3b,
c). At 1/8 and 1/16 resolutions, RSNN modules receive inputs from the context features, the post-
synaptic currents obtained by weights from the spike states at the same layer and the previous layer.
These recurrent and feedforward connections expand the receptive field and facilitate feature prop-
agation across scales. At 1/4 resolution level, the model additionally receives the current disparity
estimate and the local cost volume derived from the correlation pyramid. A single RSNN updates
as follows (the default parameters are the l-th layer network, the parameters from the previous layer
are explicitly indicated, and bold symbols represent vectors/matrices):

αt = σ(Conv([st−1,xt],Wα) + cα),

βt = σ(Conv([st−1,xt],Wβ) + cβ),

γt = σ(Conv([st−1,xt],Wγ) + cγ),

st = f(st−1, s
(l−1)
t ,αt,βt,γt),

(2)

where st is the spike state in layer l and timestep t, cα, cβ, and cγ are context embeddings from
the context network, and σ is the sigmoid function. The number of channels in the hidden states
of RSNNs is 128, same as in the context feature. The function f(·) corresponds to our proposed
adaptive leaky integrate-and-fire neuron model, defined as:

ht = αt · vt−1 + (1−αt) · (Wrecst−1 +Wfs
(l−1)
t ),

vth
t = βt · vpeak,

st = θ(ht − vth
t ),

vt = ht − γt · st · vth
t ,

(3)

where vt is the membrane potential, vth
t is the firing threshold and θ(·) is the Heaviside step func-

tion. Wrec and Wf are the recurrent and feedforward synaptic weights, respectively, implemented
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as convolutional kernels. And α, β and γ ∈ [0, 1] are adaptive variables, representing retention
of membrane potential, firing threshold, and soft reset in the previous step, respectively. This up-
date mechanism draws biological inspiration from neuroscience findings showing that key neuronal
properties such as firing threshold, resting potential, and membrane time constant are not fixed but
vary dynamically in biological neural circuits depending on neuronal state and contextual input.

Spatial Upsampling. Based on the hidden state of final layer, network predicts both residual dispar-
ity through two convolutional layers and then updates current disparity: dt = dt−1 +∆dt. Finally,
the disparity at 1/4 resolution is upsampled to full resolution using a convex combination strategy.

Loss Function. We supervise the network for a composite loss function composed of the three
terms: the main loss, the firing rate and the voltage regularization. The overall loss is defined as:

L = Lstereo + λfLrate reg + λvLv reg

=

T∑
t=1

ηT−t∥dgt − dt∥1 + λf

N∑
i=1

(ri − r0)
2 + λv

N∑
i=1

T∑
t=1

vi(t)
2, η = 0.9.

(4)

The first term Lstereo is the main loss, which is the L1-norm distance between all predicted disparities
{dt}Tt=1 and the ground truth disparity dgt with increasing weights. To constrain the firing rate of
neurons and promote temporal sparsity, the second term Lrate reg is firing rate regularization, ri is the
average firing rate of the i-th neuron during time T , and r0 is the target firing rate. Furthermore, the
third term Lv reg serves as the voltage regularization term, where N represents the total number of
neurons. Both regularization terms encourage sparsity and benefit the performance.

4 EXPERIMENTS

4.1 DATASETS

Synthetic Dataset. To support supervised training for spike-based depth estimation, we construct a
high-quality synthetic dataset using Blender (Community, 2018). The dataset includes 150 training
scenes and 40 testing scenes, each containing 256 pairs of RGB images and corresponding ground-
truth depth maps. The dataset build process and details are in the Appendix A.4.

To generate dense spike streams with high temporal resolution in dynamic environments, we apply
a video interpolation method (Zhang et al., 2023a) to synthesize 50 intermediate RGB frames be-
tween each pair of adjacent frames. These high-frequency image sequences are then converted into
spike streams using a biologically inspired spike generation mechanism that models the analog be-
havior of real spiking camera circuits. Noise modeling is also integrated to further enhance realism.
Our dataset provides synchronized high-resolution spike streams and pixel-wise depth ground truth,
offering a comprehensive and reliable benchmark for training and testing.

Real Dataset. We collect a real-world spike stereo dataset using two spike cameras and one depth
camera (Kinect) in diverse environments to evaluate the generalization and practical performance of
the model. The spike cameras have a resolution of 400 × 250 with a temporal resolution of 20,000
Hz, while the depth camera provides RGB-D data at 1280×720 resolution and 30 FPS. The captured
scenes involve various objects of the real world recorded in indoor settings. The dataset includes
over 3,000 stereo spike stream pairs (more than 300,000 frames) and depth maps and is divided into
training and test sets. More details about our real dataset and system are provided in Appendix A.5.

4.2 IMPLEMENTATION DETAILS

We implemented SpikeStereoNet using PyTorch and performed all experiments on NVIDIA RTX
4090 GPUs. The model is trained using the AdamW optimizer with gradient clipping in the range of
[−1, 1]. A one-cycle learning rate schedule is adopted, with an initial learning rate set to 2× 10−4.
During training, we apply 16 update iterations for each sample and set the batch size as 8 for 300k
steps. We use random horizontal and vertical flips as data augmentation in the training dataset.
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Table 1: Quantitative results on the test set of synthetic dataset, and all methods use spike streams
as input. Best results for each evaluation metric are bolded, second best are underlined. The “↓”
indicates that the lower the metrics, the better.

Method bad 1.0 bad 2.0 bad 3.0 AvgErr Params FLOPs
(%) ↓ (%) ↓ (%) ↓ (px) ↓ (M) (B)

Stereospike (Rançon et al., 2022) 14.10 9.82 5.35 1.10 5.10 569
ZEST (Lou et al., 2024) 11.10 4.94 3.50 0.62 340.75 989
DDES (Tulyakov et al., 2019) 13.32 6.03 3.61 0.71 6.7 555
SE-CFF (Nam et al., 2022) 14.04 7.05 4.06 0.69 5.9 552
CREStereo (Li et al., 2022) 16.12 10.54 4.40 0.81 5.43 863
RAFT-Stereo (Lipson et al., 2021) 9.67 4.64 2.76 0.48 11.41 798
GMStereo (Xu et al., 2023b) 17.61 11.05 4.39 0.83 7.40 160
IGEV-Stereo (Xu et al., 2023a) 12.50 6.50 4.27 0.76 12.77 614
DLNR (Zhao et al., 2023) 10.15 4.67 2.81 0.55 57.83 1580
MoCha (Chen et al., 2024b) 11.93 5.67 4.39 0.73 20.96 935
Selective (Wang et al., 2024a) 9.24 4.57 2.66 0.45 13.32 957
MonSter (Cheng et al., 2025) 9.23 4.64 2.72 0.46 388.69 1567

SpikeStereoNet (Ours) 8.41 4.13 2.38 0.42 12.15 473

Scene Ground Truth IGEV DLNR Selective-stereo Ours

Figure 4: From left to right: synthetic scene images from the left view, ground-truth depth, depth
prediction results from existing stereo methods and our method.

4.3 EXPERIMENTAL RESULTS

Our method is compared with various categories of stereo depth estimation approaches. First, event-
based stereo networks are compared, such as ZEST (Lou et al., 2024). Next, state-of-the-art frame-
based stereo networks are evaluated, including Selective-Stereo (Wang et al., 2024a), RAFT-Stereo
(Lipson et al., 2021), and GMStereo (Xu et al., 2023b), etc. These methods cover different strategies,
such as iterative refinement or transformer-based global matching. All networks are re-trained using
the same settings and evaluated under identical conditions to ensure fair comparison.

Experiments on the Synthetic Dataset. We use the average end-point error (AvgErr) and the bad
pixel ratio with different pixel thresholds to evaluate the quality of stereo depth estimation. The
results of the quantitative comparisons are presented in Table 1. As shown in the table, we achieve
the best performance among the listed methods for almost all metrics in the synthetic dataset. Fig. 4
illustrates the scene, the spike stream, the ground truth of the depth, and the predicted depth maps
of different methods. Our method significantly outperforms competing approaches, producing more
accurate and sharper depth results. The sharpness and density of predicted depth maps demonstrate
the effectiveness of our approach in spike stream inputs, especially in complex and cluttered scenes.

7
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Table 2: Quantitative results on the real dataset, and all methods use real spike streams as input.
Method bad 2.0 (%) ↓ bad 3.0 (%) ↓ AvgErr ↓
RAFT-Stereo (Lipson et al., 2021) 6.18 3.39 0.64
IGEV-Stereo (Xu et al., 2023a) 8.39 5.72 0.88
Mocha-stereo (Chen et al., 2024b) 7.32 5.88 0.81
DLNR (Zhao et al., 2023) 5.64 3.38 0.61
Selective-Stereo (Wang et al., 2024a) 5.50 3.43 0.58

SpikeStereoNet (Ours) 5.33 3.19 0.56

Scene Kinect RAFT-Stereo Selective-stereo Ours

Figure 5: Visual results of our method and competing approaches on the real dataset. The “Scene”
refers to the gamma-transformed temporal average of spike streams. “Kinect” represents the raw
depths captured by the depth camera.

In addition to accuracy metrics, Table 1 also reports the params and floating-point operations
(FLOPs) for each method. SpikeStereoNet achieves a favorable balance between performance and
efficiency, ranking second in FLOPs while outperforming most models in parameter number. This
demonstrates that the additional computational cost, incurred to better capture the spatiotemporal
characteristics and asynchrony of spike data is justified. Compared to other methods that han-
dle complex temporal structures, such as Transformer-based approaches, SpikeStereoNet remains
highly competitive in terms of efficiency. Additional comparison results are provided in Appendix.

Experiments on the Real Dataset. To bridge the domain gap between synthetic and real data, we
apply a domain adaptation strategy to fine-tune our model, which is initially trained on synthetic
datasets. The visualization results are shown in Fig. 5. Compared with other methods, our approach
produces more accurate depth maps with sharper object boundaries and finer structural details. It
performs especially well in challenging regions, such as textureless surfaces and high-illumination
areas, benefiting from the integration of spike domain characteristics. These results highlight the
effectiveness of our domain adaptation strategy and the robustness of our model in real-world stereo
depth estimation from spike streams. Specifically, we adopt the average end-point error (AvgErr) and
the bad pixel ratio as our evaluation criteria. The detailed results of different models are summarized
in Table 2. As shown in the last row of Table 2, we can see that our method also outperforms other
methods with the smallest AvgErr in the real dataset. The results of the experiment on the real
dataset demonstrate that our method can effectively handle real scenarios.

Data Efficiency. To evaluate the generalizability of our model, we conduct experiments by training
it on randomly selected subsets of the synthetic dataset, using 10% to 50% of the full training data in
10% increments. All models, including ours and the baselines, are tested on the complete testing set
to ensure a fair and consistent comparison. As illustrated in Fig. 6, our model consistently outper-
forms other methods in all training data ratios. The performance gap becomes more significant as
the training data size decreases, demonstrating that our model generalizes better in data-scarce sce-
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Figure 6: Data efficiency experiments on the synthetic dataset. The horizontal axis indicates the pro-
portion of the training set, while the vertical axes represent the AvgErr and 2 px error, respectively.

0 10 20 30 40 50
Number of iterations (T)

10 2

10 1

100

101 MSE (log)
AvgErr (px)

1.0 0.5 0.0 0.5 1.0
Real

1.0

0.5

0.0

0.5

1.0

Im
ag

in
ar

y

Unit circle

Eigenvalues

200 0 200 400 600
PCA 1

200

0

200

400

P
C

A
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

10

20

30

40

T
im

e 
st

ep
 T

Figure 7: Visualization of network dynamics analysis. The sub-figures show, in order: the change in
hidden state differences over time in the RSNN, the eigenvalue spectrum of the network for stability
analysis, and the PCA of different inputs over time.

narios. These results highlight the robustness and efficiency of our approach in learning meaningful
representations, even with limited supervision.

Explanation of Iterative Refinement Structures. We analyze the dynamic behavior of our hybrid
neural network to assess its temporal characteristics. As shown in Fig. 7, the left panel illustrates that
hidden state differences decrease over time, indicating convergence. The middle panel displays the
eigenvalue spectrum of the Jacobian matrix at the final time step, with all eigenvalues located within
the unit circle, which confirms the stability of the system. The right panel presents a PCA of hidden
states across input batches, showing increasing dispersion over time, which reflects the model’s
ability to encode diverse temporal patterns. These results highlight temporal stability, robustness,
and expressive power of the network. Further theoretical proof can be found in Appendix A.6.

Beyond validating our specific RSNN design, this dynamics analysis sheds light on why iterative re-
finement, the core mechanism in architectures like RAFT-Stereo (Lipson et al., 2021), is so effective.
Our results explicitly show how a well-behaved iterative updater can maintain stability while pro-
gressively integrating information over time steps to refine the estimate towards the correct solution.
This provides a dynamical grounding for the empirical success of iterative methods.

4.4 ABLATION STUDY

To evaluate the effectiveness of each component in our framework and analyze their contributions
to the overall performance, we conducted a series of ablation studies in the synthetic dataset.

Connection Structure. We analyze the effect of connection structures within RSNN. When using
feedforward connections (FFC) between layers or recurrent connections (RC) within layers, there
is a slight increase in runtime and parameter count. However, this structural enhancement leads to
significantly better overall performance. As shown in the upper part of Table 3, incorporating these
connections results in improved accuracy in all evaluation metrics. The improved information flow
across time and layers enables networks to capture richer temporal dynamics and finer spatial details,
highlighting the importance of these connections in achieving accurate stereo depth estimation.
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Table 3: Ablation studies of network architectures.
Setting of experiment bad 2.0 (%) ↓ bad 3.0 (%) ↓ AvgErr (px) ↓
w/o RC & FFC 12.07 6.46 1.29
w/o RC 11.05 4.48 0.83
w/o FFC 5.86 3.63 0.68
w/o GN module 7.49 3.11 0.58
w/o voltage regularization 7.33 2.97 0.57
w/o firing-rate regularization 6.38 2.85 0.51
w/o regularization 7.77 3.41 0.61

Ours (full) 4.13 2.38 0.42

Table 4: Ablation studies for the RSNN module.
Method bad 2.0 (%) ↓ bad 3.0 (%) ↓ AvgErr (px) ↓
Vanilla RNN 7.28 3.41 0.66
GRU 4.53 2.99 0.48
LSTM 4.77 2.94 0.49
Raw SNN 11.05 4.48 0.83
LIF (fixed α, β, γ) 7.05 4.06 0.69

ALIF RSNN (Ours) 4.13 2.38 0.42

Regularization. We investigate the impact of removing regularization (Reg) terms and group nor-
malization (GN). As listed in the lower part of Table 3, removing either the regularization on firing
rate and membrane potential or the group normalization applied to adaptive input variables leads to
a clear drop in performance. The absence of regularization results in unstable training and increased
prediction error, while removing group normalization slows convergence and reduces final accuracy.
When both components are removed simultaneously, performance is further degraded.

RSNN Structure. We conducted an explicit replacement experiment in which the adaptive LIF
(ALIF) neurons used in our recurrent refinement were substituted with a classical LIF implementa-
tion that keeps all adaptive scalars fixed. where α, β and γ are fixed constants (0.5, 1.0, 1.0 in our
baselines), not learnable or input dependent. In addition, we also removed spikes and replaced them
with vanilla RNN, LSTM, and GRU blocks, which have the same number of neurons as aLIF-RSNN.
This removes adaptivity to temporal patterns in spike streams. All other network components, learn-
ing rates, and losses were kept identical. We conducted an ablation study by replacing ALIF with the
above models in the synthetic dataset. All other conditions of the experiment are the same, and the
results are in Table 4. From the above table, it can be seen that after replacing the aLIF model, the
overall performance significantly decreased. The ALIF is critical for our task because stereo spike
streams require adaptive temporal processing. Adaptive gating markedly improves both stability and
final accuracy with negligible overhead, justifying our choice of the novel ALIF.

5 CONCLUSION

We present SpikeStereoNet, the state-of-the-art deep learning framework for stereo depth estimation
from spike streams of spike camera, with a biologically plausible update operator based on recurrent
spiking neural networks (RSNNs). In addition, we construct synthetic and real-world stereo spike
stream datasets with corresponding depth maps. Extensive experiments demonstrate that our method
achieves SOTA performance, benefiting from the data efficiency and convergence of RSNN. Overall,
SpikeStereoNet represents an advance in neuromorphic stereo vision and demonstrates the potential
of spike-based systems for efficient, accurate, and high-speed 3D perception.

Limitations. Our method is limited by the small scale of the real world dataset and the domain
gap between the synthetic and real data. Although domain adaptation helps, its effectiveness is
constrained by the quality of real labeled data and cannot fully bridge distribution differences. We
plan to extend our method to handle these questions in future work.
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We affirm compliance with the Code of Ethics for all stages of this work. Our study does not
involve interventions on human or animal subjects. We evaluate and report fairness indicators where
applicable, and we avoid training or releasing models that systematically disadvantage protected
groups. All code, models, and preprocessing scripts will be released with documentation to support
reproducibility while respecting data licenses and usage constraints. We also report compute settings
to encourage consideration of environmental impact and resource use.

REPRODUCIBILITY STATEMENT

To facilitate reproduction of our results, we provide detailed descriptions of our methodology. All
experiments were conducted under PyTorch with CUDA, and the exact environment is specified.
We specify all model architectures, hyperparameters, training protocols, data-splitting strategies,
and evaluation metrics in the main body and Appendix. All experiments were performed with fixed
random seeds. We will release our complete dataset, code repository, and demo.
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A APPENDIX

The appendix provides additional implementation details and extended experimental results for the
SpikeStereoNet framework introduced in the main paper. It is organized into six distinct sections:
The Use of Large Language Models in Appendix A.1, Theory Analysis and Method in Appendix
A.3, Details of the Synthetic Dataset in Appendix A.4, Details of the Real Dataset in Appendix
A.5, More Experimental Results in Appendix A.6 and Broader Impacts in Appendix A.7.

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During writing, we use large language models only for grammar and style polishing. The LLMs
did not generate or rewrite technical content. All statements and citations were verified by the
authors. No proprietary data or restricted code was shared with the LLMs. The authors assume full
responsibility for the content of the paper.

A.2 NOVELTY OF THE MODEL

A.2.1 NOVELTY OF THE PROPOSED FRAMEWORK

Our contributions are not a simple substitution for an update module. Except for the innovation of
new modal datasets, SpikeStereoNet also introduces three key innovations:

• A biologically inspired adaptive-LIF RSNN for disparity refinement, with dynamic leak,
threshold, and soft-reset mechanisms tailored to sparse, temporally coded inputs.
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• A temporal cost–volume formulation directly constructed from spike streams, preserving
microsecond-level timing rather than relying on frame-like aggregation.

• A theoretical analysis of the recurrent dynamics, showing that adaptive thresholds and
membrane gating produce contraction-like behavior, enabling stable multi-step refinement,
which not analyzed in prior stereo works.

These components together form a stereo framework fundamentally designed around spike-temporal
representations, not frames or events.

A.2.2 THE NECESSITY OF RSNN

Compared with ANN-based updates (GRU, LSTM, vanilla RNN), an RSNN is necessary for the
following reasons.

Temporal precision. Spikes carry information in timing, not intensity. GRU/LSTM compress
temporal information into dense hidden states, losing microsecond timing cues:

st ∈ 0, 1, but GRU hidden state ht ∈ RC . (5)

The RSNN operates natively on spike timing, allowing disparity refinement conditioned on temporal
synchrony between stereo streams.

Stability for iterative refinement. RSNN dynamics naturally enforce bounded membrane poten-
tials and adaptive thresholds, which we prove lead to ρ(JRSNN) < 1, ensuring stable convergence
across iterations—even when spike density varies widely (e.g., specular highlights, textureless ob-
jects). GRU/LSTM exhibit saturation or divergence under the same spike sparsity conditions (shown
in our ablation). Thus, RSNN is not simply used for novelty, and it is required to refine disparity
reliably under spike-driven temporal statistics.

A.2.3 THE ADAPTABILITY OF SPIKESTERONET TO SPIKE DATA

Spike streams differ from frames or events in two critical ways:

Spike cameras integrate photons into discrete spike firings. Each spike encoding accumulated
photon evidence—not instantaneous contrast. Thus, raw spike tensors have: (1) asynchronous ar-
rival, (2) variable firing density, and (3) nonlinear temporal aggregation.

SpikeStereoNet handles these via:

• adaptive leakage→ controls the integration window

• adaptive thresholding→ normalizes the firing density in all lighting

• adaptive soft reset→ maintains fine temporal resolution

These match the physics of spike generation far better than the ANN alternatives.

Temporal sparsity and burstiness. Spike streams show alternating burst (fast motion) and silence
(static) phases. The RSNN:

• suppresses noise during bursty segments,

• maintains membrane memory during silent segments,

• dynamically adapts thresholds to prevent firing saturation.

Conventional update operators lack this adaptive excitability.

In summary, SpikeStereoNet is novel due to its adaptive LIF–based RSNN, temporal spike cost vol-
ume, and dynamics analysis. RSNN is necessary because it preserves temporal precision, leverages
spike sparsity, and ensures stable iterative refinement. The model is specifically suited for spiking
data because its neuron model mirrors the physics of spike cameras and its recurrence matches the
bursty/sparse temporal statistics of spike streams.
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A.3 THEORY ANALYSIS AND METHOD

A.3.1 PROBLEM STATEMENT

Given a continuous binary spike stream St1
N ∈ {0, 1}H×W×N with a spatio-temporal resolution of

H ×W ×N , centered on the timestamp t1, we divide it into three non-overlapping substreams St0
N ,

St1
N , and St2

N , centered on timestamps t0, t1, and t2, respectively. The goal is to estimate the dis-
parity map corresponding to t1. Here, St1

N provides the essential spatial structure for estimating the
disparity, while St0

N and St2
N provide temporal cues to improve consistency and robustness. Letting

Sn ∈ {0, 1}W×H denote the n-th spike frame, we predict the disparity at timestamp t1 from the full
spike stream {Sn}, n = 0, . . . , k, leveraging both spatial features and temporal continuity.

A.3.2 NOISE SIMULATION

The noise in spiking cameras comes mainly from the dark current. The accumulation of brightness
in the pixel (i, j) over time t can be expressed as:

A(i, j, t) =

∫ t

tpre
i,j

(I(i, j, τ) + Idark(i, j, τ)) dτ, (6)

where A(i, j, t) represents the integrated brightness, tpre
i,j is the previous firing time for the pixel

(i, j), and Idark denotes the random noise component caused by the dark current. In our synthetic
dataset, the dark currents in the circuits introduce thermal noise, which is the type of noise modeled
in this work.

A.3.3 VIDEO-TO-SPIKE PREPROCESSING PIPELINE

We introduce a two-stage preprocessing pipeline to convert conventional image data into temporally
precise spike streams, comprising neural network-based frame interpolation and spike encoding.

Frame Interpolation for Enhanced Temporal Resolution. To enhance temporal resolution, raw
frames from dynamic synthetic datasets are processed using a pre-trained video frame interpolation
model EMA-VFI (Zhang et al., 2023a). The architecture comprises a hybrid CNN and transformer
framework, and uses correlation information hidden within the attention map to simultaneously
enhance the appearance information and model motion.

For temporal expansion, we applied a frame rate upsampling factor of ×50 to the synthetic dataset.
The output is represented as a 4D tensor of shape [T,H,W,C], where T is the temporal length,
H ×W is the spatial resolution and C = 3 denotes RGB channels.

Spike Encoding via Temporal Integration. The high-frame-rate RGB sequences are converted
to spike streams through a temporal integration algorithm:

1. Convert RGB frames to grayscale and normalize pixel intensities to [0, 1].
2. Accumulate membrane potential over time as Vt = Vt−1 + It.
3. Spike generation:

spike matrix[t, x, y] =
{
1 if Vt(x, y) ≥ θ

0 otherwise
where threshold θ = 5.0 and potential reset Vt ← Vt − θ after spike.

4. Repeat until all frames are processed.

Spike streams are stored as binary tensors of shape [T,H,W ] using the StackToSpike func-
tion with configurable noise Inoise and threshold θ. For compact storage and compatibility for our
framework, the SpikeToRaw module compresses spikes (8 per byte) in the .dat format, allowing
lossless reconstruction during inference.

The proposed two-stage preprocessing pipeline effectively bridges conventional images and neuro-
morphic vision processing. By combining deep learning-based frame interpolation with bio-inspired
spike encoding, we achieve the following:
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• Temporal Super-Resolution: Neural interpolation extends the temporal sampling density
by 50× through multi-scale optical flow and attention mechanisms, preserving physical
consistency in dynamic scenes.

• Biologically Plausible Encoding: The temporal integration algorithm emulates the neuron
dynamics of the retina, converting intensity variations into sparse spike events with adaptive
threshold control.

• System Compatibility: Serialized spike data (.dat) with byte-level compression and struc-
tured formatting ensure seamless integration into brain-inspired stereo depth estimation
systems.

This pipeline facilitates the efficient transformation of dynamic scene datasets into spike-compatible
formats, preserving configurable spatio-temporal characteristics and laying a solid foundation for
spike-based stereo depth estimation.

To assess the fidelity of the conversion of the dataset, we use the Texture From Interval (TFI) algo-
rithm of the SpikeCV (Zheng et al., 2023) library to reconstruct grayscale images from spike streams
with dimensions [T,H,W ]. This method exploits the spatiotemporal sparsity and encoding capacity
of spike streams to approximate the textural structure of conventional images.

The core idea behind TFI is that the temporal interval between adjacent spikes encodes local texture
intensity: shorter intervals correspond to higher pixel activity and brighter intensity. The algorithm
identifies the two nearest spike timestamps within a bounded temporal window (±∆t) for each pixel
and computes the grayscale of the value pixel based on their interval duration.

A.3.4 ADAPTIVE LEAKY INTEGRATE-AND-FIRE NEURON MODEL

Common RSNN models often overlook several biologically relevant dynamic processes, particularly
those occurring over extended time scales. To address this, we incorporate neuronal adaptation
into our RSNN design. Empirical studies, such as those in the Allen Brain Atlas, indicate that a
significant proportion of excitatory neurons exhibit adaptation with varying time constants. Several
approaches to fit models for adapting neurons to empirical data.

In this work, we adopt a simplified formulation. The membrane potential of each neuron is updated
using the Exponential Euler Algorithm (Cachia, 2004). The firing threshold vth

t increases by a fixed
value βt following each spike, while the peak voltage vth

t = βt ·vpeak remains constant. At a discrete
time step of ∆t = 1 ms, the neuronal membrane potential update rule is defined as:

ht = αt · vt−1 + (1−αt) · (Wrecst−1 +Wfs
(l−1)
t ), (7)

where αt = exp(−∆t/τa) and s ∈ {0, 1} denotes the binary spike train of neuron. The retention of
membrane potential is controlled by a decay factor γt. In summary, the neuron model incorporates
three adaptive parameters that govern the decay of the membrane potential, the firing threshold, and
the reset potential, jointly determining the neuron’s adaptive dynamics, respectively.

A.3.5 APPLYING BPTT TO RSNN

Although backpropagation through time (BPTT) is not biologically plausible, it serves as an effec-
tive optimization strategy for training RSNNs over extended temporal sequences, analogous to how
evolutionary and developmental processes adapt biological systems to specific tasks. Prior work has
applied backpropagation to feedforward spiking neural networks by introducing a pseudo-derivative
to approximate the non-existent gradient at spike times. This surrogate derivative increases smoothly
from 0 to 1 and then decays, allowing gradient-based learning. In our implementation, the pseudo-
derivative’s amplitude is attenuated by a factor less than 1, which improves BPTT stability and
performance when training RSNNs over longer time horizons. Throughout, we use the following
surrogate function g(x):

g(x) = sigmoid(αx) =
1

1 + e−αx
, (8)

the spiking function of the sigmoid gradient is used in backpropagation. The gradient is defined by:
g′(x) = α ∗ (1− sigmoid(αx)) ∗ sigmoid(αx), (9)

where α is a parameter that controls the slope of the surrogate derivative. Unless otherwise men-
tioned, we set α = 4.
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A.3.6 DETAIL OF LOSS FUNCTION

In our training framework, the total loss L is composed of three distinct components, each serving
a specific purpose in optimizing the performance of the model. Specifically, the total loss is defined
as

L = Lstereo + λfLrate reg + λvLv reg, (10)
where Lstereo represents stereo loss, Lrate reg denotes the firing rate regularization loss, and Lv reg
corresponds to the velocity regularization loss. The parameters λf and λv are regularization coeffi-
cients that control the influence of the respective regularization terms. Stereo loss Lstereo is designed
to measure the discrepancy between the ground-truth disparity dgt and the predicted disparity dt over
time t. It is formulated as follows:

Lstereo =

T∑
t=1

ηT−t||dgt − dt||1, (11)

where η = 0.9 is a discount factor that assigns more weight to recent disparities, ensuring that the
model focuses more on recent predictions.

The firing rate regularization loss Lrate reg aims to stabilize the firing rates of neurons by penalizing
deviations from the targe firing rate r0. It is defined as:

Lrate reg =

N∑
i=1

(ri − r0)
2, ri =

1

T

T∑
t=1

Si(t), (12)

where ri is the average firing rate of the neuron i over time T , this term encourages the model
to maintain consistent firing rates across neurons, thereby enhancing stability and preventing over-
activation.

The voltage regularization loss Lv reg is introduced to regularize the temporal dynamics of the model
by penalizing the high velocities of the neurons. It is expressed as

Lv reg =

N∑
i=1

T∑
t=1

vi(t)
2, (13)

where vi(t) represents the membrane potential of neuron i at time t, and N is the number of neurons
in the network. This regularization term helps smooth the temporal behavior of the model, ensuring
that changes in neuronal states are gradual and controlled.

In general, the combination of these loss components allows for a comprehensive optimization strat-
egy that balances accuracy, firing rate stability, and temporal smoothness, thereby enhancing the
robustness and performance of the model in stereo vision tasks.

A.3.7 NETWORK RE-TRAINING METHOD

When frame- or event- based networks are re-training, we make certain adjustments to the hyper-
parameters of these baseline models. Firstly, we did not simply use the default hyperparameters
from the original papers because frame-based and event-based methods differ significantly from
spike-based data, and using default settings would clearly disadvantage some baselines. There-
fore, every baseline was re-trained with targeted hyperparameter adaptation for the spike modality.
Secondly, we did not perform an exhaustive full hyperparameter search for every baseline. Many
baselines (e.g., Selective-Stereo, DLNR, RAFT-Stereo, ZEST) have large and complex hyperparam-
eter spaces. Running a full grid or Bayesian search for each would require tens of thousands of GPU
hours, far beyond the feasibility of this work. Thus, we adopt a practical, fairness-oriented tuning
protocol. For each baseline, we tune the hyperparameters that are known to be sensitive to data
modality, including:

Frame-/Event-based baselines:

• learning rate (±2× around original)
• batch size (to account for temporal dimension, 4–16)
• temporal aggregation/voxelization hyperparameters
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• photometric/contrastive loss weights where applicable

• number of update iterations (if models use iteration refinement, 16)

• correlation pyramid resolution

• random input crops used during training

• weight decay in optimizer (10−5)

Event-based models:

• time-bin size

• event voxel grid normalization

• temporal decay parameters

We select the best settings on the synthetic validation dataset, and then retrain using the combined
training set.

In summery, our objective was to give each baseline a reasonable and modality-aware advantage,
rather than force them to operate with incompatible default settings. All baselines:

• ✓Retrain from scratch on the spike stereo dataset

• ✓Use modality-adjusted hyperparameters

• ✓Evaluate under the same data splits and metrics

This ensures a fair comparison, even though a full hyperparameter search is not computationally
feasible.

A.4 DETAILS OF THE SYNTHETIC DATASET

A conventional active stereo depth system typically comprises an infrared (IR) projector, a pair of
IR stereo cameras (left and right) and a color camera. Depth measurement is achieved by projecting
a dense IR dot pattern onto the scene, which is subsequently captured by the stereo IR cameras from
different viewpoints. The depth values are then estimated by applying a stereo matching algorithm
to the captured image pair, leveraging the disparity between them. We use the method from (Dai
et al., 2022; Zhang et al., 2024a) that replicates this process, containing light pattern projection,
capture, and stereo matching. The simulator is implemented based on the Blender (Community,
2018) rendering engine.

A.4.1 RANDOM SCENES

For each scene, we generate the corresponding ‘.meta’ files to store structured metadata information.
Additionally, for each object instance, a high-quality ‘.obj’ mesh file is created to represent its geom-
etry. To simulate realistic camera motion, a continuous trajectory is generated by sampling camera
poses uniformly from a virtual sphere with a fixed radius of 0.6 meters. The representative camera
viewpoints are separated by a constant angular increase of 3 °, ensuring smooth transitions along
the trajectory. The objects are rotated accordingly to maintain consistent spatial alignment. Fur-
thermore, a uniform background and consistent lighting configuration are applied across all scenes
to reduce domain-specific biases and enhance rendering consistency. To further bridge the domain
gap between synthetic and real-world data, we adopt domain randomization strategies by randomiz-
ing object textures, material properties (from specular, transparent, to diffuse), object layouts, floor
textures, and lighting conditions aligned with camera poses.

A.4.2 STEREO MATCHING

We perform stereo matching to obtain the disparity map, which can be transferred to the depth map
leveraging the intrinsic parameters of the depth sensor. Specifically, a matching cost volume is
constructed along the epipolar lines between the left and right infrared (IR) images. The disparity
at each pixel is determined by selecting the position with the minimum matching cost. To enhance
accuracy, sub-pixel disparity refinement is performed via quadratic curve fitting. In addition, several
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Table 5: Statistics of the training and test set of synthetic dataset.

Scene Indexes Number of Resolution Number of Number of
Depth Map Spike Frames Scenes

Training Dataset 0 – 149 38,250 400 × 250 76,500 150
Test Dataset 150 – 189 10,200 400 × 250 20,400 40

Figure 8: Scenes for generating the training set of the synthetic dataset. Selected five scenes, each
displayed as a row in which the images correspond to different camera viewpoints of the same scene
(partial views).

post-processing techniques are employed to improve depth quality, including left-right consistency
checks, uniqueness constraints, and median filtering. These steps collectively yield more realistic
and robust depth estimations. The calculation method from disparity to depth is as follows:

Z =
Bf

d+ (cx1 − cx0)
, (14)

where Z is the depth obtained, d is the disparity, f denotes the focal length of the camera, B is the
baseline distance between the stereo cameras and cx1− cx0 represents the horizontal offset between
the principal points of the right and left cameras.

A.4.3 SYNTHETIC DATASET

We make use of domain randomization and depth simulation and construct a large-scale synthetic
dataset. In total, the dataset consists of two subsets: (1) Training set: Consists of 76,500 spike
streams and 38,250 depth maps generated from 150 scenes composed of 88 distinct objects, with
randomized specular, transparent, and diffuse materials. (2) Test set: 20,400 spike streams and
10,200 depth maps generated from 40 new scenes containing 88 distinct objects. The scenes in the
dataset are shown in Fig. 8 and Fig. 9, and the detailed statistics of dataset are shown in Table 5.
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Figure 9: Scenes for generating the test set of the synthetic dataset. Selected two scenes, each
displayed as a row in which the images correspond to different camera viewpoints of the same scene
(partial views).

A.5 DETAILS OF THE REAL DATASET

A.5.1 STEREO CAMERA SYSTEM

We constructed a stereo imaging system using two spike cameras and one RGB-D camera (Kinect)
to simultaneously capture left/right spike streams and the corresponding ground-truth depth images.
As illustrated in Fig. 10, the two spike cameras are mounted on a high-precision alignment rig to
ensure accurate baseline calibration. The spatial resolution of the spike camera is 400 × 250, and
the temporal resolution is 20,000 Hz. The resolution of the RGB-D camera is 1280 × 720, and the
frequency is 30 FPS. Compared with LiDAR, the RGB-D sensor provides dense depth annotations
within its effective range, avoiding the sparse and incomplete depth output typically associated.
To ensure spatial alignment between modalities, intrinsic and extrinsic calibrations are performed
between the spike cameras and the depth camera. The captured depth maps are then geometrically
warped to the coordinate frame of the left spike camera for accurate correspondence.

A.5.2 STEREO SYSTEM CALIBRATION

For the calibration of spike cameras and Kinect, we used the following methods and programs.
When calibrating with spike cameras, it is necessary to capture images of a standard chessboard
calibration pattern. Approximately 20 sets of images should be taken from different positions and
angles (covering left-right and up-down tilts of 15-45 degrees, various distances, and the entire field
of view). During shooting, the calibration board must remain stationary, be fully visible in the field
of view of both spike cameras, and both cameras should capture images simultaneously. Sufficient
time should be allowed at each position to ensure image clarity. Additionally, when reconstruct-
ing images using TFI/TFP (Zheng et al., 2023), the hardware and software settings (including the
TFI/TFP parameters) of the two spike cameras must be kept consistent. To reduce noise interfer-
ence, the process should start with completely static scenes and longer TFI windows, ensuring that
the scenes captured by both cameras are identical except for perspective differences. Adequate
lighting should be provided, and scenes with clear, and strong edges should be selected to improve
calibration success rates. OpenCV’s calibration algorithms are used for stereo rectification (the pri-
mary APIs are “cv.stereoRectifyUncalibrate” and “cv.stereoRectify”). The rectification is applied to
the TFI/TFP images reconstructed by the spike cameras, and the rectified images serve as input to
the binocular stereo algorithm.

A.5.3 STEREO SYSTEM SYNCHRONIZATION MECHANISM

We employ a hybrid hardware-trigger + software algorithmic synchronization pipeline that ensures
stereo alignment suitable for downstream training and evaluation as follows:

Hardware-level coarse synchronization. Both spike cameras are connected to the same host ma-
chine via high-speed USB. During recording, we use a shared software trigger to initiate acquisition
on both sensors: t(L)

0 ≈ t
(R)
0 , where t

(L)
0 and t

(R)
0 are the left/right start timestamps. This provides

coarse alignment, typically within tens of microseconds.
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Empirical estimation of residual time offsets Even with shared triggering, small timing mis-
matches remain due to independent internal clocks. To measure the remaining timing error, we
place a fast-switching LED in both cameras’ fields of view and compare the spike timestamps of
each illumination transition. We collect over 2,000 pairs of real stereo sequences and estimate the
residual time offsets:

∆t = t
(L)
i − t

(R)
i , i = 1, . . . , N. (15)

We model the empirical distribution as:

∆t ∼ N (µ∆t, σ
2
∆t), (16)

where in practice: µ∆t is within 3–7 µs,

σ∆t depends on lighting and spike density but remains ¡ 15 µs.

This analysis characterizes the realistic synchronization noise between the two spike streams.

Temporal cost matching. Before building the cost volume, we apply a lightweight alignment pro-
cedure:

S(L)(t)→ S(L)(t+ ∆̂t), (17)

where ∆̂t is estimated via maximizing temporal correlation:

∆̂t = argmax
δ

∑
x,y

⟨S(L)(x, y, t+ δ), S(R)(x, y, t)⟩. (18)

This provides fine temporal adjustment without modifying the raw spike stream statistics.

Domain Randomization in training. To ensure robustness to synchronization jitter, we inject the
measured ∆t distribution into the synthetic spike generator:

S(L) ∗ syn(t) = S(L) ∗ ideal(t+ ϵ), ϵ ∼ N (µ∆t, σ
2
∆t). (19)

This domain randomization teaches SpikeStereoNet to become invariant to microsecond-level off-
sets.

Fine-tuning on real spike data. Because the network is pre-trained with jitter matching the real
distribution, fine-tuning on real data automatically adapts to the actual synchronization statistics:

ϵreal ∈ support(N (µ∆t, σ
2
∆t)). (20)

As a result, the RSNN refinement module effectively compensates for minor mismatches during
iterative updates.

A.5.4 REAL DATASET COLLECTION

The real dataset comprises some video sequences captured under diverse environmental conditions,
including varying ambient illumination levels (e.g., low, medium, and high brightness) and a range
of dynamic scenarios characterized by distinct object arrangements. These scenes encompass dif-
ferent spatial configurations and relative motions of multiple objects (e.g., camera shake and object
motion), introducing varied degrees of motion blur. The following is the specific collection process
of our real dataset:

Dataset Acquisition Setup. Our real dataset is collected using a custom-built hardware system
consisting of:

• Two spike cameras arranged in a stereo configuration, with a baseline of 80 mm (calibrated
for epipolar alignment).

• A Kinect depth camera through hardware triggering, used to capture ground-truth depth for
alignment.

Calibration of the Stereo Spike Camera System. Stereo spike cameras are calibrated following a
rigorous protocol:
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RGB-Depth Camera 
(Kinect)

Spike Camera Spike Camera

Figure 10: The photograph of our hybrid imaging system. The RGB-D camera is fixed on the top
plane of the stereo spike cameras. The extrinsic parameters between the cameras are calibrated.

• A matte chessboard calibration target (10×14 squares, 25 mm per square) is used, posi-
tioned statically across 20+ viewpoints (covering 15-45° tilts and 0.5-2 m distances).

• Both spike cameras captured synchronized spike streams of the target, which are converted
to TFI (Temporal Filtered Integration) images with a 50 ms window to ensure clarity.

• The calibration quality is validated by checking that the reprojection errors for the 3D
chessboard corners are < 1 pixel across all viewpoints.

Dataset Content. The dataset includes indoor real-world scenes:

• Objects: 20+ everyday items, including textureless objects (e.g., plain plastic basin, white
mugs) and reflective objects (e.g., metal box). Each scene contains 5-8 randomly arranged
objects to simulate clutter.

• Lighting Conditions: 8 controlled lighting setups with direct light sources (LED panels) at
angles of 30◦, 45◦, 60◦, and 90◦ relative to the scene, with intensities ranging from 300-
1500 lux to induce varying levels of specularity and shadow.

• Data Modalities: For each scene, we provide raw stereo spike streams and Kinect-aligned
depth maps (ground truth).

Expanded Contribution. Since the initial submission, we have significantly expanded the scale,
diversity, and dynamism of the real-world dataset to better match practical deployment scenarios.
Specifically, the updated real-world dataset now includes:

• Expanded scene diversity: offices, corridors, workshops, semi-outdoor areas (covered
walkways, open entrances).

• Greater geometric complexity: multi-depth layered scenes, shelves, stair-like structures,
non-planar object arrangements.

• Dynamic sequences: fast 6-DoF handheld motion, multiple independently moving objects,
and varied lighting (LED flicker, shadow sweeps).

• Increased quantity: more than 3× the number of sequences compared to the original sub-
mission.

These new real-world scenes are integrated into the benchmark and included in the total datasets.

A.6 MORE EXPERIMENTAL RESULTS

A.6.1 THEORETICAL ANALYSIS OF NETWORKS

We further supplement the theoretical analysis in the article with the explicit convergence of RSNN
and Lipschitz stability analysis. Here is the complete proof:
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Constructing Fixed Point Iteration and Mapping. For clarity, we rewrite the RSNN update step
in vector form:

ut = F (ut−1) with u := (h,v, s,vth) ∈ R4N , (21)

F (u) =


αtv + (1− αt)

(
Wrecθ(h− vth) +Wfs

(l−1)
)

βtvpeak
θ(h− vth)
h− γtθ(h− vth)vth

 . (22)

The parameters αt,βt,γt are all adaptive variables regulated by the firing rate, and after the activa-
tion function, their ranges are all (0, 1), that is, 0 < αt < 1, 0 < βt < 1, 0 < γt < 1.

Lipschitz Continuity. The Lipschitz constant is determined by the activation function θ(·) (hard
threshold/ReLU) and a linear operator. If θ is 1-Lipschitz ReLU, the mapping F is globally Lipschitz
in ut, then:

∥F (u)− F (u′)∥ ≤ L∥u− u′∥, (23)

where
L = αt + (1− αt) γt βt vpeak ∥Wrec∥, (24)

and all the ranges of variables in this equation are (0, 1), hence the RSNN update is a contraction
with constant L < 1.

Iterative Refinement and Convergence. Because F is a contraction in the entire metric space
(RN∥·∥), and according to the Banach Fixed-Point theorem (Gordji et al., 2017), the error satisfies.

∥u(k) − u∗∥ ≤ Lk

1− L
∥u(1) − u(0)∥. (25)

Hence, the sequence {ut} linear exponentially to a unique fixed point u⋆. The bound agrees with
the empirical spectral-radius curves reported earlier (Fig. 7).

Practical Implications.

• No Exploding States: The membrane potentials remain bounded by 1
1−L∥u

(0)∥.

• Training Stability: Gradients passed through time have an upper bound LT−t, which miti-
gates the exploding BPTT signals.

• Noise Resilience: Any perturbation δ at step k decays as L t−kδ.

Under the condition that αt,βt,γt are bounded and the weight norm satisfies L < 1, the iterative
ut = F (ut−1) of RSNN linearly converges to a unique fixed point, providing a theoretical guarantee
for continuous and contraction Lipschitz mapping. The above theoretical proof supplements the
empirical stability study already proposed (Fig. 7).

A.6.2 ADDITIONAL COMPARATIVE RESULTS

We present a complete stereo depth estimation sequence for a single scene within the synthetic
dataset, capturing the full motion trajectory of objects throughout the dynamic environment. The
different scene images below are obtained by rotating the stereo spike camera system from different
views, and we have extracted some of the views at equal intervals for display. As illustrated in Fig. 11
and Fig. 12, the predicted depth maps effectively reconstruct the continuous evolution of the scene,
accurately reflecting both spatial structure and temporal consistency. These results demonstrate the
model’s ability to preserve coherent geometry across time, validating its effectiveness in handling
dynamic visual inputs. The supplementary materials in the zip file include continuously changing
videos.

In addition, we conducted a qualitative comparison between SpikeStereoNet and several state-of-
the-art methods on the synthetic dataset. Our method consistently produces more accurate and visu-
ally coherent depth maps in various scenes. Further qualitative results are provided to demonstrate
the robustness and effectiveness of our approach.
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Scene Spike (TFI) EstimationGround Truth

Figure 11: Video results of our method on the synthetic dataset in the single scene. From left to right,
the figure shows the sequential scene images, the visualized spike stream using the TFI method, the
ground-truth depth maps, and the depth estimation results produced by our proposed method.

Ours

View 20

View 180

View 40

View 120 View 140View 100

View 160 View 220View 200

View 80

View 0 View 60

Figure 12: Visualization results of SpikeStereoNet on the synthetic dataset in a single scene. We
presented depth estimation results of 12 views in the scene.

A.6.3 SENSITIVE OF THRESHOLD AND TEMPORAL QUANTIZATION

We conducted additional experiments to quantify how the spike threshold and temporal quantization
affect SpikeStereoNet. The model shows robustness to a wide range of settings, largely due to the
adaptive LIF dynamics and the RSNN refinement stage.

During spike generation, the threshold controls how many potentials should accumulate be-
fore a spike is triggered. We evaluate thresholds in the range: v

′

peak ∈ { 0.7vpeak, 1.0vpeak,
1.3vpeak,1.6vpeak}, where vpeak is the nominal threshold. Spike streams are discretized into (T ) bins:
∆t ∈ {0.5 ms, 1.0 ms, 2.0 ms, 4.0 ms}, and ∆t = 1.0 ms is the default time step of the model. The
comparison results are shown in Table 6.

Overall, the impact of the two parameters on the model is as follows:

• Low threshold for denser spikes and slightly more noise.

• High threshold for sparser spikes and fewer temporal cues.

• Very fine bins (< 0.5 ms) increase sparsity but yield negligible improvement.

• Coarse bins (> 4 ms) lose spike timing, which is important for handling motion.

• The performance of the model varies within ±5.9% thought the threshold range.

• Within 0.5–2 ms, the model is stable with the AvgErr variation of less than 3.6%.
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Table 6: Sensitivity analysis of the spike threshold and the temporal quantization step during spike
generation.

Settings bad 2.0 (%) ↓ bad 3.0 (%) ↓ AvgErr (px) ↓ Variation

0.7vpeak 4.56 2.61 0.44 +3.5%
1.3vpeak 4.78 2.62 0.45 +5.9%
1.6vpeak 4.92 2.78 0.46 +8.3%
vpeak, ∆t =1 ms 4.13 2.38 0.42 –
∆t =0.5 ms 4.44 2.58 0.43 +1.2%
∆t =2.0 ms 4.93 2.67 0.44 +3.6%
∆t =4.0 ms 5.01 2.80 0.47 +10.7%

Table 7: The comparison results of the computational efficiency.
Method Equivalent FPS FLOPs (B) Method Equivalent FPS FLOPs (B)

CREStereo 1.67 863 GMStereo 2.28 160
RAFT-Stereo 1.80 798 DLNR 1.79 1580
ZEST 1.63 989 MoCha 1.31 935
IGEV-Stereo 1.53 614 MonSter 1.72 1567
Selective-Stereo 1.76 957 Ours 1.91 473

This robustness arises because the dynamics of aLIF incorporates adaptive membrane thresholds
βtvpeak and learned reset gates γt that automatically compensate for moderate changes in spike
density, even when the raw spike discretization changes.

SpikeStereoNet is not strongly sensitive to moderate shifts in threshold or temporal step because:
The aLIF neuron’s adaptive threshold dynamically regulates firing rates. The RSNN recurrence
reconstructs the missing temporal structure from the context. Firing-rate and voltage regulariza-
tion constrain membrane dynamics, ensuring stable behavior even under different spike densities.
Overall, only extreme settings (very coarse temporal step or high thresholds) noticeably degrade
performance.

A.6.4 COMPUTATIONAL EFFICIENCY

We conducted additional experiments to measure the FPS or Inference Latency of the networks
listed in Table 1 using the same hardware configuration: a NVIDIA RTX 3090 GPU, paired with
an Intel Core i7-13700K CPU and 32GB RAM. All models are averaged over 100 inference runs to
minimize variability. The results are summarized, the FPS and FLOPs of inference refer to a depth
map estimated using a set of stereo spike streams (T = 50).

From the additional results in the Table 7, it can be seen that our model also outperforms most in
inference speed and FLOPs.

A.6.5 HYBRID MODALITY FUSION

Hybrid neuromorphic-frame sensing is becoming increasingly common, and we have conducted
preliminary hybrid experiments and discussed integration strategies below.

Spike+TFI Image Fusion. We generated TFI images (Temporal Frame Integration, 10–50 win-
dows) from the raw spike stream:

TFI(x, y) =
t0+∆t∑
t=t0

S(x, y, t). (26)

To evaluate fusion, we adapted our architecture by adding a TFI branch and merging its features
with spike features via: channel-wise concatenation, and context fusion (applying a shallow CNN
to extract context features before cost-volume refinement). The experimental results on synthetic
datasets are as Table 8.
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Table 8: The quantitative results of Spike+TFI fusion on the synthetic dataset.
Method bad 2.0 (%) ↓ bad 3.0 (%) ↓ AvgErr (px) ↓
Spike+TFI (∆t = 10) 6.18 3.69 0.67
Spike+TFI (∆t = 30) 5.35 3.09 0.56
Spike+TFI (∆t = 50) 4.98 2.87 0.54

Ours 4.13 2.38 0.42

Table 9: The quantitative results of Spike+RGB fusion on the real dataset.
Method bad 2.0 (%) ↓ bad 3.0 (%) ↓ AvgErr (px) ↓
Spike+RGB (Kinect) 5.08 3.43 0.59
Ours 5.33 3.19 0.56

Compared to only spike input, TFI provides limited benefits in motion situations where spike time
is crucial. Quantitative evaluation shows that performance has decreased by about 12% in average
scenes. Because using TFI for reconstruction into frame images additionally introduces noise.

Experiments With Spike+RGB Frames. We also performed preliminary fusion with synchronous
RGB frames from the Kinect. Following prior hybrid designs, we evaluated two fusion strategies.
(1) Early Fusion. The RGB data are downsampled and concatenated with the spike feature map,
which has the advantages of simplicity and disadvantages of misalignment and HDR mismatch. (2)
context Fusion. RGB is processed by a separate context encoder, producing Frgb = ϕrgb(RGB),
Fspike = ϕspike(S), followed by Ffused = Conv([Frgb, Fspike]). This version is consistently more
stable. The experimental results on real datasets are as Table 9. In summary, spike+RGB yields
an improvement in object details, with slightly better global structure consistency, but with small
degradation in motion (RGB lagging behind spikes). In addition, due to the use of Kinect depth
cameras to capture RGB images, frame rate and resolution blur output cannot be avoided.

In summary, we conducted preliminary spike+TFI and spike+RGB fusion experiments. The hybrid
inputs offer modest robustness improvements in static illumination scenes. We describe a prelimi-
nary architecture modification for hybrid fusion, inspired by the hybrid spike-RGB literature (Chang
et al., 2023).

A.6.6 ADDITIONAL RESULTS FOR ABLATION STUDY

We provide additional ablation studies to demonstrate the effectiveness of our designed modules.

RSNN Module. Below we disentangle the impact of group normalization (GN) from that of our
RSNN refinement by re-running the key variants and reporting the results in the same metrics used
in Table 10. The RNN is the same number of neurons as the original model.

These results demonstrate that both components, the RSNN architecture and the GN contribute
to the performance, but neither alone is sufficient to achieve our full model’s results. Thus, the
competitive performance of our framework arises from the synergy between the RSNN (optimized
for spike-based temporal patterns) and the GN (stabilizing its dynamics).

Adaptation of Neuron Models. We conducted an explicit replacement experiment in which the
adaptive LIF (ALIF) neurons used in our recurrent refinement were substituted with a classical LIF
or raw SNN implementation that keeps all adaptive scalars fixed. In the following, we formalize the
LIF classical, highlight the theoretical differences, and report quantitative results.

The raw SNN layer with no recurrent connections and fixed threshold (feedforward spiking layer)
typically contains:

vt = αvt−1 +Wfs
(l−1)
t ,

st = θ(vt − vth).
(27)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Ours

Ground Truth

Remove FFC

T = 2

T = 16 T = 32T = 8

Remove RC Remove GNRemove Reg

T = 4

Scene T = 3

Figure 13: Visualization results of ablation study for evaluating the effectiveness of our framework
on the synthetic dataset. Among them, T = 32 is the baseline of our model.

Table 10: Ablation study for RSNN and group normalization.
Method bad 2.0 (%) ↓ bad 3.0 (%) ↓ AvgErr (px) ↓
RNN 7.88 4.04 0.76
RNN + GN 7.28 3.41 0.66
RSNN 6.38 2.85 0.51
RSNN + GN (Ours) 4.13 2.38 0.42

The classical LIF neuron, unlike our ALIF, uses fixed parameters (no adaptive variables αt,βt,γt).
Its dynamics can be written as:

ht = α · vt−1 + (1− α) · (Wrecst−1 +Wfs
(l−1)
t ),

vth = β · vpeak,

st = θ(ht − vth),

vt = ht − γt · st · vth,

(28)

where α, β and γ are fixed constants (e.g., 0.5, 1.0, 1.0 in our baselines), not learnable or input
dependent. This removes adaptivity to temporal patterns in spike streams. All other network com-
ponents, learning rates, and losses were kept identical. We conducted an ablation study by replacing
ALIF with classical LIF or raw SNN in the synthetic dataset (the same architecture). All other
conditions of the experiment are the same, and the results are in Table 4.

From the above table, it can be seen that the overall performance decreases significantly after re-
placement with the LIF model. The ALIF is critical for our task because stereo spike streams require
adaptive temporal processing. Adaptive gating markedly improves both stability and final accuracy
with negligible overhead, justifying our choice of the novel ALIF over the classical LIF or raw SNN.

Number of Iterations. We analyze the impact of iteration steps by varying the number of iterations
T in our RSNN-based model. As shown in Table 11, our method achieves competitive or superior
performance with significantly fewer iterations compared to existing approaches. Unlike conven-
tional GRUs or transformer-based update modules, RSNNs require fewer parameters and operations
per iteration, thus maintaining a lower computational cost.
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Table 11: Ablation study for number of iterations and runtime.
Number of Iterations (T)

2 3 4 8 16 32
AvgErr (px) 0.69 0.61 0.56 0.49 0.46 0.42
Runtime (s) 0.41 0.42 0.43 0.46 0.51 0.63

Table 12: Motion statistics in the synthetic datasets.
Quantile 50% 75% 90% 95%

Motion (px) 0.31 0.57 1.12 1.89

In addition, to further support the ablation studies presented in the main experimental section, we
provide the corresponding qualitative results in Fig. 13. These visualizations clearly demonstrate the
effectiveness of each module in our proposed framework and validate their individual contributions
to the overall performance.

Image to Video. Regarding our model for generating continuous spike streams using the video
frame interpolation method. Below we justify our design choice, quantify the interpolation error,
and report a new control experiment based on Blender’s native sub-frame rendering and optical flow
supervision.

We use EMA-VFI (Enhanced Motion-Aware Video Frame Interpolation) (Zhang et al., 2023a), a
successor to FILM that achieves comparable or superior quality in small motion scenes. In our raw
Blender renders (ground truth), the quantitative metrics of EMA-VFI (PSNR = 38.2±1.5 dB, SSIM
= 0.97±0.02) indicate minimal artifacts, with visual inspections confirming that interpolated frames
preserve fine details critical for spike simulation. We computed the optical flow magnitude per pixel
(in pixels) across the entire synthetic dataset.

From Table 12, more than 95% of the frames exhibit sub-pixel motion, far below the motion thresh-
old (≈ 4 px) at which EMA-VFI begins to introduce visible artifacts. Thus interpolation artifacts
are negligible for the vast majority of the data.

After interpolation, frames are passed through the spike simulator. The conversion from interpolated
frames to spike streams via the spike simulator further mitigates residual artifacts. The simulator
introduces Poisson-like temporal noise and sparsity, which naturally smooths minor interpolation
inconsistencies. Thus, even if an interpolated frame has minor inaccuracies, the temporal differ-
ence between two adjacent bins remains dominated by photon shot noise injected by the simulator.
Regarding ground-truth depth labels, which are extracted directly from Blender’s z-buffer per orig-
inal key-frame, and they do not rely on the interpolated RGB images. During spike simulation,
the disparity is linearly blended between key-frames, guaranteeing label consistency regardless of
interpolation artifacts.

To compare the effectiveness of the methods, we re-rendered full sequences with ground-truth op-
tical flow from Blender, and regenerated a “SubFrame-GT” variant. The ground-truth optical flow
exported via Blender’s Vector pass, generate image data and passed to the spike simulator. We
re-train the model from scratch using the same hyper-parameters, and the results are as Table 13.

The performance difference is < 2% / 0.1 pp, indicating that interpolation artifacts do not materi-
ally influence training or final accuracy. Overall, the two methods represent different patterns and
approaches that can be chosen for specific tasks and datasets.

Table 13: Ablation study for Video frame interpolation methods.
Dataset variant bad 2.0 (%) ↓ AvgErr (px) ↓
SubFrame-GT (no interpolation) 0.44 4.43
Original (Ours) 0.44 4.52
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A.7 BROADER IMPACTS

The proposed framework for stereo depth estimation from spike streams has a strong potential to
advance neuromorphic vision in diverse application scenarios. In autonomous driving, the enhanced
depth estimation enabled by spike-based sensing can improve 3D scene understanding, obstacle de-
tection, and object location, thus contributing to more robust and reliable navigation systems. In the
field of robotics, the fine-grained depth perception afforded by this method supports precise manip-
ulation, mapping, and motion planning, especially in highly dynamic or high-speed environments
where conventional cameras typically underperform. Moreover, this framework that can directly es-
timate depth from raw stereo spike streams under supervised settings, enabling broader exploration
of spike-based vision in both research and industrial applications.

Future Works. We will strengthen the benchmark with a broader coverage, and therefore we have
launched a follow-up data collection campaign that will: (1) Expand the variety of the scene: in-
door, outdoor and semi-outdoor environments with larger depth ranges and moving platforms; (2)
Increase lighting diversity: day–night sweeps and high dynamic range sequences; (3) Enrich object
categories: targeting≥ 250 physical objects in 30 WordNet classes, including specular and transpar-
ent materials. The existing and extended dataset will be released publicly under a permissive license
and the accompanying capture/annotation pipeline will be open-sourced to facilitate community
contributions.
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