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Abstract

For the efficient inference of Large Language
Models (LLMs), the effective compression of
key-value (K'V') cache is essential. Three main
types of K’V cache compression techniques,
namely sparsity, channel compression, and
quantization, have been identified. This study
presents SVDq, a Singular Value Decomposi-
tion (SVD) - based mixed precision quantiza-
tion method for K cache. Initially, K cache is
transformed into “latent channels” using SVD
basis representations. Since the values in la-
tent channels decay rapidly and become neg-
ligible after only a few latent channels, our
method then incorporates importance-aware
quantization and compression for latent chan-
nels. This enables the effective allocation of
higher precision to more significant channels.
Theoretically, we prove that SVDq results in
quantization errors (x0.1 or even lower) that
are much lower than those of per-channel key
quantization in the original space. Our findings
demonstrate that SVDq can achieve an equiv-
alent key cache precision as low as 1.25-bit.
When combined with key sparsity, it can reach
a key compression ratio of up to 410x for at-
tention computation, all while maintaining
comparable model performance. This indicates
that SVDq enables high-precision low-bit quan-
tization, providing a more efficient solution for
KV cache compression in LLMs.

1 Introduction

Large Language Models (LLMs) have started a
new era of artificial intelligence by demonstrating
remarkable capabilities in handling complex tasks
[1,2, 3, 4]. Most of these recently developed LLMs
are founded upon the attention mechanism based
auto-regressive decoder transformers [5]. Con-
sequently, they need to encode past information
into intermediate hidden tensors, specifically KV
caches, for subsequent and efficient inference.
However, in natural language tasks with large
batches or long contexts, KV cache often expands

significantly in size, posing a significant challenge
to fast inference [6, 7]. The substantial memory
consumption and latency required to save and load
KV cache, coupled with the computational de-
mands of attention operations, become critical bot-
tlenecks for LLM inference. Considering the rapid
advancement of computability and the increasing
demand for efficient LLM inference, we recognize
the importance of high-ratio K'V cache compres-
sion (even with a slight concession in computa-
tional overhead), enabling the inference of LLMs
on devices with limited memory.

Existing approaches to KV cache compres-
sion can be categorized into three main directions:
sequence-axis compression, channel-axis compres-
sion, and digit-type compression. (i) Sequence-
axis compression, exemplified by works such as
[8, 9, 10, 11, 12, 13, 14, 15], often referred to
as sparsity, involves identifying and discarding
unimportant tokens for attention computation. (ii)
Channel-axis compression, as demonstrated in,
e.g., [16, 17, 18], focuses on the channel dimen-
sion compression of K'V' cache with methods like
truncating and low-rank decomposition. Notably,
low-rank approximation techniques, as explored in
[19, 20], represent a similar approach of this cat-
egory. These methods transform KV cache into
"latent channels" representation based on SVD,
and then discard insignificant latent channels. (iii)
Digit-type compression, also known as quantiza-
tion, aims to reduce the memory footprint by em-
ploying lower-precision representations for KV
cache [7, 21, 22, 23, 24]. This typically involves
replacing the 32- or 16-bit FP numbers with lower
precision representations. These three compression
methods are proposed independently, exploiting
different properties of K'V' cache within LLMs.

The effectiveness of quantization highly depends
on the statistical distribution of the cache values.
Large value ranges and outliers can lead to sub-
stantial quantization errors. In addition, the per-



formance of models degrades significantly below
a certain quantization bit width (typically around
4 to 2 bits), thus limiting the compression ratio.
Similarly, channel compression methods also face
challenges in terms of the trade-off between ac-
curacy and compression ratio. While works like
[19, 20] have demonstrated 2x compression ratios
using SVD-based methods, further compression
beyond this point leads to high accuracy loss. Rec-
ognizing these limitations, we emphasize the im-
portance of combining these different strategies to
further improve the compression ratio. For exam-
ples, ThinK [16] highlights the compatibility of
its channel truncation method with sparsity tech-
niques; ShadowKYV [25] combines sparsity with
SVD low-rank approximation to achieve minor per-
formance degradation while achieving very high
compression ratios.

In this work, we follow the channel-axis com-
pression and quantization strategy. We find that
direct truncation of the original channels, as exem-
plified by ThinK [16], leads to significant perfor-
mance degradation when pursuing high compres-
sion ratios. To address this challenge, we propose
a compression method, SVDq, that integrates the
channel truncation and quantization, by utilizing
our observed underlying relationship between quan-
tization and SVD-based channel compression.

Specifically, we observe an implication of the
Eckart—Young—Mirsky theorem [26]: the vari-
ances of the values within latent channels obtained
through SVD are determined by the corresponding
singular values and typically exhibit rapid decay.
Recognizing that variances are often proportional
to value ranges of latent channels, we can utilize
singular values to guide the selection of quantiza-
tion bit widths to balance accuracy and compres-
sion ratios.

Based on this observation, we propose a novel
mixed-precision key cache! quantization method
that integrates SVD-based channel compression.
This method prioritizes higher bit widths for latent
channels associated with larger singular values and
progressively decreases precision for channels with
smaller singular values. The SVD latent channels
offer a significant advantage over simple variance-
based descending sorting in the original space, be-
cause singular values decay exponentially for most
key cache. In consequence, the range at each chan-

'We do not investigate the V cache since it often exhibits
weak low-rank property.

nel decreases fast, and often becomes insignificant
after only a small number of latent channels. Hence,
this approach enhances the effectiveness of quanti-
zation precision allocation for each latent channel.
Furthermore, we emphasize the seamless compati-
bility of this method with sparsity techniques.

Our key contributions are as follows:

(1) Proposing a novel method that effectively
combines quantization and latent channel compres-
sion for K cache, providing the theoretical insights.

(2) Demonstrating the compatibility of this
method with sparsity techniques.

(3) Achieving a remarkable level of K cache
compression with an equivalent mixed quantiza-
tion precision as low as 1.25 bit while maintaining
comparable model performance.

2 Related Works

Sparsity: With different feature extraction based
attention estimation algorithms, methods such as
Fastgen [10], H20 [9], Quest [12], SparQ [13], PQ-
Cache [27], ShadowKYV [25], and AttentionPredic-
tor [15] selectively retain only the most important
tokens in the sequence and effectively prune the
others. Loki [14] is another sparsity method that
uses the SVD approximation to accelerate attention
estimation for critical tokens selection.

Channel Compression: These methods, such as
ThinK [16], reduce the dimensionality of KV
cache by truncating channels or employing low-
rank approximations. Prominent examples include
SVD-based approaches like SVD-LLM [19], LoRC
[20], Palu [28], and Eigen Attention [29]. No-
tably, techniques like Grouped Query Attention
(GQA) [30], Multi-head Latent Attention (MLA)
[4], and transformations from Multi-Head Atten-
tion to GQA [31, 32] can also be viewed as forms
of channel compression, as they effectively reduce
the number of attention dimensions.
Quantization: Methods like KIVI [7], KVQuant
[21], AlignedKV [33], BitStack [34], and KVTuner
[24] reduce the memory footprint with low pre-
cision KV cache. QServe [35] introduces sev-
eral quantization and system co-design methods
to achieve efficient WAA8KV4, where SmoothAt-
tention is utilized to migrate the key quantization
difficulty to query.

Some works explore the combination of these ap-
proaches. In addition to the mentioned ShadowKV
[25] and ThinK [16], [23] integrates quantization
with matrix decomposition to apply different quan-



tization precision for the two decomposed matrices,
and Palu [28] applies per token quantization to the
latent vector of the SVD low-rank approximation.

Importantly, the concept of using SVD for
mixed-precision quantization has been explored
in other contexts. For instance, Delta-CoMe [36]
applies this principle to compress LLM weights,
while SVDQuant [37] utilizes it for compressing
diffusion models. The novelty of this work over the
mentioned works lies not only in the application of
this principle to K cache compression but also in
the theoretical foundation upon which we derive
the principle and method, and the error analysis
we provide.

3 SVD and Quantization

Singular Value Decomposition: Let K € Rs*¢
denotes the K cache matrix for a given head in
a transformer layer, where s and d represent the
sequence length and hidden embedding (channel)
dimension, respectively, with s > d typically hold-
ing for long context applications. Let K be centered
by subtracting its per-channel mean K € R, i.e.,
K + K — K and maintain the same notation.
Assuming K is full-rank. Its SVD is given by

K=U-D.-VH (1)

where U € R**¢ has orthonormal columns, V €
R%*4 is orthonormal, satisfying U? - U = I; and
V.V =1, and D € R is a diagonal matrix
containing the singular values in its diagonal with
elements arranged in descending order, given by
D= Diag([)\l, veny )\d])

Quantization Let kyj, ;= (minK.q, ..., minK.4),
i.e., the column-wise minimum vector, and analo-
gously define ky,,x. The per-channel asymmetrical
b-bit quantization and dequantization operations
are given by:

K - kmin
Qb<K> = \‘(kmax — kmin)/(2b _ 1)-‘ s (2)
kmax - kmin
Dy(Kyp) := Qp(K) x Tob_q1 +kmin, (3)

where |-| denote the rounding operator. Naturally,
Db ] Qb(K) ~ K.

For uniformly or normally distributed columns
of K, the relative quantization errors depend solely
on the bit width b, independent of the range
kmax — kmin- However, the absolute errors scale
with kpax — kmin, implying that smaller value
ranges or variances yield smaller absolute quan-
tization errors.

4 Methods

Although the theory of the proposed SVD-
quantization method, discussed in the previous sec-
tion, is expected to be applicable to a much wider
range of applications, this work focuses on KV
cache compression in the long context inference
scenario. For long context LLMs, K'V cache gener-
ated in the prefilling stage generally dominates the
memory usage. Our method is proposed to address
this challenge.

4.1 SVD Quantization

Consider the rows of VI in Equation (1) as a ba-
sis for the row space of K. For the projection
Py.; of the rows of K into the j-th basis vector,
defined by Py, (K) := K-V, following the
Eckart—Young—Mirsky theorem [26], we have:
Theorem 4.1. For the K cache matrix K, the vari-
ance of its projection satisfies

Var(Py,,(K)) = A2, “4)

Corollary 4.1.1. Letk € R? be a K cache vector
with K subtracted, ie., k +— k — K. For any
indices 0 < i < j < d, the squared expectations of
its projections satisfy:

E((Pv,(k))*) > E((Pv,,(K))?). ()

Proof. For any 0 < j < d, the projection of K is
given by
Py,;(K)=K-V;
=U-D- V. v,
= \;U,5.

Since E(Py,; (K)) = Py, (E(K)) = 0, we have

Var(Py, (K)) = Var(\;Us)
= NE (U - Uy)

__\2
= A2

This proves Theorem 4.1. Corollary 4.1.1 fol-
lows directly from Theorem 4.1 when the given
vector k follows the distribution of the rows of
K. O

Note that the Py (K) is essentially an alterna-
tive representation of K using the singular vector
in V as the space bases. We call the columns of
Py (K) latent channels. Figure 1 illustrates the dis-
tribution of K in its original space, while Figure 2
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Figure 1: Original K

Figure 2: Projected K, i.e., Py (K)

Figure 3: Distribution of K and its standard deviation

displays its representation in the SVD space after
projection, demonstrating the results of Theorem
4.1 and Corollary 4.1.1. The singular vector-based
projection offers a significant advantage over sim-
ple variance-based descending sorting: for most
matrices, singular values typically exhibit exponen-
tial decay. Consequently, the range of projection
values (represented on the y-axis in Figure 2) de-
creases rapidly, becoming relatively insignificant
(compared to the value range of the first dimension)
after only a small number of latent channels.
Since K = Py(K) - Vi where Py (K) := K-V,
and all basis vectors in V are unit-normalized, the
absolute error in approximating to Py represents
both absolute and relative errors in approximating
K. Theorem 4.1, Corollary 4.1.1, and Figure 2
demonstrate that both value range and variance de-
cay rapidly along the latent channels. This property
motivates our efficient mixed-precision quantiza-
tion method, SVDq, to approximate K via Py (K):
(1) Use high precision quantization for initial latent
channels;
(2) Progressively decrease the precision for subse-
quent latent channels;
(3) Truncate the remaining latent channels with
negligible value ranges or singular values.

4.2 Algorithm

In our SVDq method, we first apply SVD to the
prefilling K cache, obtaining the projection opera-

tor Py (-) using the right SVD matrix V. Next, we
determine a precision schedule for the quantization
on each latent channel based on the singular values
[AL, ..., Ag]. Specifically, a latent channel associ-
ated with a large singular value A is assigned a high
quantization bit width b, and channels with small
A are assigned low b or even be truncated with no-
tation b = 0. This yields a schedule vector b, and
the equivalent mixed bit width of this quantization
schedule for the K cache is given by

d
Z b;. (6)
=1

Sequently, we use Qp in (2) to quantize Py (K).
The low-bit quantized Py (K) is then saved as the
cache. In the decoding process, we dequantize the
cache, reconstruct K in its original representation
using K = Py(K) - VI, and then proceed with
the attention computation. We summarize the al-
gorithm using pseudo-code in Algorithm 1 and an
abstracted diagram in Figure 4.

b=

SHE

Algorithm 1 SVD-quantization algorithm for K

Require: K cache matrix K of L layers
Ensure: K ~ K
for [ < 1to N do
Load K cache matrix for [-th layer

K=K-K
U,D,V < SVD(K)
Py(K)=U-D

Set quant schedule b

Save K, V, Qp o Py(K), function Dy
end for
K =D, (Qp o Py(K))- VE + K

In this algorithm, the quantities to be saved in-
clude the quantized Py (K) € R**? (represented
using b-bit), the right SVD matrix V € R%*9, the
average of K denoted by K € R?, and the de-
quant function Dp, which relies on the bit sched-
ule b € RY and the range of Py(K), given by
PrminsPmax € RY. In long context applications,
d < s, the requirement of memory space for terms
that depend solely on d, e.g., the space for V and
K, is negligible. Hence, the compression rate com-
pared with the original 16-bit K € R**? is approx-
imately 16/b.

In this work, we concatenate the K matrices of
all heads within the same layer, resulting in a larger
K matrix with the embedding dimension d being
the sum of the embedding dimensions of all heads.
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Figure 4: Diagram of SVDq method (path inside the box in green) versus direct per-channel quantization (path

inside the box in violet).

To improve efficiency, for the bit schedule setting
b, we divide the d latent channels of Py (K) into 8
equal-sized group, each comprising % dimensions.
The channels within each group share the same
quantization bit width. Thus, b is determined by
an 8-dimensional vector (b1, bo, ..., bg) of integer.
For example, a schedule of (8,4,2,1,1,0,0,0) has
an equivalent mixed bit width b = 2 and hence a
compression ratio 8. For a model with d = 1024,
this schedule implies:

8-bit quantization for the first 128 latent channels,
4-bit for the next 128 channels,

2-bit for the next 128 channels,

1-bit for the next 256 channels,

truncation for the remaining 384 channels.

4.3 Theoretical Error Analysis

We begin by presenting a lemma for later analysis.
Lemma 4.1. If data X are distributed uniformly
within their value range r, then the expectation of
the square absolute error, €, of an asymmetrical
b-bit quantization applied to X is equal to the vari-

ance of a uniform distribution with a range of 2%,
that is

Let K be centered by subtracting the key’s per-
channel mean K € RY, and let Py (K) be its latent
channel representation. The Frobenius norm is
invariant under this transformation, as

IPv(K)E = Pv(Ks) - Py(Ki)"
i=1

S
=> Ki K = K|
1=1

Let [0, ...,02] and [\?, ..., A\?] denote the vari-
ance vectors of the channels for the original and

latent channel representations of K, respectively.
Thus,

d d
Soo? = KR = Py = SO0 ()
j=1 Jj=1

We further assume that the key cache distribu-

tions in each original channel and latent channel
follow uniform distributions. Then, according to
Lemma 4.1, the value ranges of the j-th original
channel and j-th latent channel are r; = 2\/§aj
and 7; = 2v/3)\;, respectively.
Error analysis for direct quantization Figure 1
shows that the variances in the original channels
often exhibit similar orders of magnitude. We there-
fore assume that they are approximately identical,
with 032 = 2 |K|/# and ?"]2- = L2|K||Z. Applyinga
per-channel, direct b-bit quantization to K, and fol-
lowing Lemma 4.1 and the above analysis, results
in a quantization error €5 with the expected value:

1112 1 |K|% g
)= 29 ds o g5 Y
Error analysis for SVDq The singular values of a
matrix often exhibit exponential decay. We model
the variance vector for K’s latent channel represen-
tation as

2

E(e K[ =

\j=ce P = e PU—1)

©)

forany 1 <17 < j < d, where c > 0and p > 0 are
parameters.

Using this model and (7), we immediately obtain

Pt W | < e

1 —e2pd

-1
K2
T~ S KR,

as well as the square of the value range of each
latent channel

(€2P — 1)e 27 9
KE

12(e? — 1)e P22 E(e}).



For further analysis, we set the bit schedule as
a simple decreased arithmetic progression®: b; =
(8 — i)27b, resulting in b = Z?Zl b; = b, and com-
pare SVDq with this schedule to a direct b-bit quan-
tization. Using Lemma 4.1, for the i-th part with
% latent channels with quantization bit width of b;,
the expectation of the square quantization error, &;,

1S

e —1_
=8amnEC) D

o—dpli—1)/4

2
o(bi—b)Ind E(e)-

~
~

Denoting by == by — b; = (1 — 1)2—7’7 and o 1=

% - 2—7b In 4, the error for SVDq, &, satisfies
13
E(E) = 5 2B
i=1
e—dp(i—1)/4

o2
= E(e) Z o(bi—b)Ind

For LLMs like Llama-3.1-8B, d = 1024, the
decay rate p is often on the order of approxi-
mately 0.1, while we typically consider quanti-
zation bit widths at the levels b = 2 or 4. Con-
sequently, we often have p > % In 4, resulting

in @ > 0. Under these conditions, typically

1

~2 =

(Eig%) ? ~ 20=b1 < 0.1, the expectation quantiza-
b

tion error of SVDq is much smaller than the direct
per-channel quantization error. This result theo-
retically proves the efficiency of mixed-precision
quantization in the latent channel representation
guided by SVD.

“This setting is introduced only for the sake of clear theo-
retical error analysis, as it yields concise error expressions. It
is not a realistic schedule because it may contain no integer bit
widths. A similar analysis can be applied to other schedules,
although the derivations may become more complex.

Model d, n d partdim g
Llama-3.1-8B-Instruct 128 8 1024 128
Qwen2.5-7B-Instruct 128 4 512 64
Qwen2.5-3B-Instruct 128 2 256 32

Table 1: Configuration of K cache for three models.

S Experiments

In this section, we apply our method in differ-
ent model settings to showcase its efficiency in
K cache compression.

We focus on long context applications us-
ing three large language models: Llama-3.1-8B-
Instruct [2], Qwen2.5-7B-Instruct, and Qwen2.5-
3B-Instruct [3]. The numerical experiments are
based on the RULER benchmarks [38] and Long-
Bench benchmarks [39]. We omit the scores for
RULER NIAH Single tests because in our tests,
almost all methods achieved perfect scores (100)
on these tests, indicating that they do not pose a suf-
ficient challenge. We present the results of RULER
in this section and refer the readers to Appendix B
for the results of LongBench.

The configuration settings for the K cache of
the three models are listed in Table 1. The long
context prompt length is set to 64K, satisfying s =
64 x 1024 > d.

5.1 Results of SVDq

In our first experiment, we implement the SVD
quantization method directly in K cache compres-
sion and summarize the results in Table 2. Detailed
experiment settings and descriptions are provided
in the Appendix A.1.

The results demonstrate that the proposed SVDq
method generally results in lower performance
degradation compared to direct quantization and
channel compression across almost all tests. On
average, the SVDq method achieves higher scores
despite having a lower equivalent mixed quantiza-
tion bit width. This clearly showcases the signif-
icant advantage of truncating and quantizing the
SVD latent channels over operating directly on the
original channels.

Please note that in our tests, both direct 2-bit
quantization of the original K and equivalent 2-bit
ThinK that retains % original channels and com-
bines 4-bit quantization result in much more sig-
nificant performance degradation. Therefore, we
opted to compare our SVDq method in 2- and 3-bit
setting with direct 3-bit quantization and equivalent
3-bit ThinK for a more meaningful evaluation.



Method bit CR | N-MKl N-MK2 N-MQ N-MV VT FWE QA-1 QA-2 ‘ Average
Llama-3.1-8B-Instruct
Default 16 1.0 99.0 97.9 98.7 98.2 975 854 823 604 90.0
Per-channel Quant 3 5.3 97.9 70.8 94.0 91.1 86.0 84.7 67.7 46.9 79.9
ThinK 3 5.3 94.8 66.7 87.5 80.7 66.2 90.3 75.0 55.2 77.2
SVDq (ours) 3 5.3 100.0 96.9 99.2 95.3 973 86.1 8.4 573 89.7
SVDq (ours) 2 8.0 99.0 94.8 96.1 92.7 99.0 844 75.0 479 86.1
Qwen2.5-7B-Instruct
Default 16 1.0 86.5 26.0 95.8 87.5 85.8 830 61.5 385 70.6
Per-channel Quant 3 5.3 37.5 3.1 46.9 47.7 63.5 771 188 25.0 39.9
ThinK 3 53 60.4 8.3 66.9 71.1 63.7 76.7 40.6 354 52.9
SVDq (ours) 3 53 88.5 29.2 92.7 80.2 84.0 87.8 542 40.6 69.7
SVDq (ours) 2 8.0 78.1 36.5 81.8 82.6 79.4 715 396 323 62.7
Qwen2.5-3B-Instruct
Default 16 1.0 78.1 27.1 89.8 88.8 81.0 722 41.7 30.2 63.6
Per-channel Quant 3 5.3 27.1 3.1 23.2 25.8 61.7 632 146 24.0 30.3
ThinK 3 5.3 38.5 7.3 49.5 479 64.8 66.3 26.0 25.0 40.7
SVDq (ours) 3 5.3 66.7 15.6 79.7 75.3 742 66.7 240 27.1 53.6
SVDq (ours) 2 8.0 52.1 16.7 57.8 56.0 69.8 587 198 27.1 44.7

Table 2: Performance of our method ("SVDq") for key compression in different models on the RULER benchmark
evaluated at a context length of 64K. The bit schedules for SVDq are b = (8,4,4,4,2,2,0,0), (8,4,4,0,0,0,0,0),
resulting in b = 3,2, respectively. The third column ("CR") is refer to as compression ratio given by 16/b. The
second row ("Per-channel Quant") refers to applying direct per-channel quantization to the original K. The thrid
row ("ThinK") refers to applying ThinK method [16] with % compression ratio to the original K, combining 4-bit
quantization. Our method outperforms direct quantization and ThinK with quantization despite having a lower
(mixed) bit width (2 bits versus 3 bits). The value cache is retained in BF16 type without any processes. Detailed

settings are found in the Appendix A.1.

5.2 Results of SVDq with Sparsity

Although SVDq can improve model performance
while using small bit quantizations, significant per-
formance loss can still occur when the bit width
is extremely low, such as b = 2. Hence, we com-
bine our SVDq method with a sparsity technique to
investigate its compatibility with other techniques
and explore potential performance improvements.

We adopt the sparsity strategy proposed in the
ShadowKV method [25]. Table 3 presents the
results for sparsity and ShadowKV as baselines.
Please see a brief introduction of the ShadowKV
and the description of these baseline settings in the
Appendix A.2. For the SVDq method, we investi-
gate different quantization bit schedules with vary-
ing equivalent mixed bit widths: b = 2.25,1.75,
and 1.25. Detailed schedules are provided in Table
4 in the Appendix A.2. We apply the SVDq in con-
junction with the sparsity method from ShadowKV.
The scores are also presented in Table 3.

Our observations reveal that, when combined
with sparsity, our SVDq compression method does
not result in significant performance degradation,
even with extremely low quantization bit widths
such as b = 1.25. Decreasing the bit width from
b = 225to b = 1.75 has a negligible impact
on the score. Further decreasing b to 1.25 results
in a slight performance loss, although it remains

relatively insignificant. Notably, our quantization
method, even with b = 1.25, outperforms the low-
rank approximation used in ShadowKYV, demon-
strating the ineffectiveness of directly truncating
SVD ranks. Taking into account the sparsity com-
pression ratio of 32x, SVDq contributes an ad-
ditional ratio of up to 12.8x, resulting in a total
compression ratio of 400x.

Notably, by comparing Tables 2 and 3, the intro-
duction of sparsity does not result in performance
degradation; it can even improve the performance
of models that solely use SVDq or low-rank com-
pression. We observe that with sparsity, the model
can withstand higher compression ratios. This may
be attributed to the fact that quantization and low-
rank approximation introduce errors across all to-
kens, potentially leading to significant error accu-
mulation in the full attention mechanism. Howeyver,
sparsity discards unimportant tokens, which can
help to mitigate the error from these tokens and
improve overall performance.

5.3 Results of SVDq with Sparsity and V
Quantization

In the final experiment, we repeat the second exper-
iment while additionally introducing a quantization
method to the V' cache to further reduce the re-
quired memory for model loading. Please find the
experiment in Appendix A.3.



Method bit CR | N-MK1 N-MK2 N-MQ N-MV VT FWE QA-1 QA-2 ‘ Average
Llama-3.1-8B-Instruct
Default 16 1 99.0 97.9 98.7 98.2 97.5 854 823 60.4 90.0
ShadowKV Sparsity 16 32 100.0 97.9 99.0 94.5 89.6 740 823 61.5 87.3
ShadowKV 2.5 205 99.0 97.9 99.0 96.1 85.6 75.0 82.3 59.4 86.8
SVDq+Sparsity 2.25 227 100.0 97.9 98.4 95.3 89.6 740 81.2 60.4 87.1
SVDq+Sparsity 1.75 291 100.0 97.9 98.7 94.5 88.7 747 833 60.4 87.3
SVDq+Sparsity 1.25 410 99.0 96.6 99.2 93.2 873 743 833 60.4 86.7
Qwen2.5-7B-Instruct
Default 16 1 86.5 26.0 95.8 87.5 858 830 61.5 385 70.6
ShadowKV Sparsity 16 32 85.4 19.8 93.5 87.2 86.9 708 65.6 35.4 68.1
ShadowKV 2.5 205 86.5 17.7 89.8 75.8 T71.2 628 67.7 375 63.6
SVDq+Sparsity 2.25 227 89.6 19.8 94.3 89.6 85.6 69.1 67.7 385 69.3
SVDq+Sparsity 1.75 291 87.5 15.6 94.3 88.5 819 69.1 65.6 37.5 67.5
SVDq+Sparsity 1.25 410 86.5 15.6 93.5 88.0 83.7 681 625 36.5 66.8
Qwen2.5-3B-Instruct
Default 16 1 78.1 27.1 89.8 88.8 81.0 722 41.7 30.2 63.6
ShadowKV Sparsity 16 32 77.1 18.8 83.6 81.8 752 48.6 438 28.1 57.1
ShadowKV 2.5 205 75 17.7 69.3 714 69.2 50.7 323 29.2 51.8
SVDq+Sparsity 2.25 227 78.1 19.8 82.0 83.6 773 472 36.5 28.1 56.6
SVDq+Sparsity 1.75 291 80.2 20.8 80.7 83.3 76.9 49.7 385 27.1 57.2
SVDq+Sparsity 1.25 410 75.0 17.7 78.9 82.6 77.1 469 354 30.2 55.5

Table 3: Performance of our method in conjunction with the sparsity strategy of ShadowKYV, denoted by
"SVDg+Sparsity"”, in different models on the RULER benchmark evaluated at a context length of 64K. The
third column key compression ratio ("CR") is computed by 16/bx the sparsity ratio, 32, and represents the com-
pression ratio of the key cache that involves in the attention computation. The second row ("ShadowKYV Sparsity")
refers to applying only the sparsity strategy of ShadowKV without any quantization or SVD low-rank methods.
For the third row ("ShadowKV"), in the Llama-3.1 model, we use the same settings as in the ShadowKYV paper,
retaining 160 ranks of the SVD and truncating the rest, which is equivalent to a quantization bit width of 2.5. For
the Qwen2.5-7B and 3B models, to maintain consistent quantization bit widths (2.5 bits), we retain 80 and 40 ranks,
respectively. The quantization bit schedules for "SVDq+Sparsity" are identical for all three models and are shown

in Table 4 in Appendix A.2. Our method outperforms ShadowKYV despite having a lower (mixed) bit width.

The resulting insignificant performance degener-
ation not only demonstrate the effectiveness of the
SVD quantization method in K cache compression
but also highlight its compatibility with existing
compression techniques.

5.4 Results of LongBench benchmark

Numerical experiments based on the LongBench
benchmark [39] are presented in Appendix B and
Table 6. We observe results consistent with those
obtained on the RULER benchmark. For most of
the models and method configurations, our SVDq
method either outperforms or exhibits compara-
ble performance to the baselines, including per-
channel quantization [40], ThinK [16], and Shad-
owKYV [18]. Notably, the performance degradation
of our method compared to the full, non-quantized
model is insignificant and nearly lossless for Long-
Bench datasets. These results further corroborate
the conclusions drawn from our analysis of the
RULER benchmark.

6 Conclusions

We present a mixed precision quantization ap-
proach for KV cache compression, which is
grounded in projection representation within the
SVD and singular vector space. In this method, we
assign higher quantization bit widths to the initial
latent channels and gradually reduce the bit widths
for subsequent latent channels. Additionally, there
is an option to truncate the final channels. Through
comprehensive experiments, we show that this ap-
proach outperforms direct per - channel quantiza-
tion in terms of model performance, even when us-
ing lower mixed bit widths. Moreover, we explore
the performance of our proposed method when
integrated with other K'V' cache compression tech-
niques, such as sparsity and V' cache quantization.
Our results reveal that our method incurs minimal
performance degradation, even when extremely
low equivalent quantization bit widths (mixed 1.75
and 1.25 bits for the K cache) are utilized. Overall,
these findings convincingly demonstrate the effec-
tiveness and efficiency of our proposed method in
K cache compression.



7 Limitations

Although our method demonstrates good effective-
ness in K cache compression, it primarily reduces
the required memory space for model loading with-
out directly addressing computational cost. In fact,
our current implementation may even slightly in-
crease inference time.

Specifically, we utilize the pre-RoPE setting in
our implementation. Our method extracts a quan-
tized low-bit K cache of the SVD projection repre-
sentation before the application of Rotary Position
Embeddings (RoPE) and shares this low-bit repre-
sentation across all heads. Due to the online com-
putation of RoPE, which depends on the incoming
position index, the reconstruction from the projec-
tion representation to the original representation
cannot be efficiently integrated into the model’s
forward pass. Consequently, this leads to an in-
crease in computational cost for each head.

This increase in computational cost could poten-
tially be remedied by switching to the post-RoPE
setting, where K cache is handled after the applica-
tion of RoPE. However, as reported in ShadowKV
work [25] and observed in our numerical tests, the
post-RoPE setting generally exhibits degraded per-
formance compared to the pre-RoPE setting.

Therefore, investigating methods to accelerate
the computation of our SVD quantization method,
potentially by exploring alternative approaches or
optimizations within the pre-RoPE framework, is
an interesting direction for future research.
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A Experiments Descriptions

A.1 Descriptions for Section 5.1

In this experiment, we include the below baselines
for comparison:

Default No compression is applied, and 16-bit
widths are used for all values. This is the default
configuration of each models;

Direct 3-bit Quantization 3-bit per-channel quan-
tization [7] is applied directly to the K matrix in its
original space (as depicted in Figure 1).

ThinK Direct channel truncation in the original
space by ThinK [16] that retains % channels, in
conjunction with 4-bit quantization, results in an
equivalent 3-bit setting.

The equivalent mixed quantization bit width in
this experiment are selected as b = 3,2 for the
SVDq method. The quantization schedule b is set
to (8,4,4,4,2,2,0,0) and (8,4,4,0,0,0,0,0), re-
spectively.

A.2 Descriptions for Section 5.2

ShadowKYV [25] and its sparsity techniques act as
baselines and utilized in this work. Briefly, this
strategy divides the K cache in the prefilling stage
into small chunks, each containing 8 tokens. It
computes the mean embedding of each trunk as the
landmark and then uses these landmarks to identify
important chunks. Specifically, the top-£ chunks
with the highest attention scores are considered im-
portant and retained, while the remaining chunks
are neglected in the computation of attention. Note
that this method also includes an auxiliary selection
mechanism for outlier chunks, which are identified
based on low cosine similarity. These outliers are
not clipped during the sparsity process. In addition
to sparsity, the full ShadowKV method incorpo-
rates SVD low-rank approximation of the K cache,
retaining 160 out of the full 1024 ranks. This low-
rank approximation can be considered equivalent to
approximately 2.5-bit quantization, as the default
numerical precision is 16 bits.

Based on ShadowKYV, the baseline results for
comparison that shown in Table 3 (the first three
rows of each model) are:

Default Scores obtained with the default 16-bit
digital precision;

Sparsity Scores obtained using the ShadowKV
sparsity method without low-rank approximation
or quantization;

ShadowKYV Scores obtained using the full Shad-
owKYV method, including both sparsity and equiva-



Equivalent bit b schedule b

2.25 (8,4,4,2,0,0,0,0)
1.75 (8,4,2,0,0,0,0,0)
1.25 (4,4,2,0,0,0,0,0)

Table 4: Key quantization bit schedules for SVDq.

lent 2.5-bit quantization.
The detailed quantization schedules are shown
in Table 4.

A.3 Descriptions and Results for Section 5.3

In this experiment, the configuration of K cache
compression and sparsity remains the same as in
the second experiment: the mixed quantization
bit schedules are set according to Table 4, consis-
tent with the previous experiment, and the sparsity
method employs the ShadowKYV sparsity technique
[25]. In addition to these settings, we observe the
very weak low-rank property of V' cache and hence
apply a direct 4-bit per-token quantization to the V'
cache. The results are presented in Table 5.

Our observations indicate a very small perfor-
mance loss in Table 5 compared to the obtained
scores in Table 3. This suggests that, despite being
an approximation method with a very low com-
pression rate, SVDq does not significantly degrade
model performance even when combined with spar-
sity and V' cache compression.

B Experiment in LongBench

We also implement numerical experiments based
on the LongBench benchmark [39] and exclude the
tests of which the sequence lengths are less than
4K. The baselines and configurations of our method
are the same as those presented in Section 5. The
results are shown in Table 6. Note that the second
row for each model, which includes the results
for "ShadowKYV Sparsity," "ShadowKYV," and three
"SVDqg+Sparsity" configurations, corresponds to
the results in Table 3. Similarly, the third row for
each model, which includes the results for three
"SVDq+Sparsity" configurations, corresponds to
the results in Table 5, which applies an additional
4-bit quantization for V' cache comparing to the
second row. For most of the models and method
configurations, our SVDq method outperforms the
other methods, demonstrating the same conclusions
as observed in the numerical experiments on the
RULER benchmark.
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Method bit CR | N-MK1 N-MK2 N-MQ N-MV VT FWE QA-1 QA-2 ‘ Average
Llama-3.1-8B-Instruct
Default 16 1 99.0 97.9 98.7 98.2 975 854 823 604 90.0
SVDg+Sparsity+V4  2.25 227 100.0 97.9 98.4 953 883 75.0 812 604 87.1
SVDg+Sparsity+V4  1.75 291 100.0 96.9 99.0 94.5 87.7 757 8323 604 87.1
SVDg+Sparsity+V4  1.25 410 99.0 96.9 99.2 93.0 86.2 733 833 604 86.4
Qwen2.5-7B-Instruct
Default 16 1 86.5 26.0 95.8 87.5 858 83.0 615 385 70.6
SVDq+Sparsity+V4  2.25 227 86.5 20.8 95.1 89.6 84.4 70.1 66.7 39.6 69.1
SVDq+Sparsity+V4  1.75 291 86.5 18.8 93.5 90.4 825 681 646 36.5 67.6
SVDq+Sparsity+V4  1.25 410 86.5 16.7 92.4 87.0 833 684 625 39.6 67.0
Qwen2.5-3B-Instruct
Default 16 1 78.1 27.1 89.8 88.8 81.0 722 41.7 30.2 63.6
SVDg+Sparsity+V4  2.25 227 75.0 20.5 80.2 839 787 458 385 281 56.4
SVDg+Sparsity+V4  1.75 291 80.2 19.8 81.8 83.3 76.0 49.0 375 29.2 57.1
SVDg+Sparsity+V4  1.25 410 77.1 13.5 77.3 81.2 762 469 333 29.2 54.4

Table 5: Performance of the "SVDg+Sparsity" method in conjunction with a 4-bit per-token quantization method in
the V' cache in different models on the RULER benchmark evaluated at a context length of 64K. The quantization
bit schedules for "SVDq+Sparsity+V4" are the same as those used in Table 3 and are shown in Table 4. Our method
is perfectly compatible with the V' cache quantization method, leading to negligible performance loss compared to
the results shown in Table 3.

Method bit CR | NarrativeQA HotpotQA MuSiQue GovRepprt SAMSum RepoBench-P | Average
Llama-3.1-8B-Instruct
Default 16 1 22.3 17.5 14.2 334 35.7 434 30.3
Per-channel Quant 16 1.0 17.7 15.9 6.15 33.0 35.4 30.9 24.1
ThinK 3 53 14.0 15.4 11.0 33.0 35.2 48.8 30.0
SVDq 3 53 20.2 16.3 11.0 34.2 35.3 45.1 30.0
SVDq 2 8.0 18.4 18.0 11.5 32.3 34.7 48.5 30.8
ShadowKYV Sparsity 16 32 1.91 4.08 1.99 9.05 6.09 18.3 8.90
ShadowKV 2.5 205 22.6 21.5 10.7 32.5 37.1 45.6 31.2
SVDq+Sparsity 2.25 227 22.3 21.4 9.54 33.2 36.2 42.3 29.9
SVDq+Sparsity 1.75 291 22.8 21.3 10.3 334 35.2 43.7 30.4
SVDq+Sparsity 1.25 410 20.8 17.9 11.1 33.0 34.2 43.1 29.4
SVDg+Sparsity+V4  2.25 227 22.0 19.6 13.1 33.6 35.4 41.3 29.7
SVDq+Sparsity+V4  1.75 291 22.3 19.5 114 33.6 34.9 44.1 30.3
SVDq+Sparsity+V4  1.25 410 20.9 22.1 11.9 33.1 37.0 41.8 30.0
Qwen2.5-7B-Instruct
Default 16 1 8.78 11.2 7.35 31.5 40.1 49.3 28.7
Per-channel Quant 16 1.0 6.46 12.3 5.69 30.6 41.1 44.3 26.6
ThinK 3 53 5.42 8.97 5.02 29.8 30.4 35.7 21.8
SVDq 3 53 8.80 11.3 8.32 31.1 40.2 48.9 28.6
SVDq 2 80 6.84 19.9 9.47 31.9 404 48.5 29.7
ShadowKYV Sparsity 16 32 10.5 10.5 7.78 31.8 38.9 49.9 29.0
ShadowKV 2.5 205 10.3 12.0 8.06 30.9 40.1 49.1 29.0
SVDq+Sparsity 225 227 11.3 11.2 7.10 31.4 41.5 50.6 29.6
SVDq+Sparsity 1.75 291 10.3 11.5 7.14 31.5 39.7 52.1 29.7
SVDq+Sparsity 1.25 410 9.74 11.0 7.74 31.5 40.7 51.5 29.6
SVDq+Sparsity+V4  2.25 227 10.5 11.2 8.49 31.6 40.5 51.4 29.8
SVDg+Sparsity+V4  1.75 291 7.83 10.5 7.83 31.3 40.1 53.5 29.8
SVDg+Sparsity+V4  1.25 410 9.59 10.8 7.37 31.0 40.7 52.5 29.8
Qwen2.5-3B-Instruct
Default 16 1 6.87 14.4 10.1 30.6 37.6 46.1 27.8
Per-channel Quant 16 1.0 6.32 9.47 4.13 29.2 35.6 44.6 25.3
ThinK 3 53 6.39 8.11 5.72 29.8 36.3 43.9 25.2
SVDq 3 53 7.33 14.5 7.55 29.9 35.8 48.2 27.9
SVDq 2 80 3.26 8.06 5.17 26.1 35.3 53.0 27.0
ShadowKV Sparsity 16 32 8.32 14.2 8.54 29.8 37.7 50.0 28.9
ShadowKV 2.5 205 7.19 15.8 9.04 274 37.5 47.2 27.8
SVDq+Sparsity 2.25 227 7.14 15.2 9.76 30.0 38.3 46.7 28.1
SVDq+Sparsity 1.75 291 7.51 15.0 7.27 29.3 37.6 46.6 27.5
SVDq+Sparsity 1.25 410 8.15 14.9 8.09 29.3 38.4 48.2 28.4
SVDq+Sparsity+V4  2.25 227 7.22 14.0 8.45 29.0 38.2 47.3 27.8
SVDq+Sparsity+V4  1.75 291 6.41 14.3 10.3 29.2 35.4 48.1 27.9
SVDq+Sparsity+V4  1.25 410 7.68 13.9 8.26 29.1 374 46.8 27.6

Table 6: Results of the tests on LongBench benchmarks [39] (longer than 4K). The experiment settings are the
same as those for RULER benchmarks in Section 5. The second row for each model, which includes the results for
"ShadowKYV Sparsity," "ShadowKV," and three "SVDq+Sparsity" configurations, corresponds to the results in Table
3. Similarly, the third row for each model, which includes the results for three "SVDq+Sparsity+V4" configurations,
corresponds to the results in Table 5, which applies an additional 4-bit quantization for V' cache comparing to the
second row.
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