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ABSTRACT

Accurate click-through and conversion-rate estimates are pivotal for bid optimiza-
tion in large-scale advertising, yet modern deep CTR/CVR models are often mis-
calibrated. Classical global calibrators (Platt scaling, isotonic regression) and
feature-based binning struggle to capture latent user—item heterogeneity. We ap-
proach calibration through the lens of learned semantic groupings and propose
Variance-Reduced Semantic-Aware Grouping (VR-SAG)—a lightweight post-
hoc layer over a frozen backbone that (i) forms semantically coherent partitions
in embedding space, (ii) fits per-group temperature+bias calibrators, and (iii) ex-
plicitly penalizes intra-group variance to tighten probability spreads. Our design
is grounded in a group-wise decomposition of proper scoring rules (e.g., Brier),
which isolates intra-group variance as a key driver of residual miscalibration and
motivates variance control for genuine loss reduction. To decouple evaluation
from training, we introduce Logit-Cluster Calibration Error (LCCE), an unsu-
pervised fixed-partition metric obtained via K -means in logit space; LCCE aligns
with the reliability term of proper scores while avoiding pitfalls of trainable group-
ing heads used as metrics. Across large-scale offline logs and AuctionSys—a
realistic ad-auction simulator with oracle CTR—VR-SAG consistently improves
calibration (ECE/LCCE and Brier variants) over strong baselines, with negligible
latency and memory overhead. Together, VR-SAG and LCCE provide a prin-
cipled, production-friendly toolkit for group-aware calibration in recommender
systems.

1 INTRODUCTION

Machine learning recommender systems underpin virtually every modern advertising platform, or-
chestrating the selection and pricing of tens of billions of ad impressions each day (Covington et al.,
2016;/Zhang et al.,2014b). For each impression, the model reports two probabilities—click-through
rate (CTR) and conversion rate (CVR)—whose precision is crucial for both platform revenue and
advertiser return (Richardson et al., 2007} He et al., 2014). Because an auction bid equals an ad-
vertiser’s private value times one of these predicted probabilities, even modest calibration errors
propagate into mispriced traffic and distorted budget pacing (McMahan et al) [2013). To satisfy
strict latency and scale requirements, production systems typically employ deep architectures such
as Wide & Deep (Cheng et al.,|2016) and DeepFM (Guo et al.,|2017b).

Despite strong ranking performance, these models often produce miscalibrated probabilities: af-
ter grouping predictions into narrow bins, the observed click frequency rarely matches the average
score. Such miscalibration erodes auction efficiency and reduces revenue (Lin et al.| [2024), moti-
vating extensive work on calibration for ads ranking (McMahan & Muralidharan, 2012} [Fan et al.,
2023} Borisov et al., 2018} |Chaudhuri et al.| 2017} [Sheng et al.l |2023)). Existing approaches either
learn a single global mapping (e.g., Platt scaling (Platt et al.,|1999), isotonic regression (Zadrozny &
Elkan, 2002; Niculescu-Mizil & Caruana, 2005), temperature scaling (Guo et al., 2017a))—which
can leave significant residual error within subpopulations—or rely on predefined metadata partitions
(multi-calibration (Hébert-Johnson et al., |2018)), field-aware methods (Pleiss et al., |2017)), which
cannot capture latent behavioral regimes and may mask opposite biases within the same group.
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To address these gaps, we adapt Semantic-Aware Grouping (SAG) (Yang et al., 2023)) for CTR/CVR
calibration and introduce three contributions. First, we derive a group-wise Brier-loss decomposition
that reveals a variance-driven miscalibration term, and propose Variance-Reduced SAG (VR-SAG),
which jointly learns per-group temperatures and biases while penalizing intra-group variance to en-
force tighter, more coherent partitions. Second, we decouple evaluation from the trainable grouping
head by defining the Logit-Cluster Calibration Error (LCCE), an unsupervised, fixed-partition met-
ric in logit space that aligns with the reliability term of proper scoring rules. Finally, we develop
AuctionSys, a simulation framework that replicates industrial ad-auction workflows with ground-
truth CTR labels, enabling precise offline evaluation of calibration methods. In summary:

* We introduce a principled group-wise Brier-loss decomposition and leverage it to design
VR-SAG, which combines semantic grouping with intra-group variance regularization for
superior calibration under production constraints.

* We propose LCCE, a low-variance logit-space clustering metric that provides a better as-
sessment of calibration quality while avoiding the pitfalls of trainable grouping metrics.

* We open-source a realistic ad-auction simulator with oracle CTRs, facilitating rigorous and
reproducible benchmarking of calibration techniques in large-scale recommender systems.

2 METHOD

We begin by reviewing binary-CTR prediction and the Expected Calibration Error (Sec.[2.1), then in-
troduce Semantic-Aware Grouping (SAG), which applies group-specific temperatures over a frozen
backbone (Sec.[2.2). Building on SAG, we derive a group-wise Brier-loss decomposition that iso-
lates a variance-driven miscalibration term (Sec. [2.3]) and propose variance-regularized VR-SAG to
address it (Sec.[2.4). Finally, we present the Logit-Cluster Calibration Error (LCCE), an unsuper-
vised, fixed-partition metric for calibration evaluation (Sec. [2.5).

2.1 BACKGROUND

Let an impression be represented by a feature vector z € R? obtained by concatenating user descrip-
tors, ad metadata and real-time context, and let the click indicator be y € {0,1} (y = 1 means the
user clicked the ad). A predictor fp : R? — [0, 1] parameterized by 6 outputs the raw click-through
probability p = fp(x). Its penultimate layer produces a hidden representation z(x) € R™, and its
last linear layer returns a single logit o(x) € R before the final sigmoid activation. The network is
trained by minimizing the average negative log-likelihood

1 n
c - [11 (1 — i)l 1—3], 1
ce(0 n;y ogpi + (1 = yi)log(1 — ;) M
a proper scoring rule(Gneiting & Raftery, 2007) that enforces accuracy but not probability calibra-

tion; modern CTR systems therefore remain miscalibrated, especially on sparse ad or user slices.

A predictor is well-calibrated when the conditional click frequency equals its score, i.e. Pr(Y =
1| p=gq) =qforall ¢ € [0,1]. Practitioners monitor calibration with the Expected Calibration
Error (ECE), the weighted average gap between predicted probability and empirical click rate across
probability bins. Formally, partition [0, 1] into M equal-width bins By, ..., Bjs; then

M
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with lower values indicating better alignment between predicted probabilities and observed out-
comes.

2.2  SEMANTIC-AWARE GROUPING FOR CTR CALIBRATION

Semantic-Aware Grouping (SAG)(Yang et al) 2023) augments the frozen backbone with a
lightweight grouping head. A weight matrix W € R™*X and bias b € R¥ transform the em-
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bedding z(z) into soft group weights
qr(x) :softmax(z(x)TW—I—b)k, k=1,...,K, 3)

where K is the chosen number of latent semantic regions. For each group we keep a single temper-
ature 7, > 0. The calibrated click-through probability (binary) is then the mixture

K
pla) = qr(z) oo(x)/7k), @)
k=1

where o(t) = (1 +e7t)7L.

All added parameters ¢ = (W, b) and {73 }_, are learned jointly on a held-out validation set Dyy
with the SAG objective

M=

LSAG:—lDl—I‘ > logY a@) (yhn(e) + (L= y) (L= @) | + AW )
val (

*,y)€Dva k=1

where A > 0 regularizes the grouping weights, and py,(x) = o(o(x)/7x). We retain the soft weights
qr(z) during both calibration and serving, avoiding hard arg-max reassignment. At inference the
extra cost is one m x K matrix—vector product and K scalar operations, negligible compared with
the backbone forward pass.

Why it helps in production. Soft semantic partitions let each temperature specialize to coherent
behavioral regimes—user cohorts, ad creatives, time-of-day effects—while still letting tail impres-
sions borrow strength from related high-volume traffic, a property single-temperature or binning
methods lack. Because SAG is post-hoc and adds only K (m + 2) floating-point numbers, it meets
strict latency and memory budgets while delivering lower ECE on live traffic.

2.3 DECOMPOSITION OF PROPER SCORING RULES WITH SEMANTIC GROUPS

Probabilistic models should be judged with proper scoring rules(Gneiting & Raftery}, 2007)—losses
minimized, in expectation, only by the true data-generating distribution. Popular calibration metrics
such as ECE, while intuitive, lack this property and can be gamed without improving true predictive
fidelity. To bridge this gap we expose how calibration terms reappear inside a proper scoring rule
once predictions are partitioned into semantic groups. For clarity we detail the case of the Brier
score; the same reasoning carries over to other proper scoring rules—including cross-entropy—
yielding analogous insights with different algebraic constanty’| The decomposition that follows
clarifies when reducing a calibration error genuinely lowers a proper loss and when it merely pro-
vides a misleading signal.

Let Gy, be the k™ latent region induced by g, and denote
wk:Pr(Gk), Wk:Pr(Y:]. |Gk), /lk:E[ﬁ|Gk]7

where p = fyg(x) is the uncalibrated probability output of the frozen backbone. Write the
within—group variance o7 = Var(p | Gj,) and covariance v, = Cov(p, Y | Gi).

For binary events the Brier loss is S(Y,p) = (Y — p)?. Conditioning on G} and using Y2 = Y
gives
E[S | Gy] = m —2E[pY | Gi] + E[p* | Gi).
Because E[pY | Gi] = pxmr + vk and E[p? | Gi] = p2 + o3, we obtain
E[(Y —p)* | G| = me(1 — mi) + (7 — p)* + 0 — 2%

Averaging over groups yields the grouping decomposition

E[S] =Y (1-Y)+ Y wilur — m)* — Var(m) + > wilof — 29), (6)
—— & —— &
UNC RES
REL A

'See the Appendix for detailed proofs and analysis of other proper scoring rules.
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where Y = E[Y] denotes the marginal click rate. Using the law of total variance, Y-, wgm (1 —

) = Y (1 =Y) — Var(m). The classical UNC + REL — RES(Murphy, [1973) form is recovered
only when every group collapses to a single forecast value so that o} = 5 = 0.

Because SAG’s soft regions preserve a spread of scores (o7 > 0) and the sign/magnitude of
varies across datasets, the extra term A is often positive in practice and increases the Brier loss.
VR-SAG counters this effect with a variance penalty A, >, wy,o%, which contracts the spreads and
empirically pulls predictions toward the local mean. As both quantities shrink, the overall reliability
term—and therefore the expected Brier score—decreases, offering a principled explanation for the
effectiveness of Variance-Reduced SAG that will be introduced in Sec. 2.4

Definition 2.1 (Grouping Calibration Error (GCE)). Given the latent regions {G }X_, induced by
the grouping function g4, let wy, = Pr(Gy), urx = E[p | Gi] and 7, = Pr(Y = 1 | Gi). The
Grouping Calibration Error of a probabilistic predictor fy with respect to this partition is

K
GCE(gg; fo) = Y wi(un _Wk)zo @)
k=1

Equation [/| is identical to the REL term in the grouping decomposition of the Brier loss given
in equation @ Hence the choice of partition {G}} has a first-order impact on both the measured
calibration error and its gap to any proper scoring rule that admits such a decomposition: partitions
that bring uy closer to 7 simultaneously reduce GCE and the overall scoring loss, providing a
tighter assessment of probabilistic accuracy.

Re-expressing classical calibration metrics via grouping. The grouping perspective unifies sev-
eral existing metrics:

* Singleton groups. When every impression forms its own group (K = n and G, =
{(zi,y:)}), we have wy, = %, 1tk = Pi, and 7, = ;. Substituting these quantities in equa-
tiongives GCE = L 3" | (p; — y:)?, exactly the Brier scoreﬂ

* Probability-based binning. If instances are grouped according to their predicted prob-
ability—for example into M equal-width or equal-frequency bins—each bin B,, acts as
a region G;,. Then puy, equals the bin’s average confidence, 7, equals its empirical accu-
racy, and GCE reduces to the weighted sum of squared (accuracy—confidence) gaps that
underlies the squared-ECE variant.

These examples illustrate that the partition is the metric: a well-chosen, semantically meaningful
grouping not only lowers GCE but also sharpens the link between calibration error and the under-
lying proper scoring rule, yielding a more faithful view of predictive reliability.

2.4  VARIANCE-REDUCED SEMANTIC-AWARE GROUPING (VR-SAG)

Let the validation set contain n = |Dy,| impressions indexed by ¢ = 1,. .., n. For each impression
x; the frozen backbone produces a raw score p; = fy(z;), a hidden vector z; = z(x;) and logit
0; = o(x;). The grouping head g4 (parameters ¢ = (W, b)) returns soft assignments

g = softmax(z; W +b), k=1,... K,

to K latent regions {G},}. For each group we keep a temperature 7, > 0 and a bias S € R, so that
the calibrated probability is

K
B = Y qir {01/ + Bi)- (®)
k=1

When all 3, = 0 this reduces to temperature scaling; learning both {75} and {8} recovers per-
group Platt scaling.

2With singleton groups the uncertainty and resolution terms in equation E] vanish, so the Brier score coin-
cides with the reliability component.
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We define three empirical statistics per group:

I g LS, o o L
wk:ﬁ;%lm Hk:ka;QikPm Uk:nim;qm(pi*“k)’ ©)

i.e., the normalized soft mass, the mean uncalibrated score, and the within-group variance, respec-
tively. We also regularize W with A > 0 as in the original SAG objective.

Variance reduction. As shown in the grouping decomposition (equation [6), the mixture-of-
temperatures-and-biases estimator in equation incurs an extra term A = >, wi (07 — 2;). Re-

ducing the intra-group variance o} thus tightens an upper bound on the Brier score. We achieve this
via the penalty

K
Lyar = Ao )@k}, (10)
k=1
with tunable weight A\, > 0.

VR-SAG objective. Combining these elements, the validation-time loss is

n K
1
Lvrsac = =1 > _log [Z gk (yi i + (1 — i) (1 —ﬁik))] + X[W3 + Lvar

1=1 k=1
K
= Lsacs + A\ Y Wi 07, (11
k=1

where p;r, = 0(0;/7i+ k) and Lgac-p denotes the SAG objective in equationextended to include
per-group biases {3 }.

Minimizing o7 via equation|10|contracts the extra term A in the decomposition, pulling predictions
toward each group mean, typically lowering both covariance -y, and the calibration gap |7y, — pl,
and yielding consistent empirical improvements in ECE.

VR-SAG retains all of SAG’s production-friendly properties:

* No backbone retraining: only ¢, {74, 8} are updated.

* Minimal memory/latency cost: X (m+2) extra parameters and one m x K matrix—vector
product per impression.

* Robustness on tail traffic: learned biases and temperatures adaptively correct under-
represented slices, while variance regularization reduces error bars on rare groups.

2.5 LOGIT-CLUSTER CALIBRATION ERROR (LCCE)

As introduced in Sec. the Grouping Calibration Error in equation[7measures the reliability term
of a proper scoring rule under a partition g4. While GCE benefits from data-adaptive partitions, its
coupling to the trainable grouping head can mask true miscalibration by driving GCE down even
when predictions remain poorly aligned with outcomes. To preserve the low-variance, model-aware
slicing of GCE without a learned component, we define the Logit-Cluster Calibration Error by
applying the same squared-gap measure to clusters formed in logit space.

Let the frozen backbone produce logits o(z;) € R and predicted probabilities p; = o (o(;)), where
o(t) = (14 e~ *)~1. Perform K-means on {o(z;)}"; to obtain clusters M = {M; }szl For each
cluster M;, define

| M;| 1 . 1
w5 = s M= bi, T; = Yi-
S R P T 2y
The LCCE is then X«
LCCEx = Y wj (u; — ;)% (12)
j=1
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which coincides with GCE(giogit; fo) for the static, logit-based partition giogic. By fixing the group-
ing, LCCE retains the variance advantages of clustering while avoiding the pathological minimiza-
tion of GCE by a trainable head.

Why logits? Clustering in logit space yields model-aware Voronoi cells: equal-sized intervals in
o-space map to non-uniform bins in probability space, adapting to both the score distribution and the
decision boundary. This prevents the extreme sparsity in probability tails seen with uniform binning,
without relying on an optimized grouping head.

3 EXPERIMENT

We first conduct a comprehensive analysis of calibration error metrics. We then evaluate our method
offline on two widely used public datasets—AliCCP (Ma et al) 2018) and AliExpress (Xu et al.,
2019)—as well as on our newly open-sourced AdAuction dataset.

Dataset with ground-truth CTR Like AuctionNet (Su et al., 2024)), AuctionSys retains the core
workflow logic of industrial advertising systems—where auto-bidding agents process advertiser ob-
jectives, execute bid decisions, and collect post-auction feedback—thereby simulating inherent chal-
lenges such as sample selection bias (SSB). Specifically, its bidding mechanism mimics the natural
overestimation issue: an overestimated ad item tends to win auctions more frequently and gains
higher exposure during ranking, reflecting real-world biases in ad delivery.

Unlike AuctionNet, which solely records observable metrics (e.g., clicks/conversions), AuctionSys
incorporates ground-truth click-through rates as synthetic labels in its exposure data—an oracle sig-
nal inaccessible in real-world applications. This design enables direct calibration-error measurement
against known truth values, a critical advantage for validating probabilistic prediction models that
remains fundamentally unattainable in operational advertising platforms. The dataset contains 15M
exposure samples with 451K clicks, and its basic attributes are publicly released alongside the raw
data.

3.1 EXPERIMENTAL COMPARISON

Table 1: Comparison of calibration methods. Bold indicates statistically superior (p < 0.05) re-
sults. Here Brier™ = E[|r — p|] (MAE of probability error) and Brier = E[ (7 — p)?|. Note:
On AdAuction, Brier and Brier™ are computed against oracle CTR 7; on ACCP and AE, only
ECE/LCCE are reported.

AdAuction | AliCCP | AE
Method | ECE LCCE Brier" Brier | ECE LCCE | ECE LCCE
Uncal 0.0339  0.0342 0.0352 0.0527 | 0.2131 0.2161 | 0.2562 0.2562

Histgram binning | 0.0049 0.0113 0.0170 0.0325 | 0.0185 0.0210 | 0.0168 0.0222
Isotonic regression | 0.0056 0.0090 0.0123 0.0282 | 0.0076 0.0081 | 0.0079 0.0094

Platt scaling 0.0063 0.0124 0.0157 0.0297 | 0.0056 0.0071 | 0.0065 0.0077
Temperature scaling | 0.0062 0.0124 0.0158 0.0296 | 0.0056 0.0059 | 0.0052 0.0061
SAG+PS 0.0058 0.0100 0.0131 0.0247 | 0.0027 0.0031 | 0.0027 0.0036
SAG+TS 0.0054 0.0099 0.0130 0.0249 | 0.0013 0.0017 | 0.0016 0.0020

VR-SAG+PS(ours) | 0.0054 0.0083 0.0118 0.0237 | 0.0008 0.0008 | 0.0008 0.0010
VR-SAG+TS(ours) | 0.0053 0.0083 0.0117 0.0239 | 0.0003 0.0005 | 0.0003 0.0005

We randomly partition a validation set D,,; from the standard training set (10% for validation),
and reserve 10% of the standard test set as a hold-out calibration set Dy,,. For each dataset-model
combination, we perform 100 random test-set splits and report the average performance over 100
trials for each method. We conduct a paired ¢-test to assess statistical significance. Hyperparameters
of comparative methods are tuned following their original papers, using 5-fold cross-validation.
Unless otherwise noted, we fix the number of groups to 3 and the number of partitions to 10. The
regularization strength is set to A = 0.1, and the variance-penalty coefficient to A, = 0.5, following
a similar tuning protocol as the baselines.
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We compare the uncalibrated backbone (Uncal) against standard post-hoc calibrators and grouping-
based methods: Histogram binning (Zadrozny & Elkan, 2001) (bin-wise averaging), Isotonic re-
gression(Zadrozny & Elkan| [2002)) (monotone piecewise mapping), Platt scaling (Platt et al., [1999)

(logistic bias+scale), Temperature scaling (single temperature), SAG
2023) (embedding-based semantic groups with per-group temperatures), and VR-SAG (ours) (SAG

with intra-group variance control, evaluated with both PS/TS).

From Table [T, VR-SAG consistently outperforms the base calibrators on both ECE and LCCE,
indicating improved calibration accuracy and strong generalization across datasets. Compared with
SAG (Yang et all 2023)—which shares a similar architecture but does not include the variance
penalty—VR-SAG achieves further gains, highlighting the role of intra-group variance control.

3.2 VERIFYING THE EFFECT OF THE INTRA-GROUP VARIANCE CONSTRAINT

As evidenced in Table [T, VR-SAG improves overall calibration by minimizing within-group vari-
ance. A visual grouping analysis further shows that clusters learned by VR-SAG exhibit markedly
more homogeneous score distributions within each group than those learned without the variance-
reduction term.
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Figure 1: Grouping visualization. Backbone estimates (mean = 0.089) vs. true probabilities (mean
= 0.073), with points color-coded by class labels. A 1% uniform downsampling is used for clarity.
VR-SAG yields the lowest within-group variance (0.0058), indicating superior group separation.

Perfect calibration requires grouping that maximizes within-group homogeneity (minimal variance
of true probabilities) and between-group separability (distinct mean true probabilities). As shown
in Figure [, VR-SAG better satisfies both criteria than rigid field grouping: its clusters are more
concentrated (lower intra-group dispersion in (c)), aligning with the smallest within-group variance
in panel (d). This demonstrates VR-SAG’s ability to uncover latent structure that matters for cali-
bration.

3.3 ANALYSIS OF CALIBRATION-ERROR METRICS

1.00
- 0.50

0.86 | 1.00 | 0.63 | 0.79 | 0.82
-0.25

H .

“d 0.91 0 9 1.00 095

NLL Brier score

- 0.00

MSE

--0.25

- —0.50

-1.00

Brierscore  NLL MSE ECE LCCE

LCCE

Figure 2: Spearman correlation matrix across metrics.
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To argue that our LCCE better captures whether probabilities are truly more accurate, we focus on
a simple desideratum: a good evaluation metric should order models the same way as a ground-
truth proper score would. In other words, when the oracle Brier score says model A is better than
model B, the proxy metric should agree. This rank-consistency view abstracts away scale and
monotonically increasing transformations, and tests whether a metric preserves the notion of “more
accurate probabilities” across random draws of data and models.

Rank consistency is estimated via a Monte Carlo protocol with m = 2000 trials, each comprising
n = 5000 impression requests. For each trial, we compute a panel of metrics on the sampled
data, including the true Brier score (using oracle CTR from AuctionSys) and several candidates
(e.g., ECE, LCCE, NLL, MSE). We then quantify agreement using Spearman’s rank correlation
coefficient (Spearman, |1987)); higher values indicate stronger concordance in the trial-wise rankings
induced by each metric.

In Figure |2} taking the oracle Brier score as the reference, we observe positive correlations for
all evaluated metrics. Pointwise metrics (NLL, MSE) show comparatively lower correlation (<
0.90), reflecting their greater sensitivity to sample-level noise and the larger REL component in
proper-score decompositions; grouping-based metrics consistently exceed 0.90. Notably, LCCE is
more rank-consistent than ECE. We attribute this gap to two design choices: (i) LCCE forms fixed,
model-aware partitions in logit space, which mitigates tail sparsity and discretization bias common
in uniform probability bins; and (ii) by aligning directly with the reliability term under a fixed
partition, LCCE reduces variance introduced by adaptive or ill-conditioned bin boundaries, thereby
tracking the ground-truth proper score more faithfully.

Additional results on LCCE’s asymptotic behavior and hyperparameter stability are provided in the
supplementary material, further demonstrating robustness across diverse settings.

3.4 ABLATION STUDY

We conduct ablations on AdAuction to study three hyperparameters in our method: the number
of partitions, the number of groups per partition, and the weight of the intra-group variance term.
Results are summarized in Figure 3]
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Figure 3: Influence of key hyperparameters in VR-SAG (means over random seeds; no error bars
shown).

As the number of partitions increases, calibration improves and becomes more stable, consistent with
SAG (Yang et al.| [2023)); averaging across randomized runs reduces estimation noise. In contrast,
increasing the number of groups per partition yields diminishing returns. This is expected from a
bias—variance perspective: as groups proliferate, per-group sample support decreases, variance in
the estimated temperatures/biases rises, and the net effect after mixing can cancel potential gains.
Moreover, with a frozen backbone and fixed feature budget, the effective heterogeneity captured
by grouping saturates quickly; additional groups become highly correlated and do not provide new
corrective directions for calibration. Regarding the variance-loss weight (Figure [3f), performance
varies modestly across the tested range, suggesting partial complementarity rather than dominance.

4 RELATED WORK

Early efforts framed click-through-rate prediction squarely as supervised learning, ranging from lo-
gistic regression for estimating click probabilities (Richardson et al., 2007) to large-scale, online sys-
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tems designed for industrial deployment (McMahan et al.| 2013). Contemporary ad platforms com-
monly follow a two-stage pipeline: a probabilistic estimator produces per-impression CTR/CVR,
after which real-time bidding converts these probabilities into monetary decisions; under standard
assumptions, the revenue-optimal bid scales with the true response probability (Zhang et al., 2014a).
Reinforcement-learning agents can further adjust bids subject to budget and pacing constraints (Cai
et al, |2017), yet they inherit systematic errors from upstream predictors. Consequently, improving
the quality and calibration of probability estimates remains a central challenge that directly impacts
auction efficiency and downstream control.

Because perfect calibration is generally unattainable in finite samples, evaluation protocols approx-
imate it by binning predictions and comparing confidence with observed outcomes (de Menezes e
Silva Filho et al., [2023). Expected Calibration Error (ECE) popularized this practice and estab-
lished a simple summary of bin-level discrepancies (Guo et al.l 2017a)). In operational settings,
post-hoc calibrators are widely adopted due to their simplicity and low serving cost: histogram bin-
ning smooths scores within probability intervals (Chaudhuri et al., [2017)), isotonic regression learns
a monotone mapping from scores to probabilities (Menon et al., [2012; Borisov et al. 2018)), and
Platt scaling fits a parametric logistic correction (Platt et al., [1999). More recently, “field-aware”
approaches (Yang et al., [2024} |Zhao et al., [2024)) augment binning with user/item context and learn
per-field adjustments, often reducing calibration error without degrading ranking metrics (Wei et al.|
2022} [Pan et al.| 2020). Together, these techniques highlight a practical trade-off: simple global
mappings offer stability and scalability, while more granular corrections better capture heterogene-
ity at the cost of added complexity.

Field-aware calibration can be viewed as a specific instance of multi-calibration, which enforces cal-
ibration simultaneously over many (potentially overlapping) subpopulations (Hébert-Johnson et al.,
2018)). Beyond pre-specified partitions, a line of work learns the grouping itself, using tree-based or
data-driven partitioning schemes (Huang et al., 2022;|Zadrozny & Elkan,2001; Leathart et al., 2017;
Durfee et al., [2022). While flexible, such groups can be cumbersome to integrate into deep recom-
mender stacks and may optimize surrogate objectives that are only loosely aligned with probability
calibration. Related ideas have emerged in adjacent areas, including graph neural networks (Seo
et al.| 2025; Zhuang et al.,|2024) and confidence estimation for large language models (Detommaso
et al.| 2024)), underscoring the broad interest in calibrated uncertainty across modern ML systems.

Positioning. Our approach differs in two key respects: (i) we freeze the backbone and learn semantic
partitions directly in embedding space, equipping each group with its own temperature and bias;
and (ii) we introduce variance regularization, motivated by a new grouping decomposition of proper
scores that explicitly isolates the contribution of within-group variance. Unlike metadata- or rule-
based partitioning, VR-SAG adapts to latent user—item regimes while imposing minimal serving
overhead. For evaluation, LCCE fixes clusters in logit space, aligning with the reliability term of
proper scoring rules and avoiding the pitfalls that arise when trainable groupings double as metrics.

5 CONCLUSION

We presented Variance-Reduced Semantic-Aware Grouping (VR-SAG), a lightweight post-hoc layer
that calibrates CTR/CVR predictors by learning group-specific temperatures and biases over frozen
embeddings. A principled, group-wise decomposition of the Brier score highlights within-group
variance as a major driver of residual miscalibration; incorporating a variance penalty contracts
intra-group spreads and improves proper losses in practice. To decouple training from evaluation,
we introduced Logit-Cluster Calibration Error (LCCE), a fixed-partition metric in logit space that
estimates the reliability term without a trainable grouping head. Across large-scale logs and the
AuctionSys simulator with oracle CTR, VR-SAG consistently reduces calibration error relative to
strong baselines while preserving production constraints on latency and memory.

Reproducibility and impact. We open-source AuctionSys, a realistic ad-auction simulator expos-
ing oracle CTR for precise calibration studies, and release code for VR-SAG/LCCE with scripts to
reproduce all tables and ablations. By bridging theory (proper-score decomposition) and practice
(post-hoc, low-overhead calibration), VR-SAG provides immediate utility for large-scale recom-
mender systems and establishes a principled foundation for future work on group-aware probability
estimation.
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A DECOMPOSING THE BRIER SCORE: FROM MURPHY’S TO SEMANTIC
GROUPING

Modern click-through-rate (CTR) systems emit dense, high-dimensional representations and near-
continuous probability scores, yet their calibration is still assessed with tools that date back to
the 1970s. To understand where miscalibration originates—and how targeted post-hoc correc-
tions like SAG or VR-SAG can fix it—we dissect the Brier score into interpretable components.
We proceed in two stages. First, we revisit Murphy’s classical Uncertainty—Reliability—Resolution
(UNC-REL-RES) decomposition for hard probability bins, clarifying its assumptions and statisti-
cal meaning. Second, we generalize the same algebra to soft, semantics-aware regions induced by a
neural grouping head, which yields an additional variance—covariance term and exposes new levers
for calibration improvement. Unless otherwise stated, expectations refer to population quantities;
empirical (“sample”) analogues follow by replacing expectations with averages over data.

A.1 CLASSICAL MURPHY UNC-REL-RES DECOMPOSITION

Setup. Consider a binary event Y € {0, 1} and a probabilistic predictor that can output only dis-
crete probability levels p, € [0,1], » = 1,..., R. Let Z, be the index set of instances that received
the level p,., with cardinality n, = |Z,|, and empirical event frequency

o = niZYL

"ieT,

Denote the overall empirical base rate by Y = % Z Y; with n = ) n,. The (empirical) Brier
i=1
score is
1 n
BS = E Z(}/l — Pr(s) )Qa

i=1

where () is the level applied to instance i.

Derivation. Add and subtract o,.(;) inside the square:

n

1
BS = — > [(¥i = 0,(0) + (0rs) = Pr(s)]
=1

2

1 « 1 « 2 —
= Z(Yi —or()) + -~ Z(Or(i) —pri)’ + -~ Z(Yi = 0p())(Or(s) = Pr(iy)-  (13)
=1 =1 =1
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Inside any fixed category r, o, is constant, hence » ;. (Y; — 0,)(0, — pr) = 0 and the cross-term
in equation [I3] vanishes. Grouping the remaining terms by r yields (Murphyl [1973)

R R
_ _ n n 5
BS=Y({1-Y)+ — (py —o0,)* — — (0, —Y)2. (Murphy)
03 o =30 o =)
UNC
REL RES

Here, UNC is the irreducible Bernoulli variance, REL penalizes mismatch between p, and o,., and
RES rewards partitions whose empirical frequencies o, deviate from the global base rate Y (hence
the negative sign). Because forecasts are constant within each category, the within-category variance
of the scores is zero and no extra term appears. The corresponding population identity is obtained
by replacing empirical averages with expectations.

A.2  GROUPING DECOMPOSITION WITH SOFT SEMANTIC REGIONS

Hard vs. soft grouping. Classical reliability diagrams assume a hard partition: each instance x
belongs to exactly one bin Gy, with indicator 1, (x) € {0, 1}. In SAG/VR-SAG, the grouping head
instead assigns a soft membership

K
qr(z) = [softmax(z(x)TW + b)]]€7 0 < qp(x) <1, qu(a:) =1.
k=1

All “conditional” quantities below are interpreted as soft conditionals induced by gj,. For any random
variable Z = Z(x,y) define the (population) soft mass wy := E[gx(x)] and the soft conditional
expectation

E[Z qi.(z)] E[Z qi(z)] _

E[Z | Gi| := =
21O = T )] w
‘With this convention,
= E[Y | G| = EY gr(x)] [ij(x)], ur =E[p| Gyl = Elp g ()] [pf]i(x)] (soft-stats)

The within—group variance and covariance are defined analogously:
E[(p — px)qr ()]

O']% = V&I‘(f) | Gk) = o , Vi 1= COV(ﬁ,Y ‘ Gk) — E[(ﬁ - Mk)(zk_ 7Tk) Qk(x)] '

Setting ¢i,(z) = 1, (x) recovers the standard hard-bin formulas.

Step 1: Law of total expectation. Let S(Y,p) = (Y — p)? denote the per-instance Brier score
and 7 := E[Y] the global click-through rate. Then

E[S] = > wi B[(Y - p)* | Ga]. (1)
k
Step 2: Expand the conditional score. Since Y2 =Y for Bernoulli labels,
E[(Y —p)? | Gi] = m — 2(pemi + ) + (3 + 07)
= (1 — ) + (mp — px)? + 0 — 2. )

Step 3: Aggregate and isolate UNC, REL, RES, A. A direct calculation shows ), wym(1 —
7) = T(1—7) — Var(my ). Substituting into the result of Step 2 gives the grouping decomposition
E[S] = #(1—7) —|—Zwk(uk — )2 — Var(my) + Zwk(ai — 29) -

N—— k ~—— k

RES
REL A

UNC

Here, UNC is the irreducible Bernoulli variance at the global level, REL measures calibration error
inside semantic regions, RES rewards partitions whose prevalences 7y, are far apart, and A captures
the additional variance—covariance contribution introduced by allowing predictions to vary within
each region. When every region collapses to a single forecast (07 = 7, = 0), A vanishes and the
formula reduces to Murphy’s classical UNC + REL — RES decomposition.
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Relation to the classical Murphy decomposition. Both Murphy’s UNC-REL-RES identity and
the grouping decomposition above express the same Brier score as an uncertainty term minus a res-
olution bonus plus a reliability penalty; the algebraic cores coincide. The difference lies in how the
data are partitioned. Murphy’s derivation assumes a hard, forecast-value partition (p is constant in-
side each cell), so the within—group variance o and covariance 7, vanish, yielding only three terms.
In contrast, our decomposition keeps soft semantic regions learned by SAG/VR-SAG, preserving a
spread of predictions within each region and introducing the additional

A= Zwk(az —2’)%),
k

which is not sign-definite in general and quantifies the contribution of intra-group dispersion and
label—score covariance.

Sign of A and when it is positive. Recall A = Zwk (o — 2v) with o = Var(p | Gx) > 0
k

and v, = Cov(p,Y | Gi). In general, A is not sign-definite: if the within-group covariance -y, is

sufficiently positive, (o7 — 27%) can be negative. By Cauchy—Schwarz,

k] < o/ Var(Y | Gr) = ox/mi (1 — ),

0% =200\ /me(1 =) < 0 =2y < 0p + 200/ (1 — ).
Therefore, A can be negative when many groups exhibit small o, but large positive ;. Conversely,
in sparse CTR regimes with 7, < 1 (so y/m(1 — 7y) is small) and nontrivial within-group spread
o} > 0, the lower bound is often close to o7, making A frequently positive in practice.

hence

Advantages of the grouping view.
* Model-aware slicing. Regions are induced from the backbone embedding, aligning with
latent user—ad semantics rather than arbitrary probability intervals.

* Variance-aware diagnostics. The extra A term reveals when score spread (large o) or
score-label coupling (large |yx|) dominates the Brier loss, motivating variance-reduction
strategies such as VR-SAG.

* Practicality. A lightweight grouping head and K (m+2) scalars suffice at inference, meet-
ing strict latency and memory budgets while improving REL and overall Brier score in
offline and simulated evaluations.

B GROUPING DECOMPOSITION FOR THE NEGATIVE LOG—LIKELIHOOD

We now derive an exact grouping decomposition for the negative log—likelihood (cross-entropy)
Snen(Y,p) = —[YViegp+ (1 —Y)log(l —p)],

using the same soft semantic regions Gy, and per-region statistics 7, = Pr(Y'=1 | Gyi), ux, = E[p |
Ggl, 02 = Var(p | Gi), and v, = Cov(p,Y | Gj) introduced earlier.

Step 1: Law of total expectation.

E[SNLL} = Zwk E[SNLL ‘ Gk], WE = PI‘(Gk) (14)
k

Step 2: Exact per—group expansion with integral remainder. Fix a group G and write ¢ :=
P — ug. Consider the convex function ¢y (p) = =Y logp — (1 — Y)log(1 — p) on p € (0,1). By
Taylor’s theorem with the integral form of the remainder, for any p = uy + 9,

1
v (D) = by (uk) + &y (1) 6 + / (1= &) (e +15) 62 d,

0
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vxfhere q&’y(u) = —% + % and @Y (&) = g% + (11:52 > (. Taking the conditional expectation
given G, yields

E[Snie | Gi] = Eloy (1) | Gi] +E[¢y (k) 6 | Gi] —I—E[/ (1 —t) oY (pw +t6) 6% dt ‘ Gk}

constant at f¢f, linear (covariance) term

=: Rk 20
The constant term simplifies to the cross-entropy between Bernoulli(7y ) and Bernoulli(py, ),
E[¢Y(Nk) | Gk] = — Tk loguk - (]. - 7Tk) 10g(1 — ,U,k) = H(’iTk) + KL(ﬂ'k”,uk),

where H(p) = —plogp — (1 — p)log(1l — p). For the linear term, using E[0 | Gj] = 0 and
E[Yd | Gr] = vk gives
1 Tk
E[¢y (1) 8 | Gi] = - L& — E[(1-Y)5 | Gy] = -2 4 — - :
9y (14) 51 Gl Hi 1 — g { )31 Gi Kk 1 — g por (1 — puge)

Hence, for each group,
"y .
E[Sxe | Gi] = H(me) +KL(me ) — -

(1 — i)

Step 3: Isolate UNC, REL, RES, and the heterogeneity block. Let7 = ), wym;, = E[Y] be
the global prevalence. Using the entropy identity H (71) — >, wiH (7)) > 0, combine equation[14]
and equation [I3]to obtain

+ Ry, Ry > 0. (15)

E[SNLL] —|— E Wi KL 7Tk||,uk ( E wkH Tk )
§ k
UNC
REL RES
+ E wy Ry, — E wk
. 1 - ,Uk)
——
curvature-weighted variance (>0) covariance correction

This is an exact decomposition: the first three blocks match the classical UNC + REL — RES
structure, while the last two terms together play the role of a heterogeneity component. When
scores are constant within each region (U,% = 7 = 0), we have R; = 0 and the covariance term
vanishes, recovering the Murphy-style three-term form. The curvature factor 1/{ (1 — px)} shows
that the NLL is more sensitive to within-group dispersion and score—label coupling when i, is near
Oorl.

C THE STATISTICAL COMPARISON BETWEEN CALIBRATION METRICS

This section provides a comprehensive statistical analysis of calibration metrics, supplementing the
main text’s findings with detailed evaluations of metric consistency

These results validate the theoretical insights presented in the main text and offer practical guidance
for metric selection in real-world calibration tasks.

C.1 RANK CORRELATION AND VARIANCE CONSISTENCY
To assess the consistency of calibration metrics, we extended the Spearman correlation analysis

from the main text to include additional metrics and conducted 5000 Monte Carlo simulations across
varying data distributions. Additional metrics are listed below:

Sufficient-information metrics. These metrics quantify the direct discrepancy between predicted
probabilities p and true click rates m, and only when ground-truth CTR is available.

* Brier™ score:

N
1
Brier” = i Z |: — Dl
i=1
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¢ KL divergence:

L(rlp) = Zmlog ( )

* Generalized KL divergence:
1N
Al
() = 3 gy (78 (o O —amit )

¢ Chebyshev distance:
max [7; — pil
* Pearson correlation:
it (mi — 7) (P — )
IR S L

p(m, D)

* Spearman correlation:
N _
> ima (i —7)(¢i — @)
\/Zz (ri =122 (4 — @)

Insufficient-information metrics These metrics quantify the direct discrepancy between pre-
dicted probabilities p and labels y;, and only when ground-truth CTR is unavailable.

* MSE:
1
MSE = —
N

i1
=
|

* MAE:

1 N
MAE = N;m — il

ECE™: G}, denotes equal-frequency bins

|G|
ECE" = Z e le _Ezcjk i~ Z vi

zGG
* LCCE rand group:
K
G
LCCEqng = Z Wi |,uk - 7Tk| , Wi = %
k=1
* LCCE field group:
K
LCCEfeld = Zwk |k — x|
k=1
* Bias and absolute Bias:
P Pk
bias = =, abs_bias = W
- >

k=1

Table [A][5] and [6] presents the rank correlation and variance consistency of metrics.

The three figures collectively illustrate the consistency and reliability of calibration metrics across
different statistical properties. The first heatmap [4] shows that group-based metrics like LCCE ex-
hibit stronger Spearman correlation (up to 0.94) with the true Brier score compared to point-wise
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Figure 4: Spearman correlation heatmap of calibration metrics.
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Warmer colors indicate higher

correlation, with group-based metrics LCCE showing stronger alignment with true Brier score.
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Figure 5: Spearman correlation heatmap of the standard deviations (std) of calibration metrics. If
a metric is consistent with the Brier score, its moment functions (including the standard deviation)
should also align. LCCE demonstrates stronger consistency (0.86 and 0.94) than other metrics
in capturing the second-order statistical properties of calibration error, as evidenced by its higher
correlation with the Brier score’s standard deviation.
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Figure 6: Spearman correlation heatmap of metric improvements (calibrated - uncalibrated). LCCE
exhibits the highest consistency with Brier score improvements, followed by equal-frequency ECE.
The semantic grouping of LCCE outperforms manual binning, as it learns latent structures to capture
true calibration errors, whereas equal-frequency binning lacks semantic interpretability and may
miss fine-grained discrepancies.
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metrics, highlighting their superiority in capturing calibration errors. The second figure, focusing on
standard deviations, reveals that LCCE maintains higher consistency (0.86) with the Brier score’s
second-order statistics, demonstrating its stability in quantifying calibration uncertainty. The third
heatmap, analyzing metric improvements (calibrated - uncalibrated), further confirms LCCE’s dom-
inance 0.92), outperforming equal-frequency ECE (0.85) by leveraging semantic grouping to learn
latent structures. This allows LCCE to capture fine-grained discrepancies missed by manual binning,
underscoring the importance of data-driven grouping in enhancing calibration assessment accuracy.

C.2 CONVERGENCE PROPERTIES
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Figure 7: Convergence behavior of calibration metrics with sample size (a) and LCCE stability
under hyperparameter variations (b)

Figure [7(a) demonstrates the convergence of ECE and LCCE to stable values as the sample
size increases, with LCCE exhibiting higher Spearman correlation with the Brier score than
ECE——consistent with prior findings. The lower variance of LCCE arises from its default configura-
tion of 4 partitions, effectively averaging results from 4 Monte Carlo samplings to reduce estimation
noise.

C.3 HYPERPARAMETER SENSITIVITY

In Figure [7[b), the number of partitions shows minimal impact on LCCE performance, while in-
creasing the number of groups systematically improves metric accuracy. This stability stems from
LCCE’s k-means clustering with centroid compatibility: when the number of groups is large, proxi-
mally similar clusters are automatically merged, preventing overfitting to noise. This feature makes
LCCE robust to group number selection, enabling reliable calibration assessment across diverse data
scales.

D TRAINING COMPLEXITY

Due to significant disparities in implementation among the diverse methods, a direct analysis of
complexity might not precisely mirror their actual running speeds. For example, methods involving
extensive matrix operations, such as matrix factorization in the context of recommendation systems,
often entail substantial computational demands. However, they can harness GPU parallelization for
efficient execution. Conversely, techniques like user preference binning in recommendation datasets
may have relatively lower computational requirements, yet their calculations are challenging to par-
allelize, potentially leading to extended actual execution durations. To tackle this issue, we carried
out experiments to compare the running speeds of different methods. In our comparisons, we made
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use of the open-source implementations provided in the original papers of each method to ensure
that the algorithm implementations were well-optimized. To guarantee fairness in the comparison,
we employed the same hardware configuration across all experiments (Hardware Nvidia 2060Super
GPU and Intel Core 17-9700 634 and 8GB RAM).

Table 2: Comparison of the training+testing times(min) for various calibration methods on datasets.

AdAuction | ALICCP | ALIEXP
Histgram binning 15 39 45
Isotonic regression 17 35 41
Platt scaling 17 35 44
Temperature scaling 20 37 44
SAG+PS 29 65 52
SAG+TS 28 64 53
VR-SAG+PS 32 97 57
VR-SAG+TS 31 93 59

Tabel [2] illustrates a comparison of the training times for various calibration methods on the rec-
ommendation dataset. We can observe that methods relying on CPU computations, such as user
behavior histogram binning, have relatively short running times (less than a second), which can
be regarded as negligible. In contrast, methods that demand GPU computations, like our pro-
posed matrix-based collaborative filtering variants, generally exhibit slower speeds but still complete
within a few minutes. This is partially due to the time needed for GPU communication in GPU-based
methods and also because the parallelization advantages of these methods become more significant
with larger datasets. On the recommendation dataset, the speed differences among various methods
become more distinct. This can be attributed to the large number of user-item interactions and the
high dimensionality of the data. Among all the compared methods, traditional user-based collabo-
rative filtering and item-based collaborative filtering exhibit relatively fast speeds, while some ad-
vanced deep learning-based recommendation methods are slower. The slowest method takes approx-
imately 20 minutes, which is still reasonable considering the scale of the recommendation dataset.
In contrast, our proposed methods require only around 150 seconds and 250 seconds, respectively.
This showcases their ability to handle recommendation datasets with a large number of users and
items, indicating that computational complexity is not a limiting factor for our methods.

E OTHER METRICS AND ANALYSIS

In industrial online applications, the accurate assessment of model prediction discrepancies, includ-
ing overestimations and underestimations, is of paramount importance. Among the various evalu-
ation metrics, the predict click rate over click rate (pcoc) metric and the bias metric are frequently
employed to gauge the calibration quality of model predictions. The bias metric, defined as

bias(p,y) = g, abs_bias(p,y) = Zwk|pfk
Y k Yk

where k denotes grouping by media id (i.e., field-wise statistics). Bias directly quantifies the relative
deviation between predicted and actual values, offering a concise and intuitive measure for iden-
tifying systematic overestimation or underestimations in model outputs. This metric captures the
overall directional trend in expectations, though it incurs information loss—particularly due to the
cancellation problem. For instance, positive and negative biases across different media groups may
offset each other, masking true calibration errors.

The absolute bias metric mitigates this cancellation issue by summing weighted absolute devia-
tions. Consider a scenario where one media group exhibits overestimation and another underesti-
mation:their respective biases might cancel out, yielding a deceptively low overall bias. In contrast,
the absolute bias captures such discrepancies by emphasizing the magnitude of deviations, ensuring
that mis-calibrations in opposite directions are not overlooked. Specifically, a positive bias value
indicates model overestimation, while a negative value signals underestimation, with the absolute
bias providing a more robust measure of calibration accuracy across grouped fields.

21



Under review as a conference paper at ICLR 2026

In the following analysis, we incorporate these key industrial metrics to comprehensively evaluate
the performance of each comparative method.

Table 3: Comparison of calibration methods. We utilized bold font to highlight the statistically
superior (p < 0.05) results.

AdAuction | ALICCP | AE
Method | bias  abs_bias | bias abs_bias | bias abs_bias
Uncal 1.5866 13.2670 | -0.039843  0.0398 | -0.964428 0.9644

Histgram binning | 0.0061  4.5772 | -0.001060  0.0042 | 0.002417  0.0046
Isotonic regression | 0.0086  4.1161 | -0.001093  0.0042 | 0.002474  0.0048

Platt scaling 0.0074 42505 | -0.001073  0.0043 | 0.002780  0.0048
Temperature scaling | 0.0079  4.2504 | -0.001071 0.0042 | -0.018733  0.0187
SAG+PS 0.0075  1.7436 | -0.000213  0.0036 | 0.000244  0.0034
SAG+TS 0.0088  1.8910 | -0.000202  0.0035 | -0.001183  0.0061

VR-SAG+PS 0.0074  1.0742 | -0.000213  0.0036 | 0.000193  0.0027
VR-SAG+TS 0.0055 1.7331 | -0.000213  0.0035 | -0.000104 0.0054

Table [3] presents the bias and absolute bias metrics of various calibration methods across three in-
dustrial datasets. For the AdAuction dataset, the VR-SAG+TS method achieves the smallest bias
(0.0555), demonstrating its superiority in mitigating overall prediction deviation. In terms of abso-
lute bias, which avoids cancellation of positive and negative errors, the values are generally higher
than the bias metrics, highlighting the importance of using absolute bias to capture true calibration
errors. Specifically, VR-SAG+PS obtains the minimum absolute bias (1.0742), outperforming other
methods in quantifying the magnitude of prediction discrepancies without direction offset.For the
ALICCP and AE datasets, the bias values of most calibration methods are controlled within the order
of 1073, suggesting negligible overall deviation at first glance. However, this apparent “smallness”
of bias metrics is misleading due to potential cancellation effects across different media groups.
The absolute bias metrics, though also low in magnitude, provide a more reliable assessment by
emphasizing the cumulative deviation. For example, in the AE dataset, VR-SAG+PS achieves the
smallest absolute bias (0.0027), indicating its robustness in handling grouped calibrations without
masking errors through direction cancellation.These results underscore the critical role of absolute
bias in industrial calibration evaluations, as it overcomes the limitation of traditional bias metrics
that may obscure true calibration errors due to positive-negative cancellation. While the bias values
on ALICCP and AE datasets suggest satisfactory performance, the absolute bias metrics reveal the
nuanced differences in calibration quality, guiding the selection of more robust methods for practical
applications.

E.1 ACCURACY PRESERVING

Not all calibration methods guarantee the preservation of predictive accuracy, as some may risk
degrading metrics such as accuracy or AUC. To assess this, we measure the proportional difference
in accuracy and AUC between the calibrated outputs and the backbone model’s logits. For each
calibration method, we compute:

Acc(calibrated) — Acc(logits)

AccDiff =
et Acc(logits)

)

AUC (calibrated) — AUC(logits)
AUC(logits) ’

whereAcc(-)denotes classification accuracy and AUC(-)denotes the area under the receiver operating
characteristic curve. This metric quantifies the relative change in predictive performance induced by
calibration, enabling a systematic evaluation of accuracy degradation risks. Positive values indicate
performance improvement, while negative values signal potential accuracy loss—highlighting the
trade-off between calibration quality and predictive fidelity.

AUCDIff =

Table []illustrates the relative changes in accuracy and AUC between calibrated outputs and back-
bone logits. Notably, Platt Scaling (PS) and Temperature Scaling (TS) demonstrate strict accuracy
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Table 4: Accuracy preserving measure of calibration methods.

AdAuction \ ALICCP \ AE
Method | AccDiff AUCDIff | AccDiff AUCDIff | AccDiff ~AUCDIff
Uncal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Histgram binning 0.0007  -0.1783 0.0015  -0.0849 | 0.0000  -0.2857
Isotonic regression | 0.0007 -0.0167 0.0015 -0.0002 0.0000 0.0006
Platt scaling 0.0004 0.0000 0.0015 0.0000 | -0.0001 0.0000
Temperature scaling | 0.0004 0.0000 0.0015 0.0000 -0.0001 0.0000
SAG+PS 0.0005 0.0008 0.0015  -0.0533 | -0.0001  -0.0327
SAG+TS 0.0006 0.0009 0.0015 0.0035 -0.0001  -0.0404
VR-SAG+PS 0.0007 0.0037 0.0015  -0.0643 | -0.0001  -0.0153
VR-SAG+TS 0.0007 0.0052 0.0015 0.0017 -0.0001  -0.0149

preservation, as their AccDiff and AUCDIff values for most datasets approach zero, indicating min-
imal disruption to the original prediction ordering. This consistency aligns with their parametric
calibration nature, which adjusts confidence scores without altering the rank of predictions.

Histogram Binning (HB) exhibits the most pronounced AUC degradation, particularly on the AE
dataset (-0.2857), attributed to its mechanism of assigning uniform predictions within each bin.
This process forfeits fine-grained relative ordering, as all samples in a bin are forced to share the
same estimated value, thereby compromising the discriminative power essential for AUC.

For AdAuction and ALICCP, calibration methods generally yield marginal improvements in both
accuracy and AUC. The subtle boosts on ALICCP (e.g., up to 0.0015 in AccDiff) are noteworthy
given its inherently lower baseline AUC, suggesting that calibration effectively refines prediction
rankings even in scenarios with modest initial performance. In contrast, the AE dataset shows slight
accuracy degradation (e.g., -0.0001 for TS), likely due to overfitting during calibration on its specific
data distribution.

Overall, all methods induce minimal changes in predictive correctness, with most AccDiff and
AUCD:ISf values bounded within £0.005. This stability highlights the balance between calibration
quality and accuracy preservation, confirming that the proposed methods maintain the backbone
model’s predictive fidelity while enhancing probability calibration.

F ON THE POSSIBILITY OF EMPTY GROUPS AND OUR HANDLING

Because groups are learned from data, it is theoretically possible that a group receives no training
samples. In all our main experiments—where the number of groups K is set to a few dozens—we
did not observe any empty groups. Hence, under practical choices of K, this issue has negligible
impact.

To probe the worst case, we further ran stress tests with substantially larger K. Even in this extreme
setting, the effect on overall calibration metrics (ECE/LCCE and, where applicable, Brier variants)
was very small, and the trends reported in the main paper remained unchanged.

Our implementation adopts a safe default: per-group calibrators are initialized to the identity and
remain unchanged if a group lacks training support. Concretely, for group k we set

Tk::17 Bk:O7

so the calibrated probability reduces to the backbone score p = o(o/7x + Bx) = o(0). This no-
change fallback prevents unintended shifts and guarantees that unsupported groups cannot degrade
predictions.

If additional robustness is desired in very large-scale deployments, one may (i) merge groups below
a minimum support into the nearest supported group, or (ii) back off to a global calibrator. These
options require no changes to VR-SAG’s core design and preserve its latency/memory profile.
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G ADDITIONAL METRICS—NLL AND AUC

To complement the calibration metrics reported in the main text, we provide negative log-likelihood
(NLL)—a proper scoring rule—and AUC for all main experiments. The conclusions are unchanged:
VR-SAG attains the strongest performance on NLL in the majority of settings while maintaining
competitive ranking quality (AUC). In particular, VR-SAG+TS achieves the lowest NLL on Al-
iCCP and AE, and its NLL on AdAuction is on par with the best baseline (difference < 0.0006)
while preserving top-tier AUC. These results mirror the improvements observed under LCCE and
corroborate that variance control improves proper loss without harming ranking.

Table 5: Negative Log-Likelihood (NLL; lower is better) and AUC across datasets. VR-SAG con-
sistently matches or surpasses strong baselines on NLL while keeping AUC competitive.

M |  AdAuction | AliCCP \ AE
ethod
| NLL AUC | NLL AUC | NLL AUC

Uncal 0.3444 0.8212 | 0.1692 0.6130 | 0.3853 0.6302
Histogram binning | 0.3207 0.6747 | 0.1702 0.6101 | 0.3933  0.6079
Isotonic regression | 0.3199 0.8074 | 0.1696 0.6128 | 0.3922 0.6085
Platt scaling 0.3187 0.8212 | 0.1691 0.6130 | 0.3535 0.6302
Temperature scaling | 0.3187 0.8212 | 0.1691 0.6130 | 0.3519 0.6303
SAG+PS 0.3183 0.8146 | 0.1658 0.6618 | 0.3588 0.6568
SAG+TS 0.3185 0.8154 | 0.1640 0.6896 | 0.3459 0.6502
VR-SAG+PS 0.3191 0.8210 | 0.1625 0.6897 | 0.3372 0.6652
VR-SAG+TS 0.3193 0.8221 | 0.1621 0.6885 | 0.3297 0.6660

Summary. NLL results align with LCCE improvements: variance-reduced semantic grouping
yields better-calibrated probabilities under a proper loss, and AUC remains competitive—confirming
that VR-SAG sharpens probability quality without sacrificing ranking.

H PRACTICAL NOTES ON LCCE AND THE SIMULATOR

H.1 LCCE AT SCALE AND UNDER DISTRIBUTION SHIFT

LCCE applies K-means to one-dimensional logits, which makes clustering practical even with very
large impression volumes. In our experience it is unnecessary to cluster on all impressions: stable
centroids can be estimated from a modest random subsample, after which computing LCCE reduces
to assigning each impression to its nearest centroid and aggregating the resulting statistics. The
overall cost therefore consists of a small-sample K-means run to obtain K centroids, followed
by an O(N x K) pass for assignment and aggregation over N impressions. This workflow is
typically fast enough per evaluation window, so incremental or streaming variants are not required
in practice, although standard accelerations such as mini-batch K -means, simple one-dimensional
initializations, and vectorized or parallel distance computations can further reduce wall-clock time
without changing the metric. To quantify sampling effects, we evaluate LCCE as a function of
the clustering subsample size and observe rapid stabilization once the subsample reaches 10°; even
103-10* samples already provide a close approximation, as shown in Table @ To handle non-
stationarity, we simply re-estimate the one-dimensional centroids whenever LCCE is computed.
This keeps pace with distributional drift at modest cost—comparable to common binning-based
calibration metrics—and works well on rolling evaluation windows, where centroids change little
under slow drift and adapt immediately when drift accelerates.

H.2 SIMULATOR GROUND-TRUTH CTRS: RATIONALE AND VALIDATION

Real-world logs do not expose true click probabilities, so a controlled environment is needed to
compare calibration methods and metrics on equal footing. Our simulator serves this purpose as
an explicit, model-based proxy: it is trained on production data and validated to match production
feature distributions and CTR distributions both globally and across salient feature groups. These
statistical checks support that the generated labels are of sufficient quality for comparative cali-
bration studies, while acknowledging that latent user CTRs remain unobservable in principle. To
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Table 6: Influence of clustering subsample size on LCCE (lower is better).

Subsample size |  LCCE

102 0.012309877
108 0.021076037
10% 0.020131670
10° 0.019488912
108 0.019336675
107 0.019336664

encourage transparency and reuse, we will release the simulator and its evaluation tooling so that
results can be reproduced and future methods can be compared fairly.

I REPRODUCIBILITY

To ensure the reproducibility of our paper, we have included all the necessary code for replicating
the experiments in the supplementary materials. The code has been anonymized to maintain the
anonymity of the review process. Instructions for running the code and specific implementation
details for each method can be found in the README.md file and commented within the code
itself.

I.1 IMPLEMENTATION AND HYPER-PARAMETER TUNING.

The implementations of the comparative methods in the paper have been modified from the corre-
sponding open-source codes of their respective papers.

Specifically, the Temperature Scaling, Histogram Binning, Beta Calibration, and Isotonic Regression
methods were modified from the open-source E] of Guo et al.(Guo et al.l 2017a), and SAG method
was modified from the open-source[ﬂof Yang et al. (Yang et al., 2023).

For some hyperparameters in the comparative methods, we follow the same setting of Yang et al.
(Yang et al., [2023)).

To ensure rigorous evaluation, we randomly partitioned a validation set D,,,; comprising 10% of
the standard training data, alongside a hold-out set Dy, consisting of 10% from the standard test
set for calibration purposes. For each dataset-model combination, we executed 100 distinct test set
splits to derive statistically robust results, reporting performance metrics as the average across 100
trials for each method. Paired t-tests were conducted to assess the statistical significance of observed
improvements.

Hyperparameters for comparative methods were optimized following established protocols in the
literature, utilizing 5-fold cross-validation. The number of groups was fixed at 3, and the number
of partitions was set to 10. Adopting a tuning strategy analogous to comparative approaches, the
regularization strength was parameterized as A = 0.1 , and the group variance coefficient was
specified as A\, = 0.5

1.2 DATASETS

we conduct a comprehensive analysis of various calibration error metrics. Then for offline exper-
iments, our method was tested on two widely used public datasets—AliCCP(Ma et al., 2018) and
AliExpress(Xu et al., 2019)—and our newly open-sourced AdAuction dataset. The Tabel presents
the statistics of these datasets

Due to the company’s open-source dataset restrictions, we have only uploaded the ALICCP and
ALIEXP datasets. The ALICCP backbone logits are trained and their features are extracted from

*https://github.com/markus93/NN_calibration/blob/master/scripts/
calibration/cal_methods.py
*https://github.com/ThyrixYang/group_calibration
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Table 7: Statistical overview of datasets and backbone approach.

Dataset example

Backbone performence

Impressions | Clicks | CTR | Avg. true CTR | Avg. pCTR AUC

Aliccp 42M 164K | 0.0389 no data 0.0373 0.5875
Aliexpress 22M 574K | 0.0257 no data 0.0257 0.7681
AdAuction 15M 451K | 0.0311 0.0301 0.0410 0.8903

open-source code E] and the ESMM config are used. The ALIEXP backbone logits are trained and
their features are extracted from open-source code

E]and the SharedBottom config are used. Upon

acceptance of the paper, we will make all the AdAuction dataset publicly available together.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this article, we only use LLMs for polishing the writing and for limited searches of relevant

literature.

51’1ttps ://github.com/datawhalechina/torch-rechub/blob/main/examples/
ranking/run_ali_ccp_multi_task.py
%https://github.com/datawhalechina/torch-rechub/blob/main/examples/
ranking/run_aliexpress.py
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