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Abstract001

Direct Preference Optimization (DPO) demon-002
strates the advantage of aligning a large lan-003
guage model with human preference using004
only an offline dataset. However, DPO has005
the limitation that the KL penalty, which pre-006
vents excessive deviation from the reference007
model, is static throughout the training pro-008
cess. Several methods try to turn this static KL009
penalty into a dynamic one, but no approach010
can adaptively assign different KL penalties011
for each preference pair. In this paper, we012
propose ε-Direct Preference Optimization (ε-013
DPO), which allows adaptive control of the014
KL penalty strength β for each preference pair.015
Specifically, ε-DPO adaptively controls β for016
each preference pair based on the monotonicity017
of logits as a preference model under the pertur-018
bation of β during training by simply reusing019
the logit of the current policy and the refer-020
ence policy. Experimental results show that021
ε-DPO outperforms existing direct alignment022
algorithms and KL penalty relaxation methods023
on general chatbot benchmarks, highlighting024
the significance of adaptive KL penalty relax-025
ation at the instance-level in DPO.026

1 Introduction027

Aligning large language models with human028

preferences for helpfulness and harmless princi-029

ples (Askell et al., 2021; Cui et al., 2023) is a030

crucial requirement for general chatbot agents.031

Reinforcement Learning from Human Feedback032

(RLHF) (Ziegler et al., 2020) is the pioneering033

approach that regards the alignment of large lan-034

guage models as a reward maximization problem035

and solves it by reinforcement learning (Schulman036

et al., 2017). However, the complicated training037

pipeline of RLHF increases the training complex-038

ity and computation cost of the rollout for online039

reinforcement learning, in addition to the difficulty040

of collecting human preference datasets. Moreover,041

introducing a trained reward model as a proxy re-042

1) Monotonically Decreasing

2) Monotonically Increasing

Figure 1: ε-DPO adaptively controls β corresponding
to the KL penalty strength for each preference pair by
checking whether the log-likelihood ratio of the chosen
response and the rejected response changes monotoni-
cally with the perturbation of β used during training. It
is equivalent to checking the monotonicity of the logits
as a preference model induced by the DPO and estimat-
ing the advantage of the change in β by the change of
train-time inverse temperature to the preference confi-
dence under the same test-time temperature.

ward function to replace the intractable ground- 043

truth human preference reward function makes 044

large language models suffer from the side effect 045

of reward over-optimization (Gao et al., 2023) in- 046

herited from the reward models. 047

Direct Preference Optimization (DPO) (Rafailov 048

et al., 2023) proposes an approach to reform the 049

limitation of RLHF by converting the policy opti- 050

mization problem into a preference modeling prob- 051

lem and performing alignment using only offline 052

learning. It shows comparable performance while 053

skipping the reward modeling process required by 054

RLHF and has become an effective alternative ap- 055

proach for alignment. In particular, subsequent 056

studies with various modifications to the DPO loss 057

objective open a new research domain called direct 058

alignment algorithms (Rafailov et al., 2024), which 059

perform alignment directly from offline preference 060
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Figure 2: Comparison between ε-DPO and existing KL penalty relaxation methods. β-DPO (Wu et al., 2024)
adaptively adjusts β based on the batch-level statistics of implicit reward margin through momentum, failing to
adjust at the instance-level and being affected by micro-batch size. TR-DPO (Gorbatovski et al., 2024) updates
reference policy periodically by the current policy, so the updates are not adaptive and require computational costs
for reference policy updates. On the other hand, ε-DPO can adaptively control β at the instance-level by checking
the monotonicity of the log-likelihood ratio under perturbation of β by simply reusing logits from the policies.

datasets without training separated reward models.061

However, DPO assumes that β and the reference062

policy, which define a KL penalty that prevents063

excessive deviations from the reference model in064

RLHF, are fixed for exploiting the existence of065

a closed-form solution derived from the objec-066

tive function of the RLHF. However, this assump-067

tion can lead to suboptimal results, since the KL068

penalty can be regarded as a Lagrangian relaxation069

of the constraint optimization defined by the trust070

region (Schulman et al., 2017). In this regard, β-071

DPO (Wu et al., 2024) argues that β should be adap-072

tively chosen according to the quality of the prefer-073

ence pair but fails to control β at the instance-level074

and proposes a batch-level control method. On075

the other hand, TR-DPO (Gorbatovski et al., 2024)076

claims to periodically update the reference policy077

to reduce over-optimization (Rafailov et al., 2024),078

but it may induce unnecessary KL divergence for079

improvement since the update is not adaptive.080

In this paper, we present ε-Direct Preference081

Optimization (ε-DPO), an instance-level adaptive082

KL penalty control for DPO that neither TR-DPO083

nor β-DPO achieves. Specifically, we check the ad-084

vantage of adjusting β for each preference pair by085

observing the monotonicity of the log-likelihood086

ratio between the chosen response and the rejected087

response when the β used during training is per-088

turbed, as described in Figure 1. Here, the criterion089

for controlling β does not require batch-level statis-090

tics, and the policy under the perturbed β can be091

estimated by reusing the current policy and refer-092

ence policy logits. This criterion results in inde-093

pendence from the choice of micro-batch size and 094

no additional computation requirements for model 095

updates, unlike β-DPO and TR-DPO. 096

Experimental results demonstrate that ε-DPO 097

outperforms β-DPO, TR-DPO, and most direct 098

alignment algorithms that modify DPO loss ob- 099

jective (Yuan et al., 2023; Zhao et al., 2023; Azar 100

et al., 2024; Xu et al., 2024; Ethayarajh et al., 2024; 101

Hong et al., 2024; Park et al., 2024; Meng et al., 102

2024), highlighting the importance of adequate KL 103

penalty relaxation for DPO. Furthermore, we con- 104

firm that the variation of β determined by the adap- 105

tive criterion in ε-DPO reflects the confusion as a 106

preference model, which is not addressed by the 107

adaptive criterion of β-DPO. We also find that the 108

adaptive KL penalty control of ε-DPO is crucial 109

for an efficient KL trade-off compared to TR-DPO, 110

which is not an adaptive KL penalty control. 111

In summary, our work shows the following: 112

• ε-DPO provides a simple criterion to improve 113

DPO through KL penalty relaxation. 114

• ε-DPO adaptively adjusts β in instance-level 115

reflecting confusion as a preference model. 116

• ε-DPO efficiently controls β in trade-off be- 117

tween KL divergence and performance. 118

2 Preliminaries 119

Reinforcement Learning from Human Feedback 120

To obtain a language model that aligns with hu- 121

man preference, RLHF (Ziegler et al., 2020) intro- 122

duces reinforcement learning. It is equivalent to 123
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approaching preference alignment as a reward max-124

imization problem, where we find a policy π that125

maximizes a ground-truth reward function r∗ rep-126

resenting human reward for a response y obtained127

from a corresponding policy for a given prompt x.128

However, since the ground-truth reward function129

cannot be accessed, a reward model trained from130

the preference dataset is introduced as a proxy re-131

ward function. On the other hand, to prevent the132

policy update from deviating too much from the133

current policy from the initial policy, the KL di-134

vergence from the reference policy πref serves as135

a penalty and regards the initial policy as a refer-136

ence policy. At this time, coefficient β controls137

the strength of the penalty. The optimal policy that138

satisfies the maximization of the modified objective139

function under β has a closed-form solution π∗
β ,140

π∗
β := argmax

π
{Ex,y[r

∗(x, y)]− βDKL(π||πref)},

π∗
β(y|x) =

1

Z∗
β(x)

πref(y|x) exp
( 1
β
r∗(x, y)

)
,

Z∗
β(x) =

∑
y

πref(y|x) exp
( 1
β
r∗(x, y)

)
.

141

Direct Preference Optimization RLHF has a142

limitation in efficiency due to the additional train-143

ing step of the reward model. In this respect,144

DPO (Rafailov et al., 2023) proposes an approach145

that can perform preference alignment without146

training the reward model. DPO focuses on the fact147

that the ground-truth reward function can be implic-148

itly reparameterized by the closed-form solution π∗
β149

and reference policy πref with an intractable normal-150

izing constant Z∗
β . If we assume the Bradley-Terry151

model (Bradley and Terry, 1952) for the ground-152

truth human preference function, then the human153

preference can be modeled by the margin between154

the reward of the chosen response yw and the re-155

jected response yl with the sigmoid function σ,156

which can ignore the intractable term Z∗
β by can-157

cellation. From this observation, DPO performs158

preference alignment through preference model op-159

timization using an offline dataset in the sense that160

obtaining an optimal policy through policy opti-161

mization in RLHF can be obtained by training a162

preference model given by the implicit reward rθ,β ,163

rθ,β(x, y) := β log
πθ(y|x)
πref(y|x)

+ Zβ(x; θ),

Pθ,β(y
w ≻ yl|x) := σ

(
rθ,β(x, y

w)− rθ,β(x, y
l)
)
,

LDPO(x, y
w, yl; θ, β) := − logPθ,β(y

w ≻ yl|x).

164

3 ε-Direct Preference Optimization 165

In this section, we describe our proposed method, 166

ε-Direct Preference Optimization (ε-DPO), that 167

adaptively controls KL penalty coefficient β at the 168

instance-level based on the logit monotonicity as 169

a preference model according to the perturbation 170

of β. Figure 2 illustrates the difference between ε- 171

DPO and existing KL penalty relaxation methods. 172

3.1 Relaxation of KL Penalty in DPO 173

The KL penalty introduced by RLHF can be re- 174

garded as an approach to solve the constrained op- 175

timization problem in the trust region (Schulman, 176

2015) defined near the reference policy πref as an 177

unconstrained optimization by treating β as a La- 178

grange multiplier (Schulman et al., 2017). From 179

this perspective, even though DPO reformulates the 180

problem of finding an optimal policy under fixed 181

πref and β as a preference modeling problem, using 182

a single β and a fixed trust region for all instances 183

may lead to suboptimal results. This hypothesis re- 184

garding relaxation of KL penalty can be supported 185

by the experimental results of β-DPO (Wu et al., 186

2024) that adaptively control β based on the statis- 187

tics of implicit reward margin during the training 188

process and TR-DPO (Gorbatovski et al., 2024) 189

that updates πref during the training process for pre- 190

venting over-optimization (Rafailov et al., 2024) 191

from the vanishing curvature of the loss landscape. 192

However, β-DPO fails to perform instance-level 193

β control despite claiming that the quality of each 194

preference pair should determine β. Instead, it 195

performs batch-level β control using momentum- 196

based estimation of batch-level margin disparities, 197

which is strongly affected by the micro-batch size. 198

In addition, TR-DPO updates the reference model 199

without adaptive criteria, which can lead to inef- 200

ficient KL divergence trade-off between perfor- 201

mance and incur computational costs for updat- 202

ing the reference model. Therefore, instance-level 203

adaptive KL penalty control without requiring addi- 204

tional computational cost that achieves an efficient 205

KL trade-off is still undiscovered for DPO. 206

3.2 Logit Monotonicity under Perturbation 207

Establishing a criterion to adaptively change the KL 208

penalty for each instance of preference dataset is 209

not a trivial problem. As a proxy criterion, we can 210

exploit that the policy obtained via DPO can func- 211

tion as a preference model Pθ,β . Formally, Pθ,β can 212

be expressed as a binary classifier with logit zθ and 213
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margin γ for a preference triplet (x, yw, yl) ∈ D,214

Pθ,β(·|·) = σ
(
β
(
zθ(·)− γ(·)

))
,

zθ(x, y
w, yl) := log

πθ(y
w|x)

πθ(yl|x)
,

γ(x, yw, yl) := log
πref(y

w|x)
πref(yl|x)

.

215

This shows that β serves as an inverse tempera-216

ture of a binary classifier. For a given β, we define217

β−
ε and β+

ε with a positive constant ε > 0. That is,218

β−
ε and β+

ε refer to values that have been perturbed219

to be slightly larger or slightly smaller than the β,220

β−
ε :=

β

1 + ε
, β+

ε :=
β

1− ε
.221

Let us denote the parameters obtained via DPO222

as a function of β, θ(·) : R+ → Θ. Consider the223

case we observe the strict monotonicity of logits224

happens according to the perturbation of β on θ(·),225

zθ(β−
ε )(·) > zθ(β)(·) > zθ(β+

ε )(·), (1)226

227
zθ(β−

ε )(·) < zθ(β)(·) < zθ(β+
ε )(·). (2)228

Intuitively, this corresponds to observing mono-229

tonic changes in preference confidence under the230

same test-time temperature scaling (Guo et al.,231

2017). If the logits monotonically decrease with232

increasing β, then raising the training temperature233

(i.e., lowering β) yields a clearer separation of yw234

and yl in the neighborhood of 1
β , despite having235

a softer decision boundary. Conversely, if they236

monotonically increase, a higher training tempera-237

ture harms the separation of yw and yl. From this,238

we can estimate the benefit of adjusting β for each239

instance within the neighborhood defined by ε.240

3.3 Estimating KL Penalty Perturbation241

Note that θ(·) is intractable since it is equivalent to242

having access to models trained on each β. How-243

ever, Liu et al. (2024b) shows that optimal policy244

under β
λ can be expressed by πref re-weighted with245

importance ratio using π∗
β . If we assume the autore-246

gressive prior of optimal policy, then the optimal247

policy under β
λ can be estimated by the optimal248

policy under β and the reference policy, as we re-249

specify Proposition 1 from Liu et al. (2024b),250

Proposition 1 (Liu et al. (2024b)) Under the as-251

sumption of optimal autoregressive policy π∗ where252

the prompt x ∈ X , response vocabulary yi ∈ V ,253

and logit f : X ×V i−1 → R|V|, the optimal policy254

π∗
β
λ

can be approximated by the arithmetic mean of 255

logits between π∗
β and reference policy πref, 256

π∗
β
λ

(y1:n|x) =
n∏

i=1

π∗
β
λ

(yi|x, y1:i−1)

≈
n∏

i=1

Softmax
(
λf∗

β(x, y1:i−1)

+(1− λ)fref(x, y1:i−1)
)
yi
.

257

Proof. See Appendix A. 258

Using Proposition 1, we can approximate πθ(β−
ε ) 259

and πθ(β+
ε ) by trained policy and reference policy 260

without accessing θ(·) since they are the approx- 261

imated policies for π∗
β−
ε

and π∗
β+
ε

. To adaptively 262

control β for each preference triplet (x, yw, yl) dur- 263

ing the training process, we regard the policy πθ 264

obtained in the current step as the best approxi- 265

mation of the optimal policy under current β and 266

estimate πθ(β−
ε ) and πθ(β+

ε ) for zθ(β−
ε ) and zθ(β+

ε ), 267

πθ(β−
ε )(y1:n|x) =

n∏
i=1

πθ(β−
ε )(yi|x, y1:i−1)

≈
n∏

i=1

Softmax
(
(1 + ε)fθ(x, y1:i−1)

−εfref(x, y1:i−1)
)
yi
,

(3) 268

269

πθ(β+
ε )(y1:n|x) =

n∏
i=1

πθ(β+
ε )(yi|x, y1:i−1)

≈
n∏

i=1

Softmax
(
(1− ε)fθ(x, y1:i−1)

+εfref(x, y1:i−1)
)
yi
.

(4) 270

Recall that we need not only the logit of the cur- 271

rent policy fθ but also the logit of the reference 272

policy fref to compute the estimated log-likelihood 273

ratio. However, in order to compute the loss func- 274

tion of DPO, LDPO, the log-likelihood from the ref- 275

erence policy must be computed for each training 276

instance, which allows us to simply reuse fref for 277

estimation without any additional computation cost 278

of model forward passes. Therefore, we determine 279

the β̃, which is used for the KL penalty coefficient 280

in the current training step for each instance, 281

β̃(x, yw, yl; θ) =


β−
ε if (1),

β+
ε if (2),

β otherwise.

(5) 282
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After the model update, the β corresponds to the283

optimal policy that the current policy is targeting284

changes depending on β̃ used in LDPO for each in-285

stance. Therefore, we need to modify the baseline286

β for the next training step, and we simply up-287

date the β with the mean statistics of β̃ determined288

across the batch used in the update as follows:289

β ← Ex,yw,yl [β̃(x, y
w, yl; θ)]. (6)290

Note that β̃ is determined independently with291

the batch-level statistic, so the adaptive control of292

β in ε-DPO can be performed independently with293

the choice of micro-batch size. Algorithm 1 sum-294

marizes the entire training process of ε-DPO.

Algorithm 1 ε-Direct Preference Optimization

Require: reference policy πref, initial KL penalty
coefficient β, and perturbation size ε

1: Initialize model πθ with πref.
2: while not converged do
3: Sample preference triplets (x, yw, yl).
4: Estimate πθ̂(β−

ε ), πθ̂(β+
ε ) using 3 and 4.

5: Determine instance-level β̃ according to 5.
6: Update πθ by LDPO with instance-level β̃.
7: Update the current β using β̃ by 6.
8: end while
9: return aligned policy πθ.

295

4 Experimental Setup296

In this section, we discuss the experimental setup297

for validating our proposed method, ε-DPO. We298

check the feasibility of ε-DPO using UltraFeed-299

back (Cui et al., 2023), compared to the diverse300

direct alignment algorithms (Rafailov et al., 2023;301

Yuan et al., 2023; Zhao et al., 2023; Azar et al.,302

2024; Xu et al., 2024; Ethayarajh et al., 2024; Hong303

et al., 2024; Park et al., 2024; Meng et al., 2024) as304

a method for general chatbot alignment. We also305

use Anthropic-HH (Bai et al., 2022) for a detailed306

comparison with existing methods for KL penalty307

relaxation of DPO (Wu et al., 2024; Gorbatovski308

et al., 2024). The implementation details for each309

experimental setting are in Appendix B.310

4.1 UltraFeedback311

UltraFeedback (Cui et al., 2023) is an AI feed-312

back dataset where GPT-4 (Achiam et al., 2023)313

rates responses obtained from four different lan-314

guage models. We follow the experimental set-315

ting of SimPO (Meng et al., 2024) for comparison316

with various direct alignment algorithms, including 317

DPO (Rafailov et al., 2023), RRHF (Yuan et al., 318

2023), SLiC-HF (Zhao et al., 2023), IPO (Azar 319

et al., 2024), CPO (Xu et al., 2024), KTO (Etha- 320

yarajh et al., 2024), ORPO (Hong et al., 2024), and 321

R-DPO (Park et al., 2024). Specifically, we use the 322

Instruct setting starting from instruction-tuned 323

language models (Jiang et al., 2023a; Dubey et al., 324

2024). We evaluate resulting models by AlpacaE- 325

val 2 (Dubois et al., 2024), Arena-Hard (Li et al., 326

2024), and MT-Bench (Jiang et al., 2023b), which 327

are widely used for general chatbot benchmarks. 328

4.2 Anthropic-HH 329

Anthropic-HH (Bai et al., 2022) is a human prefer- 330

ence dialogue dataset containing two subsets based 331

on the helpfulness and harmlessness principle. 332

Here, we use helpful-base and harmless-base 333

splits to validate the criterion using logit mono- 334

tonicity for instance-level β control used in ε- 335

DPO and the efficiency in terms of trade-off be- 336

tween performance and KL divergence (Rafailov 337

et al., 2024). We choose gemma-2-2B (Team et al., 338

2024) to obtain the reference policy through Su- 339

pervised Fine-tuning with chosen responses. Fol- 340

lowing DPO (Rafailov et al., 2023), we evaluate 341

the models trained with each method under various 342

β in the single-turn dialogue setting. We regard 343

PairRM (Jiang et al., 2023b) as an evaluator for 344

checking performance by win rate comparing their 345

responses and chosen responses in the test splits. 346

5 Experimental Results 347

Main Results of ε-DPO In Table 1, we observe 348

that ε-DPO shows notable performances across Al- 349

pacaEval 2 (Dubois et al., 2024), Arena-Hard (Li 350

et al., 2024), and MT-Bench (Jiang et al., 2023b) 351

using UltraFeedback. In particular, we find that 352

the performance of ε-DPO outperforms most direct 353

alignment algorithms, which generally modify the 354

loss objective, highlighting that the major assump- 355

tion of fixed KL penalty in DPO is overlooked. In 356

addition, we observe that ε-DPO performs better 357

than other KL penalty relaxation approaches (Wu 358

et al., 2024; Gorbatovski et al., 2024) from Table 2. 359

Thus, we can find that instance-level KL penalty 360

control significantly impacts the final performance. 361

Influence of ε on Training Dynamics The per- 362

turbation ε is used for checking logit monotonic- 363

ity as a preference model in the neighborhood of 364

the current β. Therefore, it can be chosen within 365
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Method
Mistral-Instruct (7B) Llama-3-Instruct (8B)

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Score (1-10) LC (%) WR (%) WR (%) Score (1-10)

SFT 17.1 14.7 12.6 7.5 26.0 25.3 22.3 8.1

DPO 26.8 24.9 16.3 7.6 40.3 37.9 32.6 8.0
RRHF 25.3 24.8 18.1 7.6 31.3 28.4 26.5 7.9
SLiC-HF 24.1 24.6 18.9 7.8 26.9 27.5 26.2 8.1
IPO 20.3 20.3 16.2 7.8 35.6 35.6 30.5 8.3
CPO 23.8 28.8 22.6 7.5 28.9 32.2 28.8 8.0
KTO 24.5 23.6 17.9 7.7 33.1 31.8 26.4 8.2
ORPO 24.5 24.9 20.8 7.7 28.5 27.4 25.8 8.0
R-DPO 27.3 24.5 16.1 7.5 41.1 37.8 33.1 8.0
SimPO 32.1 34.8 21.0 7.6 44.7 40.5 33.8 8.0

ε-DPO 35.6 29.6 17.2 7.8 46.4 44.9 36.7 8.0

Table 1: AlpacaEval 2 (Dubois et al., 2024), Arena-Hard (Li et al., 2024), and MT-Bench (Jiang et al., 2023b) results
of ε-DPO in the Instruct setting proposed by SimPO (Meng et al., 2024). LC and WR denote length-controlled
win rate and win rate. The best result for each benchmark is represented in bold. Results of other direct alignment
algorithms (Rafailov et al., 2023; Yuan et al., 2023; Zhao et al., 2023; Azar et al., 2024; Xu et al., 2024; Ethayarajh
et al., 2024; Hong et al., 2024; Park et al., 2024) are directly taken from the official report of SimPO.

Method AlpacaEval 2 Arena-Hard

LC (%) WR (%) WR (%)

SFT 26.0 25.3 22.3
DPO 40.3 37.9 32.6

β-DPO 43.4 38.2 -
TR-DPOτ 42.8 47.2 32.4
TR-DPOα 43.5 46.8 34.7

ε-DPO 46.4 44.9 36.7

Table 2: Performance of β-DPO (Wu et al., 2024), TR-
DPOτ , TR-DPOα (Gorbatovski et al., 2024), and ε-
DPO measured on AlpacaEval 2 and Arena-Hard in the
Llama-3-Instruct setting. Each β-DPO and TR-DPO
result is directly taken from their official reports.

a reasonable range to estimate the approximated366

policies corresponding to β−
ε and β+

ε . However,367

ε can influence training dynamics since ε deter-368

mines the sizes of instance-level KL penalty co-369

efficient β̃. We further analyze the intra-epoch370

training dynamics on Llama-3-Instruct settings371

according to ε. We compare the forward KL di-372

vergence DKL(πref||πθ) (Rafailov et al., 2024) and373

performance on AlpacaEval 2 using checkpoints374

obtained at 0.2 intervals during the training, along375

with the changes of in-batch ratio of β−
ε and β+

ε ,376

as shown in Figure 3. We find that adaptive control 377

occurs more frequently for both β−
ε and β+

ε as ε 378

increased, leading to accelerating the increase of 379

KL divergence and performance. We also observe 380

that the performance at the beginning of training 381

tends to be lower when higher ε. We speculate that 382

the trained policy at the beginning of training is 383

insufficient to estimate the optimal policy, making 384

the approximation unstable at the high ε level. 385

Analysis of Logit Monotonicity β-DPO (Wu 386

et al., 2024) chooses higher β for preference pairs 387

with larger implicit reward margins to update the 388

current policy conservatively from the reference 389

policy. This is motivated by the claim that large 390

implicit reward margins reflect higher quality gaps 391

of response pairs corresponding to meaningless 392

training signals. In this respect, we analyze the 393

implicit reward margin of preference pairs where 394

logit monotonicity according to the perturbation 395

of β happened in policies trained by DPO using 396

Antropic-HH, as shown in Figure 4. We find that 397

ε-DPO performs opposite decisions compared to 398

β-DPO from the observation that preference pairs 399

with monotonically increasing logits have smaller 400

average implicit reward margins than those with 401

monotonically decreasing logits. Also, this implies 402

that ε-DPO enhances training signals for confus- 403
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Figure 3: Intra-epoch training dynamics of Llama-3-Instruct according to the change of ε. We can observe that
larger ε increases the rate of β−

ε and β+
ε within a batch, which leads to the occurrence of adaptive control while

accelerating the increase of KL divergence and performance of length-controlled win rate on AlpacaEval 2.

ing examples because the implicit reward margin404

is proportional to the preference confidence, and405

the increase of β scales up the gradient of DPO406

loss (Rafailov et al., 2023). Furthermore, we con-407

firm that implicit reward margins do not always408

represent the quality of preference pairs through409

qualitative analysis in Appendix C. Therefore, we410

suspect that β-DPO fails on the instance-level adap-411

tive KL penalty control because it assigns low gra-412

dient weights to confusing examples and strongly413

relies on the implicit reward margins that do not414

always represent the quality of preference pairs.415

Efficiency in KL Trade-off As TR-DPO (Gor-416

batovski et al., 2024) claims, increasing KL diver-417

gence would be desirable as a trade-off when de-418

viating from the reference policy improves perfor-419

mance. However, the over-optimization (Rafailov420

et al., 2024) of direct alignment algorithms empha-421

sizes that it is necessary to check the Pareto frontier422

to determine whether performance improvements423

can be achieved without indiscriminately expand-424

ing the KL divergence. Figure 5 depicts the Pareto425

frontier of models trained under various beta using426

Antropic-HH by DPO, ε-DPO and two variants of427

TR-DPO, TR-DPOτ which hard-updates the ref-428

erence policy by the fixed interval and TR-DPOα429

which soft-updates the reference policy through430

weight merging. We can see that regardless of431

the two variants, TR-DPO induces more KL diver-432

gence than DPO and ε-DPO and cannot achieve433

similar performance under the same KL budget as434

ε-DPO. This highlights the efficiency of ε-DPO in435

KL trade-offs and implies that controlling the KL436

penalty in a non-adaptive manner can induce exces-437

sive relaxation for performance improvements. 438

6 Related Works 439

Direct Alignment Algorithms Many variants of 440

direct alignment algorithms perform alignment on 441

offline preference datasets without an external re- 442

ward model. DPO (Rafailov et al., 2023) performs 443

alignment through preference modeling with the 444

implicit reward derived from the optimal policy of 445

reward maximization under the KL penalty objec- 446

tive. RRHF (Yuan et al., 2023) performs alignment 447

by training to maintain the likelihood margin be- 448

tween preference ranks. KTO (Ethayarajh et al., 449

2024) changes the assumptions of the Bradley- 450

Terry model (Bradley and Terry, 1952) used by 451

DPO and introduces Prospect Theory (Kahneman 452

and Tversky, 2013), and IPO (Azar et al., 2024) 453

converts to the root-finding problem for strength- 454

ening the KL constraint. SLiC-HF (Zhao et al., 455

2023), CPO (Xu et al., 2024), ORPO (Hong et al., 456

2024), and SimPO (Meng et al., 2024) train with- 457

out reference models utilizing behavior cloning, 458

margin loss, contrastive loss, odds ratio loss, and 459

fixed margin by replacing the implicit rewards. 460

Reward Over-optimization and KL Penalty 461

Since RLHF (Ziegler et al., 2020) utilizes a trained 462

reward model, it amplifies the limitations of the 463

reward model as it is optimized for an imperfect re- 464

ward, according to Goodhart’s Law (Hoskin, 1996), 465

and this is called reward over-optimization (Gao 466

et al., 2023). However, Rafailov et al. (2024) finds 467

that direct alignment algorithms also experience 468

similar reward over-optimization, regardless of the 469

variant. Direct alignment algorithms commonly 470
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Figure 4: The average implicit reward margin of pairs
showing logit monotonicity according to the perturba-
tion of β in policies trained with DPO under various β
using Antropic-HH. We can confirm that ε-DPO assigns
higher β for preference pairs reveling high confusion
on preference labels based on the observation that pref-
erence pairs with monotonically increasing logits show
low confidences on preference model Pθ,β(y

w ≻ yl|x).

show humped curves of performance according471

to the increase of KL divergence from the refer-472

ence model during training. TR-DPO (Gorbatovski473

et al., 2024) argues that this is due to the Hes-474

sian of the loss landscape converging to zero as475

the implicit reward margin grows during training,476

so they update the reference model for mitigating477

this phenomenon. On the other hand, β-DPO (Wu478

et al., 2024), which also performs relaxation of KL479

penalty, claims that adaptively changing β through480

the statistics of the implicit reward margin is re-481

quired to reflect the quality of the preference pair.482

Combining Sampling Distribution Combining483

sampling distributions of language models can be484

utilized to estimate a new sampling distribution485

with specific characteristics. Contrastive Decod-486

ing (Li et al., 2022) shows that the log-likelihood487

margins of the expert and amateur language mod-488

els can enhance response diversity by penalizing489

incorrect response patterns favored by the amateur490

language model. Sanchez et al. (2023) shows that491

classifier-free guidance (Ho and Salimans, 2022)492

can enhance prompt relativity in language model-493

ing by treating prompts as conditions and sharpen-494

ing the conditional sampling distribution. Combin-495

ing the change from instruction-tuning in a small496

language model with a large language model can497

approximate fine-tuning. Liu et al. (2024a) utilizes498

the instruction-tuned small language model as the499

20 30 40
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W
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Figure 5: Pareto Frontier between KL divergence and
performance of DPO, ε-DPO, TR-DPOτ and TR-DPOα.
We measure the KL divergence and performance of the
models trained with β = [0.5, 0.1, 0.05, 0.01] using
Antropic-HH. We can see that ε-DPO shows better best
performance than DPO, simultaneously achieving better
KL trade-off efficiency than TR-DPO.

logit offset, and Mitchell et al. (2023) estimates 500

the importance sampling ratio of the optimal dis- 501

tribution defined by the objective of RLHF from it. 502

Inspired by the theoretical motivation of Mitchell 503

et al. (2023), Liu et al. (2024b) shows that the sam- 504

pling distribution of the policy trained under the 505

near β by DPO can be approximated by policy 506

obtained under β and the reference policy. 507

7 Conclusion 508

In this paper, we present ε-Direct Preference Opti- 509

mization (ε-DPO), an instance-level adaptive KL 510

penalty control for DPO, adjusting β by observ- 511

ing the monotonicity of the log-likelihood ratio 512

between the chosen response and the rejected re- 513

sponse when the β used during training is per- 514

turbed. The criterion for instance-level adaptive 515

control of β only requires estimating the policy 516

under the perturbed β, which can be efficiently 517

estimated by reusing the current policy and refer- 518

ence policy logits without relying on batch-level 519

statistics and requiring additional computation cost. 520

Resulting models obtained through ε-DPO perform 521

better than resulting models from existing methods 522

under general chatbot benchmarks. In particular, 523

the criterion used in ε-DPO shows a more efficient 524

KL trade-off than the non-adaptive KL penalty re- 525

laxation while reflecting the confusion on prefer- 526

ence pairs, emphasizing the importance of an ap- 527

propriate instance-level KL penalty relaxation. 528
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Limitations529

ε-DPO requires the reference policy because it has530

a KL penalty from the reference policy, like DPO531

in default. It leads to the limitation that it requires532

additional memory consumption and computation533

for reference policy compared to other direct align-534

ment algorithms that do not perform regularization535

through the reference policy (Zhao et al., 2023; Xu536

et al., 2024; Hong et al., 2024; Meng et al., 2024).537

However, theoretically, ε-DPO can save memory538

consumption by pre-computing the logits of the re-539

sponses from the reference policy, similar to DPO.540

Meanwhile, ε-DPO is a general purposes approach541

not specially tailored for safety alignment, so ad-542

ditional safety considerations may be required to543

control inappropriate responses in real usages.544
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A Proof of Proposition 1 719

Proposition 1 (Liu et al. (2024b)) Under the assumption of optimal autoregressive policy π∗ where the 720

prompt x ∈ X , response vocabulary yi ∈ V , and logit f : X × V i−1 → R|V|, the optimal policy π∗
β
λ

can 721

be approximated by the arithmetic mean of logits between π∗
β and reference policy πref, 722

π∗
β
λ

(y1:n|x) =
n∏

i=1

π∗
β
λ

(yi|x, y1:i−1)

≈
n∏

i=1

Softmax
(
λf∗

β(x, y1:i−1) + (1− λ)fref(x, y1:i−1)
)
yi
.

723

Proof of Proposition 1. Recall that optimal policy π∗
β has a closed-form solution and ground-truth 724

reward function r∗ can be reparameterized using the normalizing constant Z∗
β , 725

π∗
β(y|x) =

1

Z∗
β(x)

πref(y|x) exp
( 1
β
r∗(x, y)

)
,

Z∗
β(x) =

∑
y

πref(y|x) exp
( 1
β
r∗(x, y)

)
,

r∗(x, y) = β log
π∗
β(y|x)

πref(y|x)
+ β logZ∗

β(x).

726

Here, we plug the reparameterization of r∗ to the close-form solution of π∗
β
λ

and simple algebra yield, 727

π∗
β
λ

(y|x) = 1

Z∗
β
λ

(x)
πref(y|x) exp

(λ
β
r∗(x, y)

)
=

πref(y|x) exp
(
λ
β r

∗(x, y)
)∑

y πref(y|x) exp
(
λ
β r

∗(x, y)
)

=
πref(y|x) exp

(
λ log

π∗
β(y|x)

πref(y|x) + λ logZ∗
β(x)

)
∑

y πref(y|x) exp
(
λ log

π∗
β(y|x)

πref(y|x) + λ logZ∗
β(x)

) =
πref(y|x)

( π∗
β(y|x)

πref(y|x) + Z∗
β(x)

)λ∑
y πref(y|x)

( π∗
β(y|x)

πref(y|x) + Z∗
β(x)

)λ
=

πref(y|x)
( π∗

β(y|x)
πref(y|x)

)λ∑
y πref(y|x)

( π∗
β(y|x)

πref(y|x)
)λ =

π∗
β(y|x)λπref(y|x)1−λ∑
y π

∗
β(y|x)λπref(y|x)1−λ

=
1

Z(x)
π∗
β(y|x)λπref(y|x)1−λ,

728

where Z denotes the normalizing constant of reparameterized form of π∗
β
λ

. Now, we use the assumption 729

of autoregressive policy π∗
β . This assumption gives us to evade intractable normalizing constant Z, 730

π∗
β
λ

(yi|x, y1:i−1) ≈
1

Z(x, y1:i−1)
π∗
β(yi|x, y1:i−1)

λπref(yi|x, y1:i−1)
1−λ

=
π∗
β(yi|x, y1:i−1)

λπref(yi|x, y1:i−1)
1−λ∑

v∈V π∗
β(v|x, y1:i−1)λπref(v|x, y1:i−1)1−λ

=
Softmax

(
f∗
β(x, y1:i−1)

)λ
yi

Softmax
(
fref(x, y1:i−1)

)1−λ

yi∑
v∈V Softmax

(
f∗
β(x, y1:i−1)

)λ
v
Softmax

(
fref(x, y1:i−1)

)1−λ

v

=
exp

(
f∗
β(x, y1:i−1)

)λ
yi
exp

(
fref(x, y1:i−1)

)1−λ

yi∑
v∈V exp

(
f∗
β(x, y1:i−1)

)λ
v
exp

(
fref(x, y1:i−1)

)1−λ

v

,

731

with eliminating
(∑

v∈V exp
(
f∗
β(x, y1:i−1)

)
v

)λ(∑
v∈V exp

(
fref(x, y1:i−1)

)
v

)1−λ from nominator 732
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and denominator at the last line. Note that the geometric mean acts as the arithmetic mean in log-scale,733

exp
(
f∗
β(x, y1:i−1)

)λ
yi
exp

(
fref(x, y1:i−1)

)1−λ

yi∑
v∈V exp

(
f∗
β(x, y1:i−1)

)λ
v
exp

(
fref(x, y1:i−1)

)1−λ

v

=
exp

(
λf∗

β(x, y1:i−1)yi + (1− λ)fref(x, y1:i−1)yi
)∑

v∈V exp
(
λf∗

β(x, y1:i−1)v + (1− λ)fref(x, y1:i−1)v
)

= Softmax
(
λf∗

β(x, y1:i−1) + (1− λ)fref(x, y1:i−1))yi .

734

Therefore, π∗
β
λ

can be approximated by the arithmetic mean of logit between π∗
β and πref,735

π∗
β
λ

(y1:n|x) =
n∏

i=1

π∗
β
λ

(yi|x, y1:i−1)

≈
n∏

i=1

Softmax
(
λf∗

β(x, y1:i−1) + (1− λ)fref(x, y1:i−1)
)
yi
.

736

□737

B Implementation Details738

The implementation of ε-DPO and experiments are all based on the TRL1 library. Here, we explain the739

experimental settings for UltraFeedback (Cui et al., 2023) and Antropic-HH (Bai et al., 2022) in detail.740

B.1 UltraFeedback741

For a fair comparison with direct alignment algorithms and existing approaches for KL penalty relaxation,742

we follow the Instruct setting suggested by SimPO (Meng et al., 2024). The Instruct setting starts743

with Mistral-7B-Instruct-v0.22 (Jiang et al., 2023a) and Meta-Llama-3-8B-Instruct3 (Dubey744

et al., 2024) as reference policies, each named as Mistral-Instruct and Llama-3-Instruct. First,745

rollouts using prompts from UltraFeedback (Cui et al., 2023) are performed, then PairRM (Jiang et al.,746

2023b) serves as an external evaluator to build preference datasets for approximating the on-policy learn-747

ing (Tajwar et al., 2024; Lee et al., 2024). We use corresponding datasets publicly released by SimPO,748

each denoted as mistral-instruct-ultrafeedback4 and llama3-ultrafeedback5. We perform hy-749

perparameter searches for the learning rate within the range of [3e-7, 5e-7, 7e-7, 1e-6] and ε within the750

[0.005, 0.01, 0.02] range while β is fixed to 0.01, following the best hyperparameter of DPO reported751

from SimPO. Other common hyperparameters are fixed in the same way as SimPO. Every experiment is752

conducted using 16 NVIDIA A100-SXM4-40GB GPUs within 2 hours. We evaluate resulting models753

through AlpacaEval 2 (Dubois et al., 2024), Arena-Hard (Li et al., 2024), and MT-Bench (Jiang et al.,754

2023b) following the same sampling configuration settings reported by SimPO. Table 3 summarizes the755

training configurations for Mistral-Instruct and Llama-3-Instruct.756

B.2 Anthropic-HH757

We use helpful-base and harmless-base splits for experiments using Anthropic-HH6 (Bai et al.,758

2022). We preprocess the dataset by parsing only the content of each conversation turn and removing759

the original role header of the dataset. We use gemma-2-2b7 (Team et al., 2024) as a base model for760

1github.com/huggingface/trl
2huggingface.co/mistralai/Mistral-7B-Instruct-v0.2, Apache 2.0 License, Copyright (c) 2023 Mistral AI
3huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct, LLAMA 3 Community License, Copyright (c) 2024 Meta Platforms
4huggingface.co/datasets/princeton-nlp/mistral-instruct-ultrafeedback
5huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback
6huggingface.co/datasets/Anthropic/hh-rlhf, MIT License, Copyright (c) 2022 Anthropic
7huggingface.co/google/gemma-2-2b, Apache 2.0 License, Copyright (c) 2024 Google LLC
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Configuration Mistral-Instruct Llama-3-Instruct

Model Mistral-7B-Instruct-v0.2 Meta-Llama-3-8B-Instruct
Dataset mistral-instruct-ultrafeedback llama3-ultrafeedback
Optimizer AdamW AdamW
Epoch 1 1
Batch Size 128 128
Learning Rate [3e-7, 5e-7, 7e-7, 1e-6] [3e-7, 5e-7, 7e-7, 1e-6]
Scheduler cosine cosine
Warm-up Ratio 0.1 0.1
Weight Decay 0 0
β 0.01 0.01
ε [0.005, 0.01, 0.02] [0.005, 0.01, 0.02]

Table 3: Training configurations for Mistral-Instruct and Llama-3-Instruct in the experiment settings using
Ultrafeedback (Cui et al., 2023). The underline indicates the value selected through the hyperparameter search.

obtaining the reference policy through Supervised Fine-tuning (SFT) with chosen responses by applying 761

the chat template of gemma-2-2b-it (Team et al., 2024)8. We fix all hyperparameters except β for a fair 762

comparison between methods. We use ε = 0.01 in ε-DPO and τ = 128, α = 0.6 in TR-DPO (Gorbatovski 763

et al., 2024) as the method-specific hyperparameter and β within the [0.01, 0.05, 0.1, 0.5] range. Following 764

DPO (Rafailov et al., 2023), we evaluate resulting models in the single-turn dialogue setting by comparing 765

with chosen responses from test split through PairRM9 (Jiang et al., 2023b) as an external evaluator to 766

check the win rate. We set the temperature as 1.0 and max token length as 1024 when sampling responses 767

from each model for evaluation. Every experiment is conducted using 4 NVIDIA A100-SXM4-40GB 768

GPUs within 7 hours. Table 4 shows the common training configurations for each experiment. 769

Configuration SFT ε-DPO, DPO, TR-DPO

Optimizer AdamW AdamW
Epoch 1 1
Batch Size 128 128
Learning Rate 2e-5 1e-6
Scheduler cosine cosine
Warm-up Ratio 0.1 0.1
Weight Decay 0 0

Table 4: Common training configurations on the experiment settings using Anthropic-HH (Bai et al., 2022).

C Qualitative Analysis of Logit Monotonicity and Implicit Reward Margin 770

We compare preference pairs whose implicit reward margin is maximized among the preference pairs 771

showing monotonically increasing or decreasing logits in the helpful-base split of Antropic-HH (Bai 772

et al., 2022). Similarly, we compare preference pairs whose implicit reward margin is minimized among 773

the preference pairs showing monotonically increasing or decreasing logits. We obtain these preference 774

pairs through the policy trained with DPO under β = 0.1. If we follow the claim of β-DPO, higher 775

β should be selected for both preference pairs that sufficiently maximize the implicit reward margin 776

regardless of logit monotonicity. However, Table 5 shows the case close to the label flipping compared 777

to the case of Table 6 in which the adaptive control decision of ε-DPO and β-DPO matches in high 778

implicit reward margin. In this case of label flipping, increasing β results in a negative effect by increasing 779

8huggingface.co/google/gemma-2-2b-it, Apache 2.0 License, Copyright (c) 2024 Google LLC
9huggingface.co/llm-blender/PairRM
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the scale of the loss gradient (Rafailov et al., 2023) on the noisy preference pair. On the other hand,780

Table 7 shows the case of the rejected response with a significantly lower quality than the chosen response781

compared to the case of Table 8 in which the adaptive control decision of ε-DPO and β-DPO matches in782

low implicit reward margin. However, β-DPO will assign a low β to the corresponding example contrary783

to the original claim since it shows a low implicit reward margin. These qualitative examples demonstrate784

that the claim of β-DPO, preference data quality can be estimated through the implicit reward margin,785

may not be empirically valid.786

Prompt
I love the music of Bessie Smith. Would love to know more about her background?
Chosen Response Rejected Response
Hi Human! I love the music of many
different artists and am always happy
to talk about it with you. Here are
some Wikipedia links to learn more about
Bessie Smith:

-https://en.wikipedia.org/wiki/Bessie_Smi
th
-https://en.wikipedia.org/wiki/Bessie_Smi
th#Bessie _Smith_and_St_Clair_Avenue

Sure, it seems like Bessie Smith has
a lot of interesting facts to share
with us. Her life story is surprisingly
convoluted and non-linear. Let’s look
into her story using the tools we’ve
already developed...

There were a few points of relevance
to her early life, such as her birth
name, “Huldah Marie Smith”, but also that
her mother and siblings moved in with
her while her mother was pregnant, and
she was brought up in poverty and want,
living in unfit and crowded conditions,
with three other siblings and their
mother. However, as the website on this
subject attests, the poverty seemed to
lead to a self-sufficient and industrious
nature in Huldah, including sewing and
odd jobs for local businesses. She found
it difficult to make ends meet, and
suffered recurring illnesses that led to
frequent arrests. But, she eventually
learned to sing, and could sell a few
cups of beans and potatoes to neighbors.
At this point in her life, she was paid
thirty dollars a week, which is a small
amount to most people today, but put her
on the road to true independence.

Logit Monotonicity Implicit Reward Margin
Decreasing 88.0

Table 5: A qualitative example in Antropic-HH (Bai et al., 2022) where the implicit reward margin is maximized
among the pairs with monotonically increasing logits. We can see that this example is close to the label-flipping
case since the chosen response does not accomplish the purpose of the user prompt.
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Prompt
I can’t afford dentures and I am losing my teeth. My gums are sore from eating. W
hat can I do?

Chosen Response Rejected Response
I’m sorry to hear that! Have you thought
about trying a new diet? A friend of
mine says the raw food diet has helped
her problems a lot. Or, you could also
try to treat the sore gums with other
treatments, like an apple cider vinegar
rinse, or organic baking soda paste. Or,
you could also just try eating soft foods,
like salads, for a while. It might help
you heal faster.

You’re in a tough spot. Here’s some advice
for you, feel free to pass it on to anyone
else who has the same situation.

Logit Monotonicity Implicit Reward Margin
Increasing 30.4

Table 6: A qualitative example in Antropic-HH (Bai et al., 2022) where the implicit reward margin is maximized
among the pairs with monotonically increasing logits. In this case, β-DPO and ε-DPO share the same decision on
adaptive control; both try to increase β for this preference pair.

Prompt
How can I make my own baguettes at home?

Chosen Response Rejected Response
You’ll need a small metal pan or pot,
a long wooden stick (a rolling pin is
ideal), some flour, and some water. In a
pot on a burner, combine water and flour
to make a kind of paste. When it comes
to a boil, put the stick in the pot,
then pour the dough from the pan onto
it. With the stick, roll out the dough
into a long rectangle, then keep rolling
it until it’s about 1-1.5 cm thick, and
finally put it on the pan. The end result
should be a baguette with small bubbles
(you can also make it all flat, which
will give you a larger pizza base.) Heat
the pan again to ensure the baguette is
completely dry, then put it in an oven to
bake. That’s really all there is to it,
and you can make baguettes in as little
as 15 minutes!

I’d recommend following this guide.
You’ll need to adjust the proportions
a bit, but overall it should be a good
guide.

Logit Monotonicity Implicit Reward Margin
Increasing -43.2

Table 7: A qualitative example in Antropic-HH (Bai et al., 2022) where the implicit reward margin is minimized
among the pairs with monotonically increasing logits. We can see that this example has a significantly low-quality
rejected response since the rejected response did not offer the guide it mentioned in the response.
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Prompt
How do I measure belly fat?

Chosen Response Rejected Response
I’m not sure exactly what you’re looking
for? There are multiple ways to measure
fat. Do you want the percentage of body
fat or do you want to know the total
amount of fat? Do you want to see the
distribution of fat in your body or just
be able to say you have ten pounds of
belly fat?

We can discuss how you want to measure it,
and what values you want to monitor. We’ll
also need to consider what constitutes an
acceptable body weight and how that may
impact what you measure. At some point,
you also need to consider what behaviors
you can do to reduce your body weight and
belly fat, or what you need to do to build
up your body weight

Logit Monotonicity Implicit Reward Margin
Decreasing -12.0

Table 8: A qualitative example in Antropic-HH (Bai et al., 2022) where the implicit reward margin is minimized
among the pairs with monotonically decreasing logits. In this case, β-DPO and ε-DPO share the same decision on
adaptive control; both try to decrease β for this preference pair.
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