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Abstract

As Deep Reinforcement Learning (Deep RL) research moves towards solving
large-scale worlds, efficient environment simulations become crucial for rapid
experimentation. However, most existing environments struggle to scale to high
throughput, setting back meaningful progress. Interactions are typically computed
on the CPU, limiting training speed and throughput, due to slower computation
and communication overhead when distributing the task across multiple machines.
Ultimately, Deep RL training is CPU-bound, and developing batched, fast, and
scalable environments has become a frontier for progress. Among the most used
Reinforcement Learning (RL) environments, Minigrid is at the foundation of sev-
eral studies on exploration, curriculum learning, representation learning, diversity,
meta-learning, credit assignment, and language-conditioned RL, and still suffers
from the limitations described above. In this work, we introduce NAVIX1, a
re-implementation of Minigrid in JAX. NAVIX achieves over 160 000× speed
improvements in batch mode, supporting up to 2048 agents in parallel on a single
Nvidia A100 80 GB. This reduces experiment times from one week to 15 minutes,
promoting faster design iterations and more scalable RL model development.

(a) 128.98× (b) 26.47× (c) 41.17× (d) 19.72× (e) 45.71×

Figure 1: Speedups for five of the NAVIX environments with respect to their Minigrid
equivalent, using the protocol in Section 4.1. (a) Empty-8x8-v0, (b) DoorKey-8x8-v0, (c)
Dynamic-Obstacles-8x8-v0, (d) KeyCorridorS3R3-v0, (e) LavaGapS7-v0.

1https://github.com/epignatelli/navix
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1 Introduction

Deep RL is notoriously sample inefficient (Kaiser et al., 2019; Wang et al., 2021; Johnson et al., 2016;
Küttler et al., 2020). Depending on the complexity of the environment dynamics, the observation
space, and the action space, agents often require between 107 to 109 interactions or even more for
training up to a good enough policy. Therefore, as Deep RL moves towards tackling more complex
environments, leveraging efficient environment implementations is an essential ingredient of rapid
experimentation and fast design iterations.

However, while the efficiency and scalability of solutions for agents have improved massively in
recent years (Schulman et al., 2017; Espeholt et al., 2018; Kapturowski et al., 2018), especially due
to the scalability of the current deep learning frameworks (Abadi et al., 2016; Paszke et al., 2019;
Ansel et al., 2024; Bradbury et al., 2018; Sabne, 2020), environments have not kept pace. They are
mostly based on CPU, cannot adapt to different types of devices, and scaling often requires complex
distributed systems, introducing design complexity and communication overhead. Overall, deep RL
experiments are CPU-bound, limiting both speed and throughput of RL training.

Recently, a set of GPU-based environments (Freeman et al., 2021; Lange, 2022; Weng et al., 2022;
Koyamada et al., 2023; Rutherford et al., 2023a; Nikulin et al., 2023; Matthews et al., 2024; Bonnet
et al., 2024; Lu et al., 2023; Liesen et al., 2024b) and frameworks (Hessel et al., 2021; Lu et al.,
2022; Liesen et al., 2024a; Toledo, 2024; Nishimori, 2024; Jiang et al., 2023) has sparked raising
interest, proposing JAX-based, batched implementations of common RL environments that can
significantly increase the speed and throughput of canonical Deep RL algorithms. This enables
large-scale parallelism, allowing the training of thousands of agents in parallel on a single accelerator,
significantly outperforming traditional CPU-based environments, and fostering meta-RL applications.

In this work, we build on this trend and focus on the Minigrid suite of environments (Chevalier-
Boisvert et al., 2024), due to its central role in the Deep RL literature. MiniGrid is fundamental to
many studies. For instance, Zhang et al. (2020); Zha et al. (2021); Mavor-Parker et al. (2022) used
it to test new exploration strategies; Jiang et al. (2021) for curriculum learning; Zhao et al. (2021)
for planning; Paischer et al. (2022) for representation learning, Flet-Berliac et al. (2021); Guan et al.
(2022) for diversity. Parisi et al. (2021) employed Minigrid to design meta and transfer learning
strategies, and Mu et al. (2022) to study language grounding.

However, despite its ubiquity in the Deep RL literature, Minigrid faces the limitations of CPU-bound
environments. We bridge this gap and propose NAVIX, a reimplementation of Minigrid in JAX
that leverages JAX’s intermediate language representation to migrate the computation to different
accelerators, such as GPUs, and TPUs.

Our results show that NAVIX is over 44× times faster than the original Minigrid implementation,
in common Deep RL settings (Section 4.1), 5.4 times faster when running a single environment
(Appendix I), and increases the throughput by over 106× (Section 4.2). Composed together, they
produce speed-ups of over 160 000× (Section 4.2), turning 1-week experiments into 15 minutes ones.
We show the scaling ability of NAVIX by training over 2048 PPO agents in parallel (Section 4.2),
each using their own subset of environments, all on a single Nvidia A100 80 GB.

The main contributions of this work are the following:

1. A fully JAX-based implementation of environment configurations that reproduces exactly
the original Minigrid Markov Decision Processes (MDPs) and Partially-observable MDPs
(POMDPs).

2. A description of the design philosophy, the design pattern and principles, the organisation,
and the components of NAVIX, which, together with the online documentation, form an
instruction manual to use and extend NAVIX.

3. A set of RL algorithm baselines for all environments in Section 4.3.

2 Related work

JAX-based environments. The number of JAX-based reimplementations of common environments
is in a bullish trend. Freeman et al. (2021) provide a fully differentiable physics engine for robotics,
including MJX, a reimplementation of MujoCo (Todorov et al., 2012). Lange (2022) reimplements
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several gym (Brockman et al., 2016) environments, including classic control, Bsuite (Osband et al.,
2020), and MinAtar (Young & Tian, 2019),

Koyamada et al. (2023) reimplement many board games, including backgammon, chess, shogi, and
go. Lu et al. (2023) provides JAX implementations of POPGym (Morad et al., 2023), which contains
partially-observed RL environments. Matthews et al. (2024) reimplement Crafter (Hafner, 2021).
Bonnet et al. (2024) provides JAX implementations of combinatorial problems frequently encoun-
tered in industry, including bin packing, capacitated vehicle routing problem, PacMan, Sokoban,
Snake, 2048, Sudoku, and many others. Rutherford et al. (2023b) reimplement a set of multi-agent
environments, including a MiniGrid-inspired implementation of the Overcooked benchmark.

Yet, none of these works proposes a reimplementation of Minigrid. Weng et al. (2022) is the only one
providing a single environment of the suite, Empty, but it is only one of the many, most commonly
used environments of the suite, and arguably the simplest one.

Batched MiniGrid−like environments. Two works stand out for they aim to partially reimple-
ment MiniGrid. Jiang et al. (2023) present AMaze, a fully batched implementation of a partially
observable maze environment, with MiniGrid−like sprites and observations. However, like Weng
et al. (2022), the work does not reimplement the full Minigrid suite. Nikulin et al. (2023) pro-
poses XLand-Minigrid, a suite of grid-world environments for meta RL. Like (Jiang et al., 2023),
XLand-Minigrid reproduces Minigrid-like observations but focuses on designing a set of compos-
able rules that can be used to generate a wide range of environments, rather than mirroring the original
Minigrid suite while reimplementing it in JAX.

To conclude, Minigrid is a fundamental tool for Deep RL experiments, at the base of a high number
of studies, as we highlighted in Section 1. It is easy to use, easy to extend, and provides a wide range
of environments of scalable complexity that are easy to inspect for a clearer understanding of an
algorithm dynamics, pitfalls, and strengths.

Nevertheless, none of the works above provides a full, batched reimplementation of Minigrid in JAX
that mirrors the original suite in terms of environments, observations, state transitions, and rewards.
Instead, we propose a full JAX-based reimplementation of the Minigrid suite with identical semantics
for observations, actions, rewards, and terminations.

3 NAVIX: design philosophy and principles

In this section we describe:

(i) the design philosophy and pattern of NAVIX in Section 3.1, and

(ii) the design principles at its foundation in Sections 3.2.1 and 3.2.2.

In particular, in Section 3.2.2, we highlight why a JAX port of Minigrid is not trivial. Among others,
the obstacles to transform a stateful program, where a function is allowed to change elements that are
not an input of the function, into a stateless one, where the outputs of functions depend solely on the
inputs; and the restrictions in the use of for loops and control flow primitives, such as if statements.2

3.1 Design pattern

NAVIX is broadly inspired by the ECSM, a design pattern widely used in video game development.
In an ECSM, entities – the objects on the grid in our case – are composed of components – the
properties of the object. Each property holds data about the entity, which can then be used to process
the game state. For example, an entity Player is composed of components Positionable, Holder,
Directional, each of which injects properties into the entity: the Positionable component injects
the Position property, holding the coordinates of the entity (e.g., a player, a door, a key) on the grid,
the Holder component injects the Pocket property, holding the id of the entity that the agent holds,
and so on. A full list of components and their properties is provided in Table 1. This compositional
layout allows to easily generate the wide range of combinations of tasks that Minigrid offers, and to
easily extend the suite with new environments.

2See https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html.
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Figure 2: Information flow of the Entity-Component-System Model (ECSM) in NAVIX. Entities
(Player, Walls, Keys, Doors, . . . ) are composed of components (Position, Direction, Pocket), which
hold the data of the entity. Systems (Intervention, Transition, Rewards, Terminations) are functions
that operate on the collective state of all entities and components.

Component Property Shape Description
Positionable Position f32[2] Coordinates of the entity on the grid.
Directional Direction i32[] Direction of the entity.
HasColour Colour u8[] Colour of the entity.
Stochastic Probability f32[] Probability that the entity emits an event.
Openable State bool[] State of the entity, e.g., open or closed.
Pickable Id i32[] Id of the entity that the agent can pick up.
HasTag Tag i32[] Categorical value identifying the entity class.
HasSprite Sprite u8[32x32x3] Sprite of the entity in RGB format.
Holder Pocket i32[] Id of the entity that the agent holds.

Table 1: List of Components in NAVIX. Each component provides a property (or a set of). These
properties hold the data that can be accessed and manipulated by the systems (see Table 3) to provide
observations, rewards, and state transitions.

Entity Components Description
Wall [HasColour] An entity that blocks the agent’s movement.
Player [Directional, Holder] An entity that can interact with the environment.
Goal [HasColour, Stochastic] An entity that the agent can to reach to receive a reward.
Key [Pickable, HasColour] An entity that can be picked up. Can open doors.
Door [Openable, HasColour] An entity that can be opened and closed by the agent.
Lava [] An entity that the agent has to avoid.
Ball [HasColour, Stochastic] An entity that the agent can push.
Box [HasColour, Holder] An entity that the agent can push.

Table 2: List of Entities in NAVIX, together with the components that characterise them. By default,
all entities already possess Positionable, HasTah, and HasSprite components, in addition to
those reported in the table.

System Function Description
Intervention I : S ×A → S Updates the state according to the agent’s actions.
Transition P : S ×A → S Updates the state according to the MDP dynamics.
Observation O : S → O The observation kernel;
Reward R : S ×A× S → R The Markovian reward function.
Termination γ : S ×A× S → B The termination function.

Table 3: List of Systems in NAVIX. A state s ∈ S is a tuple containing: the set of entities, the static
grid layout, and the mission of the agent.
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Entities are then processed by systems, which are functions that operate on the collective state of
all entities and components. For example, the decision system may update the state of the entities
according to the actions taken by a player. The transition system may update the state of the entities
according to the MDP state transitions. The observation system generates the observations that the
agents receive, and the reward system computes the rewards that the agents receive, and so on. We
provide a full list of implemented systems in Appendix A.

To develop a better intuition of what these elements are and how they interact, Figure 2 shows the
information flow of the ECSM in NAVIX.

3.2 Design principles

On this background, two principles are at the foundation of NAVIX, and the key aspects that
characterise it:

(i) NAVIX aims to exactly match the semantics of Minigrid (Section 3.2.1) with identical
observations, actions, rewards, and terminations;

(ii) every environment is fully jittabile, i.e., that can be compiled into more efficient instructions
using JAX, and differentiable (Section 3.2.2), to exploit the full set of features that JAX
offers.

3.2.1 NAVIX matches MiniGrid

NAVIX matches the original Minigrid suite in terms of environments, observations, state transitions,
rewards, and actions. We include the most commonly used environments of the suite (see Table 14,
Appendix I), and provide a set of baselines for the implemented environments in see Section 4 and
Table 14, Appendix I.

Formally, a NAVIX environment is a tuple M = (h,w, T,O,A,R, d, O,R, γ, P ). Here, h and w
are the height and width of the grid, T is the number of timesteps before timeout; O is the observation
space, A is the action space, R is the reward space; γ is the discount factor. O is the observation
function, R is the reward function, d is the termination function, and P is the transition function.

Reward functions A key difference between NAVIX and MiniGrid, by design, is that the latter
uses a non-Markovian reward function. In fact, Minigrid dispenses a reward of 0 everywhere, except
at task completion, where it is inversely proportional to the number of steps taken by the agent to
reach the goal:

rt = R(st, a, st+1)− 0.9 ∗ (t+ 1)/T, (1)

Here R is the reward function, st is the state at time t, a is the action taken at time t, st+1 is the state
at time t+1, and T is the number of timesteps before timeout. Notice the dependency on the number
of steps t, which makes the reward non-Markovian.

The use of a non-Markovian reward function is not a mild assumption as most of the RL algorithms
assume Markov rewards (Schulman et al., 2017; Haarnoja et al., 2018b; van Hasselt et al., 2016).
This might call into question the validity of the historical results obtained with MiniGrid, and the
generalisation of the results to other environments.

However, the necessity to align the Minigrid reward function with Markov assumptions is in stark
contrast with the principle to reproduce the exact reward semantics of MiniGrid. Since this is a point
of difference that might invalidate our claim that NAVIX is a semantically compatible replacement
for MiniGrid, we leverage the modularity of NAVIX and supply two ready-to-use reward functions.
These functions are variables that can be easily changed at the time of the creation of the environment.
In the first function, we depart from the original Minigrid reward function and use a Markovian
reward function, which is 0 everywhere, 1 at task completion, and −c every at every timestep if the
agent performs an action different from the do-nothing action. Here, where c is a constant action
cost. In the second version, we replicate the reward function of Minigrid in Equation (1). We analyse
the impact of Markovianity on the training of a PPO agent in Appendix B by measuring how the task
completion rate varies during training for each reward function.
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3.2.2 Stateless and fully jittable

While we aim to match Minigrid in terms of environments, observations, state transitions, rewards,
and actions, the API of NAVIX is different, as it must align with JAX requirements for the environ-
ment to be fully jittable. In fact, NAVIX environments can be compiled using Accelerated Linear
Algebra (XLA) – an open-source compiler for machine learning that optimises Python code for
high-performance execution across different hardware platforms including GPUs, CPUs, TPUs and
other ML accelerators. This includes both simply jitting – i.e., compiling just-in-time – the step
function, and jitting the entire training sequence (Lu et al., 2022), assuming that the agent is also
implemented in JAX. XLA compilation increases the throughput of experiments massively, allowing
for the training of thousands of agents in parallel on a single accelerator, compared to a few that are
possible with traditional CPU-based environments. We show the scalability of NAVIX in Section 4.

For environments to be fully jittable, the computation must be stateless. For this reason, we need to de-
fine an environment state-object: the timestep. The timestep is a tuple (t, ot, at, rt+1, γt+1, st, it+1),
where t is the current time – the number of steps elapsed from the last reset – ot is the observation
at time t, at is the action taken after ot, rt+1 is the reward received after at, γt+1 is the termination
signal after at, st is the true state of the environment at time t, and it+1 is the info dictionary, useful
to store accumulations, such as returns.

This structure is necessary to guarantee the same return schema for both the step and the reset
methods, and allows the environment to autoreset, and avoid conditional statements in the agent code,
which would prevent the environment from being fully jittable.

At the beginning of the episode, the agent samples a starting state from the starting distribution
P0 : S → S using the reset(key) method, where key is a key for a stateless random number
generator. Since there is no action and reward at the beginning of the episode, we pad with −1
and 0, respectively. Given an action at, the agent can interact with the environment by calling the
step(timestep, action, key) method. The agent then receives a new state of the environment
(a new timestep) and can continue to interact as needed. Code 1 shows an example of how to interact
with a jitted NAVIX environment. More examples will be provided online.

import navix as nx

# init a NAVIX environment
env = nx.make("Navix-KeyCorridorS6R3-v0")

# sample a starting state
timestep = env.reset(key)
for _ in range(1000):

# sample a random key
key, subkey = jax.random.split(key)
# sample a random action
action = jax.random.randint(subkey, (1,), 0, 4)
# interact with the environment
timestep = jax.jit(env.step)(timestep, action) # autoresets when done

Code 1: Example code to interact with a jitted NAVIX environment.

Notice that the syntax is similar to the original MiniGrid, including the environment id, which simply
replaces “MiniGrid” with “Navix”. The only differences are in the use of an explicit random key
for the stateless random number generator, and the fact that the step method also takes the current
timestep as input, to guarantee the statelessness of the computation.

The schema in Code 1 is an effective template for any kind of agent implementation, including non
JAX-jittable agents. However, while this already improves the speed of environment interactions
compared to MiniGrid, as shown in Section 4.1, the real speed-up comes jitting the whole iteration
loop. In Appendix F we provide additional reusable patterns that are useful in daily RL research,
such as how to jit the training loop, how to parallelise the training of multiple agents, and how to run
hyperparameter search in batch mode.
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In addition, in Appendix H we provide a guide on how to extend NAVIX, including new environments,
new observations, new rewards, and new termination functions. This is a fundamental aspect to
reflect the flexibility of the original Minigrid suite, which is easy to extend and modify.

4 Experiments

This section aims to show the advantages of NAVIX compared to the original Minigrid implementa-
tion, and provides the community with a set of baselines for all environments. It does the former by
comparing the two suites, for all environments, both in terms of speed improvements and throughput.
For the latter, we train a set of baselines for all environments, and provide a scoreboard that stores the
results for all environments. All experiments are run on a single Nvidia A100 80Gb, and Intel(R)
Xeon(R) Silver 4310 CPU @ 2.10GHz and 128Gb of RAM.

4.1 Speed

We first benchmark the raw speed improvements of NAVIX compared to the original Minigrid
implementation, in the most common settings. For each NAVIX environment and its Minigrid
equivalent, we run 1K steps with 8 parallel environments, and measure the wall time of both. Notice
that this is the mere speed of the environment, and does not include the agent training.

We show results in Figure 3, and observe that NAVIX is over 44× times faster than the original
Minigrid implementation on average. These improvements are due to both the migration of the
computation to the GPU via XLA, which optimises the computation graph for the specific accelerator,
and the batching of the environments. In Figure 15, Appendix I we ablate the batching, with no
parallel environments, and show that the biggest contribution for the speedup is due to efficient
batching.

To better understand how the speedup varies with the number of training steps, and to make sure that
the 1K steps used in the previous experiment are representative of the general trend, we measure
the speed improvements for different lengths of the training runs. We run 1K, 10K, 100K, and 1M
steps for the MiniGrid-Empty-8x8-v0 environment and its NAVIX equivalent, and measure the
wall time of both.

Results in Figure 4 show that NAVIX is consistently faster than the original Minigrid implementation,
regardless of the number of steps. Both Minigrid and NAVIX show a linear increase in the wall time
with the number of steps.

4.2 Throughput

While NAVIX provides speed improvements compared to the original Minigrid implementation, the
real advantage comes from the ability to perform highly parallel training runs on a single accelerator.
In this experiment, we test how the computation scales with the number of environments.

We first test the limits of NAVIX by measuring the computation while varying the number of
environments that run in parallel. MiniGrid uses gymnasium, which parallelises the computation
with Python’s multiprocessing library. NAVIX, instead, uses JAX’s native vmap, which directly
vectorises the computation. We confront the results with the original Minigrid implementation, using
the MiniGrid-Empty-8x8-v0 environment.

Results in Figure 5 show that the original Minigrid implementation cannot scale beyond 16 environ-
ments on 128GB of RAM, for which it takes around 1s to complete 1K unrolls. On the contrary,
NAVIX can run up to 221 (over 2M ) environments in parallel on the same hardware, with a wall time
almost always below 1s. In short, NAVIX achieves a throughput over 105 orders of magnitude higher
than the original Minigrid implementation.

Secondly, we simulate the very common operation of training many PPO agents, each with their
own subset of 16 environments. However, with NAVIX, we can do this in parallel. We use the
Empty-8x8-v0 environment, and train the agent for 1M steps. Results are shown in Figure 6.

Overall, we observe that, on a single NVIDIA A100 80GB, stepping a batch of 2048× 16 = 32 768
NAVIX environments for 106 transitions takes 49s. This is a throughput of 2048× 16× 1M/49s =
6.7× 108 environment steps/s. On the other hand, the original Minigrid reference with a CleanRL
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Figure 3: Speedup of NAVIX compared to the orig-
inal Minigrid implementation, for the implemented
environments. The identifiers on the x-axis corre-
spond to the environments as reported in Table 13,
Appendix I. Results are the average across 5 runs.

Figure 4: Variation of the speedup of NAVIX
compared to the original Minigrid implementa-
tion.

Figure 5: Wall time of 1K unrolls for both
NAVIX and Minigrid in batch mode.

Figure 6: Computation costs with growing
batch sizes.

baseline, executed on the same host with a dual-socket Intel® Xeon® Silver 4310 (24 cores, 48 threads
at 2.10 GHz), takes 240s for a single PPO agent. This is a throughput of 1× 1M/240s = 4.2× 103

environment steps/s. In other words, NAVIX achieves a speedup of 6.7×108/4.2×104 =≈ 160 000×.
All timings exclude the initial XLA compilation and a one-episode warm-up for fairness. This
comparison fixes the compute budget to a single node to highlight the throughput boost that NAVIX
unlocks. Matching the same wall-clock throughput with CPU-only Minigrid would require on the
order of 105 concurrently active environments spread across many machines – incurring in network
synchronisation overheads that our single-GPU setup avoids, and costs are that far beyond those of a
single NVIDIA A100 80 GB node.

To complement these results, and give readers a more comprehensive expectation of NAVIX’s
performance, we also performed the speed and throughput experiments on consumer-grade hardware.
Results in Figures 9, 10, 11, and 12, Appendix C, confirm this trends of this section.

4.3 Baselines

We provide additional baselines using the implementations of PPO (Schulman et al., 2017), Double
DQN (DDQN) (Hasselt et al., 2016), Soft Actor Critic (SAC) (Haarnoja et al., 2018a), IQN (Dabney
et al., 2018), and PQN (Gallici et al., 2025) in Rejax (Liesen et al., 2024a)3. We optimize hyperpa-
rameters (HP) for each algorithm and environment combination using 32 iterations of random search.
Each HP configuration is evaluated with 16 different initial seeds. The HP configuration with the
highest average final return is selected. The specific hyperparameters we searched for are shown in
Table 12, Appendix E. The definitive list of hyperparameters used in the experiments can be found in
Section E.

3https://github.com/keraJLi/rejax
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Figure 7: Episodic returns for a sample of NAVIX environments for DDQN, PPO and SAC baselines.
Lines are average over 32 seeds, and shaded areas show 5-95 percentile confidence intervals.

We run the baselines for 1M steps, across 32 seeds, with the tuned hyperparameters for the
environments shown in Figure 7. All algorithms use networks with two hidden layers of 64 units.
Instead of alternating between a single environment step and network update, DQN and SAC instead
perform 128 parallel environment steps and 128 network updates, each with a new minibatch. We
found that this significantly improves the runtime while leaving the final performance unaffected.

5 Broader Impact

NAVIX lowers the hardware barrier to entry for RL research by providing a GPU-batched, JAX-native
re-implementation of the Minigrid environment suite. Because NAVIX remains fully open-source
(Apache 2.0) and can be run on commodity GPU hardware, instructors and students at resource-
constrained institutions can reproduce state-of-the-art Minigrid agents on a single desktop GPU,
democratizing access to RL education and experimentation.

However, higher-throughput simulation can also potentially accelerate the development cycle of
autonomous navigation agents that could be deployed for disallowed or malicious purposes. Never-
theless, NAVIX itself does not contain any trained policies, faster training may facilitate downstream
misuse.

6 Conclusions

We introduced NAVIX, a reimplementation of the Minigrid environment suite in JAX that leverages
JAX’s intermediate language representation to migrate the computation to different accelerators, such
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as GPUs and TPUs. We described the design pattern, highlighting the connections to the ECSM, and
the correspondence between the structure of its functions and the mathematical formalism of RL. We
presented the environment interface, the list of available environments.

We showed the speed improvements of NAVIX compared to the original Minigrid implementation,
and the scalability of NAVIX with respect to the number of agents that can be trained in parallel, or
the number of environments that can be run in parallel.

Overall, NAVIX can be over 160 000× faster than the original Minigrid implementation, turning
1-week experiments into 15-minute ones. We noticed that these results assume access to a modern
GPU, and extending NAVIX to the few remaining Minigrid variants and to training pipelines that
cannot JIT-compile the full loop is left for future work.
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A Details on NAVIX systems

Systems are functions that operate on the collective state of all entities, defining the rules of the
interactions between them. In designing NAVIX, we aimed to maintain a bijective relationship
between the systems and their respective mathematical formalism in RL. This makes it easier to
translate the mathematical formalism into code, and vice versa, connecting the implementation to the
theory. NAVIX includes the following systems:

1 Intervention: a function that updates the state of the entities according to the actions
taken by the agents.

2 Transition: a function that updates the state of the entities according to the MDP state
transitions.

3 Observation: a function that generates the observations that the agents receive.
4 Reward: a function that computes the rewards that the agents receive.
5 Termination: a function that determines if the episode is terminated.

We now describe the systems formally.

The intervention is a function I : S ×A → S that updates the state of the entities according to the
actions taken by the agents. This corresponds to the canonical decision in an MDP.

The transition is a function µ : S × A → S that updates the state of the entities according to the
MDP state transitions. This corresponds to the canonical state transition kernel in an MDP.

The observation is a function O : S → O that generates the observations that the agents receive.
NAVIX includes multiple observation functions, each generating a different type of observation, for
example, a first-person view, a top-down view, or a third-person view, both in symbolic and pixel
format. We provide both full and partial observations, allowing to cast a NAVIX environment both as
an MDP or as a POMDP, depending on the needs of the algorithm. This follows the design of the
original MiniGrid suite.

The reward is a function R : S ×A → R that computes the rewards that the agents receive. Likewise,
the termination is a function γ : S → {0, 1} that determines if the episode is terminated. We include
both the reward and the termination functions necessary to reproduce all MiniGrid environments.
Both these systems rely on the concept of events, representing a goal to achieve. An event is itself
an entity signalling that a particular state of the environment has been reached. For example, it can
indicate that the agent has reached a particular cell, has picked up a particular object, or that the agent
performed a certain action in a particular state.

We provide a summary of the implemented systems in NAVIX in Tables 4, 5, and 6 for the observation,
reward, and termination systems, respectively.
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Observation function Shape Description
symbolic i32[H, W, 3] The canonical grid encoding ob-

servation from MiniGrid.
symbolic_first_person i32[R, R, 3] A first-person view of the environ-

ment in symbolic format.
rgb u8[32 * H, 32 * W, 3] A fully visible image of the envi-

ronment in RGB format.
rgb_first_person u8[32 * R, 32 * R, 3] A first-person view of the environ-

ment in RGB format.
categorical i32[H, W] A grid of entities ID in the envi-

ronment.
categorical_first_person i32[R, R] A first-person view of the grid of

entities ID.

Table 4: Implemented observation functions in NAVIX.

Reward function Description
on_goal_reached +1 when a Goal entity and a Player entity have the same position
on_lava_fall −1 when a Lava entity and a Player entoty have the same position
on_door_done +1 when the done action is performed in front of a door with the

colour specific in the mission
free 0 everywhere
action_cost −costa at every action taken, except done
time_cost −costt at every step

Table 5: Implemented reward functions in NAVIX.

Termination function Description
on_goal_reached Terminates when a Goal entity and a Player entity have the same

position
on_lava_fall Terminates when a Lava entity and a Player entity have the same

position
on_door_done Terminates when the done action is performed in front of a door

with the colour specific in the mission
free 0 everywhere

Table 6: Implemented termination functions in NAVIX.

B Impact of reward Markovianity on PPO training

As described in Section 3.2.1, NAVIX replicates the semantics of MiniGrid in terms of environments,
observations, state transitions rewards, and actions. However, while developing, we noticed that
MiniGrid’s reward function is non-Markovian, despite most of the RL algorithms assuming Markov
rewards (Schulman et al., 2017; Haarnoja et al., 2018b; van Hasselt et al., 2016). This might call into
question the validity of the historical results obtained with MiniGrid, and the generalisation of the
results to other environments.

Here, we analyse the impacts of Markovianity on the training of a PPO agent, and how the task
completion rate varies during training, with a Markov and a non-Markov reward function. We use the
following reward function, respectively:

rt = R(st, a, st+1) (2)

rt = R(st, a, st+1)− 0.9 ∗ (t+ 1)/T. (3)
Equation (2) represents the Markovian reward function, while Equation 3 the non-Markovian one.

Results in figure 8 shows that, for some environments, in particular those where PPO converges
to near-optimality, the success rate presents a higher variance with non-Markov rewards. To avoid
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Figure 8: Task completion rate of a PPO agent across environments with a Markov (red) and a
non-Markov (black) reward function.

failures when reproducing prior MiniGrid studies, this experiment calls researchers to pay particular
attention to choose the original non-Markovian reward function of MiniGrid, also available in NAVIX.

C Performance on consumer-grade hardware

Despite NAVIX being designed for training at scale, to give readers a more comprehensive expectation
of its performance, we tested the speed and throughput gain in Section 4.1 and 4.2 on a consumer-
grade level hardware. The experiment is carried on a consumer desktop with an i7-11700 @ 2.50GHz
CPU, 32Gb of RAM, and an Nvidia RTX A4000 with 16Gb of VRAM. All results are averaged
across 5 runs.

The evidence in Figure 9 and 10 confirms the trend of Section 4.1. NAVIX is over 7 times faster than
the original MiniGrid implementation on average across environments.

Figure 11 and 12, instead, replicate the experiments in Section 4.2. Results show consistent perfor-
mance on a consumer-grade machine. On a consumer-grade machine, NAVIX can run up to 218
(over 260K) environments in parallel on a single Nvidia RTX A4000 with 16Gb of VRAM, and over
512 full PPO agents.

While it is expected that consumer-hardware cannot keep up with the high-end hardware designed for
computation at scale, NAVIX still shows a speedup of approximately 34 000×.
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Figure 9: Speedup of NAVIX compared to the
original Minigrid implementation on a commercial-
grade desktop. The identifiers on the x-axis corre-
spond to the environments as reported in Table 13,
Appendix I. Results are the average across 5 runs.

Figure 10: Variation of the speedup of NAVIX
compared to the original Minigrid implementa-
tion on a consumer-grade machine.

Figure 11: Wall time of 1K unrolls for both
NAVIX and MiniGrid in batch mode on a
consumer-grade machine.

Figure 12: Computation costs with growing
batch sizes on a consumer-grade machine.
The horizontal dashed line shows the Min-
iGrid time to train a single PPO agent.

D Impact of the design pattern

The speedup of NAVIX does not only depend on JAX, but also on the transition to an ECS design
pattern. To marginalise the performance gains over the design patter, we have compared the perfor-
mance of NAVIX on CPU and GPU: the exact same Python program, with the exact same design
pattern, but compiled and run on different accelerators.

We measure speed and throughput as described in Section 4.1 and Section 4.2. The experiment is
carried on a desktop with an i7-11700 @ 2.50GHz CPU, 32Gb of RAM, and an Nvidia RTX A4000
with 16Gb of VRAM. Figures 13 and 14 show the speedup at different number of environment
steps, while the second table shows the throughput capacity. Results suggest that when the number
of environments is small (<32), NAVIX CPU is more or as efficient as on GPU, and allows for a
larger batch size due to the higher memory capacity (RAM) compared to the GPU memory capacity
(VRAM). However, as the batch size grows, the GPU scales better. Its performance remains constant
up until around 212 environments, after which starts to grow linearly.

This confirms that the performance gains of NAVIX derive from a systemic transition to a different
framework in JAX, and not only from the transition to different types of accelerators. The higher
throughput of NAVIX on CPU derives from a higher RAM capacity compared to the VRAM of the
GPU.
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Figure 13: Computation speed across number
different number of sequential steps between
a CPU- and GPU-compiled NAVIX program.

Figure 14: Computation costs across growing batch
sizes between a CPU- and GPU-compiled NAVIX
program.

E Details on baselines

Here we report the hyperparameters used to run the baselines in Section 4.3, for each algorithm. To
allow the table to fit into the page horizontally we shorten the names of each environment and present
a full mapping below:

1. FR: Navix-FourRooms-v0,
2. DK8: Navix-DoorKey-8x8-v0,
3. DK16: Navix-DoorKey-16x16-v0,
4. GD6: Navix-GoToDoor-6x6-v0,
5. SC9: Navix-SimpleCrossingS9N1-v0,
6. E6: Navix-Empty-6x6-v0,
7. E16: Navix-Empty-16x16-v0,
8. ER8: Navix-Empty-Random-8x8-v0,
9. LG6: Navix-LavaGapS6-v0,

10. KC43: Navix-KeyCorridorS4R3-v0,
11. DO6R: Navix-Dynamic-Obstacles-6x6-Random-v0,
12. DS2: Navix-DistShift2-v0.
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PPO DS2 DK16 DK8 DO6R E16 E6 ER8 FR GD6 KC43 LG6 SC9

activation swish tanh tanh tanh tanh relu swish swish tanh tanh tanh swish
num_envs 256 16 16 16 16 16 64 128 32 128 16 64
num_steps 64 128 128 128 128 256 128 32 32 64 128 128
num_epochs 16 2 2 16 2 4 8 2 8 4 8 4
num_minibatches 1 1 1 8 1 16 1 8 32 1 8 4
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
max_grad_norm 10 1 1 5 1 1 10 5 10 10 0.5 0.5
total_timesteps 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M
eval_freq 2K 2K 2K 2K 2K 2K 2K 2K 2K 2K 2K 2K
gamma 0.95 0.95 0.95 0.99 0.95 0.99 0.99 0.99 0.99 0.95 0.99 0.99
gae_lambda 0.95 0.9 0.9 0.99 0.9 0.9 0.8 0.99 0.95 0.95 0.99 0.9
clip_eps 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
ent_coef 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
vf_coef 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
normalize_observations true false false true false true true false true true true true

Table 7: Hyperparameters for the PPO agent. Numeric abbreviations: 1M = 1048 576, 256K =
262 144.

SAC DS2 DK16 DK8 DO6R E16 E6 ER8 FR GD6 KC43 LG6 SC9

activation swish swish swish tanh relu tanh tanh tanh tanh relu swish tanh
num_envs 128 128 128 128 128 128 128 128 128 128 128 128
buffer_size 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K
fill_buffer 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K
batch_size 256 128 128 512 512 512 512 256 256 128 1028 1028
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
num_epochs 128 128 128 128 128 128 128 128 128 128 128 128
total_timesteps 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M
eval_freq 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K
gamma 0.8 0.8 0.8 0.8 0.8 0.8 0.95 0.9 0.9 0.8 0.8 0.8
polyak 0.9 0.995 0.995 0.95 0.995 0.95 0.9 0.995 0.995 0.95 0.9 0.9
target_entropy_ratio 0.6 0.9 0.9 0.5 0.5 0.5 0.3 0.9 0.9 0.4 0.6 0.6
normalize_observations true false false false false false false false false true true true

Table 8: Hyperparameters for the SAC agent. Numeric abbreviations: 1M = 1048 576, 128K =
131 072, 8K = 8192.

DQN DS2 DK16 DK8 DO6R E16 E6 ER8 FR GD6 KC43 LG6 SC9

activation swish relu relu relu swish swish swish relu swish swish swish tanh
num_envs 10 10 10 10 10 10 10 10 10 10 10 10
num_epochs 1 1 1 1 1 1 1 1 1 1 1 1
buffer_size 128K 128K 64K 128K 128K 128K 128K 128K 128K 128K 128K 128K
fill_buffer 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K
batch_size 1,024 512 128 1,024 2,048 1,024 1,024 256 1,024 128 512 512
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
max_grad_norm 0.5 1 10 0.5 10 0.5 1 10 0.5 10 1 1
total_timesteps 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M
eval_freq 128K 128K 16K 128K 128K 128K 128K 128K 128K 128K 128K 128K
gamma 0.95 0.95 0.95 0.95 0.95 0.95 0.9 0.9 0.95 0.995 0.9 0.95
eps_start 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
eps_end 0.01 0.01 0.05 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.05 0.05
exploration_fraction 0.3 0.5 0.5 0.5 0.5 0.3 0.1 0.1 0.3 0.3 0.1 0.3
target_update_freq 8K 2K 2K 512 1K 8K 1K 2K 8K 8K 4K 512
ddqn true true true true true true true true true true true true
normalize_observations true false false true true true false false true false true false

Table 9: Hyperparameters for the DQN agent. Numeric abbreviations: 1M = 1048 576, 128K =
131 072, 64K = 65 536, 16K = 16 384, 8K = 8192, 4K = 4096, 2K = 2048.
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IQN DS2 DK16 DK8 DO6R E16 E6 ER8 FR GD6 KC43 LG6 SC9

activation relu tanh tanh tanh swish relu swish relu relu relu swish tanh
num_envs 10 10 10 10 10 10 10 10 10 10 10 10
num_epochs 1 1 1 1 1 1 1 1 1 1 1 1
buffer_size 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K
fill_buffer 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K
batch_size 512 256 256 256 256 512 256 512 256 256 512 128
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
kappa 1.0 0.5 0.5 0.5 3.0 1.0 3.0 2.0 0.5 0.5 1.0 2.0
num_tau_samples 32 16 16 16 16 32 16 32 16 16 16 32
num_tau_prime_samples 64 64 64 64 64 64 64 16 64 64 32 64
total_timesteps 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M
eval_freq 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K 128K
gamma 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.9 0.9 0.9 0.9
eps_start 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
eps_end 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.05 0.01 0.01 0.1 0.05
exploration_fraction 0.1 0.1 0.1 0.1 0.3 0.1 0.3 0.7 0.1 0.1 0.7 0.1
target_update_freq 1K 512 512 512 4K 1K 4K 512 512 512 2K 1K
normalize_observations false true true true true false true false true true false true

Table 10: Hyperparameters for the IQN agent. Numeric abbreviations: 1M = 1048 576, 128K =
131 072, 8K = 8192, 4K = 4096, 2K = 2048, 1K = 1024.

PQN DS2 DK16 DK8 DO6R E16 E6 ER8 FR GD6 KC43 LG6 SC9

num_envs 16 512 512 512 512 16 128 32 128 128 8 128
num_steps 128 128 128 128 16 128 16 512 16 512 512 16
num_epochs 8 16 16 16 1 8 2 1 2 1 16 2
num_minibatches 128 64 64 64 128 128 128 128 128 256 64 128
learning_rate 0.000246 0.000126 0.000126 0.000126 0.000536 0.000246 0.000104 0.000179 0.000179 0.000211 0.000242 0.000104
max_grad_norm 5 1 1 1 0.5 5 1 10 1 1 5 1
total_timesteps 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M
eval_freq 256K 256K 256K 256K 256K 256K 256K 256K 256K 256K 256K 256K
gamma 0.9 0.8 0.8 0.8 0.8 0.9 0.99 0.99 0.99 0.95 0.8 0.99
td_lambda 0.8 0.2 0.2 0.2 0.8 0.8 0.8 0.4 0.8 0.8 0.8 0.8
eps_start 1 1 1 1 1 1 1 1 1 1 1 1
eps_end 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.1 0.05
exploration_fraction 0.3 0.3 0.3 0.3 0.5 0.3 0.2 0.7 0.2 0.4 0.2 0.2
normalize_observations false true true true false false true true true true true true

Table 11: Hyperparameters for the PQN agent. Columns use the short env IDs defined in App. E.
Numeric abbreviations: 1M = 1048 576, 256K = 262 144.

Algorithm Fitted hyperparameters

PPO #envs, #steps, #epochs, #minibatches, discount factor, λ (GAE), grad. norm clip,
norm. obs., activation function

DQN batch size, target network update freq., discount factor, exploration fraction,
final ϵ, grad. norm clip, norm. obs., activation function

SAC batch size, discount factor, τ (Polyak update), target entropy ratio, norm. obs.,
activation function

Table 12: Fitted hyperparameters for PPO, DQN, and SAC. Details on each hyperparameter set,
for each environment and each algorithm are available at https://github.com/epignatelli/
navix/tree/speedup/baselines/rejax/configs.
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F Reusable patterns

Here we provide some useful patterns that users can reuse as-they-are or modify to suit their needs. In
particular, we show how to jit the full interaction loop of a NAVIX environment in Code 2, and how to
run multiple seeds in parallel in Code 3. Further examples, including how to jit a whole training loop
with a JAX-based agent, and how to automate hyperparameter search, are available in the NAVIX
documentation at https://epignatelli/navix/examples/getting_started.html.

F.1 Jitting full interaction loops

import navix as nx

# init a NAVIX environment
env = nx.make("Navix-KeyCorridorS6R3-v0")

# sample a starting state
timestep = env.reset(key)

# jitting the step function
step_env = jax.jit(env.step)

# unroll the environment for 1000 steps
timestep, _ = jax.lax.scan(

lambda timestep, _: (unroll(timestep, i % 6), ()),
timestep,
(timestep, jnp.arange(1000))

)

Code 2: Example code to jit a Navix-Empty-5x5-v0 environment.

F.2 Running multiple seeds in parallel

import navix as nx

env = nx.make("Navix-KeyCorridorS6R3-v0")

# define the run function
def run(key):

def step(state, action):
timestep, key = state
key, subkey = jax.random.split(key)
action = jax.random.randint(subkey, (), 0, env.action_space.n)
return (env.step(timestep, action), key), ()

# unroll the environment for 1000 steps
timestep = env.reset(key)
timestep, _ = jax.lax.scan(

step,
timestep,
((timestep, key) jnp.arange(1000)),

)
return timestep

seeds = jax.random.split(jax.random.PRNGKey(0), 1000)
batched_end_steps = jax.jit(jax.vmap(run))(seeds)

Code 3: Example code to jit a Navix-Empty-5x5-v0 environment.
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G Customising NAVIX environments

NAVIX is designed to be highly customisable, allowing users to create new environments by combin-
ing existing entities and systems. In this section, we provide examples of how to customise NAVIX
environments by using different systems.

For example, to create a new environment where the agent has to reach a goal while avoiding lava,
we can combine the Goal and Lava entities with the Reward system:

import navix a nx

reward_fn = nx.rewards.compose(
nx.rewards.on_goal_reached(),
nx.rewards.on_lava_fall()

)

env = nx.make(
"Navix-Empty-5x5-v0",
reward_fn=reward_fn)

Code 4: Example code to create a Navix-Empty-5x5-v0 environment with a custom reward function.
See Table 5 for a list of implemented reward functions.

Alternatively, to use a different observation function, we can use the Observation system:

import navix as nx

env = nx.make(
"Navix-Empty-5x5-v0",
observation_fn=nx.observations.rgb())

Code 5: Example code to create a Navix-Empty-5x5-v0 environment with a custom observation
function. See Table 4 for a list of implemented observation functions.

Finally, to terminate the environment, for example, only when the agent reaches the goal, but not
when it falls into the lava, we can use the Termination system:

import navix as nx

env = nx.make(
"Navix-Empty-5x5-v0",
termination_fn=nx.terminations.on_goal_reached())

Code 6: Example code to create a Navix-Empty-5x5-v0 environment with a custom termination
function. See Table 6 for a list of implemented termination functions.

These examples can be extended to create more complex environments by combining different
systems for the same environment configuration.

H Extending NAVIX environments

NAVIX is designed to be easily extensible. Users can create new entities, components, systems, and
full environments by implementing the necessary functions. In this section, we provide templates
to extend NAVIX environments. In particular, Code 7 shows how to create a custom environment,
Code 8 shows how to create a custom component, Code 9 shows how to create a custom entity, and
Code 10 shows how to create custom systems.
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import jax, navix as nx

class CustomEnv(nx.Environment):
def _reset(self, key: jax.Array) -> nx.Timestep:

"""Reset the environment."""
# create your grid, place your entities, define your mission
return timestep

nx.registry.register_env(
"CustomEnv",
lambda *args, **kwargs: CustomEnv.create(

observation_fn=nx.observations.symbolic(),
reward_fn=nx.rewards.on_goal_reached(),
termination_fn=nx.terminations.on_goal_reached(),

)
)

Code 7: Example code to extend NAVIX by creating a custom environment. The _reset function
allows to generate a custom starting state, after which the environment will evolve according to the
usual systems: intervention, transition, reward and termination functions. Notice that it is convenient
to use the environment constructor create to automatically set non-orthogonal properties (e.g.
observation space and observation function).

import jax, navix as nx

class CustomComponent(nx.Componnet):
"""My custom component."""

custom_property: jax.Array = nx.components.field(shape=())

Code 8: Example code to extend NAVIX by creating a custom component. Notice that the property
must have a type annotation and specify a shape.

import jax, navix as nx

class CustomEntity(nx.Entity, CustomComponent):
"""My custom entity."""

@property
def walkable(self) -> jax.Array:

return jnp.broadcast_to(jnp.asarray(False), self.shape)

@property
def transparent(self) -> jax.Array:

return jnp.broadcast_to(jnp.asarray(False), self.shape)

@property
def sprite(self) -> jax.Array:

sprite = # the address of your sprite, e.g., SPRITES_REGISTRY[Entities.WALL]
return jnp.broadcast_to(sprite[None], (*self.shape, *sprite.shape))

@property
def tag(self) -> jax.Array:

entity_id = # the id of your entity, e.g., EntityIds.WALL
return jnp.broadcast_to(entity_id, self.shape)

Code 9: Example code to extend NAVIX by creating a custom entity. Notice that four properties
must be implemented: walkable, transparent, sprite, and tag.
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import jax, navix as nx

def my_reward_function(state: nx.State, action: nx.Action, new_state: nx.State) -> jax.Array:
"""My custom reward function."""
# do stuff
return reward # f32[]

def my_termination_function(state: nx.State, action: nx.Action, new_state: nx.State) -> jax.Array:
"""My custom termination function."""
# do stuff
return termination # bool[]

def my_observation_function(state: nx.State) -> jax.Array:
"""My custom observation function."""
# do stuff
return observation # f32[]

def my_intervention_function(state: nx.State, action: nx.Action) -> nx.State:
"""My custom intervention function."""
# do stuff
return new_state # State

def my_transition_function(state: nx.State) -> nx.State:
"""My custom transition function."""
# do stuff
return new_state # State

Code 10: Example code to extend NAVIX by creating custom systems.

Figure 15: Ablation. Speedup of NAVIX compared to the original Minigrid implementation without
batching. The identifiers on the x-axis correspond to the environments as reported in Table 13. Lower
is better.
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I Additional Tables

X tick Env id
0 Navix-Empty-5x5-v0
1 Navix-Empty-6x6-v0
2 Navix-Empty-8x8-v0
3 Navix-Empty-16x16-v0
4 Navix-Empty-Random-5x5
5 Navix-Empty-Random-6x6
6 Navix-DoorKey-5x5-v0
7 Navix-DoorKey-6x6-v0
8 Navix-DoorKey-8x8-v0
9 Navix-DoorKey-16x16-v0
10 Navix-FourRooms-v0
11 Navix-KeyCorridorS3R1-v0
12 Navix-KeyCorridorS3R2-v0
13 Navix-KeyCorridorS3R3-v0
14 Navix-KeyCorridorS4R3-v0
15 Navix-KeyCorridorS5R3-v0
16 Navix-KeyCorridorS6R3-v0
17 Navix-LavaGapS5-v0
18 Navix-LavaGapS6-v0
19 Navix-LavaGapS7-v0
20 Navix-SimpleCrossingS9N1-v0
21 Navix-SimpleCrossingS9N2-v0
22 Navix-SimpleCrossingS9N3-v0
23 Navix-SimpleCrossingS11N5-v0
24 Navix-Dynamic-Obstacles-5x5
25 Navix-Dynamic-Obstacles-6x6
26 Navix-Dynamic-Obstacles-8x8
27 Navix-Dynamic-Obstacles-16x16
28 Navix-DistShift1-v0
29 Navix-DistShift2-v0

Table 13: Correspondence between the x-ticks in Figure 3 and the environment ids.

Table of environments available in NAVIX.
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Env-id Class Height Width Reward
Navix-Empty-5x5-v0 Empty 5 5 R1

Navix-Empty-6x6-v0 Empty 6 5 R1

Navix-Empty-8x8-v0 Empty 8 8 R1

Navix-Empty-16x16-v0 Empty 16 16 R1

Navix-Empty-Random-5x5 Empty 5 5 R1

Navix-Empty-Random-6x6 Empty 6 6 R1

Navix-Empty-Random-8x8 Empty 8 8 R1

Navix-Empty-Random-16x16 Empty 16 16 R1

Navix-DoorKey-5x5-v0 DoorKey 5 5 R1

Navix-DoorKey-6x6-v0 DoorKey 6 6 R1

Navix-DoorKey-8x8-v0 DoorKey 8 8 R1

Navix-DoorKey-16x16-v0 DoorKey 16 16 R1

Navix-DoorKey-Random-5x5 DoorKey 5 5 R1

Navix-DoorKey-Random-6x6 DoorKey 6 6 R1

Navix-DoorKey-Random-8x8 DoorKey 8 8 R1

Navix-DoorKey-Random-16x16 DoorKey 16 16 R1

Navix-FourRooms-v0 FourRooms 17 17 R1

Navix-KeyCorridorS3R1-v0 KeyCorridor 3 7 R1

Navix-KeyCorridorS3R2-v0 KeyCorridor 5 7 R1

Navix-KeyCorridorS3R3-v0 KeyCorridor 7 7 R1

Navix-KeyCorridorS4R3-v0 KeyCorridor 10 10 R1

Navix-KeyCorridorS5R3-v0 KeyCorridor 13 13 R1

Navix-KeyCorridorS6R3-v0 KeyCorridor 16 16 R1

Navix-LavaGap-S5-v0 LavaGap 5 5 R2

Navix-LavaGap-S6-v0 LavaGap 6 6 R2

Navix-LavaGap-S7-v0 LavaGap 7 7 R2

Navix-Crossings-S9N1-v0 Crossings 9 9 R2

Navix-Crossings-S9N2-v0 Crossings 9 9 R2

Navix-Crossings-S9N3-v0 Crossings 9 9 R2

Navix-Crossings-S11N5-v0 Crossings 11 11 R2

Navix-Dynamic-Obstacles-5x5 Dynamic-Obstacles 5 5 R3

Navix-Dynamic-Obstacles-5x5 Dynamic-Obstacles 5 5 R3

Navix-Dynamic-Obstacles-6x6 Dynamic-Obstacles 6 6 R3

Navix-Dynamic-Obstacles-6x6 Dynamic-Obstacles 6 6 R3

Navix-Dynamic-Obstacles-8x8 Dynamic-Obstacles 8 8 R3

Navix-Dynamic-Obstacles-16x16 Dynamic-Obstacles 16 16 R3

Navix-DistShift1-v0 DistShift 6 6 R2

Navix-DistShift2-v0 DistShift 8 8 R2

Navix-GoToDoor-5x5-v0 GoToDoor 5 5 R1

Navix-GoToDoor-6x6-v0 GoToDoor 6 6 R1

Navix-GoToDoor-8x8-v0 GoToDoor 8 8 R1

Table 14: List of environments available in NAVIX. Env-id denotes the id to instantiate the envi-
ronment. Here, R1 is the reward function for goal achievement – 1 when the agent is on the green
square, and 0 otherwise. R2 is the reward function for goal achievement and lava avoidance – 1 when
the agent is on the green square, −1 when the agent is on the lava square, and 0 otherwise. R3 is
the reward function for goal achievement and dynamic obstacles avoidance – 1 when the agent is
on the green square, −1 when the agent is hit by a flying object, and 0 otherwise. All environments
terminate when the reward is not 0, for example, on goal achievement, or on lava collision.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract claims that: (i) NAVIX is a direct drop-in JAX re-implementation
of MiniGrid, and (ii) it achieves > 160 000× simulated-step throughput in batch mode
and supports 2 048 agents on one A100 80 GB. Section 4.1 reports a 4.4 × 101 average
speedup across environments without accounting for the increased throughput. Section 4.2
demonstrates by batching the computation also across multiple agents, up to 2 048, NAVIX
can achieve a > 160 000× speedup compared to the MiniGrid version, which is instead
limited in scalability by its CPU-based architecture.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We remark here the dependence on modern GPUs, i.e., NVidia A100 80GB
or better, to reproduce the results. Furthermore, NAVIX is limited by the omission of a
few MiniGrid variants that cannot be immediately jittable. Both limitations are stated in
Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Instructions on how to reproduce all experiments can be found in Section 4.
Hyperparameters for the baselines can be found as described in Appendix E and in the
config files at https://github.com/epignatelli/navix/tree/speedup/baselines/rejax/configs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full NAVIX code is avilable at https://github.com/epignatelli/navix.
Documentation is available at https://epignatelli/navix. The folder
https://github.com/epignatelli/navix/tree/speedup/benchmarks contains the code to
run the experiments in Section 4.1 and 4.2. The code to reproduce the baselines is available
at https://github.com/epignatelli/navix/tree/speedup/baselines/rejax.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details on hyperparameters and training config-
urations can be found as described in Appendix E and at
https://github.com/epignatelli/navix/tree/speedup/baselines/rejax/configs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: Results are accompanied by error bars, and their meaning is reported in
the correspondig sections. In particular, shaded areas in Figure 7 show 5-95 percentile
confidence intervals, as described in Section 4.3. Error bars in Figures 3, 4, 5, and6 represent
standard errors as described in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are run on a single Nvidia A100 80Gb, and Intel(R) Xeon(R)
Silver 4310 CPU @ 2.10GHz and 128Gb of RAM., as stated in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 5 analyses the broader impacts of NAVIX, including the positive effects
of democratizing RL research, lowering energy use—and and the negative possibilities such
as enabling faster development of malicious autonomous agents.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: NAVIX releases only an environment library, not a pretrained model or large
scraped dataset. The code confers no novel dual-use capability beyond the long-established
MiniGrid baseline, so additional safeguards are unnecessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: NAVIX is released under Apache 2.0, as stated on the main repository
https://github.com/epignatelli/navix/blob/main/LICENSE, with the license file and copyright
header included in the repository. MiniGrid is released under MIT license, as stated in
the corresponding repo https://github.com/Farama-Foundation/Minigrid/blob/
master/LICENSE. JAX is released under Apache 2.0 as stated in the corresponding reposi-
tory https://github.com/jax-ml/jax/blob/main/LICENSE.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Footnote 1 links to the public GitHub repository:
https://github.com/epignatelli/navix. Code is everywhere documented, and API
docs and installation instructtions are available at https://epignatelli/navix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human-subject or crowd-sourcing studies were conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable—no human-subject research was performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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