
SVDq: 1.25-bit and 410× Key Cache Compression for
LLM Attention Computation

Anonymous ACL submission

Abstract

For the efficient inference of Large Language001
Models (LLMs), the effective compression of002
key-value (KV) cache is essential. Three main003
types of KV cache compression techniques,004
namely sparsity, channel compression, and005
quantization, have been identified. This study006
presents SVDq, a Singular Value Decomposi-007
tion (SVD) - based mixed precision quantiza-008
tion method for K cache. Initially, K cache is009
transformed into “latent channels” using SVD010
basis representations. Since the values in la-011
tent channels decay rapidly and become neg-012
ligible after only a few latent channels, our013
method then incorporates importance-aware014
quantization and compression for latent chan-015
nels. This enables the effective allocation of016
higher precision to more significant channels.017
Theoretically, we prove that SVDq results in018
quantization errors (×0.1 or even lower) that019
are much lower than those of per-channel key020
quantization in the original space. Our findings021
demonstrate that SVDq can achieve an equiv-022
alent key cache precision as low as 1.25-bit.023
When combined with key sparsity, it can reach024
a key compression ratio of up to 410× for at-025
tention computation, all while maintaining026
comparable model performance. This indicates027
that SVDq enables high-precision low-bit quan-028
tization, providing a more efficient solution for029
KV cache compression in LLMs.030

1 Introduction031

Large Language Models (LLMs) have started a032

new era of artificial intelligence by demonstrating033

remarkable capabilities in handling complex tasks034

[1, 2, 3, 4]. Most of these recently developed LLMs035

are founded upon the attention mechanism based036

auto-regressive decoder transformers [5]. Con-037

sequently, they need to encode past information038

into intermediate hidden tensors, specifically KV039

caches, for subsequent and efficient inference.040

However, in natural language tasks with large041

batches or long contexts, KV cache often expands042

significantly in size, posing a significant challenge 043

to fast inference [6, 7]. The substantial memory 044

consumption and latency required to save and load 045

KV cache, coupled with the computational de- 046

mands of attention operations, become critical bot- 047

tlenecks for LLM inference. Considering the rapid 048

advancement of computability and the increasing 049

demand for efficient LLM inference, we recognize 050

the importance of high-ratio KV cache compres- 051

sion (even with a slight concession in computa- 052

tional overhead), enabling the inference of LLMs 053

on devices with limited memory. 054

Existing approaches to KV cache compres- 055

sion can be categorized into three main directions: 056

sequence-axis compression, channel-axis compres- 057

sion, and digit-type compression. (i) Sequence- 058

axis compression, exemplified by works such as 059

[8, 9, 10, 11, 12, 13, 14, 15], often referred to 060

as sparsity, involves identifying and discarding 061

unimportant tokens for attention computation. (ii) 062

Channel-axis compression, as demonstrated in, 063

e.g., [16, 17, 18], focuses on the channel dimen- 064

sion compression of KV cache with methods like 065

truncating and low-rank decomposition. Notably, 066

low-rank approximation techniques, as explored in 067

[19, 20], represent a similar approach of this cat- 068

egory. These methods transform KV cache into 069

"latent channels" representation based on SVD, 070

and then discard insignificant latent channels. (iii) 071

Digit-type compression, also known as quantiza- 072

tion, aims to reduce the memory footprint by em- 073

ploying lower-precision representations for KV 074

cache [7, 21, 22, 23, 24]. This typically involves 075

replacing the 32- or 16-bit FP numbers with lower 076

precision representations. These three compression 077

methods are proposed independently, exploiting 078

different properties of KV cache within LLMs. 079

The effectiveness of quantization highly depends 080

on the statistical distribution of the cache values. 081

Large value ranges and outliers can lead to sub- 082

stantial quantization errors. In addition, the per- 083

1

formance of models degrades significantly below084

a certain quantization bit width (typically around085

4 to 2 bits), thus limiting the compression ratio.086

Similarly, channel compression methods also face087

challenges in terms of the trade-off between ac-088

curacy and compression ratio. While works like089

[19, 20] have demonstrated 2× compression ratios090

using SVD-based methods, further compression091

beyond this point leads to high accuracy loss. Rec-092

ognizing these limitations, we emphasize the im-093

portance of combining these different strategies to094

further improve the compression ratio. For exam-095

ples, ThinK [16] highlights the compatibility of096

its channel truncation method with sparsity tech-097

niques; ShadowKV [25] combines sparsity with098

SVD low-rank approximation to achieve minor per-099

formance degradation while achieving very high100

compression ratios.101

In this work, we follow the channel-axis com-102

pression and quantization strategy. We find that103

direct truncation of the original channels, as exem-104

plified by ThinK [16], leads to significant perfor-105

mance degradation when pursuing high compres-106

sion ratios. To address this challenge, we propose107

a compression method, SVDq, that integrates the108

channel truncation and quantization, by utilizing109

our observed underlying relationship between quan-110

tization and SVD-based channel compression.111

Specifically, we observe an implication of the112

Eckart–Young–Mirsky theorem [26]: the vari-113

ances of the values within latent channels obtained114

through SVD are determined by the corresponding115

singular values and typically exhibit rapid decay.116

Recognizing that variances are often proportional117

to value ranges of latent channels, we can utilize118

singular values to guide the selection of quantiza-119

tion bit widths to balance accuracy and compres-120

sion ratios.121

Based on this observation, we propose a novel122

mixed-precision key cache1 quantization method123

that integrates SVD-based channel compression.124

This method prioritizes higher bit widths for latent125

channels associated with larger singular values and126

progressively decreases precision for channels with127

smaller singular values. The SVD latent channels128

offer a significant advantage over simple variance-129

based descending sorting in the original space, be-130

cause singular values decay exponentially for most131

key cache. In consequence, the range at each chan-132

1We do not investigate the V cache since it often exhibits
weak low-rank property.

nel decreases fast, and often becomes insignificant 133

after only a small number of latent channels. Hence, 134

this approach enhances the effectiveness of quanti- 135

zation precision allocation for each latent channel. 136

Furthermore, we emphasize the seamless compati- 137

bility of this method with sparsity techniques. 138

Our key contributions are as follows: 139

(1) Proposing a novel method that effectively 140

combines quantization and latent channel compres- 141

sion for K cache, providing the theoretical insights. 142

(2) Demonstrating the compatibility of this 143

method with sparsity techniques. 144

(3) Achieving a remarkable level of K cache 145

compression with an equivalent mixed quantiza- 146

tion precision as low as 1.25 bit while maintaining 147

comparable model performance. 148

2 Related Works 149

Sparsity: With different feature extraction based 150

attention estimation algorithms, methods such as 151

Fastgen [10], H2O [9], Quest [12], SparQ [13], PQ- 152

Cache [27], ShadowKV [25], and AttentionPredic- 153

tor [15] selectively retain only the most important 154

tokens in the sequence and effectively prune the 155

others. Loki [14] is another sparsity method that 156

uses the SVD approximation to accelerate attention 157

estimation for critical tokens selection. 158

Channel Compression: These methods, such as 159

ThinK [16], reduce the dimensionality of KV 160

cache by truncating channels or employing low- 161

rank approximations. Prominent examples include 162

SVD-based approaches like SVD-LLM [19], LoRC 163

[20], Palu [28], and Eigen Attention [29]. No- 164

tably, techniques like Grouped Query Attention 165

(GQA) [30], Multi-head Latent Attention (MLA) 166

[4], and transformations from Multi-Head Atten- 167

tion to GQA [31, 32] can also be viewed as forms 168

of channel compression, as they effectively reduce 169

the number of attention dimensions. 170

Quantization: Methods like KIVI [7], KVQuant 171

[21], AlignedKV [33], BitStack [34], and KVTuner 172

[24] reduce the memory footprint with low pre- 173

cision KV cache. QServe [35] introduces sev- 174

eral quantization and system co-design methods 175

to achieve efficient W4A8KV4, where SmoothAt- 176

tention is utilized to migrate the key quantization 177

difficulty to query. 178

Some works explore the combination of these ap- 179

proaches. In addition to the mentioned ShadowKV 180

[25] and ThinK [16], [23] integrates quantization 181

with matrix decomposition to apply different quan- 182

2

tization precision for the two decomposed matrices,183

and Palu [28] applies per token quantization to the184

latent vector of the SVD low-rank approximation.185

Importantly, the concept of using SVD for186

mixed-precision quantization has been explored187

in other contexts. For instance, Delta-CoMe [36]188

applies this principle to compress LLM weights,189

while SVDQuant [37] utilizes it for compressing190

diffusion models. The novelty of this work over the191

mentioned works lies not only in the application of192

this principle to K cache compression but also in193

the theoretical foundation upon which we derive194

the principle and method, and the error analysis195

we provide.196

3 SVD and Quantization197

Singular Value Decomposition: Let K ∈ Rs×d198

denotes the K cache matrix for a given head in199

a transformer layer, where s and d represent the200

sequence length and hidden embedding (channel)201

dimension, respectively, with s≫ d typically hold-202

ing for long context applications. Let K be centered203

by subtracting its per-channel mean K̄ ∈ Rd, i.e.,204

K← K− K̄ and maintain the same notation.205

Assuming K is full-rank. Its SVD is given by206

K = U · D · VH, (1)207

where U ∈ Rs×d has orthonormal columns, V ∈208

Rd×d is orthonormal, satisfying UH · U = Id and209

VH · V = Id, and D ∈ Rd×d is a diagonal matrix210

containing the singular values in its diagonal with211

elements arranged in descending order, given by212

D = Diag([λ1, ..., λd]).213

Quantization Let kmin := (minK:1, ...,minK:d),214

i.e., the column-wise minimum vector, and analo-215

gously define kmax. The per-channel asymmetrical216

b-bit quantization and dequantization operations217

are given by:218

Qb(K) :=

⌊
K− kmin

(kmax − kmin)/(2b − 1)

⌉
, (2)219

Db(Kb) := Qb(K)× kmax − kmin

2b − 1
+ kmin, (3)220

where ⌊·⌉ denote the rounding operator. Naturally,221

Db ◦ Qb(K) ≈ K.222

For uniformly or normally distributed columns223

of K, the relative quantization errors depend solely224

on the bit width b, independent of the range225

kmax − kmin. However, the absolute errors scale226

with kmax − kmin, implying that smaller value227

ranges or variances yield smaller absolute quan-228

tization errors.229

4 Methods 230

Although the theory of the proposed SVD- 231

quantization method, discussed in the previous sec- 232

tion, is expected to be applicable to a much wider 233

range of applications, this work focuses on KV 234

cache compression in the long context inference 235

scenario. For long context LLMs, KV cache gener- 236

ated in the prefilling stage generally dominates the 237

memory usage. Our method is proposed to address 238

this challenge. 239

4.1 SVD Quantization 240

Consider the rows of VH in Equation (1) as a ba- 241

sis for the row space of K. For the projection 242

PV:j of the rows of K into the j-th basis vector, 243

defined by PV:j (K) := K · V:j , following the 244

Eckart–Young–Mirsky theorem [26], we have: 245

Theorem 4.1. For the K cache matrix K, the vari- 246

ance of its projection satisfies 247

Var(PV:j (K)) = λ2
j . (4) 248

Corollary 4.1.1. Let k ∈ Rd be a K cache vector 249

with K̄ subtracted, i.e., k ← k − K̄. For any 250

indices 0 < i ≤ j < d, the squared expectations of 251

its projections satisfy: 252

E((PV:i(k))
2) ≥ E((PV:j (k))

2). (5) 253

Proof. For any 0 < j ≤ d, the projection of K is 254

given by 255

PV:j (K) = K · V:j

= U · D · VH · V:j

= λjU:j .

256

Since E(PV:j (K)) = PV:j (E(K)) = 0, we have 257

Var(PV:j (K)) = Var(λjU:j)

= λ2
jE

(
UH
j: · U:j

)
= λ2

j .

258

This proves Theorem 4.1. Corollary 4.1.1 fol- 259

lows directly from Theorem 4.1 when the given 260

vector k follows the distribution of the rows of 261

K. 262

Note that the PV(K) is essentially an alterna- 263

tive representation of K using the singular vector 264

in V as the space bases. We call the columns of 265

PV(K) latent channels. Figure 1 illustrates the dis- 266

tribution of K in its original space, while Figure 2 267

3

0 20 40 60 80 100 120
Channel 0

25
50

75
100

125
150

175
200

Tok
en

0

2

4

6

8

Ch
an

ne
l V

al
ue

 (a
bs

)

0 20 40 60 80 100 120
Channel

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Ch
an

ne
l V

al
ue

2
2

Figure 1: Original K

0 20 40 60 80 100 120
Latent Channel

0
25

50
75
100

125
150

175
200

Tok
en

0
2
4
6
8

10
12
14

Ch
an

ne
l V

al
ue

 (a
bs

)

0 20 40 60 80 100 120
Latent Channel

10

5

0

5

10

Ch
an

ne
l V

al
ue

2
2

Figure 2: Projected K, i.e., PV(K)

Figure 3: Distribution of K and its standard deviation

displays its representation in the SVD space after268

projection, demonstrating the results of Theorem269

4.1 and Corollary 4.1.1. The singular vector-based270

projection offers a significant advantage over sim-271

ple variance-based descending sorting: for most272

matrices, singular values typically exhibit exponen-273

tial decay. Consequently, the range of projection274

values (represented on the y-axis in Figure 2) de-275

creases rapidly, becoming relatively insignificant276

(compared to the value range of the first dimension)277

after only a small number of latent channels.278

Since K = PV(K) ·VH where PV(K) := K ·V,279

and all basis vectors in V are unit-normalized, the280

absolute error in approximating to PV represents281

both absolute and relative errors in approximating282

K. Theorem 4.1, Corollary 4.1.1, and Figure 2283

demonstrate that both value range and variance de-284

cay rapidly along the latent channels. This property285

motivates our efficient mixed-precision quantiza-286

tion method, SVDq, to approximate K via PV(K):287

(1) Use high precision quantization for initial latent288

channels;289

(2) Progressively decrease the precision for subse-290

quent latent channels;291

(3) Truncate the remaining latent channels with292

negligible value ranges or singular values.293

4.2 Algorithm294

In our SVDq method, we first apply SVD to the295

prefilling K cache, obtaining the projection opera-296

tor PV(·) using the right SVD matrix V. Next, we 297

determine a precision schedule for the quantization 298

on each latent channel based on the singular values 299

[λ1, ..., λd]. Specifically, a latent channel associ- 300

ated with a large singular value λ is assigned a high 301

quantization bit width b, and channels with small 302

λ are assigned low b or even be truncated with no- 303

tation b = 0. This yields a schedule vector b, and 304

the equivalent mixed bit width of this quantization 305

schedule for the K cache is given by 306

b̄ =
1

d

d∑
i=1

bi. (6) 307

Sequently, we use Qb in (2) to quantize PV(K). 308

The low-bit quantized PV(K) is then saved as the 309

cache. In the decoding process, we dequantize the 310

cache, reconstruct K in its original representation 311

using K = PV(K) · VH, and then proceed with 312

the attention computation. We summarize the al- 313

gorithm using pseudo-code in Algorithm 1 and an 314

abstracted diagram in Figure 4. 315

Algorithm 1 SVD-quantization algorithm for K
Require: K cache matrix K of L layers
Ensure: K̂ ≈ K

for l← 1 to N do
Load K cache matrix for l-th layer
K = K− K̄
U,D,V← SVD(K)
PV(K) = U · D
Set quant schedule b
Save K̄, V, Qb ◦ PV(K), function Db

end for
K̂ = Db (Qb ◦ PV(K)) · VH + K̄

In this algorithm, the quantities to be saved in- 316

clude the quantized PV(K) ∈ Rs×d (represented 317

using b̄-bit), the right SVD matrix V ∈ Rd×d, the 318

average of K denoted by K̄ ∈ Rd, and the de- 319

quant function Db, which relies on the bit sched- 320

ule b ∈ Rd and the range of PV(K), given by 321

pmin, pmax ∈ Rd. In long context applications, 322

d≪ s, the requirement of memory space for terms 323

that depend solely on d, e.g., the space for V and 324

K̄, is negligible. Hence, the compression rate com- 325

pared with the original 16-bit K ∈ Rs×d is approx- 326

imately 16/b̄. 327

In this work, we concatenate the K matrices of 328

all heads within the same layer, resulting in a larger 329

K matrix with the embedding dimension d being 330

the sum of the embedding dimensions of all heads. 331

4

4-bit

2-bit

1-bit

concat
original

channel

represe-

ntation

latent

channel

represe-

ntation

keys for

𝑛 heads

2-bit

quant

load &

dequant

𝐊 = 𝒫𝐕 𝐊 ⋅ 𝐕H

Prefilling Decoding

new

query

RoPE

dot

Soft-

max

V

cache

dot

output

𝒫𝐕 𝐊 = 𝐊 ⋅ 𝐕

2-bit

quant

… load &

dequant

Saved K cache

(GPU memory)

Figure 4: Diagram of SVDq method (path inside the box in green) versus direct per-channel quantization (path
inside the box in violet).

To improve efficiency, for the bit schedule setting332

b, we divide the d latent channels of PV(K) into 8333

equal-sized group, each comprising d
8 dimensions.334

The channels within each group share the same335

quantization bit width. Thus, b is determined by336

an 8-dimensional vector (b1, b2, ..., b8) of integer.337

For example, a schedule of (8, 4, 2, 1, 1, 0, 0, 0) has338

an equivalent mixed bit width b̄ = 2 and hence a339

compression ratio 8. For a model with d = 1024,340

this schedule implies:341

8-bit quantization for the first 128 latent channels,342

4-bit for the next 128 channels,343

2-bit for the next 128 channels,344

1-bit for the next 256 channels,345

truncation for the remaining 384 channels.346

4.3 Theoretical Error Analysis347

We begin by presenting a lemma for later analysis.348

Lemma 4.1. If data X are distributed uniformly349

within their value range r, then the expectation of350

the square absolute error, ε, of an asymmetrical351

b-bit quantization applied to X is equal to the vari-352

ance of a uniform distribution with a range of r
2b

,353

that is354

E(ε2) =
1

12

r2

22b
.355

Let K be centered by subtracting the key’s per-356

channel mean K̄ ∈ Rd, and let PV(K) be its latent357

channel representation. The Frobenius norm is358

invariant under this transformation, as359

∥PV(K)∥2F =
s∑

i=1

PV(Ki:) · PV(Ki:)
H

=
s∑

i=1

Ki: ·KH
i: = ∥K∥2F.

360

Let [σ2
1, ..., σ

2
d] and [λ2

1, ..., λ
2
d] denote the vari-361

ance vectors of the channels for the original and362

latent channel representations of K, respectively. 363

Thus, 364

d∑
j=1

σ2
j =

1

s
∥K∥2F =

1

s
∥PV(K)∥2F =

d∑
j=1

λ2
j . (7) 365

We further assume that the key cache distribu- 366

tions in each original channel and latent channel 367

follow uniform distributions. Then, according to 368

Lemma 4.1, the value ranges of the j-th original 369

channel and j-th latent channel are rj = 2
√
3σj 370

and r̂j = 2
√
3λj , respectively. 371

Error analysis for direct quantization Figure 1 372

shows that the variances in the original channels 373

often exhibit similar orders of magnitude. We there- 374

fore assume that they are approximately identical, 375

with σ2
j = 1

ds∥K∥
2
F and r2j = 12

ds∥K∥
2
F. Applying a 376

per-channel, direct b-bit quantization to K, and fol- 377

lowing Lemma 4.1 and the above analysis, results 378

in a quantization error εb with the expected value: 379

E(ε2b) =
1

12

1

22b
12

ds
∥K∥2F =

1

22b
∥K∥2F
ds

. (8) 380

Error analysis for SVDq The singular values of a 381

matrix often exhibit exponential decay. We model 382

the variance vector for K’s latent channel represen- 383

tation as 384

λj = ce−ρj = λie
−ρ(j−i), (9) 385

for any 1 ≤ i < j ≤ d, where c > 0 and ρ > 0 are 386

parameters. 387

Using this model and (7), we immediately obtain 388

c2 =
e2ρ − 1

1− e−2ρd

∥K∥2F
s
≈ e2ρ − 1

s
∥K∥2F, 389

as well as the square of the value range of each 390

latent channel 391

r̂2j = 12
(e2ρ − 1)e−2ρj

s
∥K∥2F

= 12(e2ρ − 1)e−2ρj22bdE(ε2b).
(10) 392

5

For further analysis, we set the bit schedule as393

a simple decreased arithmetic progression2: bi =394

(8− i)2b7 , resulting in b̄ =
∑8

i=1 bi = b, and com-395

pare SVDq with this schedule to a direct b-bit quan-396

tization. Using Lemma 4.1, for the i-th part with397
d
8 latent channels with quantization bit width of bi,398

the expectation of the square quantization error, ε̂i,399

is400

E(ε̂2i) =
8

d

di/8∑
j=d(i−1)/8+1

1

12

r̂2j
22bi

= 8
e2ρ − 1

22(bi−b)
E(ε2b)

di/8∑
j=d(i−1)/8+1

e−2ρj

≈ 8
e−dρ(i−1)/4

e(bi−b) ln 4
E(ε2b).

401

Denoting b̂i := b1 − bi = (i − 1)2b7 and α :=402
dρ
4 −

2b
7 ln 4, the error for SVDq, ε̂b, satisfies403

E(ε̂2b) =
1

8

8∑
i=1

E(ε̂2i)

= E(ε2b)
8∑

i=1

e−dρ(i−1)/4

e(bi−b) ln 4

=
E(ε2b)
4b1−b

8∑
i=1

e−dρ(i−1)/4+b̂i ln 4

=
E(ε2b)
4b1−b

8∑
i=1

e−α(i−1)

=
1

4b1−b

1− e−8α

1− e−α
E(ε2b).

404

For LLMs like Llama-3.1-8B, d = 1024, the405

decay rate ρ is often on the order of approxi-406

mately 0.1, while we typically consider quanti-407

zation bit widths at the levels b = 2 or 4. Con-408

sequently, we often have ρ ≫ 8b
7d ln 4, resulting409

in α ≫ 0. Under these conditions, typically410 (
E(ε̂2b)
E(ε2b)

) 1
2 ≈ 2b−b1 < 0.1, the expectation quantiza-411

tion error of SVDq is much smaller than the direct412

per-channel quantization error. This result theo-413

retically proves the efficiency of mixed-precision414

quantization in the latent channel representation415

guided by SVD.416

2This setting is introduced only for the sake of clear theo-
retical error analysis, as it yields concise error expressions. It
is not a realistic schedule because it may contain no integer bit
widths. A similar analysis can be applied to other schedules,
although the derivations may become more complex.

Model dh n d part dim d
8

Llama-3.1-8B-Instruct 128 8 1024 128
Qwen2.5-7B-Instruct 128 4 512 64
Qwen2.5-3B-Instruct 128 2 256 32

Table 1: Configuration of K cache for three models.

5 Experiments 417

In this section, we apply our method in differ- 418

ent model settings to showcase its efficiency in 419

K cache compression. 420

We focus on long context applications us- 421

ing three large language models: Llama-3.1-8B- 422

Instruct [2], Qwen2.5-7B-Instruct, and Qwen2.5- 423

3B-Instruct [3]. The numerical experiments are 424

based on the RULER benchmarks [38] and Long- 425

Bench benchmarks [39]. We omit the scores for 426

RULER NIAH Single tests because in our tests, 427

almost all methods achieved perfect scores (100) 428

on these tests, indicating that they do not pose a suf- 429

ficient challenge. We present the results of RULER 430

in this section and refer the readers to Appendix B 431

for the results of LongBench. 432

The configuration settings for the K cache of 433

the three models are listed in Table 1. The long 434

context prompt length is set to 64K, satisfying s = 435

64× 1024≫ d. 436

5.1 Results of SVDq 437

In our first experiment, we implement the SVD 438

quantization method directly in K cache compres- 439

sion and summarize the results in Table 2. Detailed 440

experiment settings and descriptions are provided 441

in the Appendix A.1. 442

The results demonstrate that the proposed SVDq 443

method generally results in lower performance 444

degradation compared to direct quantization and 445

channel compression across almost all tests. On 446

average, the SVDq method achieves higher scores 447

despite having a lower equivalent mixed quantiza- 448

tion bit width. This clearly showcases the signif- 449

icant advantage of truncating and quantizing the 450

SVD latent channels over operating directly on the 451

original channels. 452

Please note that in our tests, both direct 2-bit 453

quantization of the original K and equivalent 2-bit 454

ThinK that retains 1
2 original channels and com- 455

bines 4-bit quantization result in much more sig- 456

nificant performance degradation. Therefore, we 457

opted to compare our SVDq method in 2- and 3-bit 458

setting with direct 3-bit quantization and equivalent 459

3-bit ThinK for a more meaningful evaluation. 460

6

Method bit CR N-MK1 N-MK2 N-MQ N-MV VT FWE QA-1 QA-2 Average
Llama-3.1-8B-Instruct

Default 16 1.0 99.0 97.9 98.7 98.2 97.5 85.4 82.3 60.4 90.0
Per-channel Quant 3 5.3 97.9 70.8 94.0 91.1 86.0 84.7 67.7 46.9 79.9

ThinK 3 5.3 94.8 66.7 87.5 80.7 66.2 90.3 75.0 55.2 77.2
SVDq (ours) 3 5.3 100.0 96.9 99.2 95.3 97.3 86.1 85.4 57.3 89.7
SVDq (ours) 2 8.0 99.0 94.8 96.1 92.7 99.0 84.4 75.0 47.9 86.1

Qwen2.5-7B-Instruct
Default 16 1.0 86.5 26.0 95.8 87.5 85.8 83.0 61.5 38.5 70.6

Per-channel Quant 3 5.3 37.5 3.1 46.9 47.7 63.5 77.1 18.8 25.0 39.9
ThinK 3 5.3 60.4 8.3 66.9 71.1 63.7 76.7 40.6 35.4 52.9

SVDq (ours) 3 5.3 88.5 29.2 92.7 80.2 84.0 87.8 54.2 40.6 69.7
SVDq (ours) 2 8.0 78.1 36.5 81.8 82.6 79.4 71.5 39.6 32.3 62.7

Qwen2.5-3B-Instruct
Default 16 1.0 78.1 27.1 89.8 88.8 81.0 72.2 41.7 30.2 63.6

Per-channel Quant 3 5.3 27.1 3.1 23.2 25.8 61.7 63.2 14.6 24.0 30.3
ThinK 3 5.3 38.5 7.3 49.5 47.9 64.8 66.3 26.0 25.0 40.7

SVDq (ours) 3 5.3 66.7 15.6 79.7 75.3 74.2 66.7 24.0 27.1 53.6
SVDq (ours) 2 8.0 52.1 16.7 57.8 56.0 69.8 58.7 19.8 27.1 44.7

Table 2: Performance of our method ("SVDq") for key compression in different models on the RULER benchmark
evaluated at a context length of 64K. The bit schedules for SVDq are b = (8, 4, 4, 4, 2, 2, 0, 0), (8, 4, 4, 0, 0, 0, 0, 0),
resulting in b̄ = 3, 2, respectively. The third column ("CR") is refer to as compression ratio given by 16/b̄. The
second row ("Per-channel Quant") refers to applying direct per-channel quantization to the original K. The thrid
row ("ThinK") refers to applying ThinK method [16] with 3

4 compression ratio to the original K, combining 4-bit
quantization. Our method outperforms direct quantization and ThinK with quantization despite having a lower
(mixed) bit width (2 bits versus 3 bits). The value cache is retained in BF16 type without any processes. Detailed
settings are found in the Appendix A.1.

5.2 Results of SVDq with Sparsity461

Although SVDq can improve model performance462

while using small bit quantizations, significant per-463

formance loss can still occur when the bit width464

is extremely low, such as b̄ = 2. Hence, we com-465

bine our SVDq method with a sparsity technique to466

investigate its compatibility with other techniques467

and explore potential performance improvements.468

We adopt the sparsity strategy proposed in the469

ShadowKV method [25]. Table 3 presents the470

results for sparsity and ShadowKV as baselines.471

Please see a brief introduction of the ShadowKV472

and the description of these baseline settings in the473

Appendix A.2. For the SVDq method, we investi-474

gate different quantization bit schedules with vary-475

ing equivalent mixed bit widths: b̄ = 2.25, 1.75,476

and 1.25. Detailed schedules are provided in Table477

4 in the Appendix A.2. We apply the SVDq in con-478

junction with the sparsity method from ShadowKV.479

The scores are also presented in Table 3.480

Our observations reveal that, when combined481

with sparsity, our SVDq compression method does482

not result in significant performance degradation,483

even with extremely low quantization bit widths484

such as b̄ = 1.25. Decreasing the bit width from485

b̄ = 2.25 to b̄ = 1.75 has a negligible impact486

on the score. Further decreasing b̄ to 1.25 results487

in a slight performance loss, although it remains488

relatively insignificant. Notably, our quantization 489

method, even with b̄ = 1.25, outperforms the low- 490

rank approximation used in ShadowKV, demon- 491

strating the ineffectiveness of directly truncating 492

SVD ranks. Taking into account the sparsity com- 493

pression ratio of 32×, SVDq contributes an ad- 494

ditional ratio of up to 12.8×, resulting in a total 495

compression ratio of 400×. 496

Notably, by comparing Tables 2 and 3, the intro- 497

duction of sparsity does not result in performance 498

degradation; it can even improve the performance 499

of models that solely use SVDq or low-rank com- 500

pression. We observe that with sparsity, the model 501

can withstand higher compression ratios. This may 502

be attributed to the fact that quantization and low- 503

rank approximation introduce errors across all to- 504

kens, potentially leading to significant error accu- 505

mulation in the full attention mechanism. However, 506

sparsity discards unimportant tokens, which can 507

help to mitigate the error from these tokens and 508

improve overall performance. 509

5.3 Results of SVDq with Sparsity and V 510

Quantization 511

In the final experiment, we repeat the second exper- 512

iment while additionally introducing a quantization 513

method to the V cache to further reduce the re- 514

quired memory for model loading. Please find the 515

experiment in Appendix A.3. 516

7

Method bit CR N-MK1 N-MK2 N-MQ N-MV VT FWE QA-1 QA-2 Average
Llama-3.1-8B-Instruct

Default 16 1 99.0 97.9 98.7 98.2 97.5 85.4 82.3 60.4 90.0
ShadowKV Sparsity 16 32 100.0 97.9 99.0 94.5 89.6 74.0 82.3 61.5 87.3

ShadowKV 2.5 205 99.0 97.9 99.0 96.1 85.6 75.0 82.3 59.4 86.8
SVDq+Sparsity 2.25 227 100.0 97.9 98.4 95.3 89.6 74.0 81.2 60.4 87.1
SVDq+Sparsity 1.75 291 100.0 97.9 98.7 94.5 88.7 74.7 83.3 60.4 87.3
SVDq+Sparsity 1.25 410 99.0 96.6 99.2 93.2 87.3 74.3 83.3 60.4 86.7

Qwen2.5-7B-Instruct
Default 16 1 86.5 26.0 95.8 87.5 85.8 83.0 61.5 38.5 70.6

ShadowKV Sparsity 16 32 85.4 19.8 93.5 87.2 86.9 70.8 65.6 35.4 68.1
ShadowKV 2.5 205 86.5 17.7 89.8 75.8 71.2 62.8 67.7 37.5 63.6

SVDq+Sparsity 2.25 227 89.6 19.8 94.3 89.6 85.6 69.1 67.7 38.5 69.3
SVDq+Sparsity 1.75 291 87.5 15.6 94.3 88.5 81.9 69.1 65.6 37.5 67.5
SVDq+Sparsity 1.25 410 86.5 15.6 93.5 88.0 83.7 68.1 62.5 36.5 66.8

Qwen2.5-3B-Instruct
Default 16 1 78.1 27.1 89.8 88.8 81.0 72.2 41.7 30.2 63.6

ShadowKV Sparsity 16 32 77.1 18.8 83.6 81.8 75.2 48.6 43.8 28.1 57.1
ShadowKV 2.5 205 75 17.7 69.3 71.4 69.2 50.7 32.3 29.2 51.8

SVDq+Sparsity 2.25 227 78.1 19.8 82.0 83.6 77.3 47.2 36.5 28.1 56.6
SVDq+Sparsity 1.75 291 80.2 20.8 80.7 83.3 76.9 49.7 38.5 27.1 57.2
SVDq+Sparsity 1.25 410 75.0 17.7 78.9 82.6 77.1 46.9 35.4 30.2 55.5

Table 3: Performance of our method in conjunction with the sparsity strategy of ShadowKV, denoted by
"SVDq+Sparsity", in different models on the RULER benchmark evaluated at a context length of 64K. The
third column key compression ratio ("CR") is computed by 16/b̄× the sparsity ratio, 32, and represents the com-
pression ratio of the key cache that involves in the attention computation. The second row ("ShadowKV Sparsity")
refers to applying only the sparsity strategy of ShadowKV without any quantization or SVD low-rank methods.
For the third row ("ShadowKV"), in the Llama-3.1 model, we use the same settings as in the ShadowKV paper,
retaining 160 ranks of the SVD and truncating the rest, which is equivalent to a quantization bit width of 2.5. For
the Qwen2.5-7B and 3B models, to maintain consistent quantization bit widths (2.5 bits), we retain 80 and 40 ranks,
respectively. The quantization bit schedules for "SVDq+Sparsity" are identical for all three models and are shown
in Table 4 in Appendix A.2. Our method outperforms ShadowKV despite having a lower (mixed) bit width.

The resulting insignificant performance degener-517

ation not only demonstrate the effectiveness of the518

SVD quantization method in K cache compression519

but also highlight its compatibility with existing520

compression techniques.521

5.4 Results of LongBench benchmark522

Numerical experiments based on the LongBench523

benchmark [39] are presented in Appendix B and524

Table 6. We observe results consistent with those525

obtained on the RULER benchmark. For most of526

the models and method configurations, our SVDq527

method either outperforms or exhibits compara-528

ble performance to the baselines, including per-529

channel quantization [40], ThinK [16], and Shad-530

owKV [18]. Notably, the performance degradation531

of our method compared to the full, non-quantized532

model is insignificant and nearly lossless for Long-533

Bench datasets. These results further corroborate534

the conclusions drawn from our analysis of the535

RULER benchmark.536

6 Conclusions 537

We present a mixed precision quantization ap- 538

proach for KV cache compression, which is 539

grounded in projection representation within the 540

SVD and singular vector space. In this method, we 541

assign higher quantization bit widths to the initial 542

latent channels and gradually reduce the bit widths 543

for subsequent latent channels. Additionally, there 544

is an option to truncate the final channels. Through 545

comprehensive experiments, we show that this ap- 546

proach outperforms direct per - channel quantiza- 547

tion in terms of model performance, even when us- 548

ing lower mixed bit widths. Moreover, we explore 549

the performance of our proposed method when 550

integrated with other KV cache compression tech- 551

niques, such as sparsity and V cache quantization. 552

Our results reveal that our method incurs minimal 553

performance degradation, even when extremely 554

low equivalent quantization bit widths (mixed 1.75 555

and 1.25 bits for the K cache) are utilized. Overall, 556

these findings convincingly demonstrate the effec- 557

tiveness and efficiency of our proposed method in 558

K cache compression. 559

8

7 Limitations560

Although our method demonstrates good effective-561

ness in K cache compression, it primarily reduces562

the required memory space for model loading with-563

out directly addressing computational cost. In fact,564

our current implementation may even slightly in-565

crease inference time.566

Specifically, we utilize the pre-RoPE setting in567

our implementation. Our method extracts a quan-568

tized low-bit K cache of the SVD projection repre-569

sentation before the application of Rotary Position570

Embeddings (RoPE) and shares this low-bit repre-571

sentation across all heads. Due to the online com-572

putation of RoPE, which depends on the incoming573

position index, the reconstruction from the projec-574

tion representation to the original representation575

cannot be efficiently integrated into the model’s576

forward pass. Consequently, this leads to an in-577

crease in computational cost for each head.578

This increase in computational cost could poten-579

tially be remedied by switching to the post-RoPE580

setting, where K cache is handled after the applica-581

tion of RoPE. However, as reported in ShadowKV582

work [25] and observed in our numerical tests, the583

post-RoPE setting generally exhibits degraded per-584

formance compared to the pre-RoPE setting.585

Therefore, investigating methods to accelerate586

the computation of our SVD quantization method,587

potentially by exploring alternative approaches or588

optimizations within the pre-RoPE framework, is589

an interesting direction for future research.590

References591

[1] OpenAI, Josh Achiam, Steven Adler, Sandhini Agar-592
wal, Lama Ahmad, et al. GPT-4 Technical Report,593
March 2024. arXiv:2303.08774 [cs].594

[2] Aaron Grattafiori, Abhimanyu Dubey, Abhinav595
Jauhri, Abhinav Pandey, Abhishek Kadian, et al.596
The Llama 3 Herd of Models, November 2024.597
arXiv:2407.21783 [cs].598

[3] Qwen, An Yang, Baosong Yang, Beichen Zhang,599
Binyuan Hui, et al. Qwen2.5 Technical Report, Jan-600
uary 2025. arXiv:2412.15115 [cs].601

[4] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei602
Zhang, Junxiao Song, et al. DeepSeek-R1: Incen-603
tivizing Reasoning Capability in LLMs via Reinforce-604
ment Learning, 2025. Version Number: 1.605

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob606
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz607
Kaiser, and Illia Polosukhin. Attention Is All You608
Need, August 2023. arXiv:1706.03762 [cs].609

[6] Reiner Pope, Sholto Douglas, Aakanksha Chowd- 610
hery, Jacob Devlin, James Bradbury, Anselm Lev- 611
skaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, 612
and Jeff Dean. Efficiently Scaling Transformer Infer- 613
ence, November 2022. arXiv:2211.05102 [cs]. 614

[7] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, 615
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and 616
Xia Hu. KIVI: A Tuning-Free Asymmetric 2bit 617
Quantization for KV Cache, 2023. arXiv:2402.02750 618
[cs]. 619

[8] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 620
Han, and Mike Lewis. Efficient streaming lan- 621
guage models with attention sinks. arXiv preprint 622
arXiv:2309.17453, 2023. 623

[9] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 624
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 625
dong Tian, Christopher Ré, Clark Barrett, et al. H2o: 626
Heavy-hitter oracle for efficient generative inference 627
of large language models. Advances in Neural Infor- 628
mation Processing Systems, 36, 2024. 629

[10] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 630
Jiawei Han, and Jianfeng Gao. Model tells you what 631
to discard: Adaptive kv cache compression for llms. 632
arXiv preprint arXiv:2310.01801, 2023. 633

[11] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat 634
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, 635
Patrick Lewis, and Deming Chen. Snapkv: Llm 636
knows what you are looking for before generation. 637
arXiv preprint arXiv:2404.14469, 2024. 638

[12] Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan 639
Xiao, Baris Kasikci, and Song Han. Quest: Query- 640
Aware Sparsity for Efficient Long-Context LLM In- 641
ference, August 2024. arXiv:2406.10774 [cs]. 642

[13] Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, 643
Charlie Blake, Carlo Luschi, and Douglas Orr. 644
SparQ Attention: Bandwidth-Efficient LLM Infer- 645
ence, September 2024. arXiv:2312.04985 [cs]. 646

[14] Prajwal Singhania, Siddharth Singh, Shwai He, So- 647
heil Feizi, and Abhinav Bhatele. Loki: Low-rank 648
Keys for Efficient Sparse Attention, November 2024. 649
arXiv:2406.02542 [cs]. 650

[15] Qingyue Yang, Jie Wang, Xing Li, Zhihai Wang, 651
Chen Chen, Lei Chen, Xianzhi Yu, Wulong Liu, 652
Jianye Hao, Mingxuan Yuan, et al. Attentionpre- 653
dictor: Temporal pattern matters for efficient llm 654
inference. arXiv preprint arXiv:2502.04077, 2025. 655

[16] Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, 656
Xudong Lu, Aojun Zhou, Amrita Saha, Caiming 657
Xiong, and Doyen Sahoo. ThinK: Thinner Key 658
Cache by Query-Driven Pruning, October 2024. 659
arXiv:2407.21018 [cs]. 660

[17] Aixin Liu, Bei Feng, Bing Xue, Bingxuan 661
Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, 662
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 663
Deepseek-v3 technical report. arXiv preprint 664
arXiv:2412.19437, 2024. 665

9

[18] Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size666
Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie667
Chi, and Beidi Chen. Shadowkv: Kv cache in shad-668
ows for high-throughput long-context llm inference.669
arXiv preprint arXiv:2410.21465, 2024.670

[19] Xin Wang, Yu Zheng, Zhongwei Wan, and671
Mi Zhang. SVD-LLM: Truncation-aware Singu-672
lar Value Decomposition for Large Language Model673
Compression, May 2024. arXiv:2403.07378 [cs].674

[20] Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuo-675
hang Wang, Hao Cheng, Chao Zhang, and Yelong676
Shen. LoRC: Low-Rank Compression for LLMs677
KV Cache with a Progressive Compression Strategy,678
October 2024. arXiv:2410.03111 [cs].679

[21] Coleman Hooper, Sehoon Kim, Hiva Moham-680
madzadeh, Michael W Mahoney, Yakun Sophia Shao,681
Kurt Keutzer, and Amir Gholami. Kvquant: Towards682
10 million context length llm inference with kv cache683
quantization. arXiv preprint arXiv:2401.18079,684
2024.685

[22] June Yong Yang, Byeongwook Kim, Jeongin Bae,686
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung687
Kwon, and Dongsoo Lee. No token left behind:688
Reliable kv cache compression via importance-689
aware mixed precision quantization. arXiv preprint690
arXiv:2402.18096, 2024.691

[23] Peiyu Liu, Ze-Feng Gao, Wayne Xin Zhao, Yipeng692
Ma, Tao Wang, and Ji-Rong Wen. Unlocking693
Data-free Low-bit Quantization with Matrix Decom-694
position for KV Cache Compression, May 2024.695
arXiv:2405.12591 [cs].696

[24] Xing Li, Zeyu Xing, Yiming Li, Linping Qu, Hui-697
Ling Zhen, Wulong Liu, Yiwu Yao, Sinno Jialin Pan,698
and Mingxuan Yuan. Kvtuner: Sensitivity-aware699
layer-wise mixed precision kv cache quantization for700
efficient and nearly lossless llm inference, 2025.701

[25] Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size702
Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yue-703
jie Chi, and Beidi Chen. ShadowKV: KV Cache in704
Shadows for High-Throughput Long-Context LLM705
Inference, October 2024. arXiv:2410.21465 [cs].706

[26] L. Mirsky. SYMMETRIC GAUGE FUNCTIONS707
AND UNITARILY INVARIANT NORMS. The708
Quarterly Journal of Mathematics, 11(1):50–59,709
1960.710

[27] Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng711
Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and712
Bin Cui. Pqcache: Product quantization-based kv-713
cache for long context llm inference. arXiv preprint714
arXiv:2407.12820, 2024.715

[28] Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin,716
Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,717
Ning-Chi Huang, Luis Ceze, Mohamed S. Abdelfat-718
tah, and Kai-Chiang Wu. Palu: Compressing KV-719
Cache with Low-Rank Projection, November 2024.720
arXiv:2407.21118 [cs].721

[29] Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, 722
and Kaushik Roy. Eigen Attention: Attention in Low- 723
Rank Space for KV Cache Compression, November 724
2024. arXiv:2408.05646 [cs]. 725

[30] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, 726
Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang- 727
hai. GQA: Training Generalized Multi-Query Trans- 728
former Models from Multi-Head Checkpoints, De- 729
cember 2023. arXiv:2305.13245 [cs]. 730

[31] Qingyun Jin, Xiaohui Song, Feng Zhou, and 731
Zengchang Qin. Align Attention Heads Before Merg- 732
ing Them: An Effective Way for Converting MHA to 733
GQA, December 2024. arXiv:2412.20677 [cs]. 734

[32] Yuang Chen, Cheng Zhang, Xitong Gao, Robert D. 735
Mullins, George A. Constantinides, and Yiren Zhao. 736
Optimised Grouped-Query Attention Mechanism for 737
Transformers, June 2024. arXiv:2406.14963 [cs]. 738

[33] Yifan Tan, Haoze Wang, Chao Yan, and Yangdong 739
Deng. AlignedKV: Reducing Memory Access of 740
KV-Cache with Precision-Aligned Quantization, Oc- 741
tober 2024. arXiv:2409.16546 [cs]. 742

[34] Xinghao Wang, Pengyu Wang, Bo Wang, Dong 743
Zhang, Yunhua Zhou, and Xipeng Qiu. BitStack: 744
Fine-Grained Size Control for Compressed Large 745
Language Models in Variable Memory Environments, 746
October 2024. arXiv:2410.23918 [cs]. 747

[35] Yujun Lin, Haotian Tang, Shang Yang, Zhekai 748
Zhang, Guangxuan Xiao, Chuang Gan, and Song 749
Han. QServe: W4A8KV4 Quantization and Sys- 750
tem Co-design for Efficient LLM Serving, May 2024. 751
arXiv:2405.04532 [cs]. 752

[36] Bowen Ping, Shuo Wang, Hanqing Wang, Xu Han, 753
Yuzhuang Xu, Yukun Yan, Yun Chen, Baobao 754
Chang, Zhiyuan Liu, and Maosong Sun. Delta- 755
CoMe: Training-Free Delta-Compression with 756
Mixed-Precision for Large Language Models, 757
November 2024. arXiv:2406.08903 [cs]. 758

[37] Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, 759
Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng, 760
Jun-Yan Zhu, and Song Han. SVDQuant: Absorbing 761
Outliers by Low-Rank Components for 4-Bit Dif- 762
fusion Models, November 2024. arXiv:2411.05007 763
[cs]. 764

[38] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, 765
Shantanu Acharya, Dima Rekesh, Fei Jia, Yang 766
Zhang, and Boris Ginsburg. RULER: What’s the 767
Real Context Size of Your Long-Context Language 768
Models?, August 2024. arXiv:2404.06654 [cs]. 769

[39] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, 770
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao 771
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, 772
and Juanzi Li. Longbench: A bilingual, multitask 773
benchmark for long context understanding. arXiv 774
preprint arXiv:2308.14508, 2023. 775

10

[40] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen776
Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi777
Chen, and Xia Hu. Kivi: A tuning-free asymmet-778
ric 2bit quantization for kv cache. arXiv preprint779
arXiv:2402.02750, 2024.780

A Experiments Descriptions 781

A.1 Descriptions for Section 5.1 782

In this experiment, we include the below baselines 783

for comparison: 784

Default No compression is applied, and 16-bit 785

widths are used for all values. This is the default 786

configuration of each models; 787

Direct 3-bit Quantization 3-bit per-channel quan- 788

tization [7] is applied directly to the K matrix in its 789

original space (as depicted in Figure 1). 790

ThinK Direct channel truncation in the original 791

space by ThinK [16] that retains 3
4 channels, in 792

conjunction with 4-bit quantization, results in an 793

equivalent 3-bit setting. 794

The equivalent mixed quantization bit width in 795

this experiment are selected as b̄ = 3, 2 for the 796

SVDq method. The quantization schedule b is set 797

to (8, 4, 4, 4, 2, 2, 0, 0) and (8, 4, 4, 0, 0, 0, 0, 0), re- 798

spectively. 799

A.2 Descriptions for Section 5.2 800

ShadowKV [25] and its sparsity techniques act as 801

baselines and utilized in this work. Briefly, this 802

strategy divides the K cache in the prefilling stage 803

into small chunks, each containing 8 tokens. It 804

computes the mean embedding of each trunk as the 805

landmark and then uses these landmarks to identify 806

important chunks. Specifically, the top-k chunks 807

with the highest attention scores are considered im- 808

portant and retained, while the remaining chunks 809

are neglected in the computation of attention. Note 810

that this method also includes an auxiliary selection 811

mechanism for outlier chunks, which are identified 812

based on low cosine similarity. These outliers are 813

not clipped during the sparsity process. In addition 814

to sparsity, the full ShadowKV method incorpo- 815

rates SVD low-rank approximation of the K cache, 816

retaining 160 out of the full 1024 ranks. This low- 817

rank approximation can be considered equivalent to 818

approximately 2.5-bit quantization, as the default 819

numerical precision is 16 bits. 820

Based on ShadowKV, the baseline results for 821

comparison that shown in Table 3 (the first three 822

rows of each model) are: 823

Default Scores obtained with the default 16-bit 824

digital precision; 825

Sparsity Scores obtained using the ShadowKV 826

sparsity method without low-rank approximation 827

or quantization; 828

ShadowKV Scores obtained using the full Shad- 829

owKV method, including both sparsity and equiva- 830

11

Equivalent bit b̄ schedule b
2.25 (8, 4, 4, 2, 0, 0, 0, 0)
1.75 (8, 4, 2, 0, 0, 0, 0, 0)
1.25 (4, 4, 2, 0, 0, 0, 0, 0)

Table 4: Key quantization bit schedules for SVDq.

lent 2.5-bit quantization.831

The detailed quantization schedules are shown832

in Table 4.833

A.3 Descriptions and Results for Section 5.3834

In this experiment, the configuration of K cache835

compression and sparsity remains the same as in836

the second experiment: the mixed quantization837

bit schedules are set according to Table 4, consis-838

tent with the previous experiment, and the sparsity839

method employs the ShadowKV sparsity technique840

[25]. In addition to these settings, we observe the841

very weak low-rank property of V cache and hence842

apply a direct 4-bit per-token quantization to the V843

cache. The results are presented in Table 5.844

Our observations indicate a very small perfor-845

mance loss in Table 5 compared to the obtained846

scores in Table 3. This suggests that, despite being847

an approximation method with a very low com-848

pression rate, SVDq does not significantly degrade849

model performance even when combined with spar-850

sity and V cache compression.851

B Experiment in LongBench852

We also implement numerical experiments based853

on the LongBench benchmark [39] and exclude the854

tests of which the sequence lengths are less than855

4K. The baselines and configurations of our method856

are the same as those presented in Section 5. The857

results are shown in Table 6. Note that the second858

row for each model, which includes the results859

for "ShadowKV Sparsity," "ShadowKV," and three860

"SVDq+Sparsity" configurations, corresponds to861

the results in Table 3. Similarly, the third row for862

each model, which includes the results for three863

"SVDq+Sparsity" configurations, corresponds to864

the results in Table 5, which applies an additional865

4-bit quantization for V cache comparing to the866

second row. For most of the models and method867

configurations, our SVDq method outperforms the868

other methods, demonstrating the same conclusions869

as observed in the numerical experiments on the870

RULER benchmark.871

12

Method bit CR N-MK1 N-MK2 N-MQ N-MV VT FWE QA-1 QA-2 Average
Llama-3.1-8B-Instruct

Default 16 1 99.0 97.9 98.7 98.2 97.5 85.4 82.3 60.4 90.0
SVDq+Sparsity+V4 2.25 227 100.0 97.9 98.4 95.3 88.3 75.0 81.2 60.4 87.1
SVDq+Sparsity+V4 1.75 291 100.0 96.9 99.0 94.5 87.7 75.7 832.3 60.4 87.1
SVDq+Sparsity+V4 1.25 410 99.0 96.9 99.2 93.0 86.2 73.3 83.3 60.4 86.4

Qwen2.5-7B-Instruct
Default 16 1 86.5 26.0 95.8 87.5 85.8 83.0 61.5 38.5 70.6

SVDq+Sparsity+V4 2.25 227 86.5 20.8 95.1 89.6 84.4 70.1 66.7 39.6 69.1
SVDq+Sparsity+V4 1.75 291 86.5 18.8 93.5 90.4 82.5 68.1 64.6 36.5 67.6
SVDq+Sparsity+V4 1.25 410 86.5 16.7 92.4 87.0 83.3 68.4 62.5 39.6 67.0

Qwen2.5-3B-Instruct
Default 16 1 78.1 27.1 89.8 88.8 81.0 72.2 41.7 30.2 63.6

SVDq+Sparsity+V4 2.25 227 75.0 20.5 80.2 83.9 78.7 45.8 38.5 28.1 56.4
SVDq+Sparsity+V4 1.75 291 80.2 19.8 81.8 83.3 76.0 49.0 37.5 29.2 57.1
SVDq+Sparsity+V4 1.25 410 77.1 13.5 77.3 81.2 76.2 46.9 33.3 29.2 54.4

Table 5: Performance of the "SVDq+Sparsity" method in conjunction with a 4-bit per-token quantization method in
the V cache in different models on the RULER benchmark evaluated at a context length of 64K. The quantization
bit schedules for "SVDq+Sparsity+V4" are the same as those used in Table 3 and are shown in Table 4. Our method
is perfectly compatible with the V cache quantization method, leading to negligible performance loss compared to
the results shown in Table 3.

Method bit CR NarrativeQA HotpotQA MuSiQue GovRepprt SAMSum RepoBench-P Average
Llama-3.1-8B-Instruct

Default 16 1 22.3 17.5 14.2 33.4 35.7 43.4 30.3
Per-channel Quant 16 1.0 17.7 15.9 6.15 33.0 35.4 30.9 24.1

ThinK 3 5.3 14.0 15.4 11.0 33.0 35.2 48.8 30.0
SVDq 3 5.3 20.2 16.3 11.0 34.2 35.3 45.1 30.0
SVDq 2 8.0 18.4 18.0 11.5 32.3 34.7 48.5 30.8

ShadowKV Sparsity 16 32 1.91 4.08 1.99 9.05 6.09 18.3 8.90
ShadowKV 2.5 205 22.6 21.5 10.7 32.5 37.1 45.6 31.2

SVDq+Sparsity 2.25 227 22.3 21.4 9.54 33.2 36.2 42.3 29.9
SVDq+Sparsity 1.75 291 22.8 21.3 10.3 33.4 35.2 43.7 30.4
SVDq+Sparsity 1.25 410 20.8 17.9 11.1 33.0 34.2 43.1 29.4

SVDq+Sparsity+V4 2.25 227 22.0 19.6 13.1 33.6 35.4 41.3 29.7
SVDq+Sparsity+V4 1.75 291 22.3 19.5 11.4 33.6 34.9 44.1 30.3
SVDq+Sparsity+V4 1.25 410 20.9 22.1 11.9 33.1 37.0 41.8 30.0

Qwen2.5-7B-Instruct
Default 16 1 8.78 11.2 7.35 31.5 40.1 49.3 28.7

Per-channel Quant 16 1.0 6.46 12.3 5.69 30.6 41.1 44.3 26.6
ThinK 3 5.3 5.42 8.97 5.02 29.8 30.4 35.7 21.8
SVDq 3 5.3 8.80 11.3 8.32 31.1 40.2 48.9 28.6
SVDq 2 8.0 6.84 19.9 9.47 31.9 40.4 48.5 29.7

ShadowKV Sparsity 16 32 10.5 10.5 7.78 31.8 38.9 49.9 29.0
ShadowKV 2.5 205 10.3 12.0 8.06 30.9 40.1 49.1 29.0

SVDq+Sparsity 2.25 227 11.3 11.2 7.10 31.4 41.5 50.6 29.6
SVDq+Sparsity 1.75 291 10.3 11.5 7.14 31.5 39.7 52.1 29.7
SVDq+Sparsity 1.25 410 9.74 11.0 7.74 31.5 40.7 51.5 29.6

SVDq+Sparsity+V4 2.25 227 10.5 11.2 8.49 31.6 40.5 51.4 29.8
SVDq+Sparsity+V4 1.75 291 7.83 10.5 7.83 31.3 40.1 53.5 29.8
SVDq+Sparsity+V4 1.25 410 9.59 10.8 7.37 31.0 40.7 52.5 29.8

Qwen2.5-3B-Instruct
Default 16 1 6.87 14.4 10.1 30.6 37.6 46.1 27.8

Per-channel Quant 16 1.0 6.32 9.47 4.13 29.2 35.6 44.6 25.3
ThinK 3 5.3 6.39 8.11 5.72 29.8 36.3 43.9 25.2
SVDq 3 5.3 7.33 14.5 7.55 29.9 35.8 48.2 27.9
SVDq 2 8.0 3.26 8.06 5.17 26.1 35.3 53.0 27.0

ShadowKV Sparsity 16 32 8.32 14.2 8.54 29.8 37.7 50.0 28.9
ShadowKV 2.5 205 7.19 15.8 9.04 27.4 37.5 47.2 27.8

SVDq+Sparsity 2.25 227 7.14 15.2 9.76 30.0 38.3 46.7 28.1
SVDq+Sparsity 1.75 291 7.51 15.0 7.27 29.3 37.6 46.6 27.5
SVDq+Sparsity 1.25 410 8.15 14.9 8.09 29.3 38.4 48.2 28.4

SVDq+Sparsity+V4 2.25 227 7.22 14.0 8.45 29.0 38.2 47.3 27.8
SVDq+Sparsity+V4 1.75 291 6.41 14.3 10.3 29.2 35.4 48.1 27.9
SVDq+Sparsity+V4 1.25 410 7.68 13.9 8.26 29.1 37.4 46.8 27.6

Table 6: Results of the tests on LongBench benchmarks [39] (longer than 4K). The experiment settings are the
same as those for RULER benchmarks in Section 5. The second row for each model, which includes the results for
"ShadowKV Sparsity," "ShadowKV," and three "SVDq+Sparsity" configurations, corresponds to the results in Table
3. Similarly, the third row for each model, which includes the results for three "SVDq+Sparsity+V4" configurations,
corresponds to the results in Table 5, which applies an additional 4-bit quantization for V cache comparing to the
second row.

13

